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ABSTRACT OF THE DISSERTATION

Essays on Human Capital

by

Sungwoo Cho

Doctor of Philosophy in Economics

University of California, Los Angeles, 2024

Professor Adriana Lleras-Muney, Chair

This dissertation consists of three essays on human capital. In Chapter 1, I investigate

the impact of collaborating with robots on human capital, focusing on professional baseball

umpires who were provided with and then deprived of robot assistance. Umpires displayed

enhanced accuracy with robot assistance, but experienced significant declines in performance

once it was removed. I argue that these findings can extend beyond baseball, suggesting

broader implications for occupations sharing similar skill sets. In Chapter 2, joint with

Felipe Gonçalves and Emily Weisburst, we investigate the effects of changes in workplace risk

awareness on police behavior and public safety, focusing on incidents of police officer fatalities

while on duty. Our findings reveal that following the death of a fellow officer, police officers

reduce arrest activity for one to two months, indicating heightened fear. This reduction is

most prominent for minor offenses and is more pronounced in smaller cities. Yet, we find

no evidence of increased crime rates during this period, suggesting that reduction in arrests

does not adversely impact public safety. In Chapter 3, joint with Anna Aizer, Shari Eli

and Adriana Lleras-Muney, we utilize newly gathered data of 16,000 women who applied for

Mothers’ Pensions, America’s first welfare program, to explore the impact of means-tested

cash transfers on lifetime family dynamics and maternal welfare. In the short term, these

transfers led to postponed marriage and reduced geographical mobility. However, in the

long run, they had no discernible effect on remarriage probability, spouse quality, fertility, or
ii



maternal well-being, as measured by longevity and family income in 1940. With the absence

of significant negative behavioral outcomes, we suggest that the benefits of such transfers

may outweigh the costs, particularly if they yield even modest positive impacts on children.
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Introduction

This dissertation consists of three essays in the intersection of labor economics and public

finance with a particular focus on human capital and crime.

In Chapter 1, I ask how does working with robots change human capital? To examine how

collaboration with robots affects human skills, I exploit a unique setting in which professional

baseball leagues provided, and subsequently removed, access to robot assistance for umpires.

Umpires demonstrated improved precision and accuracy in ball-strike decisions while using

robot assistance, and their performance declined substantially below preassistance levels

after it was removed. Both highly skilled and inexperienced umpires exhibited large declines

in performance after the removal of robot assistance. Umpires who used robot assistance

for longer periods of time faced a steeper decline in accuracy than those who used it for

shorter periods. In addition, umpires who worked a full season with robot assistance did not

fully return to their initial skill level by the end of the following season. By examining a

canceled season during the COVID-19 pandemic, I reject that skill depreciation is solely a

result of umpires simply not using their skills. Umpires also experience skill deterioration in

determining whether a baserunner is safe, suggesting that the findings are widely applicable

to various occupational settings with a similar skill set.

In Chapter 2, co-authored with Felipe Gonçalves and Emily Weisburst, we examine how

changes in the salience of workplace risk affect police behavior and public safety. Specifically,

we investigate cases of police officer deaths while on duty. Officers respond to a peer death by

decreasing arrest activity for one to two months, consistent with heightened fear. Reductions
1



are largest for low-level arrests and are more pronounced in smaller cities. Crime does not

increase on average during this period, nor do we observe crime spikes in cities with larger or

longer arrest declines. While shocks to perceived fatality risk generate substantial enforcement

responses, officer fear is unlikely to harm public safety.

In Chapter 3, co-authored with Anna Aizer, Shari Eli and Adriana Lleras-Muney, we use

newly collected data for 16,000 women who applied for Mothers’ Pensions, America’s first

welfare program, to investigate the effect of means-tested cash transfers on lifetime family

structure and maternal well-being. In the short-term, cash transfers delayed marriage and

lowered geographic mobility. In the long run, transfers had no impact on the probability

of remarriage, spouse quality or fertility. Cash transfers did not affect women’s well-being,

measured by longevity and family income in 1940. Given the lack of significant negative

behavioral impacts, the benefits of transfers appear to exceed costs if they have, even modest,

positive impacts on children.

2



Chapter 1

The Effect of Robot Assistance on Skills

“If men learn this, it will implant forgetfulness in their souls; they

will cease to exercise memory because they rely on that which is

written. . . ”
- Socrates on writing, from Plato’s Phaedrus

1.1 Introduction

As early as the time of Socrates, humans have harbored a fear that new technologies

may deteriorate human knowledge and skills. Recent popular discussion concerns the

potential impacts of industrial robots and artificial intelligence (AI) technologies on human

capital. Instead of fully displacing humans, however, numerous robots and technologies may

collaborate with humans in practice, enhancing and complementing their work. Combining

human expertise with robot assistance has the potential to yield gains that cannot be fully

achieved by exclusively depending on either of them alone. However, heavy reliance on

technology could lead to decreases in workers’ skills and increases in workers’ technological

dependence. The deterioration of human capital caused by dependence on technology is

especially important in the labor market and can carry significant consequences. For example,

while automated systems improved safety records in the airline industry, pilots now experience

difficulties manually operating aircraft, contributing to some recent disasters (Nicas and
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Wichter, 2019).1 Similarly, doctors’ physical diagnosis skills have declined with increasing

reliance on technologies, shifting focus away from patients (Aw, 2014).2

Even in a world where robots are readily available, human capital without robot assistance

is essential. First, during emergencies or unexpected events, humans excel in making rapid,

context-sensitive decisions and improvising solutions (e.g., Captain Sullenberger and the 2009

Hudson River plane crash). Humans rely on these abilities to manage unforeseen situations

where robots may struggle to respond effectively. Second, in many sectors, particularly

healthcare, education, and customer service, human interaction and empathy are necessary.

Robots lack the capacity for human connection, making human capital indispensable for roles

that require understanding and compassion. Third, human oversight and intervention are

crucial in industries where judgment and ethics are paramount. Improving human capital

is vital to ensure the quality of robot-assisted decisions and the ethical conduct in these

industries.

In this paper, I ask three questions: First, what is the impact of robot assistance on

individual workers’ skill and productivity? Second, who are the biggest losers of adoption

of robot assistance? Third, does longer work duration with robot assistance increase skill

depreciation, and do workers bounce back and regain skills upon removal of the robots?

Examining the impact of technology assistance on human capital is empirically challenging.

First, direct measures of individuals’ skill and productivity are often unavailable. Even when

data are available, it is difficult to clearly identify the effect of robots on individual skills

versus measuring skills without robot assistance because individuals do not randomly adopt

or drop robot assistance. Firms and humans choose robot assistance if they believe that it

1Over 60% of recent accidents can be attributed to pilots who have lost their practical skills. For example,
an investigation by the National Transportation Safety Board identified pilot error as the primary contributing
factor to the Asiana Airlines Flight 214 crash that occurred on July 6, 2013. The pilots did not properly
monitor airspeed and altitude, and they allowed the aircraft to sink dangerously low and stall just before
landing. One contributing factor was the overreliance on automation in the cockpit.

2Gong et al. (2019) argue that medical students now avoid specializing in radiology due to fear of job
loss caused by AI assistance. However, Agarwal et al. (2023) find that radiologists-AI collaboration is still
suboptimal due to radiologists’ biases against AI.
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improves their performance and stop using it when they do not. In addition, the durations

of robot assistance or unemployment spells are usually not random, making it difficult to

study the effect of duration on skill depreciation as those with lower skills may choose to be

assisted for longer time, or those with lower skills may take longer time to be reemployed.

I address these challenges by studying the implementation of the automated ball-strike

system (ABS, or “robot umpire") in professional baseball leagues. Professional baseball

leagues provide several advantages when studying the impact of robot assistance. First,

umpires are professional decision-makers with similar job tasks as judges and make decisions

about whether a thrown pitch is a strike or a ball.3 In this setting, I have unique and precise

measures of individual productivity: I observe the decisions solely made by the umpire

as well as whether the decision is correct or not as determined using post-processed data.

Second, there is substantial variation in the implementation of robots. There are 11 different

leagues in the Minor League Baseball (MiLB) system, with each league providing a stage

for experimental rule changes. The implementation of robot assistance only occurred in the

Single-A Florida State League starting in 2021 and the Triple-A Pacific Coast League in 2022.

With umpires moving across leagues, I can observe worker-specific usage of technology and

their behaviors before and after robot adoption, as well as with and without robot assistance.

The removal of robot assistance enables a unique opportunity to evaluate human capital in

isolation, disentangling it from the influence of human-robot collaboration. Third, a change to

intermittent robot utilization in 2023 provides an ideal setting to study how skills depreciate

as a function of how long individuals have been assisted by robots. In 2023, Triple-A leagues

imposed a rotation system in which half of the season utilized robot assistance, and the other

half did not. Umpires are quasi-randomly assigned to games and thus, the duration of robot

assistance throughout a season is as-good-as random.

I examine over 62,000 professional baseball games played between 2017 and 2023 in Minor

and Major League Baseball (MLB) and employ a difference-in-differences design exploiting

3In baseball, a “strike" is a pitch within the defined strike zone, and a “ball" is a pitch outside of this zone.
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the staggered adoption of robots across leagues and the movement of umpires across leagues.

This approach compares the change in the performance of umpires before and after being

assisted by robots to the change in performance of umpires that are never assisted by robots.

First, I find that umpires perform with higher precision and accuracy when assisted by

a robot. In the season with robot assistance, umpires’ decision accuracy increases by 6.4

percentage points, on average. In particular, both Type I errors (e.g., incorrectly calling a

strike) and Type II errors (e.g., incorrectly calling a ball) decrease significantly. Using an

event-study specification, I confirm that there are no pretrends suggesting that the timing of

robot implementation is as-good-as random and that umpire moves are not correlated with

the adoption of robot assistance. While the umpires of different prior skill levels all benefit

from robot assistance, the skills distribution, with robots, compresses by 36%, consistent with

previous work on ChatGPT, surgical robots, and AI programs reducing skills gaps among

workers, surgeons, and taxi drivers, respectively (Brynjolfsson et al., 2023; Kanazawa et al.,

2022; Noy and Zhang, 2023; Tafti, 2022). When restricting attention to more ambiguous

decisions, robot assistance improves the umpire’s accuracy by 12.3 percentage points. Further,

umpires suffer less from decision biases with robot assistance: negative autocorrelation in

decisions, or the “gambler’s fallacy", is reduced by almost 100% and omission bias, a tendency

to call more pitches strikes when the next called ball would end an at-bat (i.e., to avoid

issuing a walk), by 89%.

However, umpires who are previously assisted by robots experience significant skill declines

when the robot is removed. When making calls without robot assistance, umpires suffer

a decline of 2.0 percentage points in accuracy relative to preassistance levels. The size of

the decline is roughly equal to the gap between the median and the bottom 5th percentile

umpires. For pitches that are harder to judge, accuracy declines by 3.7 percentage points.

Umpires also suffer more from decision biases showing increasing signs of omission bias by

about 33%. Further, I find that robot-induced deterioration in skills differs across umpires

with the largest skill decline occurring for highly skilled umpires. When the robot assistance is
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removed, the lower-skilled umpires’ skills decline by a statistically insignificant 0.9 percentage

points, whereas the high-skilled umpires lose skill by 4.7 percentage points. The distribution

of skills across the umpires is compressed by 64.6% following the work with robot assistance

at the expense of high-skilled umpires relative to the preassistance period.

Further, umpires subject to a full season of work with the robot do not bounce back

quickly when recalled to the task without a robot. In the first game back, the umpires

sustained a large skill decline of 3.6 percentage points. The decline becomes smaller as the

season progresses: it is 1.7 by the middle of the season and 1.0, and still marginally significant,

by the end of the season. These results demonstrate that umpires require nearly an entire

season to approach their initial skill level after a loss following a season of robot assistance

and never fully recover.

Understanding how skill declines with the intensity and the length of the robot assistance

provides important insight into the trade-offs of assigning robot assistance to workers and the

transitions of individual workers after assistance stops. Using the 2023 Triple-A implemen-

tation of robot assistance, I find that umpires who used robot assistance for longer periods

experience more significant skill depreciation when making decisions without robot assistance.

Umpires assisted by robots for just one game suffer a marginally significant skill decline of

0.3 percentage points while those assisted for two or three consecutive games experience a

larger magnitude decline of 1.2 and 1.0 percentage points, respectively. The baseline results

suggest that a full season of work with robot assistance induced a decline of 3.6 percentage

points in skill in the first game back. This implies that as the duration of robot assistance

increases, the decline in skill becomes more pronounced.

A related question is whether the skill depreciation is a result of the umpires simply not

using their skills. If the decline in skill was caused by a lack of practice alone, one would

expect at least some decline in skill based on results demonstrated in past literature on

job loss and human capital depreciation (Benhenda, 2022; Dinerstein et al., 2022; Edin and

Gustavsson, 2008; Jarosch, 2023). To examine whether robot assistance has a distinct impact
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from time off work, I examine a different treatment: some umpires abruptly experienced a

year-long interruption in their careers due to the COVID-19 pandemic. In 2020, the Minor

League canceled the season whereas the Major League had a delayed and shortened season.

Minor League umpires experienced a marginally significant skill decline of 0.8 percentage

points in the first month of the return relative to the Major League umpires. Taken together,

these results imply that the effect of time away from the task is smaller than the effect of

robot assistance, perhaps due to reduced incentives to practice skills from the introduction of

advanced technology.

Home-plate umpires experience a sharp decline in their ability to accurately call pitches

once they have worked with robot assistance, raising a question of whether it impacts other

skills as well. Umpires are tasked with various responsibilities as they rotate through different

positions such as those of the first-base umpire and home-plate umpire. I examine whether

the skill as the first-base umpire in deciding whether a baserunner is safe or out when

attempting to reach first base declined following the work with the robots. The skill required

to perform this task closely resembles that of the home-plate umpire as it demands sharp

visual perception. Umpires who have previously worked alongside robots experience an

additional 0.1 replay review request per game (44.3%) when they officiate at first base, which

is entirely due to an increase in overturned challenges. Collectively, these findings strongly

imply that umpires with prior experience with robot assistance demonstrate higher rates of

inaccuracies and a decline in their skills in this role, also suggesting transferability to a wide

range of other occupational settings that require similar skill sets.

An important and interesting question is whether other aspects of the game are also

affected by robot adoption. Robots might have affected the performance of other workers,

changing the nature of the game and suggesting important complementarities across workers.

If this occurred, however, then the effects of robots that I estimate could reflect both the

effects of the robots and the effect of the responses of other players. Indeed, players exhibit

different strategic responses to robot adoption in the game. To optimize productivity with an
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umpire assisted by a robot, pitchers adjust their strategy by altering their pitching behavior

to aim at a specific region of the strike zone where the umpire is now more likely to call strikes.

The findings regarding skill depreciation of umpires are, however, robust to reweighing the

data to address changes to pitch distributions that the umpires face.

Finally, I show that the implementation of robot technology has positive impacts on

professional baseball. Compared to the leagues that did not use robot assistance, leagues

that adopted it experienced an increase of 12.4% in attendance, perhaps due to increased

public attention to the technology. With an average family of four spending about $65 to

attend a game, increased attendance translates to an increase in revenue ranging from $1.25

to $2.5 million. A conservative estimate still suggests that the league profits from adopting

robot assistance despite the cost of the technology.

This study directly relates to several large strands of literature. First, this work provides

new insights into understanding the effect of robot adoption on individual workers. Past

studies have focused and found mixed evidence on the type of workers affected by the adoption

and how it affects them typically using aggregate industry-level data. Acemoglu and Restrepo

(2020), Acemoglu et al. (2023), Dauth et al. (2021), Acemoglu et al. (2020) and Humlum

(2022) find negative effects on wages and employment especially among workers in the

manufacturing industry in the US, Netherlands, Germany, France and Denmark, respectively.

Similarly, Bonfiglioli et al. (2020) and Barth et al. (2020) find that low-skilled workers are

negatively affected by robot adoption. However, Aghion et al. (2020) and Hirvonen et al.

(2022) find non-negative effects even among low-skilled workers. These studies do not measure

productivity directly, but instead rely on wages using aggregate data. I study a different

question of what happens to workers when they are assisted rather than replaced by robots.

Past literature that relates closely to my study includes Kanazawa et al. (2022), Bryn-

jolfsson et al. (2023), Tafti (2022), and Noy and Zhang (2023), which find the positive

productivity effects of AI assistance programs, surgical robots and ChatGPT. They also

suggest compressing effects on the productivity distribution with technologies. Unlike their
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studies, I am able to study what happens to skills after the removal of the technology.

These results help us understand further the extent to which workers learn to rely more

on those technologies. I also find that the distribution of skills contracts following robot

implementation with better-skilled workers facing the larger skill decline. Collectively, highly

skilled workers not only experience the least benefit from robots but also face the most

significant losses when the robot is removed.

Second, my findings relate to the literature in labor economics on skill depreciation

and duration dependence. Human capital depreciates when workers are unemployed or

absent (Benhenda, 2022; Dinerstein et al., 2022; Edin and Gustavsson, 2008; Jarosch, 2023).

Related literature on non-employment duration dependence also finds negative effects of

the lengthy non-employment spells on callback and reemployment rates and on wages upon

reemployment (e.g. Jacobson et al., 1993; Kroft et al., 2013; Maestas et al., 2015). However,

estimating human capital depreciation is difficult due to the correlation between the duration

of unemployment and the productivity of workers (i.e., those with lower skills may take longer

time to be reemployed) (See Machin and Manning, 1999, for discussion). Two related studies

use novel aggregate datasets exploiting quasi-randomly assigned time spent in employment

(Dinerstein et al., 2022) and panel data tracking skills (Cohen et al., 2023) to address this

challenge. They, however, reach mixed conclusions as Cohen et al. (2023) find no decline in

cognitive and noncognitive skills during an unemployment spell, but Dinerstein et al. (2022)

find productivity declines from not working among Greek teachers. I leverage the career pause

brought on by COVID-19 to identify a modest dip in umpire skills. In contrast, I find larger

skill depreciation following the removal of robot assistance. Further, using quasi-random

variation in work duration with the robot, I study a similar, but different setting of robot

assistance to find that longer periods with robot assistance induce larger depreciation of

skills.

Third, the literature on peer effects in the workplace shows the positive effects of coworkers

(Falk and Ichino, 2006, using lab experiments; Mas and Moretti, 2009, among supermarket
10



cashiers; Cornelissen et al., 2017, in Germany; Cardoso et al., 2018, in Portugal; Hong and

Lattanzio, 2022, in Italy). A notable exception is Guryan et al. (2009) which finds no evidence

of peer effects among professional golfers. I document the negative effect of the removal

of robot assistance which can be thought of as a functional and collaborative “peer." The

finding suggests that productive peers can have detrimental effects on skill retention and can

increase future dependence on the peer assistance. Additionally, I also find that players, who

are indirectly affected, also strategically adjust their behaviors.

The firm-level analysis of robot adoption finds increases in output gains and productivity

(e.g. Acemoglu et al., 2020, 2022; Dixon et al., 2021; Humlum, 2022; Koch et al., 2021).

