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Abstract

Optimal stopping problems require people to choose
from a sequence of values, under the constraint that they
cannot return to an earlier option once it is rejected. We
study how people solve optimal stopping problems when
the distribution of values they must choose from is not
uniform, but is constructed to contain many high values
or many low values. We present empirical evidence that
people adapt to both sorts of environments, and make
decisions consistent with using threshold-based models.
We then fit a threshold model to our data, inferring
the threshold people use, and finding they usually de-
crease their thresholds faster than is optimal as the se-
quence progresses. We also present empirical and model-
based evidence that people generally do not adjust their
thresholds on the basis of the values they see.

Keywords: optimal stopping; secretary problem; se-
quential decision-making; threshold models

Introduction

In optimal stopping problems, people must choose the
maximum out of a set of numbers, under the constraint
that a number can only be chosen when it is presented.
People are told how many numbers are in the sequence,
and that they must choose the last number if they do not
choose an earlier number. For example, the sequence
73, 45, 56, 82, 27 might be presented, one number at a
time. The correct answer is 82, so the decision maker
must not choose 73, 45, and 56 when they are presented,
but must decide to choose 82 rather than be forced to
take the final value 27.

Studying how people solve optimal stopping problems
is interesting, because they have two features found in
many real-world decision settings. The first feature is
that there is no going back. When a choice must be
made among a series of alternatives, it is often difficult
or impossible to return to earlier options. In dating, once
one potential partner is replaced by another, it is hard
to go back. (The Tinder social application for dating
make this “no going back constraint” explicit and non-
negotiable). On long cross-country drives, once the gas
station in a town is passed, there is a strong disincentive
to turn around. In job recruitment, a candidate initially
not offered a position may no longer be on the job-market
if they are later sought.

The second feature of optimal stopping problems is
that only the best will do. Often when a choice is made
it needs to be the best one, and any inferior choice is
not acceptable. In eye-witness identification line-ups,
choosing the identical twin of the perpetrator is no better
than choosing any other innocent suspect. Searching a
key-chain requires finding exactly the right key, and it is
equally a waste of time to try any other key, whatever
its similarities to the correct one.

How people solve optimal stopping problems has been
studied experimentally in a variety of contexts. Many
studies focus on the classic “rank order” version, in
which only the rank of the current alternative relative to
those already seen is presented (e.g., Seale & Rapoport,
1997, 2000). Other studies focus on the “full informa-
tion” version, in which continuously-scaled values for the
alternatives are presented (e.g., Lee, 2006). For both
versions of the problem, there are known optimal solu-
tions processes, so that human performance can be com-
pared to optimal performance (Ferguson, 1989; Gilbert
& Mosteller, 1966). In the rank order version, the op-
timal solution involves waiting until a critical point in
the sequence, then choosing the first option with rank
one (if such an option exists) after that point. In the full
information version, the optimal solution involves choos-
ing the first currently maximal number that is above a
threshold for the current position in the sequence.

In this paper, we focus on an under-explored but nat-
ural manipulation in optimal stopping problems. We
change the nature of the environment from which the
values are drawn, so that environments can either be
plentiful, with lots of high values, or sparse with lots of
low values. This manipulation is not very interesting in
the rank order version of the problem, since the values
underlying the ranks are not available to people. In the
full-information version of the problem, however, people
have access to the values, and so can learn about the
distributional properties of the environment.

Optimal decision making involves setting higher
thresholds in plentiful environments, and lower thresh-
olds in scarce environments. A job-market awash with
strong candidates allows for more selective recruiting
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than one with weak candidates. Surprisingly, there ap-
pear to be very few studies of how people solve optimal
stopping problems that manipulate the environment.
Most studies use a single environment, usually with uni-
formly distributed values (e.g., Campbell & Lee, 2006;
Kogut, 1990; Lee, 2006; Sonnemans, 1998). The only
exception we are aware of is the early study by Kahan,
Rapoport, and Jones (1967) that used three sets of 200
numbers, with the sets having the same mean but differ-
ent variances, although there are related searching-and-
stopping tasks for studying economic decision-making
that have been studied with environment manipulation
(e.g., Brickman, 1972; Hey, 1982).

