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Machine Learning and Deep Neural Networks in Thoracic
and Cardiovascular Imaging

Tara A. Retson, MD, PhD,* Alexandra H. Besser, MD, PhD,* Sean Sall, BA,†
Daniel Golden, PhD,† and Albert Hsiao, MD, PhD*

Abstract: Advances in technology have always had the potential and
opportunity to shape the practice of medicine, and in no medical
specialty has technology been more rapidly embraced and adopted
than radiology. Machine learning and deep neural networks
promise to transform the practice of medicine, and, in particular,
the practice of diagnostic radiology. These technologies are evolving
at a rapid pace due to innovations in computational hardware and
novel neural network architectures. Several cutting-edge post-
processing analysis applications are actively being developed in the
fields of thoracic and cardiovascular imaging, including applications
for lesion detection and characterization, lung parenchymal char-
acterization, coronary artery assessment, cardiac volumetry and
function, and anatomic localization. Cardiothoracic and car-
diovascular imaging lies at the technological forefront of radiology
due to a confluence of technical advances. Enhanced equipment has
enabled computed tomography and magnetic resonance imaging
scanners that can safely capture images that freeze the motion of the
heart to exquisitely delineate fine anatomic structures. Computing
hardware developments have enabled an explosion in computa-
tional capabilities and in data storage. Progress in software and fluid
mechanical models is enabling complex 3D and 4D reconstructions
to not only visualize and assess the dynamic motion of the heart, but
also quantify its blood flow and hemodynamics. And now, inno-
vations in machine learning, particularly in the form of deep neural
networks, are enabling us to leverage the increasingly massive data
repositories that are prevalent in the field. Here, we discuss devel-
opments in machine learning techniques and deep neural networks
to highlight their likely role in future radiologic practice, both in
and outside of image interpretation and analysis. We discuss the
concepts of validation, generalizability, and clinical utility, as they
pertain to this and other new technologies, and we reflect upon the
opportunities and challenges of bringing these into daily use.

Key Words: machine learning, artificial intelligence, thoracic,
cardiovascular

(J Thorac Imaging 2019;00:000–000)

CARDIOTHORACIC IMAGING AT THE
FOREFRONT OF TECHNOLOGICAL ADVANCES

From its inception, radiology has been a discipline filled
with innovators and pioneers, who have ambitiously sought to
solve challenging clinical problems with new technology. From
the earliest application of x-rays for diagnosis and intervention,

to the advent of computed tomography (CT) and magnetic
resonance imaging (MRI), to 3D postprocessing and com-
puter-aided detection (CAD), the specialty has often been the
first to embrace innovations that allow efficient diagnosis of
disease to improve the care of patients. Increasingly, advanced
CT and MRI scanners are capable of capturing images that
freeze heart motion and exquisitely delineate fine anatomical
structures at a level of detail never before seen outside of the
operating room. In addition, advances in software and com-
putational fluid mechanical models are enabling complex 3D
and 4D reconstructions to visualize and assess the dynamic
motion of the heart and quantify blood flow and hemody-
namics (Fig. 1). Because of its intrinsic dynamic and anatomic
complexities, cardiothoracic imaging is poised at the forefront
of transformative technologies, as machine learning and deep
neural networks begin to revolutionize medicine and image
analysis.