However, firms that implement robots are observably different from the firms that do not as

they are often larger and more productive firms. I contribute here by studying quasi-random

assignments of robots to different leagues and documenting an increase in attendance and

total scores in a game that translates into large revenue gains for the league.

Finally, economics has a longstanding tradition of employing specific occupations as a

context for studying fundamental economic questions. This approach not only provides

valuable insights into the functioning of specific sectors but also offers broader lessons about

economic principles and policies that can be applied to a wide spectrum of contexts. For

example, orchestral musicians have been used to test for discrimination (Goldin and Rouse,

2000), taxi drivers have been examined to test labor supply models (e.g. Farber, 2005), and

cashiers have been analyzed to explore peer effects (Cornelissen et al., 2017). Many sports

settings have also been used to study various economic theories, ranging from game theoretical

predictions to discrimination and corruption (e.g. Chiappori et al., 2002; Duggan and Levitt,

2002; Malueg and Yates, 2010; Price and Wolfers, 2010; Price et al., 2013). While I analyze

the impact of robot assistance on umpires’ skills in making ball-strike decisions, the skill

sets and cognitive processes involved in these decisions extend beyond the realm of baseball.

As the skill sets are commonly shared by professionals in various domains, the findings can

provide broader lessons that are applicable to a wide range of contexts.
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The rest of the paper is organized as follows. Section 1.2 describes the umpire’s decision

and explains the implementation of robots and Section 2.2 introduces the data. Section 2.3

presents the empirical strategy. Section 2.4 shows the main results and Section 1.6 discusses

the potential mechanisms of the findings. Section 1.7 shows additional results and discusses

external validity of the results. Section 2.7 concludes.

1.2 Background

1.2.1 Umpire Decisions

Baseball umpires are professional decision makers applying official rules to the game as it is

played.4 Becoming a professional baseball umpire requires knowledge of the intricacies of

the game rules, experience, and fitness. Formal training programs and umpire schools offer

instructions on every area of the game.5 Many umpires start at amateur levels and work

their way up into professional baseball leagues and ultimately to Major League Baseball.

A baseball season starts in mid-February with spring training, and the regular season

starts around the last week of March. The regular season consists of 162 games for the Major

League and between 132 and 150 games for the Minor League. The season concludes with

the postseason of up to 22 games. On average, a Major League Baseball umpire works in

about 112 regular season games, of which 28 are behind the home plate, calling balls and

4Umpires’ decisions have been used to test for the gambler’s fallacy (Chen et al., 2016), racial discrimination
(Parsons et al., 2011), rational inattention (Bhattacharya and Howard, 2022), attention scarcity (Archsmith
et al., 2021) and status bias (Kim and King, 2014). These decisions have also been used to find that increased
monitoring improves productivity (Mills, 2017), and that hotter temperatures decrease skills (Fesselmeyer,
2021). The availability of data and identification advantages sports settings offer contributes to the production
of credible evidence for addressing numerous challenging research questions (See Kahn, 2000). Umpires’
decisions are particularly useful tools as they provide key advantages over other settings, namely, observing
precise individual-level decisions and whether they are correct or not.

5Attending an umpire school is a necessary step for those aspiring to umpire in the Major League and
Minor League. It is extremely difficult for an umpire to reach the Major League. For example, out of about
150 students in a class, only about 20 will receive recommendations to advance to the umpire evaluation
course conducted by the Professional Baseball Umpires Corporation (PBUC). Additionally, about 45 other
students will be designated for placement in independent leagues. One umpire from each class will become a
Major League umpire, on average.
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strikes. Umpires work as a crew of usually four umpires, each working behind home plate

and behind first, second, and third bases. The umpire crew rotates positions throughout the

series of games, resulting in a quasi-random assignment of umpires to games.

The primary task of the umpires is rule enforcement.6 Home-plate umpires are tasked

with determining whether thrown pitches are balls or strikes.7 These split-second decisions

could sometimes be subject to human error and subjective judgment, undermining accuracy,

fairness, and consistency in determining the outcome of each pitch.

In particular, when a pitch is thrown and the batter does not swing, the umpire must

determine if the ball crosses home plate through the strike zone, resulting in a strike, or if it

crosses home plate outside the zone, resulting in a ball being called (See Figure A.1).8 The

strike zone is defined as an imaginary rectangular region over the home plate that extends

roughly between the batter’s shoulders and kneecaps, of roughly 20 by 25 inches in dimension.

An umpire’s ball-strike decisions are critical aspects of the game, as they directly affect the

count of balls or strikes on the batter.9 The count influences the strategies of both the pitcher

and the batter, making it a pivotal element in the game’s dynamics.

With umpires’ decisions being such vital parts of the game, players, coaches, and fans

closely monitor and scrutinize them for consistency and accuracy. Often, disagreements

between players or coaches and umpires arise. Fans also criticize umpires for poor calls on

even a single pitch. The Major League employs umpire supervisors and observers, and also

uses the Supervisor Umpire Review and Evaluation (SURE) system to evaluate umpires.

Umpires receive “report cards" following the game and also receive mid-year and postseason

evaluations.10 Therefore, umpires must maintain consistent and accurate strike zones within

6See Section A.2 for a short description of a baseball game.
7A pitcher throws a ball from the mound to the catcher, who sits 60 feet and 6 inches away. A fastball

thrown at 100 miles per hour takes about 0.4 seconds to reach the catcher.
8All pitches are subject to the umpire’s judgment. However, the umpire makes a call only when the batter

does not swing.
9The count refers to the number of balls and strikes on the batter. For example, if the umpire calls two

strikes on the batter, the count is “0-2," meaning there are no balls and two strikes.
10See https://umpscorecards.com/home/ for examples regarding how umpire performance is measured by
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and across games.

1.2.2 Robot Assistance

Despite their efforts to strive for consistency and high accuracy, umpires often make contro-

versial calls.11 Because umpires’ decisions are subject to human error and judgment, Major

League Baseball started an experiment with an automated ball-strike system (ABS, or robot

umpires) that could provide reliable assistance, ensuring accuracy, fairness, and consistency.

The robot utilizes sophisticated hardware and advanced software algorithms to track

pitches and determine whether a pitch passes through the strike zone. As part of the “Hawk-

Eye" tracking system, multiple cameras placed around the stadium capture the ball’s flight

path from different angles after a pitch is thrown. The system then identifies the pitch

location and uses a calibrated strike zone, personalized for each batter, to make a ball-strike

decision. The call is then communicated through an earpiece to an umpire who is standing

behind home plate to physically make the decision.12

In 2019, Major League partnered with the independent Atlantic League of Professional

Baseball (ALPB) to begin experimenting with robot assistance. Positive results in consistency

and reliability led to an expansion of the experiment to Minor League; the Single-A Florida

State League adopted it first in 2021, followed by the Triple-A Pacific Coast League in

fans.
11A controversial called third strike can directly change the result of the game. For example, a game

between the San Francisco Giants and the San Diego Padres on September 28th, 2020 had 27 incorrectly
called pitches that benefited the Padres by 1.85 expected runs in a game they won by 1.

12The home-plate umpire still stands behind the plate and makes decisions on other aspects of the game.
The home-plate umpire can overrule the decision communicated by the robot assistance for an obvious
mistake.
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2022.13,14 In 2023, both of the Triple-A Leagues (i.e., the International and Pacific Coast

Leagues) implemented robot assistance in games held between Tuesday and Thursday of the

week.15,16

1.3 Data

This study uses the universe of Major League and Minor League pitch-level data from the

2017 season to the 2023 season. The data are web-scraped from the MLB Stats API which

provides a wide range of statistics and data related to all games and individuals involved in

the league.17

First, I collected data from about 73,000 games, including the dates, weather conditions,

time durations, attendances, teams and leagues, venues, and importantly, the umpires

overseeing the games. I also collated information on personnel associated with each game that

includes the names, ages, experiences, height, and handedness of the umpires and individual

players.

I then gathered play-by-play data for over 22.5 million pitches that include detailed pitch

characteristics.18 Specifically, X and Y pitch coordinates of every pitch as it crosses the plate

13Minor League is a professional league below the Major League that is divided into four classes: Single-A,
High-A, Double-A and Triple-A. Each class includes multiple leagues. Major League Baseball teams utilize
the minor leagues to develop young players; players move through the ranks to eventually play in the Major
League. Umpires also can be promoted and demoted through the major-minor league system. There are about
230 professional umpires working in both major and minor leagues. Compensation also varies significantly
across levels: an average umpire in the lowest league earns about $3,000 per month, while a Major League
umpire receives over $10,000 on average.

14On July 20, 2021, the league adjusted the size of the strike zone following inputs from players and umpires.
The adjusted strike zone is only applied to the games utilizing robot assistance and not to other games.
During those games, the strike zone is wider and shorter than the original strike zone. See Figure A.2.

15Games held between Tuesday and Thursday of the week used robot assistance, while games between
Friday and Sunday were called by umpires without assistance. The system was adopted to compare two
formats and to prepare Triple-A umpires for when they appear in Major League games as replacement
umpires.

16Robot implementation is described in more detail in Section A.3. Also, see Figure A.3 for chronology of
these events.

17The data are provided by the Statcast system.
18In a typical 9-inning game, about 300 total pitches are thrown, of which about 150 are called.
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and the top and bottom of the strike zone are available.19 Further, detailed descriptions of a

pitch outcome (e.g., called strike, called ball, pitch resulted in hit or out, etc.) are collected.

The main outcome is whether an umpire correctly called a pitch or not. To determine this,

I utilize the exact pitch location, the dimension of the strike zone, and the umpire’s call

decision to generate the decision accuracy measure.20 Various game-situational characteristics

like ball counts and out counts, and whether there are runners on base at the moments of

these counts, are also collected.

To generate the estimation sample, I drop non-regular season games that include spring

training, All-Star Games, other exhibition games, and postseason games. I also drop games

with missing personnel information, games in which I cannot identify whether a robot is used,

and games with too few pitches.21 Finally, I also drop outlier pitches that are inaccurately

recorded due to calibration issues. The final dataset has over 62,000 games and 18.5 million

total pitches, of which 8.8 million are called with about 680 umpires and 7,500 pitchers and

batters.

1.3.1 Summary Statistics and Preliminary Evidence

Table 1.1 summarizes the pitch characteristics of the sample, separately by whether a game

used robot assistance or not. Out of 62,678 games in the sample, 2,611 games are called with

robot assistance. In these games, umpires are harsher relative to when the assistance is not

used and call fewer strikes (31.2% vs. 33.6%). These differences in the calls may be due to

the differential responses of pitchers: when pitchers know the robot is assisting to make a call,

they tend to pitch further away from the strike zone (0.78 vs. 0.75 feet horizontally and 0.87

vs. 0.85 feet vertically). In other words, pitchers are more confident about receiving a strike

19In stadiums with advanced cameras equipped, the Statcast system tracks the pitches with an accuracy of
better than one inch. See Section A.4 for details on how pitches are tracked in other stadiums.

20The X-and Y-coordinates utilized to generate the decision accuracy measure come from the MLB Stats
API and are different from the coordinates plotted by the robot. These are also post-processed to correct for
potential errors.

21In 2022, the Major League announced that the “select" games in Single-A Florida State League will use
the “challenge" system detailed in Section A.3. However, these games are not specified in the data.
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call at the edge of the strike zone with robot assistance. On average, umpires with assistance

are no better than without in accuracy (93.0% vs. 93.0%), but after accounting for the pitch

location and the stadium, they perform better (0.015 vs. -0.0007).22 When a robot assists

umpires calling the game, players have no incentive to argue the ball-strike decision and risk

being ejected. Therefore, the number of ejections is fewer in these games (0.04 vs. 0.07).

Figure 1.1 plots the average accuracy of umpires with and without assistance as a function

of the pitch’s distance from the nearest border of the strike zone. Both with and without

robot assistance, umpires perform extremely well when the pitches are obviously inside or

obviously outside the strike zone. However, accuracy declines as the pitch gets closer to

the border. Umpires with assistance are more accurate on these pitches; while not perfect,

for outside pitches that are 0.2 inches away from the nearest border, they have an average

accuracy of 77.4% relative to accuracy of 64.5% without robot assistance. Figure 1.2 reveals

distinctive discrepancies between umpires with and without assistance. The “enforced" strike

zone without a robot is oval-shaped despite the actual strike zone being rectangular. Umpires

without assistance incorrectly call pitches that fall within the corners. Robot assistance, on

the other hand, helps the umpires match the rule-defined strike zone well.23

This difference in the “enforced" strike zone leads the players to strategically adjust their

behaviors. In games assisted by robots, pitchers pitch further away from the center of the

strike zone (1.07 vs. 0.99 feet) on average, and pitches are also more likely to fall on the

“edge" of the strike zone (61.8% vs. 59.5%) (Table A.1). The adjustment also increased “base

on balls" in the games in these games, as shown by pitcher’s walks allowed (2.20 vs. 1.94 per

game) and batter walks (0.54 vs. 0.42 per game).24

22Robot assistance is not perfect for several reasons. Any technology has a margin of error. The system
relies on a radar system that tracks the pitches, and it sometimes performs suboptimally in a crowded
environment. Errors could also be due to calibration issues in these environments in locating pitches, and
measuring the size of the strike zone depends on the batter’s height and stance. These errors likely happen at
the stadium-level, so I employ a team-by-year fixed effect to address this issue.

23The robot-assisted umpire fails the “Turing test," which is a test to assess a machine’s ability to exhibit
human-like intelligence or behavior.

24A batter’s at-bat ends in a walk (or “base on balls") when the count reaches 4 balls. The batter is
awarded first base by the umpire.
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The estimation focuses on umpires. Figure A.4 plots the raw accuracy for umpires who

are assisted by robots and those who are not in the year with robot assistance and years prior

and after by pitch location. Panel A shows that the Major League umpires improve their

accuracy slightly over the years. In contrast, Panel B displays a large increase in accuracy

across pitch location when robot assists calling the game, and a drop in the year following

relative to pre-robot year. This provides suggestive evidence that umpires’ skills deteriorated

following the implementation of the robot below preassistance levels.

1.4 Empirical Strategy

Main Model I exploit the staggered adoption of robot assistance over time and umpires

moving across leagues in a difference-in-differences framework.25 I observe umpires before

and after the implementation of robots and compare them to those who were not assisted

by the robot. Figure A.5 describes the potential umpire moves across leagues and robot

implementation.26 A total of 17 umpires called games in the Single-A Florida State League in

2021, 11 with more than 10 games with a robot, and 66 umpires called games in the Triple-A

Pacific Coast League in 2022, 41 with more than 10 games with a robot. I compare these

umpires to those who have never worked in these two leagues.

My primary specification estimates the effects for periods with a robot and without a

robot after the implementation:

Yit = δ0D
Robot
it + δ1D

PostRobot
it + βXi,p + πj,y(t) + θt + γi + εit (1.1)

The main outcome Yit is the decision accuracy of the umpire measured as whether a

25Table A.2 shows the summary statistics separately for the Minor League umpires who are never-assisted
and assisted by the robots. I also show the outcomes for those who are assisted and subsequently move to
leagues without . In the year prior to robot implementation, these umpires are not observably different, on
average (residualized accuracy, 0.0 vs. 0.0 and 0.0001).

26For example, Dane Poncsak called games in the Double-A Northeast in 2021 prior to the implementation.
He moved to the Triple-A Pacific Coast League in 2022, a league that implemented, and called games with
the robot. In 2023, I observe him in Triple-A in games without a robot.
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pitch is correctly called by umpire i in time t.27 The indicator variables DRobot
it specifies that

a robot is helping to call the game and DPostRobot
it corresponds to the cases where umpires

are calling the games without assistance and after having been assisted by a robot. The

coefficient δ0, therefore, measures the relative performance with a robot compared to without

a robot. The coefficient δ1 is the main object of interest and it captures the effect of robot

assistance on individual skill after having worked with a robot. I include the year-by-month

fixed effects, θt, and umpire fixed effects, γi, which account for variations in the outcome over

time and over umpires. Standard errors are clustered at the umpire level.

The identification assumption of the empirical design is that the the adoption was not

anticipated and that the decision to move or to stay in a given league was uncorrelated with

the adoption of the robot. In particular, to identify δ0, the umpires who are assisted by a

robot are not on a differential trend compared to the umpires who are not assisted by a robot,

conditional on controls and fixed effects. To identify δ1, conditional on controls, fixed effects,

and the indicator DRobot
it , the performance of umpires who are no longer assisted by a robot,

after having been assisted, is parallel to that of umpires who are not assisted. In other words,

the decision to move or stay for the assisted umpires does not depend on robot assistance.

To test for these assumptions, I estimate an event-study model to test for pretrends:

Yit =
∑

k∈{−T,T}
k 6=−1

δkD
k
it + βXi,p + πj,y(t) + θt + γi + εit (1.2)

where the indicator variables Dk
it specify that the umpire is k months away from robot

implementation. I check that the coefficients, δk, prior to the implementation are not

statistically significant.

Addressing Threats to Identification A potential threat to identification is that the

composition of pitches changed at the time of the implementation of robot assistance. For

27See Footnote 20 for how the decision accuracy is measured. I use the post-processed data to determine
the accuracy.
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instance, players, especially the pitchers, might strategically respond to the implementation of

the system changing the nature of the game. These changes in strategies can persist further

into the future when players move across leagues. Pitchers could aim at different areas of

the strike zone and batters can also be more or less aggressive in the game. These further

affect situational characteristics of the game: for example, if the batters are more likely to

swing, then the scores of the games can increase. Changes in accuracy of umpires as a result

of robot implementation could then be partially due to the changes in the compositions of

pitches and game situations.

To partially address these concerns, I include a rich set of control variables and fixed

effects (Xi,p) to flexibly account for pitch location and potential umpire and situational biases.

Most importantly, I control for the exact pitch location, which is the only decision guideline

that governs whether a pitch should be called a strike or not. Since umpires may want to

avoid calling strikes in certain situations (Moskowitz and Wertheim, 2011), I also control for

pitch counts and other situational characteristics, including game score, outs, and runners on

base.28 I also control for the top-of-the-inning indicator to account for potential home-team

bias and employ pitcher and batter fixed effects to consider any player-specific effects.29

Further, I conduct a robustness check, reweighing the data to match the distribution of

pitches across the leagues and years to address the concern of potential endogenous player

responses.

Another potential threat to identification is that the umpires who move across leagues

can be systematically different from umpires who do not.30 For example, if the best umpires

in the league are promoted, then comparing the umpires who move following the robot

28For example, in the most extreme counts (3-0 and 0-2), umpires are known to adjust the size of the strike
zone. Umpires are more likely to call a pitch a strike on a 3-0 count, because the next called ball ends an
at-bat. In a lopsided game where the score difference is large, umpires become more lenient in calling pitches
to increase the pace of the game.

29In principle, the implementation of robot assistance is random, so these are not needed except to increase
precision. I test the validity of this assumption by estimating models with and without pitch-level controls
and I find similar results (See Section 1.5.1).