Given the lack of previous work in studying how peo-
ple solve optimal stopping problems in different environ-
ments, our goals are simple. We study how people solve
optimal stopping problems in a plentiful and a sparse
environment. In the next section, we describe the ex-
perimental method, and present basic empirical results
relating to the accuracy of the decisions people make.
We then use Bayesian methods to fit threshold models,
which leads to some more detailed findings, including
how people’s decision-making relates to optimality.

Experiment

Method

Participants A total of 56 UC Irvine undergraduate
students participated in the experiment. Each partic-
ipant was randomly assigned to either the plentiful or
scarce environment condition, so that there were 28 par-
ticipants in each condition.

Procedure Participants were told to choose the high-
est out of a sequence of five random numbers ranging
from 0 to 100, presented to two decimal places, under
the constraint that they must choose a number when it
is presented. They were also told that the only correct
answer was the (unique) highest number out of the five,
and that any incorrect answer is equally and completely
incorrect. Each participant completed a total of 64 five-
point optimal stopping problems, using a simple com-
puter interface that presented the current value, showed
its position in the sequence (e.g., “2/5” for the second
position) and allowed the participants to choose or not
choose the value with “Yes” and “No” buttons.. The
interface provided feedback after each trial, and showed
a cumulative record of the number of correct responses
the participant had made over all of their problems.

Two different distributions were used to generate the
stimuli. In the plentiful condition, the presented val-
ues were based on values generated as vijk ∼ Beta

(
4, 2
)
,

where vijk is the value the ith participant saw in the
kth position on the jth problem they completed. In the
scarce condition, vijk ∼ Beta

(
2, 4
)
. Thus, participants

in the plentiful environment were presented with num-
bers that were relatively large, and participants in the

scarce environment were presented with numbers that
were relatively small. The environment condition ma-
nipulation was done between-subjects.

Empirical Results

Choosing the Current Maximum We first checked
whether participants completed basic components of the
task properly. In order to choose the maximum out of a
set of five, participants should not choose a value that is
lower than an earlier alternative, excluding being forced
to choose the final number. For example, if a 92 was not
chosen when it was presented in the first position, then
a 91 must not be chosen later on in the third position
because it can no longer be the maximum. All but 4
participants chose the currently maximum value on over
90% of their problems. The remaining 4 participants (2
in the plentiful condition, and 2 in the sparse condition)
met this standard on fewer than 65% of their problems
Accordingly, we treated these 4 participants as contam-
inants, and excluded them from all of our analyses.

Accuracy Figure 1 shows the overall performance and
learning curves for the 52 non-contaminant participants.
As has been emphasized in previous studies (e.g., Lee,
2006) optimal stopping problems afford two complemen-
tary ways to measure the accuracy of decision making.
One is how often the correct maximum number in a prob-
lem sequence was chosen. The other is how often the
number chosen was consistent with following the opti-
mal decision process. The first is a measure of corre-
spondence, based on matching the environmental truth,
while the second is a measure of coherence, based on
following rationally the available information to make
a decision (see Dunwoody, 2009). The left panel of Fig-
ure 1 shows the percentage of problems for which individ-
ual participants were accurate in terms of both of these
measures. In both environments, participants adhere to
the optimal decision process about 60–80% of the time
(with a few participants performing worse in the sparse
environment). This leads to the maximum value being
chosen about 40–70% of the time. Both of these find-
ings are consistent with what has previously been found
in environments where values are uniformly distributed
(see Lee, 2006, Figure 2). The right panel of Figure 1
shows the learning curves, averaged over all participants,
for both these measures. Perhaps surprisingly, but con-
sistent with previous literature (e.g., Campbell & Lee,
2006; Lee, 2006) there is little evidence of learning. The
curves are noisy, especially for the less stable maximum
value measure, but, at least after 8 trials, there is no
evidence of consistently improving performance.