MACHINE LEARNING AND THE ADVANCEMENTS
OF DEEP NEURAL NETWORKS

Since the development of the earliest computers, there
has always been an interest in utilizing these systems to
automate tasks. Starting with simple numerical calculation,
computer programs quickly progressed in complexity. Mod-
ern high-level languages such as Python abstract away com-
putational intricacies and have made it simpler to develop
algorithms to ingest data and subsequently use them to make
predictions. Commonly used supervised (using input and
output pairs) and unsupervised (using only inputs) machine
learning methods were developed and quickly expanded to
include linear and logistic regression, tree-based methods such
as random forests and gradient boosted trees, kernel-based
methods such as support vector machines, and clustering
methods like k-means and E-M clustering1 (Fig. 2). Tradi-
tional machine learning methods share a common limitation
—they require features to be specified in advance. The need
for computational features meant that highly specialized
computer scientists were required to conceptualize relevant
features and manually translate them into a code to be used as
input for the machine learning algorithms, a process some-
times referred to as “feature engineering.” These earlier
methods were, therefore, somewhat inaccessible, as they
required a considerable amount of time and expertise to train
and fine tune. In contrast, neural networks can automatically
learn input features from the data, alleviating much of the
time and expertise necessary for training and fine tuning.

The field of artificial neural networks developed in par-
allel to traditional machine learning methods, albeit with a
rockier history. The first precursor to current neural networks
was the perceptron, a “brain model” for supervised learning of
binary classifiers, developed in 1958.2 Despite the initial
excitement this generated, the perceptron was not capable of
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solving some basic mathematical problems such as the
exclusive-or (XOR), thus leading users to realize that it was
not a universal solution. This led to several decades of an “AI
winter” in which neural network development effectively
came to a halt.3 Neural network research remained relatively
dormant until the work of Rumelhart et al4 in 1986, which
demonstrated that networks of neuron-like units could effec-
tively be trained using gradient descent and back-propagation
techniques. This discovery, along with a demonstrated ability
for these networks to learn any function, revived the field of
neural network research.5

Through the 1990s and early 2000s, several breakthroughs
were made. Neural networks were used to recognize hand-
written digits, and pretraining with unspecified features enabled
deep neural networks with multiple layers.6,7 Progress was,
however, intermittent and hindered by the large amount of data
and computing resources needed to train these networks.
A considerable breakthrough came in 2012 when Krizhevsky
and colleagues trained a large, deep convolutional neural

network to classify objects in the ImageNet LSVRC contest
and won by a significant margin.8,9 The victory was attributed
to a number of network architectural components, but also to
the use of GPUs to accelerate network training with access to
the large ImageNet data set (1.2 million images). Since then,
there has been an explosion of neural network research
(examples of simple architectures are shown in Fig. 3). Much
attention has been directed to building larger network archi-
tectures up to hundreds of layers deep and novel ways to train
them successfully.10–12 In parallel, convolutional network
architectures have also been created for tasks including object
detection, localization, and segmentation.13,14

As neural network research has grown, high-level
software frameworks like Keras were developed, allowing
increased accessibility of image analysis and enabling its use
in multiple other fields, including medicine.15 Medical
imaging has presented its own challenges, and network
architectures originally built to operate on natural scene
images needed to be optimized for medical image analysis.16

FIGURE 2. Traditional machine learning algorithms are categorized into “unsupervised” learning, requiring input data only, and
“supervised” learning, requiring input and output data. Deep neural networks, a form of supervised learning, comprise the most recent
advances in machine learning. AMC indicates associate memory classifier; ANN, artificial neural network; K-NN, K-nearest neighbor;
SVM, support vector machines.

FIGURE 1. Static images from a cardiac-gated 4D MRA (left) and 4D flow (right), showing congenital branch pulmonary artery stenosis
and enlarged intercostal collateral arteries supplying the left lower lobe. New technologies such as this provide an increasingly detailed
understanding of pathophysiology, for greater patient-specific insights.
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These obstacles have sparked inventive solutions, including
novel architectures such as UNet, which was designed for
semantic segmentation in the context of challenges that are
commonly encountered in biomedical images (eg, small
sample sizes and high image resolution).17 Numerous net-
works have since been developed to solve a diverse range of
problems in medicine, such as organ volumetry and lesion
identification (Figs. 4, 5).