30Section 1.5.1 shows that the umpires who moved to different leagues or who are promoted to upper-level
leagues perform neither better nor worse, on average.
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implementation to those who do not can partially capture the differences in these umpires

that are not related to the robot and result in an upward bias. On the other hand, if the

poor-performing umpires are moving across leagues, then the estimation will result in a

downward bias. To alleviate this concern, I also estimate models with varying control groups

such as promoted umpires, only the Major League umpires, and only the Single-A umpires.

A third concern is that there may be measurement error in how the pitch coordinates

are recorded. As detailed in Section A.4, the data include the X and Y coordinates for

every thrown pitch, and there are two different coordinate systems: manually-plotted pitch

coordinates and camera-tracked pitch coordinates. In the Major League and the Minor

Leagues that adopted the robot, pitch coordinates are available from these cameras. However,

in other stadiums without such technology, pitch coordinates are manually-plotted by stringers

hired by the league. If the stringers plot the pitches to match the umpire’s calls (i.e., plot

an ambiguous pitch inside if the umpire calls strike and vice versa), then when the umpire

moves to the league with advanced technology, his accuracy might drop as a result of better

measurement.

To address this concern, first, I use the dosage model described in the next section

that only utilizes games with “Hawk-Eye" technology plotting the pitch coordinates. I also

conduct a robustness check using just the manually-plotted pitch coordinates which are

available in all stadiums. Second, I employ home team(stadium)-by-year fixed effects, πj,y(t)

to address how the pitch coordinates are recorded manually. I transform the manually-plotted

coordinates to have the same units as the camera-tracked coordinates at the home team-by-

year level (Section A.4.3). While I cannot employ stringer-FEs as the data do not contain

this information, home team-by-year-FEs partially address the concerns associated with the

data quality of pitch coordinates. For example, unique bias in recording coordinates that

could depend on the stringers’ vantage point can be relieved.
21



Dosage Model With the 2023 implementation of robots in Triple-A leagues which assigned

robots to games held on Tuesdays, Wednesdays, and Thursdays, and the random assignment

of umpires to games, the treatment dosage, or the share of games with the robot assisting

calling the game is as-good-as random. I therefore also consider the alternative dosage model

using just the data from the 2023 Triple-A leagues:

Yit = β0D
Robot
it + β1RobotExposureit + βXi,p + πj,y(t) + θt + γi + εit (1.3)

where DRobot
it is an indicator variable that the game used the robot and RobotExposureit

is the share of games with robot assistance.31,32 The coefficient β0, estimates how well the

umpire performs with robot assistance relative to without. The coefficient β1 measures the

effect of treatment dosage on individual skill. A set of control variables and fixed effects is

identical to those employed in Equation 1.1 except that θt is now at the week-level.

1.5 Results

1.5.1 Do Humans Lose Skills Following Robot Adoption?

Table 2.2 displays the main results. First, umpires using robot assistance make calls remarkably

well. In months when a robot helps call games, pitches are 6.4 percentage points (about

6.9%) more likely to be correctly called. This finding confirms the general belief that robots

perform higher quality work than humans in repetitive and monotonous tasks. Robots can

help humans achieve a high level of precision and consistency.

Following the implementation of robot assistance, umpires can move to another league

where they are asked to perform the task of calling pitches again without assistance. In this

31The umpire crew rotates positions throughout the series of games, resulting in a random assignment
of umpires to robot assistance. Throughout the season, umpires will work statistically identical number of
games with and without robot assistance.

32RobotExposureit =
# of games with robot

# of total games . For example, RobotExposureit can only take the value 0 or 1
for the umpire’s first game and 0, 0.5 or 1 for the umpire’s second game, etc.
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post-robot period but without robots, umpires are 2.0 percentage points (2.1%) less accurate

relative to preassistance levels. In other words, the umpires’ skill deteriorates following

robot implementation below the preassistance levels. The magnitude of the decrease roughly

matches the difference between umpires at the median and those in the bottom 5th percentile.

The event-study version in Figure 1.3 also suggests the same pattern. Panel A shows that

the umpires using robot assistance execute tasks with high precision, but when the robot

is removed, they experience a significant skill decline. The figure also confirms that there

is no pretrend. The finding suggests that overreliance on robots for tasks that were once

performed solely by humans can lead to a loss of skills.

The skills gap between umpires with and without assistance is most pronounced for pitches

that fall near the border of the strike zone (See Figure 1.1). Table A.3 restricts the sample

to the pitches that are within 0.5 feet from the nearest border of the strike zone from the

outside, and within 0.2 feet from the nearest border of the strike zone from the inside. The

results are more striking, with a decline in accuracy of 3.7 percentage points (4.1%) following

work with robot assistance for these pitches.

With a unique setting that allows me to observe decision accuracy, I can also classify

decisions into four different categories: true positive (correctly called strike), true negative

(correctly called ball), false positive (Type I error, incorrectly called strike) and false negative

(Type II error, incorrectly called ball). As robots improve precision, umpires assisted by a

robot have higher true positive and true negative decisions (2.2 and 4.1 percentage points).

On the other hand, following the work with robot assistance but without robots, umpires

have lower rates of true decisions without robots (1.0 and 1.0 percentage points). Umpires,

however, have many more incorrectly called strikes (false positive, 2.5 percentage points)

than incorrectly called balls (false negative, -0.5 percentage points) in these months.33 These

collectively result in higher rates of pitches being called strikes; umpires are therefore more

lenient to pitchers. Since Figure A.6 shows that umpires tend to call more pitches as strikes

33See Figure A.7 for event-study versions of these outcomes.
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for pitches that are harder to judge, I take this as suggestive evidence that, when umpires

feel more uncertain about their decisions, they lean towards calling strikes.

Humans suffer from decision biases. Table A.4 displays whether incorrect decisions due

to biases increase following robot implementation. First, Moskowitz and Wertheim (2011)

suggests that umpires suffer from omission bias: they are less likely to call a pitch strike when

the count is 0-2 when the next strike would end an at-bat, and more likely to call a pitch

strike when the count is 3-0 when the next ball would end an at-bat.34 I find that the share

of wrong calls when the count is 3-0 decreases in the months when the robot helps, calling

the game more accurately by 7.7 percentage points relative to the base mean of 8.7%.35

After robots are removed, the rate of omission biases when the count is 3-0 increases by

2.9 percentage points (33.3%) relative to preassistance levels. Second, Chen et al. (2016)

show that umpires suffer from the gambler’s fallacy: they underestimate the probability of

consecutive streaks happening by random chance. In particular, they are less likely to call a

pitch a strike if the previous pitch was called a strike. The robot helps to reduce the share of

incorrectly called balls following a previous pitch that was called a strike by 1.2 percentage

points. Following the work with robot assistance, but without the robot, umpires have a

marginally lower share of wrong calls when the count is 0-2 and when the previous pitch was

called a strike. These results, however, should be interpreted with caution, as I also find that

umpires lean towards calling strikes on more ambiguous pitches; these results can therefore

be an artifact of umpires calling more strikes overall.

With the implementation of robots, coaches and players cannot benefit from questioning

an umpire’s call of ball or strike. Table 2.2 shows that whether a game has an ejection

decreased by 2.4 percentage points, and the number of ejections by 0.029 incidents per game in

the season with robots, respectively.36 Figure A.9 also suggests the same pattern of reduction

34The size of the “enforced" strike zone changes based on game situations (Figure A.8).
35In a 3-0 count, an incorrectly called strike due to bias is considered an inaccurate call.
36In baseball, an “ejection" refers to the act of an umpire removing a player or coach from the game for a

rule violation or misconduct. Ejections are typically the result of actions such as arguing with an umpire,
using inappropriate language, displaying unsportsmanlike conduct, or violating specific rules.
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in ejections. Umpires, however, revert back to the original level of ejections when robots are

removed.

Robustness Checks

In this section, I conduct a number of robustness checks to verify the results.

Control Groups My estimation relies on umpires who move across leagues, particularly

for the estimation of the skill decline that occurs after robot assistance is no longer available.

These umpires might be systematically different in their ability if the leagues promote umpires

who are better at the task. However, Table A.5 presents that the umpires who moved across

leagues or who are promoted to upper-tier leagues have neither higher nor lower accuracy

relative to all other umpires who stayed, on average (residualized accuracy, -0.0 and 0.0 vs.

-0.0002). In addition, the identification strategy depends on the presence of parallel trends

between the groups, making the differences in levels acceptable.

Table A.6 shows the results with varying control groups and replicates the baseline results.

The results are robust to comparing treated umpires to the untreated umpires who are

promoted (a decline of 2.7 percentage points) and to untreated umpires who are in the bottom

and top leagues (declines of 3.1 and 2.7 percentage points, respectively).

What if the Players Respond Strategically? If a robot increases accuracy and

consistency, players may need to adjust their strategies to optimize their productivity. In

particular, pitchers can adjust their behavior to focus on hitting specific regions of the strike

zone where the umpires assisted by a robot are more likely to call strikes.37 Knowing that

the umpire with robot assistance is more precise in its strike zone, pitchers might aim to hit

those areas consistently to increase their chances of getting called strikes.

Table A.7 estimates the same specification, but for players who are exposed to a robot

37Pitchers are more than capable of adjusting strategies. See Figure A.10 for how pitchers pitch at different
levels.
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and move to another league without a robot. Pitchers respond strategically to the use of

robot assistance. In the months with robots assisting calls of the game, pitchers pitch closer

to the center of the strike zone (0.016 feet), and also closer to the border of the strike zone

(0.017 feet), on average. As Figure 1.2 showed, the umpire calls pitches that fall in the corner

strikes more often with a robot, making players strategically respond by pitching closer to

the border. Figure A.11 shows the event-study versions of these outcomes at the game level.

Panel B shows that the pitchers gradually learn and respond to the robot-assisted strike zone

by pitching more frequently inside of the strike zone.38

The effects persist after these players move to another league without robot assistance.

Pitchers maintain the adjusted pitching behavior by pitching closer to the center of the strike

zone and to the border (0.008 and 0.003 feet), but Panel B of Figure A.12 show that pitchers

readjust by the end of the season and revert back to the original behavior.

The endogenous player response might raise a concern that the baseline results are an

artifact of the distribution of pitches changing and persisting. To address this issue, Table A.8

presents the results reweighing the data to have the same distribution of pitches as the

prerobot period. The results are largely similar and even more pronounced, with effect sizes

of 8.0 percentage points in increased accuracy of robot assistance, and a 2.4 percentage-point

decline below preassistance levels following the work with robot assistance.

The main specification includes a rich set of pitch-level controls to account for different

game situational characteristics and player behaviors. These are not needed in essence as the

implementation of robot assistance is as-good-as random, but used to increase precision. I

confirm and find similar results with and without pitch-level controls in Table A.9.

Data Quality If the stringers hired by the league align their pitch plotting with the

umpire’s calls (i.e., they record a pitch as inside the strike zone when the umpire calls a strike

for ambiguous pitches), the umpires’ accuracy could potentially decline once they transition

38See Section A.5 for a discussion on how strategic adjustment affects players’ productivity.
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to a league with robot assistance.

Table A.10 shows the results using only the manually-plotted pitch coordinates. The

results are much like the baseline results, with slightly attenuated 3.3 percentage-point

increase of accuracy with the robot relative to without the robot, and a decline of skill of 1.5

percentage points following the removal of the robot.

Two-way Fixed Effects Finally, I address the concerns raised by recent literature regarding

difference-in-differences models (e.g. Goodman-Bacon, 2021). In the presence of heterogeneous

treatment effects, a two-way fixed effects model can provide biased results. Figure A.13

presents four different estimators addressing this issue and finds a generally similar pattern

of results (Borusyak et al., 2024; Callaway and Sant’Anna, 2021; De Chaisemartin and

d’Haultfoeuille, 2020; Sun and Abraham, 2021).39

1.5.2 Heterogeneity

Do High-Skilled Umpires Lose More Skill? A particularly important question is

who loses more with robot implementation.40 Table A.12 shows the results separately by

accuracy level of umpires in the year prior to the implementation. First, in the months

when a robot helps calling the game, accuracy increases by 10.5 percentage points for the

bottom-quartile umpires and 8.4 percentage points for the top-quartile umpires. In months

without robot assistance, the umpires with varying prior skills experience skill declines of

varying degrees relative to the preassistance levels. The umpires who had the least skill lose

the least, showing a statistically insignificant decline of 0.9 percentage points, while the better

umpires lose more, with the middle-half and top-quartile umpires suffering drops of 4.6 and

39In these models, I estimate at the month-level instead of the pitch-level.
40For all analyses in Section 2.5, I focus on the umpires who have worked in Triple-A or the Major

League. Personnel information is more complete and better recorded for this group of umpires. Further,
implementation of robot assistance in the Single-A Florida State League happened in 2021, so the preperiod
statistics comes from 2019 instead of 2020 due to the COVID-19 pandemic. Table A.11 shows the main
results for this sample. For this sample, pitches are 8.9 percentage points more likely to be correctly called
with robot assistance and umpires face a 3.6 percentage-point decline in skills relative to preassistance levels.
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4.7 percentage points below the preassistance levels, respectively.

Brynjolfsson et al. (2023), Kanazawa et al. (2022), Tafti (2022) and Noy and Zhang (2023)

also find that the productivity distribution compresses among taxi drivers, surgeons, and

workers after AI, driver assistance, surgical robots and ChatGPT are used, respectively. In all

four settings, advanced technology benefited the low-skilled workers. In the setting I examine,

I find that the skill decline is the smallest for low-skilled umpires and larger for better-skilled

umpires after robot removal. Panel A of Figure A.14 shows that the skills gap among umpires

of different skill levels compresses. Prior to robot implementation, the gap between the best

and worst-skilled umpires is 6.0 percentage points. When they return to making calls without

robot assistance following work with it, the gap shrinks to 2.1 percentage points or by about

64.6%. Collectively, high-skilled workers not only benefit the least with robots, but also lose

the most when the robot is removed.

Do Less Experienced Umpires Lose More Skill? Table A.13 shows that umpires

get neither better nor worse with additional years of experience, on average. Returns to

experience are positive and significant for relatively young and new umpires, but they

eventually become negative: umpires start losing skills with additional years of experience as

they age.41 Therefore, more experienced umpires are often the less-skilled umpires.

Table A.14 displays the results separately by umpires’ years of experience. A robot

increases accuracy for umpires of all experience levels in the months when the robot is used.

Following the work with robot assistance, umpires with the most experience (i.e., more

than 9 years of experience in professional leagues) lose the least, showing a 1.8 percentage

points decline relative to the preassistance levels in accuracy. Umpires who are relatively

inexperienced (i.e., less than 6 years) experience a significant decline of skill of 5.3 percentage

41Williams (2019) finds that the best-performing umpires, on average, have fewer years of experience.
Figure A.15 also shows the same patterns.
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points.42,43

Do Umpires with Prior Major League Experience Lose More Skill? Among

Triple-A umpires, those with Major League experience as replacement umpires are more

likely to be next in line for promotion.44 These umpires are also less likely to be replaced

sooner than those without Major League experience as the Major League has yet to plan to

adopt robot assistance system completely.

Table A.15 shows the results separately by whether the umpire had prior experience in

the Major League or not. In the months with robot assistance, decision accuracy increases

for both types of umpires (8.2 and 9.3 percentage points, respectively for those without

and with Major League experience). However, the magnitude of skill decline relative to the

preassistance levels is much larger for those without Major League experience (4.9 percentage

points) than those with Major League experience (1.5 percentage points). These findings

suggest that those with Major League experience, and potentially who are more likely to be

promoted in the near future, try to retain skills more.

1.5.3 Does Longer Work With Robot Increase Skill Depreciation?

The duration of nonemployment spells affects future prospects of wages and reemployment

opportunities (e.g. Kroft et al., 2013). While potential explanations include skill depreciation

while unemployed (e.g. Benhenda, 2022; Dinerstein et al., 2022; Edin and Gustavsson,

2008; Jarosch, 2023), the length of the nonemployment spell is often correlated with skill,

making it difficult to study the impact of duration on skill depreciation. The 2023 Triple-A

implementation of robot assistance, paired with the umpire rotation system, makes a good

42A large share of umpires who are assisted by robots come from Triple-A minor leagues. For umpires to
reach this level, they need several years of training through Single-A and Double-A leagues.

43A potential explanation for this result is that the task requires physical fitness (e.g., dynamic visual
acuity) to make a decision immediately after observing a fast pitch.

44Ahead of the 2023 season, the Major League promoted 10 umpires from the minor leagues. All of these
umpires had worked in the Major League as replacement umpires.
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setting to study this issue as the length of duration with robots is as-good-as random.

Table A.16 reports the pitch characteristics for Triple-A games in 2023. A similar pattern

emerges in these games as the full sample: the robot increases accuracy, on average (94.0% vs.

90.1%). A total of 71 umpires called at least one game in Triple-A leagues, with 64 umpires

working with the robot for at least a game. The average umpire’s share of games with the

robot is 42.0%. Figure A.16 shows the distribution of the dosage. Panel A presents that the

share is approximately normal over the season. In the first game of the season, the umpire’s

treatment dosage is either 0 or 1, and as the season progresses, the dosage becomes more

concentrated around 50% (Panel B, Figure A.16). The dosage is as-good-as random, and

more or less experienced umpires are neither more nor less likely to have more games with

the robot (Figure A.17).

In 2023, umpires working in Triple-A minor leagues had between 1 and 3 consecutive

games with robot assistance before having to call a game solely by themselves.45 To compare

with the baseline results of full-season work with robot assistance, I consider the following

model:

Yit = η0D
Robot
it + η1RobotExposureit + η21(Previous Game Used Robot)it

+ η31(Previous 2 Games Used Robot)it

+ η41(Previous 3 Games Used Robot)it

+ βXi,p + πj,y(t) + θt + γi + εit

(1.4)

where the omitted group is that the previous game did not use the robot.46 I employ the

same set of control variables and the fixed effects as previously explained.

45On average, the number of days since the last time umpires had to call a game without robot assistance
is 8.5, 15.9 and 23.7 days for 1, 2 and 3 consecutive games of robot assistance, respectively.

46In particular, 1(Previous Game Used Robot)it is an indicator variable that specifies that the robot was
used in the previous game in a previous three-game span. It therefore includes cases where the robot was
used in t − 3 and t − 1, but not cases where the robot was used in t − 2 and t − 1, as this is denoted by
1(Previous 2 Games Used Robot)it.
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Table 1.3 shows the results separately by the length of work with robot assistance relative

to umpires who are not assisted. When an umpire returns to the task after a game with

robot assistance, their skill declines by a 0.3 percentage points. The magnitude of the decline

of skill increases when an umpire is assisted in 2 or 3 consecutive games by a robot to 1.2

percentage points and a statistically insignificant 1.0 percentage point, respectively.

An average umpire works as a home-plate umpire for 28 games in a season. Unfortunately,

the umpires working in Triple-A minor leagues in 2023 had between 1 and 3 consecutive

games of work with the robot, so I cannot fully estimate the effect of longer durations of

robot assistance. The baseline results suggest that umpires with a full season of work with

the robot suffered a 2.0 percentage-point decline in skills relative to the preassistance levels,

on average, in the following season; the findings therefore suggest that increases in work

duration with robots increase skill depreciation.