Sensitivity to Position in Sequence To examine
how the position in the sequence affected people’s deci-
sion making, we looked at the distribution of values that
participants chose and did not choose at every position.
Figure 2 shows these distributions for all five positions,
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Figure 1: The left panel shows, for both plentiful and sparse environments, the proportion of trials on which the
optimal decision process was followed, and the maximum was chosen, for each participant. The right panels shows
the learning curves across trials for the average of these measures over all participants.
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Figure 2: The distribution of values that were chosen and not chosen, as a function of position in the sequence, for
both the plentiful (left panel) and sparse (right panel) environment conditions.
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Figure 3: Histograms of immediate preceding stimuli depending on whether the next alternative in the sequence was
chosen or not chosen. Note that Position 5 is empty because histograms show frequency of immediate preceding
values.
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collapsed across all participants, but separated into the
plentiful and scarce environment conditions. It is evi-
dent that for every position, excluding values in the fifth
position that participants were forced to take, the dis-
tribution of chosen values is higher than the distribution
of values that were not chosen. Figure 2 also shows that
the chosen values tend to be smaller in later positions
in the sequence, and that values not chosen early in the
sequence are chosen later. These two empirical regular-
ities are consistent with the idea that people compare
each option to a series of decreasing internal thresholds,
as in the optimal decision making process.

Sensitivity to Preceding Value Making optimal de-
cisions on optimal stopping problems requires ignoring
previous values in the sequence. Whether or not to
choose the value 80 in second position should not be
affected by whether the first value was 79 or 10. But peo-
ple often make decisions sensitive to the context provided
by earlier stimuli. To examine this possibility, Figure 3
shows the distribution of values in each position, sepa-
rated by whether they immediately preceded a decision
to choose or not chose the next presented value. For ex-
ample, if the first two values in a problem sequence were
67 and 72, the value 67 would be part of the “before not
chosen” distribution in position 1 if the participant did
not choose the subsequent value 72, but part of the “be-
fore chosen” distribution in position 1 if the participant
did chose the subsequent value 72. Visually, the distri-
butions for “before not chosen” and “before chosen” in
Figure 3 seem similar in each position, and for both en-
vironments. This suggests that the decisions made by
participants are not strongly influenced by the preced-
ing value in a problem. In our modeling analysis pre-
sented later, we provide a stronger test of this claim,
using Bayesian model comparison

Threshold Model Analysis

The basic empirical results are consistent with a model
in which people use a fixed sequence of potentially de-
creasing thresholds to decide whether to accept or reject
presented values. There is, however, evidence of individ-
ual differences in performance in Figure 1, and so it is
possible different people use different thresholds.

Model Definition and Implementation

Accordingly, we implemented a model based on a se-
quence of latent thresholds τi1, . . . , τi4 for the ith partic-
ipant in each of the first four positions where a choice
must be made. We place the order constraints τi1 ≥
τi2 ≥ τi3 ≥ τi4 on these thresholds, so that they (non-
strictly) decrease, and place uniform prior probability on

the subspace of
(
0, 100

)4
these constraints define.1

1The modeling results change little if this order constraint
is removed, but it captures relevant theory, and so should be
included in the model (Vanpaemel & Lee, 2012).

Following the logic of the threshold model, the prob-
ability the ith participant will choose the value they are
presented in the kth position on their jth problem is

θijk =

{
αi if vijk > τik & vijk = max {vij1, . . . , vijk}

1−αi

4 otherwise

for the first four positions and θij5 = 1 −
∑4
k=1 θijk

for the last position. In these definitions, αi ∼
Uniform

(
0, 1
)

is a “probability of execution” parame-
ter that measures how often the deterministic threshold
model is followed by the ith participant (Lee & Newell,
2011).

The observed data are the positions chosen by each
participants on each problem. Denoting by dij the po-
sition chosen by the ith participant on the jth, our
generative probabilistic model is completed by dij ∼
Discrete

(
θij1, . . . , θij5

)
.

We implemented this model as a graphical model us-
ing JAGS (Plummer, 2003), which is software that fa-
cilitates MCMC-based computational Bayesian inference
(Lee & Wagenmakers, 2013). Our results are based on
4 chains of 1000 samples each, collected after 1000 dis-
carded burn-in samples, and with the chains checked for
convergence using the standard R̂ statistic (Brooks &
Gelman, 1997).

Model Results

We first examined the ability of the model to fit the be-
havioral data, using a standard Bayesian approach based
on the posterior predictive distribution (Gelman, Carlin,
Stern, & Rubin, 2004). This is the distribution of choices
the model expects, based on the inferred joint poste-
rior distribution over the model parameters τik and α.
Specifically, we found the mode of posterior predictive
distribution for each participants on each problem, as a
summary of the decision the model expects the partici-
pant to have made. The top panel of Figure 4 shows how
often this decision agreed with the one the participant
actually made, for all of the participants in both envi-
ronments. Given the base-rate or chance level of agree-
ment is 20%, the fact that the model generally captures
70–90% of the decisions a participant makes suggest it
provides a reasonable account of people’s behavior.