Realizing clinical usage of this technology in medicine
presents a range of unique complexities that may be new to
the machine learning community. Challenges that must be
considered include integration into the health care system
while maintaining patient security and privacy, wide-
ranging normal and abnormal human morphology, and
liability and accountability concerns. Artificial intelligence
heralds a sea change in medical imaging, offering an
opportunity for radiologists to be leaders in, and shape the
field of computer-aided diagnostics. Early adopters of
technologies have the opportunity to set precedents and

standards for their use and validation. As such, radiologists
may play a critical role to shape the role of machine
learning–based diagnostics in clinical practice.

APPLICATIONS IN CARDIOVASCULAR
AND THORACIC IMAGING

One of the earliest introductions of machine learning into
cardiovascular medicine involved reading and interpreting
ECG tracings, a technology that has now been incorporated
into everyday clinical practice18 and has benefited from the
development of convolutional neural networks that allow
detection and classification of arrhythmias.19–21 Machine
learning has since been applied to various tasks in car-
diovascular and thoracic imaging including segmentation,
characterization, quantification, lung nodule detection and
measurement, and lung cancer prognosis and treatment. Many
of these applications have been consolidated in prior
reviews,22–24 and we provide a survey of those relevant to

FIGURE 3. Layout of an example (A) multilayer neural network and (B) deep convolutional neural network, for which many architectures
are possible. Convolutional neural networks are capable of learning and extracting combinations of image features to render a result,
such as the localization of the left ventricular apex (bottom right) without being explicitly programmed to look for specific
features.

FIGURE 4. Architecture of a cascaded system of multiple neural networks, each building upon the outputs of a preceding network. In this
example, the (a) proposal network identifies candidate pulmonary nodules, the (b) classification network identifies “true” pulmonary
nodules from false positives, and the (c) segmentation network delineates the boundaries of each nodule. Together, the proposal and
classification networks may be used as a method for CAD.
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cardiovascular imaging in Table 1 and those relevant to
thoracic imaging in Table 2.

Applications to Cardiovascular Disease
One major emphasis of machine learning applications

in cardiac MRI is ventricular segmentation for quantifica-
tion of volumetry and function. This is a particularly
attractive problem for machine learning, as it is typically a
time-consuming aspect of these examinations, often requir-
ing manual outlining by a skilled operator. Deep learning
algorithms have been generated that approximate the car-
diac measurements of expert readers.25–27,48,49 One such
algorithm proposed by Avendi et al25 was well correlated

with ground-truth measurements (0.99 for end systolic and
0.98 for end diastolic). Most recently, several commercial
vendors have begun to take an interest in this technology
and to integrate these algorithms into their software.50–52

Outside of cardiac segmentation on MRI, algorithms have
also been developed to detect subacute or chronic myo-
cardial scar28 and to predict patient survival and mecha-
nisms of right heart failure in pulmonary hypertension.29

Machine learning techniques have also been applied to
characterizing cardiac disease on echocardiography (ECHO).
Ortiz et al30 used neural networks to analyze cardiac con-
tractility to predict 1-year mortality in patients with heart
failure. Since this early work, supervised machine learning

FIGURE 5. Results of a cascaded convolutional neural network designed for pulmonary nodule detection and segmentation. The neural
networks appear to overcome limitations of earlier algorithms in identifying boundaries of nodules near pleural surfaces.

TABLE 1. Applications of Machine Learning in Cardiovascular Imaging

Modality References Description ML Technique

MRI Avendi et al25 RV segmentation CNN
Winther et al26 RV, LV endocardium and epicardium CNN
Tan et al27 LV segmentation ANN

Baessler et al28 Myocardial scar detection Random forests
Dawes et al29 Pulmonary hypertension prognosis PCA

ECHO Ortiz et al30 HF prognosis ANN
Narula et al31 HCM vs athlete’s heart SVM, Random forests, ANN
Sengupta et al32 Constrictive pericarditis vs restrictive cardiomyopathy AMC, random forest, k-NN, SVM