Further, Table 1.4 presents the results using an alternative specification (Equation 1.3)

exploiting the variation in treatment intensity to robots.47 I confirm the findings that umpires’

skills worsen following the implementation of robot assistance. In games with robot assistance,

accuracy increases by 5.2 percentage points. However, full exposure (Dosage = 1) to a robot

decreases accuracy by 2.0 percentage points.

Using the variation in dosage, I also plot the second- and third-degree polynomial estimates

of dosage effects (Figure 1.4). A game with robot assistance corresponds to dosage of about

3.5% in a full season. At low dosages, skill seems to deteriorate rather linearly, with declines

of 0.2, 0.3 and 0.6 percentage points at the dosage of 5%, 10% and 20%, respectively. The

25th and 75th percentiles of treatment dosage are about 36% and 50%. At these dosages, the

skill declines are about 1.0 and 1.3 percentages points, respectively. At the dosage of 100%,

the decline of skill is 1.9 percentage points. The overall shape of the decline suggests that

effects plateau after a certain intensity of exposure.

47The results also serve as a robustness check to the main result. The specification only uses camera-tracked
pitch coordinates in 2023, so the findings address concerns about data quality.
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1.5.4 How Long Does It Take To Regain Skill?

Related questions include whether umpires can regain their skills after loss of robot assistance

and, if so, how long it would take to return to their original skill levels. Learning by doing

is an important source of productivity growth and returns to experience for workers (e.g.

Arrow, 1962; Lucas Jr, 1988; Thompson, 2010; Yang and Borland, 1991). Whether workers

return to a prior level of skill with recall after use of robot assistance, and who therefore

“unlearned" by doing less, is relatively unknown.48

I investigate this question in examining the umpires who are assisted by robots in 2022 and

subsequently moved to another league without robots. In particular, I employ the following

event-study specification at the game level:

Yit =
∑

g∈{−G,G}
g 6=−1

ξlD
g
it + βXi,p + πj,y(t) + θt + γi + εit (1.5)

where Dg
it indicates that the umpire is g games away from the last game with the robot.

Figure 1.5 shows that these umpires do not recover within a season from the skill decline

following the robot assistance. In the first game back after use of robot assistance, the umpires

suffer a decline of skill of 3.6 percentage points. While the decline does become smaller in

magnitude over the season, it is still statistically significant. By the 16th game, or about

halfway through the season, skill deteriorates by 1.7 percentage points. Closer to the end of

the season (namely, after 21 games since the return to calling without robot assistance), the

skill decline is 1.0 percentage points.

Table 1.5 presents the same results; namely, that the decline in skill is larger early in

the season and gradually decreases as the season continues. In the first five games returning

to the task without robot assistance, umpires face a skill decline of 2.9 percentage points

relative to preassistance levels. However, in the 16-20 games back and 21 or more games

48Surprisingly, over 40% of workers who are unemployed return to the original employer (Fujita and
Moscarini, 2017).

32



since the return to calling without robot assistance, the decline is 1.7 percentage points and

1.0 percentage points, respectively. These findings imply that umpires require a considerable

amount of time to regain their skills following the work with robot assistance. While they do

make significant progress regaining their skill levels over the course of the season, they do not

fully return to their initial skill levels by the end of the following season.

1.6 Mechanisms

1.6.1 Are Robot Effects the Same as the Time-Away Effects?

Is skill depreciation a result of time away from the task? Past literature on whether skill

depreciates during unemployment spells remains inconclusive as Cohen et al. (2023) find that

cognitive and non-cognitive skills do not depreciate for German workers, but Dinerstein et al.

(2022) show that Greek teachers become less skilled while unemployed.

In 2020, the COVID-19 pandemic delayed and shortened the 2020 Major League Baseball

season, but canceled the entire Minor League Baseball season. Therefore, the Minor League

umpires experienced a season-long “unemployment" in which they did not engage in the task,

unlike Major League umpires.

I compare the Minor League and Major League umpires in a difference-in-differences

framework following the COVID-19-canceled 2020 season.49,50 In particular, I employ the

following specification to study whether the COVID-19 pause resulted in skill depreciation:

Yit = ρ0D
FirstSeason
it + ρ1D

SeasonsAfter
it + βXi,p + πj,y(t) + θt + γi + εit (1.6)

where the DFirstSeason
it and DSeasonsAfter

it indicate the 2021 season when the umpires

49Table A.17 compares the Minor League umpires who did and did not return from the COVID-19-canceled
season. Out of 167 Minor League umpires who worked in 2019 and were never robot assisted, 84 returned in
2021 while 83 did not. In 2019, the year prior to the pause, these umpires are not observably different, on
average.

50This analysis limits the sample to the never-assisted group.
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returned from the pause and all following seasons, respectively.51

Table 1.6 reports that in 2021, the first season back from the canceled season, the Minor

League umpires do not suffer from any skill depreciation, showing a statistically insignificant

decline of 0.4 percentage points, on average.

However, the event-study version reveals that the umpires did marginally lose skill

following the pause. Figure 1.6 shows that in the first month since the leagues restarted,

the umpires faced a skill decline of 0.8 percentage points, statistically significant at the 10%

level. They quickly bounced back, however, with a statistically insignificant decline of 0.5

percentage points starting from the second month of return.

Collectively, these results suggest that the skill depreciation stemming from robot imple-

mentation is larger than the time-away effects. A first potential explanation is a reduced

incentive to practice skills: umpires may perceive that their skills are no longer relevant,

leading to a faster skill depreciation compared to individuals who are temporarily off work.

Another potential reason is loss of confidence: when umpires are continually assisted by the

robot, they may lose confidence in their abilities to perform tasks manually. This lack of

confidence could further erode their skills because they become less willing to engage in tasks

that require their expertise.

1.6.2 Complementarity or Substitutability of Skills

Home-plate umpires experience a noticeable drop in their ability to accurately call pitches once

they have worked with robot assistance. This raises the question of whether the introduction

of robot assistance impacts other skills as well. If two skills are substitutable, a decline in

skill in one area can lead to an increase in competency for the other skill. Conversely, when

two skills are complementary, a decrease in proficiency in one task can also lead to a decline

in skills for the other task.

51While the umpires can “practice" before the start of the season in the preseason (i.e., spring training),
the same is true for the umpires assisted by a robot for the entire season.
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The first-base umpire in baseball is responsible for several tasks during a game and his

primary role is to make calls related to plays that occur at first base. The most crucial task

of the first-base umpire is to make decisions on whether a baserunner is safe or out when

attempting to reach first base. They must closely observe the timing of the runner’s arrival

at first base and determine whether the ball reached the base before the runner.

A team can request a review of a play that occurred at first base to determine if the call

made by the umpire was correct. The replay officials review the available camera angles and

video footage of the play and make a determination on whether the call on the field was

correct or if it should be overturned. As replay reviews provide a mechanism to correct any

errors made by the first base umpire during the game, the numbers of the requested reviews

and overturned calls are good proxies for the first-base umpire’s skills.

I compare the outcomes of umpires who are assisted by the robots in 2022 to those of who

are not.52 The outcomes are only available for the Major League games, so I restrict the set

to all Major League games held in 2023.53 In particular, I employ the following specification:

Yit = φ0D
Treated2022
it + βXi + θt + εit (1.7)

where the DTreated2022
it indicate that the umpire i is treated in 2022. I include team fixed

effects to account for variations in the outcome across teams and control for umpire’s years

of experience. θt are the month fixed effects.54

Table 1.7 first establishes that there is no significant difference in the number of ground

52The umpire crew rotates positions throughout the series of games. For example, an umpire will work
behind the home plate in one game and will work behind first base in the next.

53Replay reviews are only available in stadiums with cameras installed. Many minor league stadiums still
lack this technology.

54The identification assumption is that umpires who have not previously received robot assistance serve as
good counterfactuals for those who have been assisted. The two groups exhibit some observable differences,
as the umpires who were assisted by robots in 2022 are, on average, younger and less experienced. However,
in previous sections, I demonstrated that these umpires also perform better on average. As part of a placebo
test, I found that the number of ejections does not differ between these two groups which show that the
assisted umpires do not make more controversial calls. While the results should be interpreted with caution,
I argue that mean comparisons between these groups provide insights into the impact of robot assistance.
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outs, or calls for which the first-base umpire is responsible, between the two groups. However,

the umpires who are previously assisted by the robots face about 0.1 more challenges (i.e.,

replay reviews) per game (44.3%), indicating that umpires’ decisions are under increased

scrutiny. Considering that the number of challenges being overturned has also increased by

0.09 per game (68.6%), these findings collectively imply that umpires who have received

previous robot assistance exhibit higher rates of inaccuracies and diminished skills in the

task.

As robots and automation systems are integrated into various industries and tasks, the

demand for specific skills may shift to adapt to the new working environment. In particular,

workers may need to adapt and acquire new skills to perform other tasks. The two tasks,

calling pitches and determining whether a baserunner is safe or out, are similar and exhibit

complementarities, suggesting that the skill shift following robot implementation may occur

at a greater distance along the spectrum.

1.6.3 Are Umpires Learning from the Robot?

When automated systems are used to track pitches and make calls, umpires can receive

immediate feedback on the accuracy of their calls compared to the technology. Over time,

umpires may adapt their calling style to align more closely with the robot assistance, especially

if the technology is proven to be highly accurate.

On July 20, 2021, following inputs from players and umpires, the league widened the strike

zone by 2 inches on each side of plate and lowered the top of the strike zone by 3.5 inches

(Figure A.2). If the umpires who are assisted by the robot adjust their calling style to match

it, then their skills may have seemed to drop as they call with the adjusted rule instead of the

old rule. Similarly, if the umpires did match the robot well, using the alternative definition

of accuracy with the adjusted strike zone will show that the skills would have increased.

Table A.18 shows that even with the decision accuracy measure using the adjusted strike

zone, the umpires experience a decline in accuracy following robot implementation (0.9
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percentage points). Therefore, these estimates rule out umpires learning and adjusting to a

new standard.

1.7 Discussion

1.7.1 Does the League Gain from Robot Adoption?

While the workers in firms that have adopted robots typically suffer wage and employment

losses, robot-adopting firms enjoy increases in output gains and productivity (e.g. Ace-

moglu et al., 2022). In this section, I explore whether the adopting leagues benefited from

implementing the robot.

I compare the Single-A Florida State League that adopted the robot in 2021, and the

Single-A Carolina League that did not, in the following difference-in-differences framework:

Yit = τ0D
FirstSeason
it + τ1D

SeasonsAfter
it + βXi + θt + ωi + εit (1.8)

where the DFirstSeason
it and DSeasonsAfter

it indicate the months in the 2022 and 2023 seasons,

respectively.55 θt and ωi are the year-by-month and the league fixed effects, respectively. I

also include team fixed effects to account for variations in the outcome across teams.

Table A.19 shows the results comparing the outcomes in those two leagues. First, league

attendance increased by 265.2 per game (12.4%) in the first year of implementation of the

robot. A back-of-the-envelope calculation suggests that this translates to an increase of $1.25

million in just ticket revenue and $2.5 million considering parking, food and beverages.56

Figure A.18 shows the event-study version and confirms the finding. Panel A also suggests

55The Single-A Florida State League adopted the robot in 2021, and the “First Season" refers to the 2021
season. Other Minor League leagues do not provide good comparisons for several reasons. First, there are
large differences in league quality across the league classes. Second, the Minor League has several experimental
rule changes each year. For example, in 2021, the Single-A California League adopted onfield timers to reduce
game length.

56A total of 589 games is played in the Single-A Florida State League in 2021 and an average ticket price
in Single-A is about $8.00. The average cost for a family of four to attend a game is about $65.00 in total.
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that the increase in attendance is concentrated at the beginning and end of the season, which

insinuates that increased publicity about the robot might have prompted the increase. In

comparison, the cost of “Hawk-Eye" installation is about $300,000 and the robot operator’s

hourly wage is about $25.00.57 The league can more than bear the cost of the robots in its

first season of implementation just from increased revenue generated from ticket sales.

Upon the implementation of robot assistance, fans are more likely to enjoy games with

fewer controversial calls and disputes, leading to increased viewership and attendance, which

can positively impact revenue through ticket sales, merchandise purchases, and advertising

revenue. In addition, the use of robot assistance could appeal to tech-savvy audiences and

younger generations of viewers, who may be drawn to the game due to its integration with

cutting-edge technology. Over time, the adoption of the robots could also lead to cost savings

by reducing the number of onfield umpires needed for games.58

Second, the duration of the game increased by 21.1 minutes (12.7%) in the first season of

implementation and the total score increased by 1.1 runs (12.9%). While the Major League

wants to shorten game length, it also wants to generate more in-the-field-of-play offense.59

Increased duration is likely an artifact of increased scoring and more activity in the game.

Indeed, the number of total pitches thrown in a game also increased by 11.2 (4.1%) in the

first season. Viewers generally prefer watching high-scoring to low-scoring games and thus,

an increased total score in the first season is also likely to enlarge the fan base.

1.7.2 External Validity

The impact of robot assistance on umpires’ skills in making ball-strike decisions has significant

relevance and transferability to a wide range of other occupational settings. Beyond the

specific context of baseball, the skill set and cognitive processes involved in these decisions

57In 2013, the Premier League, an English football league, installed a “Hawk-Eye" system with 14 cameras
for £250,000.

58Average umpires in Single-A and in the Major League earn $3,000 and $10,000 per month, respectively.
59The Major League experimented with various rule changes in the Minor Leagues, including limiting

defensive shifts, limiting pickoff throws and moving the mound back to generate more offense.
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are shared by professionals across various domains.60 These skills encompass a combination

of vision, physical conditioning, and mental sharpness.

Sharp visual perception and mental acuity required for umpires to make accurate ball-

strike decisions are widespread attributes that apply across various professions. They are

especially important in any occupation that relies on precise observation and decision making.

Healthcare professionals, such as surgeons and radiologists, require sharpness of vision to

accurately diagnose medical conditions and perform surgeries. In the aviation industry,

pilots and air traffic controllers must possess sharp visual perception to navigate aircraft.

Similarly, workers in manufacturing and quality control settings use visual perception to

inspect products and ensure quality standards are met.

The cognitive demands on an umpire mirror those in professions that require quick and

accurate judgments, especially in high-stakes settings. The cognitive processes involved in

decision making, such as attention, are therefore fundamental beyond the setting of baseball.

For instance, surgeons and air traffic controllers must maintain high level of focus throughout

procedures and navigating air traffic as lapses in attention can lead to potentially catastrophic

consequences.

The application of sharp visual perception and acute decision making extends across

diverse occupational fields, emphasizing the broader implications and relevance of the findings

of this paper. Hence, the deterioration of these skills could have significant consequences for

accuracy and safety in numerous occupational domains.

1.8 Conclusion

How does working alongside robots influence human skills, and do individuals perform worse

in tasks when robot assistance is removed? Even as robots become more accessible, the value

of human skills endures, especially in domains that require adaptability and complex decision

60For the first-base umpire, the skill set closely resembles that of the home-plate umpire, as he must make
decisions based on the timing of the ball and the runner’s arrival at first base.
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making.61

Importantly, I examine the impact of working with robots on human capital, focusing

on the decision accuracy of umpires in professional baseball settings. By analyzing data

from over 62,000 games played between 2017 and 2023 in both Major and Minor Baseball

Leagues, I find that umpires perform more effectively with robot assistance, affirming the role

of robots in enhancing efficiency and productivity across various contexts. However, umpires

suffer a large skill decline below preassistance levels when they are required to perform tasks

independently once again, suggesting that relying too heavily on robots can have detrimental

effects on skill retention.

Second, I investigate the impact of robot implementation on different groups. The umpires

with the highest skills see the smallest improvements with robot assistance and experience

the most pronounced decline once the assistance is removed. Consequently, the skills gap

diminishes with the introduction of robot assistance and persists even after its removal.

Third, I study the impact of the duration of working with the robot on the decline of

skill and the time umpires take to recover their skills after the recall following the work with

robot assistance. I find that as the duration of robot assistance lengthens, the decline in skill

becomes increasingly pronounced, but plateaus over treatment intensity. On the contrary,

although umpires make substantial progress, they do not completely return to their original

skill level by the conclusion of the season.

Fourth, by studying a canceled season during the COVID-19 pandemic, I reject that skill

depreciation can be attributed solely to umpires not utilizing their skills, as skill depreciation

resulting from robot implementation is more substantial than the effects of time away. Further,

after working with robots, umpires also exhibit a decline in their ability to determine whether

a baserunner is safe, suggesting applicability to a broad spectrum of other occupational

settings that demand similar skill sets.

61In 2018, the automobile manufacturing company, Tesla, failed to meet production targets after relying
too much on robots, and replaced the automation system with humans. The company’s CEO, Elon Musk,
stated that “humans are underrated."
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Finally, I find that robot implementation affects other workers who respond strategically

and benefits the implementing firm. With robots increasing the accuracy and consistency of

calls, pitchers adjusted their strategies to optimize their chances of getting favorable calls. In

addition, game attendance and total scores in games increased following robot implementation

suggesting an increase in revenue.

These findings raise important questions for future research. Robots and automation can

often perform tasks more quickly, accurately, and consistently than humans. This increased

efficiency can lead to higher productivity and output gains for businesses (Acemoglu et al.,

2020, 2022; Dixon et al., 2021; Humlum, 2022; Koch et al., 2021). However, one of the most

significant concerns with automation is the potential displacement of human workers. Jobs

that involve repetitive or rule-based tasks are more susceptible to automation and workers

in heavily impacted industries can suffer unemployment or wage decline (Acemoglu and

Restrepo, 2020; Acemoglu et al., 2020, 2023; Barth et al., 2020; Bonfiglioli et al., 2020; Dauth

et al., 2021; Humlum, 2022).

Understanding the impact of automation on human workers’ skills when they are assisted

by robots is crucial but understudied. First, identifying the skills affected by automation

allows policymakers to identify potential skill gaps and develop strategies to help workers

adapt to the changing job market. Second, analyzing the skills that are becoming less

relevant due to automation can inform targeted reskilling programs to help affected workers

transition into new roles. Studying the impact of automation on human workers’ skills is

essential for proactively addressing the challenges and opportunities brought by technological

advancements. More research, therefore, is needed to provide evidence on which skills are

affected and how to plan for the future labor market. The finding that robots decrease human

skills in tasks they assist is important for future policies. As human capital without robot

assistance is critical even when robots are readily accessible, effective labor policies need to

address skill decline for a smooth but inevitable transition to the future labor market with

robots.
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1.9 Figures & Tables

Figure 1.1: Pitch Distribution
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Notes: X-axis is the pitch distance from the nearest border of the strike zone in feet and y-axis shows the
average accuracy rate. To the left of origin are pitches falling outside of the strike zone, and to the right are
pitches falling inside the strike zone.
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Figure 1.2: Called Strike Heatmaps

A. With Robot
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B. Without Robot
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Notes: The figures plot the share of pitches that are called strike by pitch location. The black dotted line
shows the strike zone for an average batter and the red dotted line in Panel A shows the adjusted strike zone
that was implemented on July 20, 2021 for games with robot.
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Figure 1.3: Do Umpires Lose Skill? - Event-Study

A. Accuracy
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B. Called Strike

β Robot Use: -0.036***
β Post-Robot Use:  0.015***
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Notes: All regressions include a vector of covariates at the pitch-level, year-by-month, umpire and
team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Use” indicate that robot
is assisting umpires calling the game and “Post-Robot Use” indicate that the umpire returned following
robot-assistance. X-axis is months relative to the first month of robot implementation. A pitch is correctly
called if it crosses the strike zone and called strike or missed the strike zone and called ball. * p<0.1,**
p<0.05, *** p<0.01.
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Figure 1.4: Do Skill Depreciation Vary with Dosage?