The two bottom panels of Figure 4 shows the marginal
posterior expectations for all the inferred thresholds for
all participants. Also shown, by the solid line, is the
optimal threshold, based on the information provided by
Gilbert and Mosteller (1966, Tables 7 and 8).2 It is clear

2Gilbert and Mosteller (1966) provide thresholds for a uni-
formly distributed environment, which give the appropriate
thresholds for our plentiful and scarce environments in terms
of the percentiles that match the thresholds for the uniform
distribution. For example, the threshold for the second-last
position is 50 in a uniform distribution, which means the
threshold for any other distribution in the second-last posi-
tion is the median of that distribution.
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Figure 4: The top panel shows the distribution of posterior predictive agreement measure of fit for the threshold model
for each participant, broken down by environment condition. the two bottom panels show the inferred thresholds
for each participant in both the plentiful (left) and scare (right) environment conditions. The optimal thresholds for
each condition are shown by solid black lines.

that participant performance is sensitive to environment,
since thresholds in the plentiful environment are much
higher than those in the scarce. It is also clear that
there is individual variation in thresholds used across
participants within both environments. Comparing the
inferred participant thresholds to the optimal threshold,
the majority of participants used lower thresholds than
they should, in both environments.

Dependent Threshold Model Comparison

In the current model, the τik thresholds vary by par-
ticipant and position, but are insensitive to preceding
values, capturing the assumption that participants do
not adjust their threshold based on the context provided
by this earlier information. Figure 2 presented some ba-
sic empirical evidence for this assumption. As a model-
based test, we developed an extended threshold model
in which the thresholds can be affected by the preced-
ing value in a problem sequence. Formally, the affected
thresholds are given by τ ′ijk = τk + wi

(
vijk − vij(k−1)

)
,

where wi ∼ Gaussian (0, 0.01) is a parameter measur-
ing how the preceding value affects thresholds for the
ith participant. Intuitively, the wi acts to increase or
decrease a threshold in proportion to the difference be-
tween the current and immediately preceeding value.

We compared this model to the original model using
Bayes factors (Kass & Raftery, 1995), which is a stan-
dard Bayesian approach to comparing models that con-

trols for goodness-of-fit and model complexity. We es-
timated the Bayes factors using a latent mixture proce-
dure based on model-indicator variables (Lee & Wagen-
makers, 2013, Ch. 6). Figure 5 shows the distribution
of log Bayes Factors for each participant. Also shown
are standard interpretative boundaries at log-odds of 2,
6, and 10 corresponding to “moderate”, “strong”, and
“very strong” evidence (Kass & Raftery, 1995, p. 777).
It is evident that there is moderate to strong evidence in
favor of the original model that assumes thresholds are
independent of the preceding value.

Conclusion

Optimal stopping problems provide an interesting se-
quential decision making task that formalize two proper-
ties often found in real-world situation: once an option
has been rejected it is no longer available, and only the
best option is a correct choice. In an extension of most
previous work, we studied how people solve short opti-
mal stopping problems in environments where the avail-
able values are non-uniformly distributed. Our empirical
results show that people still perform well, in terms of
agreeing with the optimal decision making process as
well as achieving the correct outcomes, in both plenti-
ful and scarce environments. These results suggest that
people are capable of identifying at least basic distribu-
tional properties of the environment, and tuning their
decision making to match these properties.
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Figure 5: The distribution of log Bayes factors for all participants, broken down by environment condition, comparing
threshold models assuming independence versus dependence on the preceding value in a problem sequence.

Our behavioral data also suggested that people may
use threshold-based models to solve optimal stopping
problems, maintaining a decreasing sequence of thresh-
olds over the positions in the sequence. We presented
empirical and model-based analyses that suggest these
thresholds are subject to individual differences, often lie
below the optimal thresholds, and are not affected by
earlier values in particular problem sequences. Obvious
directions for future work include understanding the ba-
sis of these deviations from optimality, the causes of the
individual differences, and the relationship between hu-
man decision-making on this task and other sequential
tasks involving risk and uncertainty.
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