Sengur33 Valvular disease SVM
Moghaddasi and Nourian34 MR severity SVM

Vidya et al35 MI detection SVM
CT Wolterink et al36 CAC scoring CNN

Isgum et al37 CAC scoring k-NN, SVM
Itu et al38 FFR estimation deep neural network

Motwani et al39 Prognosis Logistic regression
Mannil et al40 MI detection Decision tree, k-NN, random forest, ANN

AMC indicates associate memory classifier, ANN, artificial neural network; CAC, coronary artery calcium; CNN, convolutional neural network; FFR,
fractional flow reserve; HCM, hypertrophic cardiomyopathy; HF, heart failure; k-NN, k-nearest neighbor; LV, left ventricle; ML, machine learning; MI,
myocardial infarction; PCA, principle component analysis; RV, right ventricle; SVM, support vector machines.
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techniques have used ECHO to differentiate hypertrophic
cardiomyopathy from athlete’s heart,31 classify and differ-
entiate constrictive pericarditis from restrictive
cardiomyopathy,32 diagnose valvular heart disease,33 grade
severity of mitral valve regurgitation,34 automate ejection
fraction measurement,53 and detect the presence of myo-
cardial infarction.35,54

Several machine learning applications have also been
developed to assist in the interpretation of CT. For example,
algorithms have been developed for the automation of
coronary artery calcium scoring36,37,55,56 and assessment of
the functional significance of coronary lesions. More
recently, ML techniques have been leveraged to better assess
the hemodynamic significance of coronary stenosis. It has
recently become possible to simulate the results obtained
from an intracoronary pressure wire at the time of coronary
catheterization with computational fluid simulations based
on coronary CTA, the so-called fractional flow reserve.57–59

However, the time and expertise needed for coronary seg-
mentation and flow simulation may delay the availability of
results and limit its use. With this concept in mind, several
groups have attempted to use machine learning approaches
to accomplish this similar task.38,60,61 Other applications of
machine learning on CT include prediction of 5-year all-
cause mortality,39 and detecting the presence of myocardial
infarct using texture analysis methods.40

Applications to Thoracic Imaging
Outside of the heart, another area of recent rapid

development has been detection and measurement of lung
nodules. Lung cancer has long been the leading cause of
cancer-related mortality in the United States, and significant
attention has been focused on establishing screening guide-
lines for the purpose of earlier detection. A landmark study
published in 2011 compared low-dose CT with CXR in
screening high-risk patients for pulmonary nodules.62

Despite the low incidence of detected cancer in the patient
group and high false-positive rates, the study was terminated
early, as screening with low-dose CT showed reduced mor-
tality from lung cancer. In response, the US Preventative
Services Task Force recommended routine screening for this
high-risk group, which is predicted to increase the number
of pulmonary CTs performed annually.63 The volume of
studies combined with the time-consuming nature of detec-
tion, measurement, and comparison of pulmonary nodules,
has prompted a boom in thoracic machine learning research.
To address the need to improve accuracy and efficiency in
utilizing machine learning approaches, multiple research

groups and challenges have focused on developing CAD
algorithms for pulmonary nodules.64,65

In the late 2000s, there was considerable activity and
interest in developing CAD algorithms to address this, uti-
lizing traditional machine learning techniques.66 These
programs were shown to slightly improve radiologist
detection of pulmonary nodules when used concurrently in
interpretation. However, the sensitivity of these algorithms
by themselves was relatively low compared with experienced
radiologists. They were also often associated with a high
false-positive rate, leading to increased time spent examining
false nodules detected by the software. In addition, detection
of nodules adjacent to structures such as vessels or pleura
tended to be missed by the software.67 This is an issue for
both CAD programs and radiologists, as difficulty with
confidently identifying the borders of a nodule can decrease
the ability to assess growth and changes over time, a char-
acteristic imperative for lung cancer treatment planning and
follow-up. More recently, a CAD nodule detection system
evaluated by Lo et al41 incorporated a pulmonary vessel
image suppression function. This improved detection of
nodules that were initially missed due to their close rela-
tionship to vessels, and decreased interpretation time. Lung
nodule detection increased from 64% to 80%, although at
the cost of a slight reduction in specificity.41 Although tra-
ditional machine learning approaches like this still yield
modest nodule sensitivity in this range of performance,66

early data from public challenges seem to show that deep
learning approaches may improve upon this considerably.68