A. Second-Degree Polynomial
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B. Third-Degree Polynomial
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Notes: X-axis plots the dosage where it is # of games with robot
# of total games . Y-axis plots the treatment effect on decision

accuracy. The figure plots the second and third-degree polynomial estimates of dosage effect. The regression
also includes a vector of covariates at the pitch-level, week, umpire and team-by-year fixed effects. Standard
errors are clustered at the umpire-level. The gray dotted lines represent the 25th and 75th percentile of
dosage. A pitch is correctly called if it crosses the strike zone and called strike or missed the strike zone and
called ball.
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Figure 1.5: Do Umpires Regain Skill?
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Notes: All regressions include a vector of covariates at the pitch-level, year-by-month, umpire and
team-by-year fixed effects. Standard errors are clustered at the umpire-level. X-axis is the number of games
relative to the last game with the robot. A pitch is correctly called if it crosses the strike zone and called
strike or missed the strike zone and called ball.
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Figure 1.6: Event-Study - Umpire Skills Following COVID-19

Accuracy

β COVID-19: -0.004
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Notes: All regressions include year-by-month, umpire and team-by-year fixed effects. Standard errors are
clustered at the umpire-level. X-axis is months relative to the first month of 2021 season following the
COVID-19 pause. Blue lines show the effect of returning from COVID-19 pause and red line shows the effect
of robot implementation in comparison. A pitch is correctly called if it crosses the strike zone and called
strike or missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but
called strike or crosses the strike zone but called ball. * p<0.1,** p<0.05, *** p<0.01.
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Table 1.1: Summary Statistics

Full Sample With Robot Without Robot

Mean SD Mean SD Mean SD

Pitch Characteristics

Called Strike 0.335 ( 0.472) 0.312 ( 0.463) 0.336 ( 0.472)

Called Correctly 0.930 ( 0.255) 0.930 ( 0.255) 0.930 ( 0.255)

Residualized Accuracy -0.0000 (0.2392) 0.0152 (0.2461) -0.0007 (0.2388)

Horizontal distance 0.753 ( 0.453) 0.782 ( 0.495) 0.752 ( 0.451)

Vertical distance 0.850 ( 0.567) 0.869 ( 0.584) 0.850 ( 0.566)

Game Characteristics

Ejection by Umpire 0.066 ( 0.302) 0.042 ( 0.243) 0.067 ( 0.304)

Number of Games 62,678 2,611 60,067

Number of Pitches 8,864,801 390,823 8,473,978

Number of Umpires 678 121 666

Notes: A pitch is correctly called if it crosses the strike zone and called strike or missed the strike zone
and called ball. “Residualized accuracy” residualizes whether a decision was correct for pitch location and
team-by-year fixed effect to account for pitch coordinates that may depend on calibration for each stadium
and stringer plotting coordinates. Distances are in feet. Robot is used in games in Single-A Florida from
2021, in Triple-A Pacific Coast League in 2022 and in select games in both Triple-A leagues in 2023.
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Table 1.2: Do Umpires Lose Skills Following Robot Implementation?

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called 0.064*** ( 0.009) -0.020*** ( 0.003) 0.932 8,864,667

Correctly Called Strike 0.022*** ( 0.005) -0.010*** ( 0.002) 0.281 8,864,667

Correctly Called Ball 0.041*** ( 0.006) -0.010*** ( 0.002) 0.651 8,864,667

Incorrectly Called Strike -0.058*** ( 0.009) 0.025*** ( 0.003) 0.059 8,864,667

Incorrectly Called Ball -0.006*** ( 0.001) -0.005*** ( 0.001) 0.008 8,864,667

Called Strike -0.036*** ( 0.006) 0.015*** ( 0.003) 0.340 8,864,667

Game-level Outcomes

1(Ejection) -0.024*** ( 0.007) 0.001 ( 0.006) 0.054 62,539

Number of Ejection -0.029*** ( 0.010) 0.003 ( 0.008) 0.066 62,539

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and home team-by-year fixed effects. Game-level outcomes exclude pitch-level covariates. Standard
errors are clustered at the umpire-level. “Robot Mo.” indicate that robot is assisting umpires calling the game
and “Post-Robot Mo.” indicate that the umpire returned following robot-assistance. A pitch is correctly called
if it crosses the strike zone and called strike or missed the strike zone and called ball. A pitch is incorrectly
called if it misses the strike zone but called strike or crosses the strike zone but called ball. Baseline mean is
calculated using the data before 2021, the year of first robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table 1.3: Do Skill Depreciation Vary with Length of Work Duration With Robot?

Treated Umpires

Num. of Consecutive Games w. Robot

With Robot S.E. 1 Game S.E. 2 Games S.E. 3 Games S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called 0.049*** ( 0.001) -0.002 ( 0.001) -0.012*** ( 0.003) -0.010 ( 0.008) 0.916 300,427

Correctly Called Strike 0.031*** ( 0.002) -0.002 ( 0.002) -0.010** ( 0.004) -0.006 ( 0.008) 0.244 300,427

Correctly Called Ball 0.018*** ( 0.002) -0.000 ( 0.002) -0.001 ( 0.004) -0.003 ( 0.008) 0.673 300,427

Incorrectly Called Strike -0.061*** ( 0.001) 0.001 ( 0.001) 0.008** ( 0.003) 0.011 ( 0.008) 0.076 300,427

Incorrectly Called Ball 0.012*** ( 0.001) 0.001 ( 0.001) 0.004*** ( 0.001) -0.002 ( 0.002) 0.007 300,427

Called Strike -0.030*** ( 0.002) -0.001 ( 0.002) -0.003 ( 0.005) 0.005 ( 0.008) 0.320 300,427

Notes: All regressions include a vector of covariates at the pitch-level, year-by-month, umpire and team-by-year
fixed effects. Standard errors are clustered at the umpire-level. “With Robot” indicate that the robot is
assisting umpires calling the game. “Num. of Consecutive Games w. Robot” indicate that the umpire was
assisted by the robot for the last specified number of games. Omitted group is the previous game that
did not have the robot. A pitch is correctly called if it crosses the strike zone and called strike or missed
the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called strike or
crosses the strike zone but called ball. Baseline mean is calculated using the first game of the year without
robot-assistance. * p<0.1,** p<0.05, *** p<0.01.
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Table 1.4: Do Skill Depreciation Vary with Treatment Intensity?

Treated Umpires

With Robot S.E. Dosage S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called 0.052*** ( 0.001) -0.020*** ( 0.007) 0.885 330,185

Correctly Called Strike 0.034*** ( 0.001) -0.012 ( 0.007) 0.211 330,185

Correctly Called Ball 0.018*** ( 0.001) -0.008 ( 0.008) 0.674 330,185

Incorrectly Called Strike -0.064*** ( 0.001) 0.018*** ( 0.006) 0.106 330,185

Incorrectly Called Ball 0.012*** ( 0.000) 0.002 ( 0.003) 0.009 330,185

Called Strike -0.030*** ( 0.001) 0.006 ( 0.008) 0.318 330,185

Notes: All regressions include a vector of covariates at the pitch-level, year-by-month, umpire and team-by-year
fixed effects. Standard errors are clustered at the umpire-level. “With Robot” indicate that robot is assisting
umpires calling the game and “Dosage” is # of games with robot

# of total games . A pitch is correctly called if it crosses the
strike zone and called strike or missed the strike zone and called ball. A pitch is incorrectly called if it misses
the strike zone but called strike or crosses the strike zone but called ball. Baseline mean is calculated using
the first game of the year without robot-assistance. * p<0.1,** p<0.05, *** p<0.01.
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Table 1.5: Do Umpires Regain Skill?

Num. of Games Since Return

1-5 Games S.E. 6-10 Games S.E. 11-15 Games S.E. 16-20 Games S.E. 21+ Games S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called -0.029*** ( 0.004) -0.027*** ( 0.005) -0.029** ( 0.012) -0.017** ( 0.007) -0.010** ( 0.004) 0.929 4,800,807

Correctly Called Strike -0.013*** ( 0.004) -0.007* ( 0.004) -0.006 ( 0.007) -0.011 ( 0.008) -0.005* ( 0.003) 0.275 4,800,807

Correctly Called Ball -0.016*** ( 0.006) -0.019*** ( 0.005) -0.023** ( 0.010) -0.006 ( 0.005) -0.004 ( 0.004) 0.654 4,800,807

Incorrectly Called Strike 0.031*** ( 0.004) 0.026*** ( 0.004) 0.006 ( 0.005) 0.017*** ( 0.007) 0.010*** ( 0.004) 0.063 4,800,807

Incorrectly Called Ball -0.001 ( 0.002) 0.001 ( 0.001) 0.023* ( 0.013) -0.000 ( 0.003) -0.001 ( 0.001) 0.008 4,800,807

Called Strike 0.018*** ( 0.005) 0.019*** ( 0.005) 0.000 ( 0.008) 0.007 ( 0.005) 0.005 ( 0.003) 0.338 4,800,807

Notes: All regressions for pitch-level outcomes include year-by-month, umpire and team-by-year fixed effects.
Standard errors are clustered at the umpire-level. “Num. of Games Since Return’ indicate that the umpire is
calling the game in the specified numbers of game since the return. A pitch is correctly called if it crosses the
strike zone and called strike or missed the strike zone and called ball. A pitch is incorrectly called if it misses
the strike zone but called strike or crosses the strike zone but called ball. Baseline mean is calculated using
the data before 2021, the year of first robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table 1.6: Do Umpires Lose Skill? - From COVID-19 Pause

Treated Umpires

First Season S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called -0.004 ( 0.003) 0.907 2,817,021

Correctly Called Strike 0.001 ( 0.003) 0.261 2,817,021

Correctly Called Ball -0.005** ( 0.002) 0.647 2,817,021

Incorrectly Called Strike 0.003 ( 0.003) 0.082 2,817,021

Incorrectly Called Ball 0.000 ( 0.001) 0.010 2,817,021

Called Strike 0.005** ( 0.002) 0.343 2,817,021

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “First Season”
indicates that umpires returned from a year-long COVID-19 interruption relative to Major League umpires
who didn’t have such canceled season. A pitch is correctly called if it crosses the strike zone and called strike
or missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called
strike or crosses the strike zone but called ball. * p<0.1,** p<0.05, *** p<0.01.
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Table 1.7: Do Umpires Lose Other Skill? - First Base Umpire and Replay Review

Post-Robot Umpire S.E. Baseline Mean N

First Base Umpires

Num. of Ground Outs to 1B -0.601 ( 0.399) 19.769 2,403

Num. of Challenges for Calls on the 1B 0.098** ( 0.041) 0.221 2,403

Num. of Challenges Overturned 0.094*** ( 0.028) 0.137 2,403

Num. of Challenges Upheld 0.005 ( 0.029) 0.084 2,403

Num. of Ejections -0.013 ( 0.013) 0.060 2,403

Notes: All regressions include a control for umpire experience and month and team fixed effects. Standard
errors are clustered at the umpire-level. “Post-Robot Umpire” indicate that the umpires are assisted by the
robots in 2022. The outcomes are from the Major League in 2023 season. “Num. of Ground Outs to 1B”
include all ground outs with a play at the first base. “Num. of Challenges for Calls on the 1B” are the
number of replay reviews requested by the teams for plays happening at the first base. “Num. of Challenges
Overturned” and “Num. of Challenges Upheld” are the number of replay reviews that are overturned and
upheld for plays happening at the first base, respectively. “Num. of Ejections” are the number of ejections in
a game. * p<0.1,** p<0.05, *** p<0.01.
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Chapter 2

The Impact of Fear on Police Behavior

and Public Safety

(with Felipe Gonçalves and Emily Weisburst)

2.1 Introduction

The job of a police officer is dangerous, with a fatality rate that ranks among the top twenty

across professions in the United States.1 It is also high stakes – law enforcement actions

have the capacity to improve public safety but may also impose large economic, social, and

human consequences for sanctioned individuals and their broader social networks.2 An open

question is whether an emotional response to perceived on-the-job risk could reduce the social

optimality of officer decisions. This issue is particularly important in the U.S., where officers

make over 10 million arrests each year, most of which are for lower-level misdemeanor offenses,

and rates of police use of force, incarceration, and crime are high relative to other countries.3

1Stebbins, Samuel, Evan Comen and Charles Stockdale. 1/9/2018. “Workplace fatlities: 25 most dangerous
jobs in America.” USA Today. https://www.usatoday.com/story/money/careers/2018/01/09/workplace-
fatalities-25-most-dangerous-jobs-america/1002500001/

2See Bacher-Hicks and de la Campa (2020a,b); Gonçalves and Mello (2023); Mello (2018); Weisburst
(2024) for examples.

3In 2019, annual arrests in the U.S. exceeded 10 million, with less than 20% of arrests corresponding
to serious felony offenses (FBI UCR, https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.
-2019/tables/table-29). In 2021, the U.S. ranked 6th among all countries in the share of population incar-

55

https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/tables/table-29
https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/tables/table-29


Research at the intersection of economics and neuroscience suggests that fear can affect

both the interpretation of and response to risk (See Camerer et al. 2005 for a review), and

economists have found that heightened emotional states can have real-world impacts, often

within short time horizons.4 Moreover, a broad literature has identified non-pecuniary drivers

of workplace behavior, including social connectedness (Bandiera et al., 2010), interpersonal

comparisons (Ager et al., 2022), and grief from personal loss (Graddy and Lieberman, 2018).

Because of officers’ significant enforcement discretion, changes in their emotional mindset

have the potential to affect decisions such as when to make an arrest, which could have

material consequences for public safety.

This paper asks two questions: First, how do changes in the salience of fatality risk

impact officer behavior? Second, do these changes have downstream consequences for public

safety? We examine cases of police officer deaths in the line-of-duty. We show that, after

the death of an officer, fellow officers markedly reduce their arrest activity. By making fewer

arrests, officers remove themselves from potentially risky interactions with suspected offenders,

consistent with risk mitigation due to heightened fear. Despite this decline in arrests, crime

does not increase on average in the ensuing period, nor do we find crime increases in cities

with larger or longer arrest declines. This lack of a crime effect may be attributable to the

types of arrest reductions we observe, which are most concentrated among low-level offenses

and are potentially less instrumental to improving public safety. These impacts suggest that,

while shocks to perceived fatality risk can lead to substantial enforcement responses, officer

fear does not ultimately contribute to higher rates of crime.

A preoccupation with fatality risk is central to police culture, and officers often view their

work in “life-or-death” terms. They are formally instructed on the potential perils of their

cerated (World Prison Population Brief, https://www.prisonstudies.org/highest-to-lowest/prison_
population_rate). Cross-country comparisons of crime show that the U.S. homicide rates rank 40th among
229 countries (World Bank, https://data.worldbank.org/indicator/VC.IHR.PSRC.P5). See Hirschfield
(2023) for discussion of American police killing rates in a cross-country perspective.

4For applications in finance, see Cohn et al. (2015); Duxbury et al. (2020); Lo et al. (2005). For emotional
responses to football game losses, see Card and Dahl (2011) and Eren and Mocan (2018). Further, exposure
to violent crime and war have been found to alter risk preferences (Brown et al., 2019; Voors et al., 2012).
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work and on self-protection in the field, beginning with their police academy training. When

an officer dies while on duty, their department typically honors them with a formal police

funeral, including dress uniforms, dedicated music, a 21-gun salute, and a symbolic “end of

watch call” to the fallen officer.5 A majority of officers (84%) cite that they worry about their

safety on the job, and officers feel that the public does not understand the risks and dangers

inherent in their occupation, or the challenges of policing more broadly.6

Theoretically, it is unclear how on-the-job fear will affect enforcement and public safety, and

previous studies focusing on individual cities have found varied impacts. Peer officer injuries

may increase arrests and use of force (Holz et al., 2023), while evidence from peer deaths

has shown that officers subsequently reduce their enforcement activity (Chalfin et al., 2021b;

Sloan, 2019; Sullivan and O’Keeffe, 2017). The criminal environment could change if officers

adjust their arrest activity and their altered enforcement is important for incapacitating or

deterring crime. Conversely, crime may not change if any marginal changes in enforcement

are not central to maintaining public safety.

We examine a sample of 1500 municipalities between 2000 and 2018, and our empirical

strategy uses a difference-in-differences design that exploits the staggered occurrence of

line-of-duty deaths across agencies.7 We first document that a line-of-duty death is followed

by a significant 10% decline in police arrest activity over one to two months. This effect is

present for arrests of all offense types, including serious violent and property crime. While

the percentage change across all categories is similar, the reduction in number of arrests is

substantially greater for lower-level offenses. Using a series of event-study specifications, we

5Ethnographic research also highlights that officer deaths become a part of a department’s “organizational
memory” long after the deaths occur (Henry, 2004; Marenin, 2016; Sierra-Arévalo, 2019, 2021).

6Pew Research (2017) “Behind the Badge”: https://assets.pewresearch.org/wp-content/uploads/
sites/3/2017/01/06171402/Police-Report_FINAL_web.pdf

7A growing literature in economics examines the impact of unexpected deaths of individuals, which have
been used to identify productivity spillovers (Azoulay et al., 2010; Jaravel et al., 2018), labor market frictions
(Jäger and Heining, 2022), and the impact of leaders (Bennedsen et al., 2020; Jones and Olken, 2005). In
contrast to this previous work, the death events we study occur at work, leading to a shift in fellow employees’
perception of their workplace safety. In addition, we provide evidence that our effects are driven by an
emotional response rather than productivity spillovers or direct incapacitation from the deceased individual,
most similar to Graddy and Lieberman (2018) on artist productivity after the death of a family member.
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confirm that these events are not preceded by significant changes in crime or arrest activity,

suggesting that their timing is exogenous to the criminal environment.

To further characterize the behavioral arrest response, we ask how our estimated effects

vary by city characteristics. We use a synthetic control approach to estimate event-specific

treatment effects, where each city’s arrest and crime rates are compared to a weighted average

of outcomes for cities without an officer death over the same period. We find the biggest

arrest declines in smaller cities and those with fewer crimes per capita, consistent with a peer

death being a greater shock to officers operating in a less-active criminal environment.