The explosion of available data in conjunction with
advances in machine learning has opened the field of image
analysis to an exciting direction with the potential to predict
patient prognosis and even response to treatment. Compo-
nents of a software package developed at UPenn were used to
stratify patients with similar treatments for early non–small
cell lung cancer into 2 distinct survival groups. This was ach-
ieved using an unsupervised clustering analysis method based
on distinctive radiographic imaging features.42 This field of
image analysis, termed “radiomics,” is geared at characterizing
image features and correlating them with a tumor phenotype,
with the intent of classifying and staging tumors noninvasively.
Extracted features convert radiographic images into mineable
data and can be utilized to build predictive and prognostic
models.24 Subsequently, several groups have used machine
learning to associate phenotypic descriptors on CT with
overall survival43,69 or disease-free survival70 in non–small cell
lung cancer. A review by Kolossváry et al71 also describes how
radiomic techniques may be implemented to assist with
coronary artery calcium scoring.

TABLE 2. Applications of Machine Learning in Thoracic Imaging

Topic References Description ML Technique

Lung Nodules Lo et al41 Pulmonary nodule detection CADe
Radiomics Li et al42 NSCLC prognosis Unsupervised 2-way clustering

Song et al43 NSCLC prognosis SVM
Radiogenomics Yamamoto et al44 Genetic classification Random forest
COPD Ying et al45 COPD classification Deep neural network

González et al46 COPD staging CNN
Abdominal aortic thrombus López-Linares et al47 Thrombus detection CNN

CADe indicates computer aided detection; CNN, convolutional neural network; COPD, chronic obstructive pulmonary disease; ML, machine learning;
NSCLC, non–small cell lung cancer; SVM, support vector machines.
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The related concept of “radiogenomics” encompasses
the effort to combine imaging phenotypes and tumor genetic
data to perform better prognostication and target ther-
apeutic decisions. Vardhanabhuti and Kuo72 compre-
hensively review the development of this concept in lung
cancer. Of note, a recent publication by Zhou et al73 found
that certain nodule imaging characteristics correlated with
specific metagene groups, speculating that noninvasive
imaging may help direct targeted therapeutic treatment
through inference of the genetic or cell surface markers.
Significant interest has been placed on attempting to define a
radiomic signature for individual gene mutations (eg,
EGFR, ALK, K-ras), and to correlate this with treatment
response to targeted inhibitory agents.44,74,75 Although
machine learning was not utilized in most of these studies to
connect gene expression data with individual imaging
characteristics of a patient’s tumor, it is possible that deep
learning may influence and expedite the next generation of
radiomic studies. Specifically, the use of deep learning and
its ability to automate the process of “feature engineering”
across all scales of imaging phenotypes may provide an
opportunity to bridge the gap between genetic, histologic,
and imaging data.

The opportunities for machine learning to assist in
diagnosis, prognostication, and treatment certainly are not
limited to cardiac disease and oncologic applications. Other
promising areas of thoracic research include the use of
machine learning for aortic segmentation, thrombus detec-
tion, and fibrotic and COPD disease classification.45–47,76