We provide several pieces of evidence that the observed arrest reductions are due to

behavioral changes in enforcement rather than changes to police manpower. First, using

conservative assumptions, our estimated effect size is too large to be driven by officers taking

time off following the death of their peer. Second, arrest declines occur even in officer fatality

cases where the offender is apprehended quickly, suggesting that the effect is not due to

peer officers being diverted to investigate the incident. Third, no arrest decline occurs after

accidental officer deaths (e.g. car accidents), which should have a similar incapacitation effect

due to the deceased officer and any bereavement leave of peers. This result also rules out

productivity spillovers from the deceased officer as an important channel. Finally, using police

employment data from Florida, we find that a peer death does not result in officer quits or

hires. This null employment-level response from officers is consistent with the literature on

how workplace risk is priced into wages, which yields the smallest wage-risk gradients among

occupations with higher baseline levels of fatality risk (Viscusi and Aldy, 2003).

We next turn to how officer deaths impact public safety. In contrast to the observed arrest

decline, we find small and statistically insignificant impacts on reported crimes. Our 95%

confidence intervals rule out short-term (long-term) increases of greater than 3.6% (2.6%) in

felony “index” crimes, the most serious violent and property crimes defined by the Federal

Bureau of Investigation (FBI).8 Our results are robust to a variety of specification choices, and

8Index crimes include murder, rape, aggravated assault, robbery, burglary, theft, and motor vehicle theft.
We consider murder separately from other violent crime to account for changes in this outcome related to the
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they suggest that public safety is not worsened by heightened officer fear. Despite significant

variation across cities, we find no evidence of crime increases in cities whose characteristics

predict a bigger arrest effect, again leveraging our synthetic control estimates. To further

probe the lack of crime impact, we directly stratify cities by their estimated magnitude and

length of arrest decline. We fail to find evidence of a threshold arrest decline magnitude or

duration above which crime increases, even when examining arrest reductions that are larger

than 30% or persist for five or more months.

A key challenge with studying how changes in policing impact crime is that measured

crime is partly a function of police reporting. If officers respond to a peer death by reducing

their propensity to record crimes, this could bias us away from finding an increase in crime

(Levitt, 1998; Mosher et al., 2010). To address this concern, we hand-collected a large data

set of 911 calls from 56 police departments. These calls originate with civilians and therefore

are not directly affected by changes in officer reporting behavior.9 We find that 911 call

volume does not significantly change after an officer death, and the propensity of officers to

write a crime report conditional on a call does not decrease after a peer death.

Our study contributes to a growing literature on how police enforcement responds to

sudden shocks to the salience of workplace risk and the downstream impact on crime. Previous

studies all focus on single cities and either observe a large sample of lower-level incidents

(Holz et al., 2023; Sloan, 2019) or a single prominent incident (Chalfin et al., 2021a; Sullivan

and O’Keeffe, 2017). Relative to this important work, we emphasize two central contributions

of our study. First, we examine a set of almost two-hundred officer deaths that occur across

a wide range of police departments and include a rich set of outcomes which track police

behavior and crime in multiple dimensions. Notably, we observe many incidents that occur

in medium and small-sized agencies, which are unstudied in this context. This breadth

officer death itself (see Section 2.4).
9Note that Ang et al. (2024) find a reduction in civilian willingness to contact the police after the George

Floyd murder, so police behavior can impact civilian reporting practices. The specific issue we address here
is that we avoid changes in crimes due to officer reporting propensity conditional on a civilian call.
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of settings allows us to examine how officer responses vary with department and incident

characteristics. It also allows us to show a robust null crime impact, regardless of the decline

in enforcement. Second, we improve on the measurement of crime outcomes by linking the

line-of-duty deaths to 911 calls, which addresses long-standing concerns that changes in

enforcement behavior may coincide with changes in reporting practices.

More broadly, our study relates to the labor economics literature on workplace safety,

to which we make two important contributions. First, while many studies have examined

variation across occupations and firms in measures of fatality risk to identify a wage-risk

gradient (see Viscusi and Aldy 2003 for a review), we innovate on this approach by using

variation within a given workplace in the salience of workplace risk. Second, the vast majority

of the literature takes injury or fatality risk as an exogenous feature of a job rather than

a characteristic that is partly determined by worker behavior.10 We contribute to this

understudied area by documenting a direct behavioral response to workplace risk and how it

affects the relevant total productivity measure of public safety.

Our primary focus is on identifying the impacts of an officer death. However, if police

officers are the only individuals who directly respond to these events and their response is

solely manifested by a reduction in arrests, then our results can be interpreted to indicate

the impact of a marginal change in arrests on crime.11 In particular, the declines in arrests

we observe are driven by a reduction in the enforcement in low-level offenses, which represent

the majority of total arrests, but may have limited public safety value. Viewed through this

lens, our work contributes to an important open question in the economics of crime of how

10Two notable exceptions are Guardado and Ziebarth (2019), who use employee weight (and how it varies
with compensation) as an indirect measure of investment in safety, and Kohlhepp and McDonough (2022),
who studies the overtime decisions of traffic officers and its impact on injury risk.

11A number of papers have studied other institutional changes that affect officer enforcement behavior, and
this work finds mixed effects of these changes on crime (Mas, 2006; McCrary, 2007; Owens et al., 2018). We
likewise complement a growing literature on the impact of heightened public scrutiny on police behavior (Ba,
2020; Heaton, 2010; Prendergast, 2001, 2021; Rivera and Ba, 2019; Shi, 2009), which finds that following a
scandal, officers often reduce discretionary enforcement and crime increases (Cheng and Long, 2018; Devi
and Fryer Jr, 2020; Premkumar, 2020), but that victim and community trust in police may also decline (Ang
et al., 2024).
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changes in police enforcement impact crime (Bacher-Hicks and de la Campa, 2020a; Chalfin

et al., 2021b; Chandrasekher, 2016). While suggestive, these estimates point to the potential

for reforms which reduce the scope of arrest activity without the cost of elevated crime rates.

2.2 Data

This study combines data from several sources. Our sample includes 1,578 municipal police

departments that report at least 9 years of continuous monthly data between 2000-2018 to

the Federal Bureau of Investigation (FBI) Uniform Crime Report (UCR) program.12

A total of 135 officer death events occur within 82 police departments during our sample

period. A detailed depiction of the sample construction and sample restrictions is included in

Figure B.1, and additional description of data sources can be found in Appendix B.5.

Information on officer deaths is derived from the Law Enforcement Officers Killed or

Assaulted (LEOKA) series of the Federal Bureau of Investigation (FBI) Uniform Crime

Report (UCR). The analysis considers only officer deaths that result from felonious killings

and excludes deaths resulting from accidents. This data is linked to information collected on

officer deaths by the Officer Down Memorial Page website to determine cause of death.13

The arrest and crime data at the month by department level is also sourced from the FBI

UCR data on crime reports and arrests. These national data are self-reported to the FBI by

individual police departments with limited auditing and therefore have notable data quality

issues. To address concerns about reporting accuracy and quality, we first restrict to the

agencies who report complete and continuous data on both arrests and crimes at the monthly

level. Our sample period is 2000-2018. We include agencies whose records span at least nine

consecutive years and include the latest year of data, 2018, meaning that each agency’s panel

12Agencies in our analysis sample have an average panel length of 18.7 years, meaning that very few
departments in the sample have fewer than the maximum 19 years of data.

13We exclude 16 officer fatalities coded in the LEOKA data that could not be verified by either the Officer
Down Memorial Page or an external source.
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starts between 2000 and 2010.14 Our sample restriction differs from prior work that typically

relies on annual data reporting or the population of municipalities.

Our crime and community activity outcomes also include records of 911 calls for 56 cities

in our sample. We have hand-collected these records through open records requests to police

departments across the U.S., as this data is not available in any systematic or aggregated

form at the national level. To our knowledge, this collection represents the largest sample of

911 calls that has been used in a quantitative research study to date. This data covers the

period of 2005-2018, though the number of years varies by city. These data largely originate

from departments’ “computer-aided dispatch” systems for routing officers to calls, and in some

cities the data include cases that are officer-initiated, such as a dispatch call to assist another

officer. We remove calls whose descriptions are indicative of an officer-initiated interaction,

and we construct an agency-by-month count of civilian-initiated calls.15

We also incorporate data on traffic stops collected by the Stanford Open Policing Project

through open records requests. As a complement, we measure traffic fatalities in each city in

our sample using data from the Fatality Analysis Reporting System (FARS) of the National

Highway Traffic Safety Administration (NHTSA).

Lastly, we include data on yearly demographic characteristics of cities from the U.S. Census

and the American Community Survey. These variables allow us to control for changing

demographic composition in the cities covered by our analysis sample (see Section 2.3).

14We also clean the data to exclude a minority of observations where a police department lists crime or
arrests as having a negative value. These negative values are very rare in practice. These missing values
mean that the number of observations may differ slightly by crime or arrest outcome in our models. Negative
numbers can be used to correct earlier reports of arrests or crimes that were misreported by an agency;
however, they are not linked to a particular misreported month, so they cannot be used to update the crime
or arrest data manually.

15A previous version of this study included a section with a case study of a single officer fatality in Dallas,
TX. These analyses were based on public records requests made to the Dallas Police Department. We
requested the same data for the time period around the fatality multiple times, and upon further inspection,
we found that our results varied significantly when using different versions of the records provided by the
department. We have therefore decided to remove this section from the study.
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Summary Statistics – Approximately 7 officer deaths occur in each year within our

sample of 1,578 police departments, though there is variation in the number of deaths across

years.16 Figure B.2 shows that there may be some seasonality in this outcome throughout the

year, with the highest number of deaths observed in the winter and summer months. Over

90% of the officer deaths in our sample result from gunshot wounds (Table 2.1). Similar to the

national statistics, officers who are killed in the sample are demographically representative;

the average officer death is of a 37 year old white male with 11 years of experience.

Table B.1 summarizes demographic characteristics of the sample at the yearly level. The

average city has 41 thousand residents, is 68% white, has a 13% poverty rate, and a median

household income of $46 thousand dollars. In contrast, treated law enforcement agencies

serve populations that are larger, more racially diverse, and more likely to live in poverty; on

average, these cities have 240 thousand residents, are 54% white, and have a 16% poverty

rate. Treated cities are defined by having an officer death; in turn, these departments also

experience more officer assault injuries each year (75 vs. 11 in the full sample).

Our estimation focuses on arrest and crime outcomes at the department by month level.

Table 2.1 shows that the average department in our sample reports 0.2 murders, 18 other

violent crimes and 122 property crimes per month. The average department makes 152 arrests

per month, of which 83 are for “quality of life” or low-level offenses, 0.17 are for murder, 8 are

for other violent crimes, and 20 are for property crimes.17 For the sub-sample of agencies that

have traffic stop and traffic fatality data, the average department makes over 6,200 monthly

traffic stops and experiences 0.26 monthly fatal traffic accidents. Consistent with the fact

that treated agencies serve much larger cities, treated agencies also have substantially higher

levels of reported crime and make more arrests and traffic stops than the average department

16As noted above, the national total is approximately 60 deaths per year. Our sample is restricted to cities
that regularly report monthly FBI crime data, and cover a sub-set of the country. See the Data Appendix for
additional details on sample construction.

17In this paper, we exclude murder arrests and murder crimes from index violent crime or arrest sums and
measure these outcomes separately. We do this to easily see the effects on murder (which is related to the
officer death treatment) separately from other violent crimes.
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in the sample.

Given the clear baseline differences between our treatment and control agencies, we employ

a difference-in-differences model which includes detailed controls and department-specific

fixed effects, as we discuss in Section 2.3. Our findings are robust to restricting the sample to

include only treated agencies and solely exploiting variation in the timing of officer deaths,

which provides reassurance that the baseline differences across the treatment and control

agencies do not bias the results (see Table B.2, specification (2)).

To provide a simple presentation of the time path of crime and arrests and our empirical

strategy, Figure 2.1 plots the raw data around officer fatality events, comparing average

logged outcomes in the treated year to the year prior for treated agencies. While these plots

are not adjusted for any covariates or fixed effects, they accord with the overall pattern of

findings in the study.18 Panel A of Figure 2.1 shows that total arrests decline in the month

of an officer death and month after, with a drop of ≈ 0.1 log points or 10% in the first

month. Despite this drop in total arrests, Panels B does not appear to show a temporary or

systematic increase in serious felony or index crimes.

2.3 Empirical Strategy

Our empirical strategy exploits the staggered occurrence of officer deaths over time in a

difference-in-differences framework. A baseline regression will allow for effects to vary by the

time horizon from the date of the incident:

Yit =δ0D
0
it + δ1D

1
it + δ2−11D

2−11
it + δ12+D

12+
it (2.1)

+ βXi,yr(t) + πi,m(t) + θt + γit+ εit

In our primary specifications, we define our outcomes as Yit = log(yit + 1) to approximate

percentage changes and account for zero values for each outcome category, yit; however, we

18The log transformation used is ln(y + 1) to permit zeros in the outcome.
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show that our results are robust to other functional forms in Section 2.4.1. The dummy

variables D0
it, D1

it, D
2−11
it , D12+

it indicate that a department is 0, 1, 2 to 11, and 12 or more

months after the occurrence of an officer death, respectively. The coefficients δkit, which

indicate the time-path of the effect, are the main object of interest.

We include a vector of covariates at the department-by-year level, Xi,yr(t) to account

for city-level demographic variation (summarized in Table B.1). These controls include

city-by-year resident age, sex, and race shares, as well as total population, median household

income, poverty rate, and unemployment rate. City-by-month fixed effects, πi,m(t), remove

all within-city seasonality in the outcome that is constant across years. We also include

fixed-effects for year-by-month, θt, which account for sample-wide time variation in the

outcomes.

Lastly, we include department-specific linear time trends γit. Crime and arrests are

decreasing nationally during our sample period, and locations with higher baseline crime

levels are experiencing bigger declines (Ellen and O’Regan, 2009; Friedson and Sharkey,

2015), suggesting the need to account for cross-city differences in the time path of crime and

arrests. We include this set of controls to isolate deviations from these downward trends due

to treatment. Importantly, including time trends leads to more conservative estimates of

the arrest declines, because without them, earlier periods of arrests prior to a officer death

(contained in D0
it) may be inflated upward. Indeed, we find consistent results albeit with

larger arrest declines when these controls are omitted (Table B.2, specification (12) and

Figure B.6). We also show that our baseline results are robust to a parsimonious model with

no control variables or time trends, where treatment agencies are matched to control agencies

using a nearest neighbor algorithm (Table B.2, specification (13) and Figure B.7).

We consider an officer death event to be any instance where one or more officers in a

department died in a particular month.19 Some cities experience officer deaths at multiple

points in time within our sample period. We allow these events enter our specification

19In Table B.2, we show that our results are robust to counting each officer death in a city-month as its
own event.

65



additively, denote each officer death event by d, and maintain one panel per city:

Yit =
∑
d

(
δ0d

0
idt + δ1d

1
idt + δ2−11d

2−11
idt + δ12+d

12+
idt

)
(2.2)

+ βXi,yr(t) + πi,m(t) + θt + γit+ εit

The interpretation of our coefficients δk is that they represent the time-path of the effect of

the average officer death event (Neilson and Zimmerman, 2014; Sandler and Sandler, 2014).

This formulation is equivalent to calculating time period lag variables for each event and

then summing these lag variables across multiple events within a police department panel.

A key assumption of our empirical design is that the occurrence of an officer death is not

correlated with time-varying shocks to the outcome. A partial test of this assumption is to

check that an officer death does not appear to impact an outcome prior to the date of the

incident. To evaluate this hypothesis, we will also run an event study version of the above

regression, where we include indicators for each month around the date of the incident:

Yit =
∑
d

∑
k∈{−6,6+}
k 6=−1

δkD
k
idt + βXi,yr(t) + πi,m(t) + θt + γit+ εit (2.3)

To test that our treatment does not have significant pre-trends, we check that the values of

δk for k < −1 are statistically insignificant. We include event study coefficients that span

the 6 months before and after treatment, where δ−6 and δ6+ are book-end coefficients which

include all periods prior to period −6 and after period +6, respectively.

We conduct a number of robustness checks to verify the validity of our results and

assumptions of our specification which are detailed in Section 2.4.1. These include restricting

the analysis to treated cities, estimating the model outcomes in levels and per capita terms,

entering multiple officer deaths within a department-month additively, and creating a separate

panel for each officer death treatment (vs. each treated city). We pay careful attention

to issues raised surrounding difference-in-differences event study models in the literature
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(Borusyak et al., 2024; Goodman-Bacon, 2021; Sun and Abraham, 2021) and include checks

to address these concerns. Lastly, as referenced above, we re-estimate a parsimonious version

of the model with no demographic or time trend control variables, which compares matched

treatment and control agencies selected using the nearest neighbor matching algorithm. We

likewise display analogous estimates using synthetic control methods, which construct a

weighted control group for each treated unit.

2.4 Results

Table 2.2 presents the central results. First, we examine murder crimes and arrests, as

these outcomes capture the study treatment of a line-of-duty officer death. These analyses

serve to validate the construction and linkage of our data, since our records of officer deaths

and outcomes originate from different sources.20 The top panel shows that the death of an

officer while on duty coincides with a 39% increase in murder and a 11% increase in murder

arrests. We interpret this concurrent increase in murder as being a function of the officer

death itself. Indeed, if we adjust the murder outcome to subtract the number of officers killed

in a fatality event, there is no significant change in murder in the focal month, as shown in

Panel B of Figure 2.2 and the second line of Table B.2, specification (1). Likewise, when the

outcome is estimated in levels, the first month coefficient on reported murder is statistically

indistinguishable from 1 (Table B.2, specification (8)), corresponding to the treatment of

the officer death itself. We confirm the unexpected nature of treatment in Figure 2.2, which

shows that there are no pre-trends in this outcome preceding an officer death.

Arrest activity is highly responsive to an officer death in the short-term. Arrests decline by

9.5% in the month of an officer death, and these declines are similar in percentage magnitude

across index (8.3%) and non-index (8.9%) arrests. The arrests for the lowest level offenses,

“quality of life” arrests, decline at a rate of 9.4%. While the percentage declines are similar

20For all analyses where violent crimes and arrests are the outcome, we exclude murder offenses.
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in magnitude across categories, the volume of arrests is greater for non-index and quality

of life offenses, so these categories experience a greater decline in total volume. Declines in

traffic stops are large, but they are insignificant. The magnitude of each of these coefficients

are roughly halved in the second month after the officer death. For nearly all arrest types,

the effects are smaller and insignificant three to twelve months (the long-term effect) after

the incident.21 Overall, the event study versions of the arrest results in Figure 2.3 confirm

the pattern of decreases in the first two months following an officer death and also provide

evidence that there are no pre-trends in these outcomes.

Relative to the treatment group mean, the arrest decline in the two months following an

officer death corresponds to an average decrease of 134 arrests, of which 19 arrests are for

index violent and property crimes, 70 arrests are for “quality of life” offenses, and 44 arrests

are for other non-index offenses in each treated city.22 Collectively, the estimates show that

police reduce their enforcement activity following an officer death over the short-term and

that this reduction is driven by a decline in enforcement of less serious offenses.

Why might officers reduce the number of arrests they make following the death of a peer?