DEVELOPING COMMUNITIES, COMPETITIONS,
AND THE CHALLENGES OF PUBLIC DATA SETS

The rapid growth of machine learning technologies and
their potential applications has prompted the formation and
growth of multiple research conferences. This includes the
Conference on Machine Intelligence in Medical Imaging
(C-MIMI) and has encouraged the formation of machine
learning interest groups within existing radiologic societies
such as the International Society for Magnetic Resonance in
Medicine Machine Learning (ISMRM ML). A number of
these conferences and groups have created open challenges
aimed at promoting the development of algorithms for
specific tasks or to solve clinical problems. The International
Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), is an annual conference
that hosts multiple challenges across many fields, and is
notable for highlighting cardiac segmentation, coronary
artery reconstruction, and left ventricle shape modeling.77

Several challenges have also been devoted to thoracic
imaging, specifically lung nodule/lesion detection. The
International Symposium on Biomedical Imaging (ISBI)
offered a challenge called LUNA (LUng Nodule Analysis)
in 2016, which called for algorithms that could automati-
cally detect nodules on chest CT. Similar challenges were
announced for the SPIE MI 2015 conference, the Data
Science Bowl in 2017, and this year’s RSNA conference.

With these challenges, the organizers have offered data
sets for the algorithms to be trained and tested on. The
availability of large imaging data sets is currently a bottle-
neck for many areas of research and can be difficult to
obtain outside of a major hospital-affiliated research group.
Multiple factors contribute to this, including IRB approvals
for data gathering, the need to assure patient privacy and
anonymity, the complexities of working with DICOM files

and their size, and the cost of assembling and maintaining a
database. Several public repositories of thoracic CT images
are available, however, and have fueled machine learning
growth and algorithm development (reviewed in Morris
et al78). The National Lung Screening Trial (NLST) enabled
the collection of a large volume of patient data of former
smokers in an effort to determine the utility of low-dose CT
screening, a recommendation later made by the US Pre-
ventative Service Task Force.63,79 This imaging databank, in
addition to blood, sputum, and urine data, has been made
available to researchers. Similarly, the UK Biobank study
collected genetic data and imaging, and has made this
available for research,80 and the publicly available Lung
Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) contains over 7000 annotated nod-
ules for the purposes of CAD development.81

Although machine learning scientists continue to
innovate with the available data and the community works
to address the issue of data availability, researchers have
been able to use these data sets to achieve excellent
performance.25,49,82 For example, the highly utilized UNet
architecture was developed for, and won, a segmentation
challenge for electron microscopy at ISBI 2012.17 Although
primarily developed to segment neuronal structures in
electron microscopy stacks, it has since been successfully
applied to a variety of biomedical image segmentation
tasks.48,83 Although these early studies show great promise,
the most common training and testing sets from challenges
are still limited in scope compared with the range of diseases
that would be seen in clinical practice. Thus, these algo-
rithms must yet prove themselves in the real world, as larger
and more routine clinical data sets become available.

With the rapidly expanding availability of imaging data
and the desire to develop clinically useful technology, there
has been increasing effort to establish guidelines and offer
guidance by larger radiologic societies. The American College
of Radiology (ACR) recently established a Data Science
Institute (DSI) to steer the introduction of AI into the practice
of radiology. The ACR has begun defining standards for
training, testing, validating, integrating, and monitoring AI
algorithms in clinical practice. To do this, the Data Science
Institute has defined “use cases” pinpointing precise scenarios
within radiology workflows wherein potential automation
could enhance patient care. These “use cases” are organized
by organ system and include 25 cardiac and 1 thoracic
application offered in an open-source directory labeled
TOUCH-AI.84 The ACR will also evaluate algorithm per-
formance by providing an ongoing postmarket assessment.85

A goal of developing standardized pathways for algorithm
validation will be to expedite the Food and Drug Admin-
istration (FDA) regulatory review process to allow these
modalities to have a clinical impact as soon as possible while
maintaining a high level of quality.

FDA APPROVAL PROCESS FOR NEW
TECHNOLOGIES AND SOFTWARE

FDA currently has 2 approval processes for new
medical devices relevant to imaging analysis software: the
510k clearance and the premarket approval (PMA) clear-
ance. PMA clearance is a more stringent application path,
and it typically involves clinical trials to demonstrate safety
and efficacy. 510k clearance does not require the same rig-
orous clinical trials necessary for a new class of drugs or
devices, but it demands that equivalence to existing products
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or technologies be shown.86 In December of 2016, the FDA
expedited the regulatory process for certain medical devices
by adding its Breakthrough Devices provision to the 21st
Century Cures Act. The goal was to “help patients have
more timely access to devices and breakthrough tech-
nologies,” with submissions ranging from dental implants to
deep learning–based computer-aided diagnostic programs.87

Through this, artificial intelligence in some forms can be
classified as a medical device, and gain clearance through a
separate “de novo” pathway without a predicate device for
comparison.87

Many applications may fall under the umbrella of
CAD. The FDA notes 2 major CAD categories: CADe,
which includes tools aimed at automating detection and
focusing the attention of a clinician onto an area of an
image, and CADx, which includes tools aimed at assessment
or likelihood of a disease and automation of diagnosis.88

While CADe products fall under the 510k application path,
CADx products have typically fallen into the more stringent
PMA application path. As CADx products have the
potential for more significant patient impact, the FDA has
historically been more cautious. Recently, however, the
requirements for CADx tools have been reduced.89 Certain
cancer detection tools will now fall under a new category of
device and can be approved under the less stringent 510K
pathway. The growing number of applications integrating
neural networks has likely contributed to this change. Even
with more lenient approval processes, CAD products will
continue to require regulatory attention going forward.

VALIDATION, UTILITY, AND GENERALIZABILITY
As the population ages and becomes more medically

complex, the need for imaging will continue to increase. Deep
learning–based diagnostic tools offer many potential benefits,
and may increase physician efficiency, improve the accuracy of
diagnosis, and enhance consistency between different sites and
institutions. As early adopters, radiologists have the oppor-
tunity to set the standards for this technology and direct eval-
uation of programs to ensure their accuracy and safety for
patients. Bringing a technology to the clinic will involve several
key elements: peer review, analytical validity, clinical validity,
clinical utility, and generalizability. Within these, the overall
performance compared with a ground truth, performance on
individual components of the task, and mechanisms of failure
should be examined.

Although the medical literature has historically
undergone a process of peer review, it is important to rec-
ognize that preprint websites are increasingly used as a form
of communication, especially in the machine learning com-
munity. In this rapidly changing and evolving field, a
repository for the prerelease of manuscripts such as arXiv is
valuable for sharing information and distributing cutting-
edge findings. However, it is important to recognize the
limitations and pitfalls of this method of communication.
Manuscripts on prerelease repositories are moderated upon
submission, but they are not required to undergo the peer-
review process, and new versions may be uploaded or
updated at any time. Therefore, authors must use caution
when making clinical decisions on the basis of manuscripts
from preprint websites until peer-review scrutiny is applied.

Analytical validity is typically assessed during the
testing and development of new technologies, and it tests the
performance relative to preexisting technologies. For
example, an algorithm might measure the caliber of the

aorta, and a comparison of the measurements between the
algorithm and a human observer may be sufficient. It is
harder to assess analytical validity when the outcome metric
is subjective. In such situations, a consensus among experts
may be necessary. For example, when contouring cardiac
chambers, the apical and basal heart boundaries are a
source of disagreement between readers, and protocols vary
between institutions. However, a consensus average of seg-
mentations from a panel of experts can be helpful for
training algorithms.90 Analytical validity can also be
established by analyzing algorithm performance on indi-
vidual components of a task. Understanding where an
algorithm fails can provide insight into areas that require
human supervision. If an algorithm has particular difficulty
segmenting the cardiac apex, this might not be readily
apparent if only the overall similarity scores are considered
(Fig. 6). Further, these insights may direct research to
improve the performance of the algorithms.