When an officer is killed, peers in their department are sharply reminded of the potential risks

of working in law enforcement. This salient shock to the perception of risk could increase fear

among officers and cause them to take new protective actions. Officers have a high degree

of discretion over the ways in which they engage in their jobs in the field. In particular,

interactions with civilians which are “officer-initiated,” which can include arrests, do not

occur unless an officer is motivated to participate in the activity. Following the death of a

colleague, officers may feel that engaging in an adversarial interaction with a suspect is not

worth the potential risk of injury or death that could occur during that interaction. Our

finding that officers decrease low-level arrests suggests that they may adjust their threshold

21An exception is the long-term coefficient for violent arrests; however, this long-term effect is not visible in
the event-study version of the model, where there is no evidence of joint significance of post-period indicators
(Figure 2.3).

22The sub-category arrest counts are calculated from the coefficients on each arrest type and therefore do
not sum directly to 134.
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for what types of offenses are serious enough to be worth their enforcement effort.

How do crime outcomes change after an officer death? Crime rates may be viewed as a

marker of police effectiveness, we are interested in how changes in the emotional state of

officers could have consequences for public safety. The third panel of Table 2.2 shows that

crime and community activity do not increase in the ensuing period. We find small and

statistically insignificant estimates for both violent and property crimes. Our estimates rule

out increases in index crimes of more than 3.6% (4.6%) in the month of an officer death

(month after) with 95% confidence. Over the longer-term, the estimates rule out a 2.6%

increase in index crime. While we observe a negative and significant long-term coefficient for

violent crime, this effect is not evident or significant in the dynamic event study estimation

(Figure 2.4).23 Here, the lack of evidence of pre-trends is especially important; these plots

confirm that officer deaths do not occur after an uptick in crime.

We next investigate changes in 911 calls for service. This outcome is a function of crimes

that occur and victim decisions to report these crimes but is not a function of police decisions

to officially record crimes or police enforcement decisions. This less “filtered” proxy for

criminal activity also does not increase after an officer death. Our point estimate for the

short-term 911 call response is close to zero, and we can rule out a greater than 3.9% (4.9%)

increase in 911 calls in month 0 (month 1) and a 3.3% increase over the remainder of the

year after an officer fatality.

Lastly, we find that the number of fatal traffic accidents does not increase. The traffic

fatality outcome has the advantage that it is a function of traffic offenses and is a proxy for

reckless driving but is not related to victim or police reporting, as nearly all fatal traffic

accidents are reported. Despite the large decrease in the traffic stop point estimates following

an officer death, fatal traffic accidents do not change.24 Here, we can rule out traffic fatality

23In robustness Table B.2, the long-term violent crime effect has small negative coefficients, but significance
varies across specifications. Since this coefficient is unstable, we hesitate to interpret it as a true causal effect.

24While enforcement of traffic offenses has been shown to affect traffic offending (Gonçalves and Mello,
2023), existing studies primarily focus on state highway patrols, which play a larger role in traffic enforcement
than municipal police forces, which are the focus of this study.
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increases of more than 6.5% in the first month, 4.4% in the second month, and 0.04% in the

remainder of the year, with 95% confidence. The long-run impact on traffic fatalities is a

marginally-significant decline of 2.5%, though we caution against interpreting this finding as

a treatment effect given the time lag and lack of a short-term effect.

2.4.1 Robustness Specification Tests

In this section, we conduct several robustness checks to scrutinize our results. First, in

Figure B.3, we re-estimate the model dropping one treatment event at a time and plot the

distribution of results. This exercise confirms that the estimates are not driven by outlier

observations, as this distribution is substantively close to the baseline estimate. Moreover,

the alternative estimates are well within the confidence intervals given by the baseline model.

Next, we randomize the timing of officer deaths among treated agencies (holding the

number of deaths per agency fixed) and re-estimate the model 100 times using these placebo

treatments in Figure B.4. Our model estimate for the first month decline in arrests lies well

outside the distribution of estimates in the placebo distribution, confirming that the results

we find are actually a function of the treatment and are unlikely to be driven by chance.

Table B.2 includes a number of alternative specification tests, all of which find similar

results to our preferred specification. The first specification replicates the baseline results

and also includes an adjusted measure of the murder outcome that excludes officer fatalities

(1). Using this adjusted outcome, we find no evidence that murders increase, confirming that

the spike in murder is due to the treatment of the officer fatality itself.

Next, we show that the results are robust using only the sample to treated cities (2). Our

estimates are robust to an alternative model that constructs a panel for each officer death

treatment, rather than a panel for each city (3), and the results are also similar when we

consider multiple officer deaths from the same event additively rather than as a single event

(4). Our estimates are also similar when excluding the city-by-calendar month fixed effects

from the model which adjust for seasonality in outcomes that may differ by department (5).
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Additionally, we show that the results are robust to adding state-by-year fixed effects to the

model, which flexibly control for state-level policy changes (6). Further, excluding arrests

for driving under the influence (DUI), the single offense for which we observe the strongest

arrest decline (see Section B.2.1 below), does not change the pattern of the results in (7).

The results are also largely similar when we alter the measurement of the key outcomes.25

For example, the estimates are consistent when we use counts of arrests and crimes as

outcomes (8); however, the standard errors are substantially larger, leading to less significant

effects for our arrest declines. The results are also highly robust to a per capita model (9)

and an inverse hyperbolic sine model (10).

Recent research documents potential issues with the standard difference-in-differences

design and suggest modified specifications, and we consider the robustness of our estimates

to these approaches (e.g. Borusyak et al., 2024; Goodman-Bacon, 2021). Sun and Abraham

(2021) show that event study designs in the presence of treatment effect heterogeneity can

produce estimands for each event-time coefficient that are contaminated by coefficients for

other time periods. To address this concern, we present their estimator in (11), which

explicitly constructs each event-time estimand as a positively-weighted average of cohort-

specific treatment effects. We also present a graphical version of their approach with pre-period

coefficients in Figure B.5. This methodology confirms our baseline findings, though their

specification does require treating each line-of-duty death as its own panel.

The final issue we address relates to department-specific time trends in our outcomes. As

we discuss above, crime is decreasing overall during our sample period, and this decline may

be more pronounced in treated cities and bias our estimates of arrest and crime impacts. Our

baseline specification includes city-specific linear time trends to address this issue, but we

consider two alternative specifications to probe the robustness of our results to different ways

25Recent work has highlighted concerns with the use of the natural logarithm of y plus a constant as a
regression outcome (Chen and Roth, 2023; Mullahy and Norton, 2022), especially in cases where a large
share of observations have a y of zero. In our setting, only 99.96% (99.99%) of observations have a count of 0
crimes (arrests), alleviating concerns that our choice of constant in the logarithm is affecting our results. We
present here alternative specifications that are recommended by these studies.
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of accounting for secular trends. In model (12), we show our baseline specification without

controls for department-specific linear time trends. The size of the arrest declines are larger

in this specification (or less conservative), and we continue to find no positive crime effects in

any period and a long-term decline in violent crime. We show in Figure B.6 that the event

study estimates without linear time trends look similar to the baseline results.

In model (13), we use a nearest neighbor matching approach to directly match pre-

period trends of treated and untreated departments. We use the nearest neighbor matching

algorithm to match each treatment event to similar control agency panels using demographic

information in the treatment year and lagged monthly crime and arrest levels in the year prior

to treatment.26 Importantly, these models benefit from the matching algorithm’s ability to

select control agencies with similar pre-treatment levels and trends. After matching, we run

a new difference-in-differences regression with this nearest neighbor sample, which excludes

all demographic covariates and time trend controls. These results are also shown in Figure

B.7. In this parsimonious model, we find results that are consistent with our baseline model.

2.5 Heterogeneity

Next, we consider how our results vary by characteristics of the city and line-of-duty death.

In particular we ask whether the null finding of no increase in crime persists for subsamples

of cities with particularly large or sustained declines in arrests following an officer death.

In Appendix B.2, we explore heterogeneity by arrest and crime sub-type as well as arrestee

demographic characteristics. The largest percent declines in arrests (greater than 10%) are

for driving under the influence (DUI) and drug sale and possession. We also find a large

decline in arrests for weapons violations. Note that these arrest types are more likely to arise

from an officer’s discretionary interaction rather than a civilian call for service, consistent

26The matching variables are lagged values of log counts of violent and property crimes and arrests for
periods -1, -2, and -3, and the slope of these outcomes between periods -3 to -12, as well as the treatment
year city-level poverty rate, share white, share with a high school degree or less education, and log population.
For each treatment event, we keep the 5 “nearest” agencies as controls.
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with our hypothesis that officers primarily cut back on discretionary enforcement. We find

similarly sized declines in arrests for all race, age and gender subgroups of arrestees, which

translate to larger per capita declines in arrests for Black and male individuals given higher

baseline rates for these groups.

2.5.1 Size of Arrest Decline and Crime Effect

To identify heterogeneity in treatment effects, we estimate an individual arrest treatment

effect for each death event in our sample using a synthetic difference-in-differences design

(Arkhangelsky et al., 2021). This approach constructs a control unit for each treatment that is

a weighted average of multiple control units that minimizes the difference in a set of pre-period

characteristics between the treated agency and the weighted “synthetic” control unit (see

Appendix B.3 for additional detail).27 We then take the difference between treatment and

synthetic control in the post-period to identify the effect on arrest and crime rates for each

death event, which we denote generically by τ̂i.

We plot the average of arrest and crime outcomes across our treatment events versus

the synthetic controls in Figure B.7. The plot confirms that, as in our nearest neighbor

approach, treated and synthetic control agencies are well-matched on pre-period trends, and

our post-period effects are consistent with our baseline results, showing a one to two month

arrest decline but no change in crime.

We then ask how these event-specific treatment effects, τ̂i, vary with city and incident

characteristics. We focus on the first-month arrest effect estimates and regress these estimates

on city and incident characteristics in Table B.3, where observations are weighted by the

27For each event, we restrict attention to a “donor pool” that consists of the 100 nearest neighbor cities,
identified using the matching procedure described in robustness check (13) above (of Table B.2), who do
not have an officer death of their own in the year before and after the treated agency’s event. Then, we
implement a synthetic difference-in-differences estimation method for each treatment event. The synthetic
control weights are determined from the matching variables: log population, city-level poverty rate, share
white and share with a high school degree or less education. From the procedure, we obtain the treatment
and control series for each time period. We conduct a placebo method for estimating standard errors by
replacing each treatment unit with a control unit and we repeat this procedure 100 times.
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inverse variance of each τ̂i. In column 1, we find that arrest declines are more negative in

cities with smaller population and cities with residents who have higher levels of education,

while the relationship to city crime rate is not significant. These patterns are consistent with

the officers in these cities facing a bigger perceived shock from a peer death since total officer

employment and networks are likely smaller in small cities.

In column 2, we regress the arrest effects on characteristics of the officer death event.

We find no relation between the arrest impact and the deceased officer’s race or gender, or

whether the incident was during a traffic stop. We find larger reductions in arrests in cases

when the suspect in the officer death was not apprehended within 48 hours. Note that the

average arrest reduction in these cases versus the 48 hour apprehensions are both substantial,

-0.18 and -0.07, respectively. Column 3 combines the city and incident characteristics. The

coefficients on log population and share with less than a high school education, have a similar

magnitude as in Column 1, but only the education variable is still statistically significant.

Do cities that we predict to have larger arrest declines also experience increases in crime?

We next use the agency and event controls to construct a predicted version of our treatment-

specific estimates, E(τ̂ |X).28 The benefit of this approach is that it splits the sample

into groups with different sizes of arrest decline leveraging only variation in pre-treatment

characteristics, X. We split treatments into three groups based on E(τ̂ |X): the top quartile

of predicted arrest declines, the interquartile range, and the bottom quartile.

Figure 2.5 plots the arrest and crime changes over time for these three separate groups,

where arrest and crime changes are individual treatment-specific synthetic control estimates

(τ̂i) and groups are defined by quartiles of the predicted arrest effect, E(τ̂i|X).29 The left

panel plots the pattern for officer deaths with the largest predicted arrest declines, while the

right panel plots the pattern for the smallest predicted arrest declines. Despite the substantial

28This prediction is constructed using a “leave-out” version of Column 3 of Table B.3, where each estimate
of E(τ̂i|X) is produced with coefficients estimated from a regression using all treatments other than i.

29Table B.4 shows the average agency and death characteristic covariates for each binned group. In each
figure, we present the interquartile range of estimated τ̂i effects in the dashed gray lines around the median
treatment effect.

74



variation in arrest declines, there is no systematic increase in crime across any group. In

particular, we do not identify an increase in crime for treatments in the top quartile of arrest

declines, where the median arrest decline is approximately 15%.

While the patterns above suggest a null crime effect even for agencies with large arrest

declines, this analysis is limited to the predictable variation in arrest effects based on city and

incident characteristics. We next investigate variation in effects across cities based directly

on the estimated magnitude of arrest decline. To do so, we return to our baseline estimation

strategy from Section 2.3. We first estimate residuals of arrests and crimes conditional on

the fixed effects and controls in the model but excluding the treatment indicators, Dit. We

then calculate the difference between residuals in the months following an officer death versus

the residual for the month prior to the officer death, t = −1, for both the crime and arrest

outcomes. These differences in residuals approximate the effect of an officer death on both

arrests and crime rates in each city. We estimate a local linear regression between these two

residuals, and we construct our 95% confidence intervals using a bootstrap procedure.3031

Figure B.8 plots the residual change in arrest against the residual change in crime, allowing

us to trace an “arrest to crime curve.” The top figure presents the crime residuals for the first

month and shows a flat relationship with the size of an arrest decline. Within a range of a

20% arrest decline to no change in arrests, the standard errors of the local linear regression

reject crime increases of more than 3.4% with 95% confidence. In Panels B and C, we plot

the crime residuals for the entire post-treatment year, and we similarly find a flat relationship

with no evidence of crime increases for any magnitude of an arrest decline.

30Standard errors (dashed lines) are produced by reproducing the results through block bootstrapping
(re-sampling police department panels) 200 times and plotting the 5th and 95th percentile of the local linear
regression lines from these iterations.

31We find similar results when conducting this exercise using synthetic control estimates of arrest and
crime effects for each treatment, using the procedures described above. We present the simpler version using
constructed residuals here, as we cannot replicate the standard error bootstrap for the synthetic control
version, given computational demands.
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2.5.2 Length of Arrest Decline and Crime Effect

To examine heterogeneity by duration of arrest decline, we take the residuals estimated above

(Section 2.5.1) and calculate for each city the number of consecutive months after an officer

death where the residual is lower than the residual for the month prior to the death. We

bin arrest decline durations into groups from 0 months to > 5 months. We then plot the

post-fatality crime residuals, separately by length of the arrest reduction in Figure B.9.32

The top panel presents the crime impact for the first month. Perhaps unsurprisingly, the

average residual crime effect is close to zero for all time horizons, since a sustained arrest

decline is not likely to lead to a markedly different impact in the first month. This provides a

placebo test that agencies with different durations of decline are not experiencing different

short-term crime responses. In the bottom panel, we plot the crime residuals averaged over

the entire year after the officer death. Over this longer time horizon, we continue to find

average effects that are small and statistically insignificant for all durations of arrest decline.

In this exercise, we stratify our sample by an outcome of the treatment rather than using

pre-treatment experimental variation in the duration of arrest decline. As a result, we do not

claim to have identified the causal impact of arrest declines at various durations. Similar

caution is needed in interpreting our second analysis in Section 2.5.1, which stratifies effects

by magnitude of arrest decline using estimated residuals from our model. Note, however,

that this issue is not a concern for the above analysis that stratifies estimates by predictions

of treatment-specific synthetic control estimates. Across these three tests, the results are

remarkably consistent; they imply that there is not a threshold magnitude or duration of

arrest decline within our sample for which crime increases.

32Similar to our arrest-to-crime curve estimation, we estimate confidence intervals using a block bootstrap,
re-sampling police department panels in 200 iterations. In each iteration, we re-calculate the number of
months with residuals lower than the pre-period month and re-group departments into duration bins. We
then calculate the average crime residual for each group, µ̂b. We use quantiles of µ̂b to determine the 95%
confidence interval (Efron, 1982).
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2.6 Mechanisms

2.6.1 Is the Decline in Arrests a Behavioral Response?

We argue that the arrest decline after an officer death is a behavioral response by fellow

officers caused by heightened fear. Here, we consider the alternative explanation that there is

a reduction in effective manpower, from the deceased officer or from their peers.

Quantitatively, our observed arrest declines are too large to be solely due to a reduction

in effective manpower. Under the conservative assumption that half of a department’s officers

are patrol officers who regularly make arrests, the average officer in our treated cities makes

4 arrests per month. In contrast, the first month coefficient in our models implies an average

decline of 92 arrests. Under the additional conservative assumption that officers are given

ten days of bereavement leave,33 this decline would correspond to 68 officers taking leave,

or a quarter of the average treated department’s patrol force. Even if the officer who died

was exceptionally active, it is very unlikely that the loss of the deceased officer is driving the

results or that one in four officers would stop making arrests after a peer death.

Alternatively, effective manpower could be impacted if officers are diverted from normal

activities to investigate the death of their peer. As a direct test of whether the arrest

declines are due to officers investigating their colleague’s death, we revisit our analysis of

event-specific impacts in Section 2.5. When we restrict attention to officer death events where

the suspect is apprehended within 48 hours, the average arrest decline in month 0 is -0.073,

which is indistinguishable from our sample-wide effect and provides validation that officer

incapacitation is unlikely to be driving the arrest declines that we observe.

We can further validate a behavioral interpretation by examining officer deaths that are

caused by accidents rather than felony homicides, events that likewise incapacitate a deceased

officer. Table B.5 estimates the arrest and crime results for these events, which are nearly

33Ten days leave is higher than what we observe anecdotally, and we pick this number to be conservative.
Our online searching indicates that three days leave is a common amount offered, e.g.: https://www.tdcj.
texas.gov/divisions/hr/benefits/leave-paid.html.
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all a result of car accidents. Here, officer fatalities are not counted as murders given their

accidental nature. Officers do not respond to these events by reducing the number of arrests

that they make and there is also no change in crime rates. This exercise shows that on-the-job

fatalities caused by felony incidents are more impactful in changing behavior.

Lastly, we investigate this question through our rich 911 data. Our raw call data include

some officer-initiated interactions (e.g. traffic stops, on sight investigations), which are

discretionary actions that often lead to an arrest. Table B.5 shows that, in the month of an

officer death, the volume of officer-initiated interactions declines by 4.7%. In addition, we can

construct a measure of changes to officer presence in the 911 data. In 51 of the 56 cities in

this sample, we geocode calls to Census block groups. In each city-day, we calculate the share

of Census block groups with a 911 call or officer-initiated interaction, which we average to the

city-by-month level. This measure reflects how much of a city is visited in the average day.

Table B.5 shows null impacts on officer presence after a peer death. Since civilian contacts

to the police and officer presence do not change, the decline in officer-initiated incidents is

further evidence more consistent with a behavioral response than incapacitation.

Employment Outcomes – Beyond temporary leave, officers may choose to exit the police

profession entirely following the death of a peer. We investigate this possibility by linking

records of officer deaths to data on employment spells for police in Florida from the Florida

Department of Law Enforcement. Results of this analysis are presented in Panel A of

Table B.5. We are able to confirm the officer death effect in this data but fail to find robust

evidence of any behavioral responses on officer employment. On net, the number of full-time

equivalent officers is unchanged, and there is no systematic change in quits, firings or hirings.