Clinical validity is a concept distinct from analytical
validity, and it touches upon whether a technology works
within the range of performance needed for clinical decision-
making. In the example of an algorithm that measures the
caliber of the ascending aorta, it is important to assess
whether any differences in measurement between the algo-
rithm and the current standard would impact the clinical
management. In other words, it may be possible to prove
differences between an algorithm and human observer, but
these may not be clinically relevant. In the example of
ventricular segmentation, the apex of the left ventricle may
have considerably different contours between an algorithm
and human observers, but it may contribute very little to the
total volume, and therefore have little impact on the overall
volumes or ejection fraction.

Clinical utility is a related concept for determining the
potential value of a new tool. This is where radiologists may
play a key role in the development of technology. We may
routinely only provide linear or bilinear measurements of
pulmonary nodules and lymph nodes in daily clinical prac-
tice due to efficiency and time constraints, but it may also be
clinically useful to provide volumetric measurements. We
may choose not to provide such measurements if the
measurement tools are too cumbersome, inaccurate, or
work too inconsistently to be useful. Deep convolutional
neural networks have the potential to address this need if
well implemented into the radiologists’ workflow, and clin-
ical domain knowledge is critical for directing the

FIGURE 6. Consideration of the components of the overall task
(e.g., dice per slice when segmenting the ventricles of the heart)
can help identify sources of error and understanding of areas
wherein oversight may be necessary. Without considering the
individual components (eg, considering only overall dice per
volume), systematic errors may be overlooked.
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development of new applications. With such collaboration,
new technologies will be more likely adopted into practice.

One major consideration for algorithms that are to be
used in clinical practice is the extent to which they will gen-
eralize to clinical populations. The recent tragic accidents
from Uber and Tesla have shown that overestimation of the
robustness and generalizability of this technology can yield
fatal results.91,92 Many algorithms are trained on a limited
patient population, or from public data sets of predominantly
normal patients, and may not necessarily work on the typical
population seen in clinical practice. Another pitfall is that
algorithms may be developed on a single scanner type or
imaging technique that is institution specific. Such algorithms
may not generalize to other scanners or protocols. For
example, an algorithm designed to detect pulmonary nodules
on 1.25-mm hard kernel reconstructions may not work as well
on thick slices. As such, the developers of these tools must
work to ensure that the patient populations and imaging
protocols on which models are developed are representative of
clinical patient populations, and users must appreciate limi-
tations of models as they deploy them in clinical practice. One
of the major advantages of modern deep learning models is
their ability to learn and improve by being “fine tuned” on
new training data. This allows refinement of models and
retraining over time on broader populations.

CONCLUSIONS
The applications of deep neural networks and other

machine learning technologies to long-standing problems in
radiology are rapidly advancing and promise to shape the
future of the specialty. Both supervised and unsupervised
techniques have been applied in current technologies
(Tables 1, 2). They will likely become fundamental to
practice, and soon, as pervasive and unnoticeable as other
technologies we have integrated into daily use. In many
ways, these technologies are already a large part of our lives.
Phones recognize us, speak to us, manage our schedules, and
reroute our wrong turns. Entertainment systems and online
shopping trackers recommend things we would enjoy on the
basis of previous selections and others with similar behav-
iors. These machine learning processes are so well used that
they have become transparent in our daily activities. Outside
of digital transcription, machine learning algorithms are
only beginning to emerge in the daily practice of radiology.
The breadth of problems that machine learning can help
address is immense, and will likely mature rapidly in areas
of detection, characterization and prognostication of dis-
ease, and individualized treatment decisions. As early
adopters of this new technology, radiologists should be
cautious consumers, and think critically about the new
advancements to ensure that they are safe and effective tools
in clinical practice. Integration of machine learning into the
daily workflow has the potential to augment our capabilities
and make radiologists more efficient, more focused on
diagnosis and higher order tasks, and better able to address
the needs of referring physicians and patients.
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