If anything, officer quitting appears to slightly decline in the long-term period (effect size is

equivalent to 1 additional officer employed off of a base of 513 during this period). Collectively,

this evidence shows that peer deaths do not motivate officers to quit policing.
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2.6.2 Do Police Change other aspects of their Behavior?

Police Discretion in Recording Crimes – One alternative explanation for why we find

no increase in crime after an officer death is that police not only reduce the number of arrests

that they make but potentially also reduce the number of crime reports that they choose to

file. In several cases, police have some discretion over which victim complaints are officially

filed as criminal incidents. If officers are less likely to file criminal reports after a peer officer

death, the estimates of changes to reported crime could be biased downward. Indeed, a large

literature in criminology has highlighted concerns about the potential for crime reports to be

manipulated by changes in officer reporting standards (Bayley, 1983; Levitt, 1997; Marvell

and Moody, 1996; Mosher et al., 2010). Within our 911 data, we are able to measure changes

in officer reporting among cities that record whether a call results in a criminal incident

report being written. This metric allows us to directly test whether the treatment of an

officer death systematically changes the likelihood that police officers choose to report crimes,

conditional on a 911 call response. In Table 2.2 and Figure 2.4, we find that this conversion

rate is unaltered by an officer death on average, suggesting that officers do not respond to

these events by reporting fewer criminal incidents. Our estimates are quite precise and can

rule out a greater than 1.4% decrease in the reporting rate in the month of an officer fatality,

off a base of 26%. This test provides greater confidence in the null effects we identify for

reported index crimes using the FBI UCR data.

Police Use of Force – It could be the case that officers may not only reduce arrests but

also increase use of force following a line-of-duty death, consistent with research conducted

in individual jurisdictions (Holz et al., 2023; Legewie, 2016). While these single-city studies

examined the full range of use of force in response to a peer injury or death, there are no

nationwide databases available for measuring non-fatal use of force. Instead, we examine

this question using national data on civilians killed by police from the UCR Supplemental
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Homicide Report and the crowd-sourced data resource, Fatal Encounters, in Table B.5.34 For

both outcomes, we find a small and statistically insignificant coefficient for the first-month

effect of an officer death, implying no change in use of force. In the long-run, we find a

marginally significant increase in only the Fatal Encounters measure. Both data sources

are known to suffer from significant under-reporting and to have varying quality over time

(Gonçalves, 2021; Loftin et al., 2017; Renner, 2019), so we consider these results to be

suggestive evidence that there is no use-of-force response to an officer fatality.

2.6.3 Do Officer Deaths Impact Civilian Behavior?

We are also interested in whether an officer death itself directly causes civilian criminal

activity or victim reporting behavior to change. In particular, it might be the case that

civilians fear that they will face a stronger punitive response after an officer death and are

consequently deterred from offending. Any decline in offending resulting directly from the

reaction to an officer death could mask an increase in crime resulting from the reduction of

arrests. To address this question, we ask whether cities with officer fatalities that have no

arrest declines actually experience a reduction in crime, as the above story would suggest. In

Section 2.5.1 above, we split the sample by the size of arrest declines in treated cities. We

observe a flat relationship between the magnitude of arrest decline and level of crime change,

and we do not see any declines in crime for departments with no arrest declines. This pattern

supports a story where officer deaths generate fear and behavioral responses among peer

officers but do not directly impact civilian offending behavior.

A second concern relates to whether we might be missing changes in crime that occur for

categories outside of the most serious UCR Index I offenses. Here, we can examine effects

from our 911 data collection. These data cover a larger range of crimes than the UCR crime

34This analysis excludes treatment events where the suspect of an officer fatality is shot and killed in the
event to avoid a mechanical effect of the treatment on the outcome. The regressions include a panel for each
treatment event in the data. Fatal Encounters was established in 2013 and includes back-filled data for earlier
years; we restrict attention to records from 2010-2018 to address data quality issues in the data.
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reports. The fact that we continue to find no impact on this broader indicator of crime

indicates that we are not missing impacts on lower-level offending.

One way to further probe the question of whether an officer death affects civilian behavior

is to ask whether officer deaths are actually salient to civilians. Figure B.10 plots the Google

Trends search intensity of 71 officers killed in the field, which we compare to 137 high-profile

deaths of civilians at the hands of police since 2010 using searches from the U.S. state where

each event occurred.35 Google trends provides a metric of relative search volume that is

normalized between 0 and 100 and is a function of terms entered in a search (selected by the

user). We include topical searches for heart attacks as a benchmark (as heart disease is the

leading cause of death in the U.S.), which is searched relatively frequently and is not seasonal

in search volume. This benchmark allows us to view a perceptible increase in searches at the

time of the events and to compare the relative effect of events across time and space as well

as between line-of-duty deaths and officer-use-of-force killings.36

In relative terms, the public is far less aware of the officer deaths than civilian deaths at

the hands of police, with the average civilian death having a search popularity metric that is

over three times the size of the average officer death. Search intensity for a civilian death

persists to some degree in the weeks following a death, with subsequent spikes that may be

associated with protests of the incident or an announcement of whether the involved officers

will be charged. In contrast, the public awareness of an officer death is quite small and quickly

levels to zero after these events. This evidence implies that the awareness of these deaths

35Information on high-profile deaths of civilians is taken from “Black Lives Matter 805 Resource and Action
Guide.” Information on officer line-of-duty deaths is acquired from the Officer Down Memorial Page and is
described in more detail in Appendix B.5. The sample frame begins in 2010 to match the coverage of this list.
We search each civilian and officer death separately within the state where the event occurred and plot the
average within-state search intensities alongside the benchmark search term.

36All quantities are reported relative to the time period and search term with highest search volume, which
is given a value of 100. We include topical searches for heart attacks as a benchmark (as heart disease is
the leading cause of death in the U.S.), which is searched relatively frequently and is not seasonal in search
volume. Given this type of output, the choice of an appropriate benchmark search term is critical, as a
benchmark that is too popular would completely dwarf any evidence of search volume for officer death events.
For example, benchmarks that are sufficiently more popular, such as “Google” or “Youtube”, would negate
any perception of relative search volume for both civilian and officer deaths. We purposefully select our
benchmark to show that there is evidence of some salience of officer deaths in our data.
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among community members is relatively minimal and short-lived. We hypothesize that officer

deaths are thus unlikely to spark a change in criminal activity or civilian behavior.

If it is the case that an officer death has limited direct effects on civilian or offender

behavior, it is also possible to connect our findings to the open and unresolved question of

whether and how changes in marginal arrest enforcement may impact crime. In our setting,

the declines in arrests we observe are driven by large reductions in low-level crimes, which

could have limited public safety value. Viewed through this lens, our work provides new

insights about the importance of changes in arrest enforcement to public safety, and it is

useful to benchmark our estimates to the prior work on the impact of police manpower or

presence on crime. To do so, we convert our estimates into an crime-to-total arrest elasticity

by dividing our violent and property crime coefficients by the total arrest coefficient for

period 0.37 Our property and violent crime elasticity estimates are not significantly negative,

-0.10 for property crime and 0.38 for violent crime, and do not statistically differ from 0.

Figure B.11 shows that these crime-to-arrest elasticities are notably less negative when

compared to the elasticity estimates of police manpower on crime, which has generally found

large and significant reductions in crime from increased police employment (e.g. Chalfin

and McCrary, 2018; Chalfin et al., 2022; Evans and Owens, 2007; Mello, 2019; Weisburst,

2019). These elasticity comparisons serve to emphasize that our null results for crime given a

change in arrests are small relative to the crime increases we would expect from a comparable

percent decline in manpower. In this way, our results are consistent with the view that

police deterrence operates primarily through officer presence rather than arrest activity

(Owens, 2013). To put our magnitudes in context, we calculate that if all U.S. departments

reduced their arrests for only two months per year by the average impact we observe after a

line-of-duty death, this decline would translate to about 116,000 arrests foregone annually

and a statistically insignificant effect of 13,000 more crimes.

37The associated standard errors are constructed with the delta method: var(Elasticity) =
var(βcrime)/β

2
arrest + var(βarrest) ∗ β2

crime/β
4
arrest.
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2.7 Conclusion

How does fear affect officer behavior and police efficacy? Policing is a dangerous and high-

stakes profession where the undercurrent of fear has the capacity to influence officer actions,

with potential adverse consequences for public safety. We find that police respond to an

officer fatality by substantially reducing the number of arrests they make, with the largest

effects for low-level arrests. When an officer chooses not to engage with a suspect and make

an arrest, the officer is minimizing their likelihood of interacting with an individual who

could cause that officer physical harm; thus, the arrest reductions we observe are consistent

with risk mitigation due to heightened fear. While we observe a sharp 10% decline in arrests

in the one to two months following an officer death, we fail to find evidence that this shock

reduces public safety. Further, we do not find that crime increases in settings where officers

reduce arrests by larger amounts or longer durations. Collectively, the results imply that fear

reduces enforcement but is unlikely to contribute to higher crime.

We find limited evidence that officers change their behavior in dimensions other than

arrest enforcement or that civilian or offender behavior is directly impacted by an officer death.

Our work may thus offer suggestive insights about the impact of marginal arrest reductions

on crime. Such questions are critical to the broader debate about law enforcement’s heavy

reliance on policing low-level offenses, an approach popularized since the 1980s as part of a

“broken windows” policing philosophy (Bratton and Knobler, 2009; Kohler-Hausmann, 2018;

Riley, 2020; Silva, 2020; Speri, 2020; Zimring, 2011). Related work on policies that affect

arrest enforcement, such as changes in the felony classification (Dominguez et al., 2019) or

the decriminalization of marijuana (e.g. Adda et al., 2014; Mark Anderson et al., 2013) have

shown limited or mixed evidence of crime increases. Alternatively, some researchers have

found crime-reducing benefits of particular types of enforcement, such as “hot spots” policing

(e.g. Blattman et al., 2017) and forms of “focused” deterrence that target small groups of

frequent offenders (Braga et al., 2018; Chalfin et al., 2021a). More research is needed to

understand which forms of arrests and sanctions provide crime-reducing benefits.
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2.8 Figures & Tables

Figure 2.1: Unadjusted Data Around Events, Log Outcomes

A. Total Arrests
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Notes: This figure plots the unadjusted data around the officer death events. Outcomes are defined as Yit = log(yit + 1).
There are 125 officer death events in 76 agencies after excluding events that do not have enough periods before and after the
event. Index crimes include rape, robbery, aggravated assault, burglary, theft, and motor vehicle theft.
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Figure 2.2: Event-Study: Murder Outcomes

A. Total Murder Offenses

Joint Significance
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B. Murder Offenses
(excl. Officer Fatalities)

Joint Significance
Month 0:  0.477
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C. Murder Arrests

Joint Significance
Month 0:  0.015

Months 0-6:  0.006
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Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and
year-by-month fixed effects and department-specific linear time trends. Months -6 and 6 include all months before month -6
and all months after month 6, respectively. Standard errors are clustered at the department level.
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Figure 2.3: Event-Study: Arrests

A. Violent Arrests

Joint Significance
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B. Property Arrests

Joint Significance
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C. Non-Index Arrests

Joint Significance
Month 0:  0.000
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D. Quality of Life Arrests

Joint Significance
Month 0:  0.006

Months 0-6:  0.003
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Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and
year-by-month fixed effects and department-specific linear time trends. Months -6 and 6 include all months before month -6
and all months after month 6, respectively. Standard errors are clustered at the department level. See Table B.7 for the list of
arrest sub-types. Violent arrests include rape, robbery and aggravated assault. Property arrests include burglary, theft and
motor vehicle theft.
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Figure 2.4: Event-Study: Crimes and 911 Calls

A. Violent Crimes

Joint Significance
Month 0:  0.380

Months 0-6:  0.137
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B. Property Crimes

Joint Significance
Month 0:  0.997

Months 0-6:  0.528
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C. 911 Calls

Joint Significance
Month 0:  0.829
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D. Crime Report Rate (911 Calls)

Joint Significance
Month 0:  0.195
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Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and
year-by-month fixed effects and department-specific linear time trends. Months -6 and 6 include all months before month -6
and all months after month 6, respectively. Standard errors are clustered at the department level. Violent crimes include rape,
robbery, and aggravated assault. Property crimes include burglary, theft, and motor vehicle theft. “911 Calls” are records of
all police calls for service at the city by monthly level. “Crime Report Rate (911 Calls)” is the share of calls that result in a
crime being recorded by police.
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Figure 2.5: Plotting Treatment Effects by Predicted Arrest Decline Quartiles

A. Total Arrests
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B. Total Arrests
E(τ |X) ∈ (−0.084,−0.024)
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C. Total Arrests
E(τ |X) > −0.024
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D. Index Crimes
E(τ |X) < −0.084
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E. Index Crimes
E(τ |X) ∈ (−0.084,−0.024)
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F. Index Crimes
E(τ |X) > −0.024
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Notes: A set of 100 nearest-neighbor agencies that do not experience officer death within a year of treatment agency’s officer
death event is generated by matching on demographic characteristics in the treatment year and lagged monthly crime and
arrest levels in the year prior to treatment. Then, from this set, a synthetic control agency is created by matching on
demographic characteristics in the treatment year. There are 120 matched pairs. The synthetic difference-in-differences is
estimated and post-period treatment effects are obtained. Panels A, B and C show the treatment effect for total arrests,
separately by predicted arrest effect quartiles. Panels D, E and F show the treatment effect for index crimes, separately by
predicted arrest effect quartiles.
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Table 2.1: Summary Statistics

Full Sample Treated Agencies
Mean S.D. N Mean S.D N

Murder Outcomes
Murder Offenses 0.221 ( 1.617) 354504 2.350 ( 6.357) 18510
Murder Arrests 0.165 ( 1.266) 354507 1.574 ( 4.890) 18510

Policing Activity
Arrests 151.9 ( 479.4) 354507 964.5 (1716.5) 18510

Index Arrests 28.4 ( 94.2) 354507 177.0 ( 339.0) 18510
Violent Arrests 8.4 ( 41.1) 354507 62.0 ( 157.7) 18510
Property Arrests 20.0 ( 58.2) 354507 115.1 ( 200.4) 18510

Non-Index Arrests 40.9 ( 136.9) 354507 268.2 ( 505.4) 18510
Quality of Life Arrests 82.6 ( 263.9) 354507 519.2 ( 931.9) 18510

Traffic Stops 6200.8 (9489.0) 1491 9130.5 (11114.0) 423

Crime and Community Activity
Index Crimes 140.0 ( 549.6) 354507 1023.5 (2032.5) 18510

Violent Crimes 18.3 ( 105.0) 354507 165.8 ( 412.0) 18510
Property Crimes 121.6 ( 452.9) 354507 857.7 (1654.9) 18510

911 Calls for Service 9488.5 (13397.3) 5904 20283.0 (19083.3) 1374
Crime Report Rate (911 Calls) 0.26 ( 0.14) 5151 0.28 ( 0.11) 1221
Fatal Traffic Accidents 0.26 ( 1.09) 283906 1.60 ( 3.61) 17040

Number of Agencies 1578
Number of Treated Agencies 82

Total Officer Death Events 135
Treatments Per City (Treated) 1.65

Officer Characteristics
Cause of Death Gunfire: 136 Vehicular Assault : 11 Other : 4
Race White: 115 Black : 20 Other : 16
Gender Male: 141 Female: 10
Age 36.86 ( 9.16)
Experience 11.14 ( 8.41)

Notes: The number of agencies, number of treated agencies and total officer death events are from the data with crime and
arrest activity outcomes. For the traffic stop outcomes, they are 18, 3, and 5. For the traffic accident outcome, they are 1252,
33, and 74. For 911 call outcomes, they are 56, 9, and 14. All arrest and crime subcategories exclude murder outcomes. Violent
crimes and arrests include rape, robbery and aggravated assault. Property crimes and arrests include burglary, theft and motor
vehicle theft. See Table B.6 and Table B.7 for the list of crime and arrest sub-types. “Crime Report Rate (911 Calls)” is the
share of calls that result in an officer writing a crime incident report. The officer characteristics are from the Officer Down
Memorial Page. Other causes of death include assault and stabbed.
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Table 2.2: Impact of an Officer Death on Policing and Crime

1st Month 2nd Month Long-Term Outcome Mean
(t=0) S.E. (t=1) S.E. (t=2,...,11) S.E. Full Treated N

Murder Outcomes
Murder Offenses 0.391*** ( 0.058) 0.033 ( 0.039) 0.015 ( 0.013) 0.22 2.35 354504
Murder Arrests 0.111** ( 0.044) 0.071 ( 0.043) -0.000 ( 0.023) 0.17 1.57 354507

Policing Activity
Arrests -0.095*** ( 0.026) -0.044* ( 0.023) -0.001 ( 0.023) 151.9 964.5 354507

Index Arrests -0.083** ( 0.033) -0.024 ( 0.031) -0.012 ( 0.027) 28.4 177.0 354507
Violent Arrests -0.105*** ( 0.035) -0.054** ( 0.027) -0.050** ( 0.023) 8.4 62.0 354507
Property Arrests -0.075** ( 0.036) -0.026 ( 0.037) -0.009 ( 0.031) 20.0 115.1 354507

Non-Index Arrests -0.089*** ( 0.024) -0.076*** ( 0.026) -0.013 ( 0.022) 40.9 268.2 354507
Quality of Life Arrests -0.094*** ( 0.037) -0.042 ( 0.032) 0.007 ( 0.030) 82.6 519.2 354507

Traffic Stops -0.068 ( 0.107) -0.146 ( 0.122) -0.021 ( 0.094) 6201.7 9130.5 1477

Crime and Community Activity
Index Crimes 0.003 ( 0.017) 0.015 ( 0.016) 0.000 ( 0.013) 140.0 1023.5 354507

Violent Crimes -0.036 ( 0.027) 0.039 ( 0.029) -0.034* ( 0.018) 18.3 165.8 354507
Property Crimes 0.010 ( 0.018) 0.012 ( 0.016) 0.002 ( 0.014) 121.6 857.7 354507

911 Calls for Service -0.005 ( 0.016) 0.000 ( 0.012) -0.006 ( 0.012) 9473.7 20229.0 5873
Crime Report Rate (911 Calls) -0.002 ( 0.006) 0.002 ( 0.008) 0.011 ( 0.008) 0.26 0.28 5127
Fatal Traffic Accidents -0.023 ( 0.045) -0.016 ( 0.031) -0.025* ( 0.013) 0.26 1.60 283906

Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and year-
by-month fixed effects and department-specific linear time trends. Regressions also include a dummy variable for 12 or more
months after the occurrence of an officer death. Outcomes are defined as Yit = log(yit + 1) and outcome means are given in
levels. Standard errors are clustered at the department level. The number of agencies, number of treated agencies, and total
officer death events for crime and arrest outcomes are 1578, 82, and 135, respectively. For the traffic stop outcomes, they are 18,
3, and 5. For the traffic accident outcome, they are 1252, 33, and 74. For 911 call outcomes, they are 56, 9, and 14. All arrest
and crime subcategories exclude murder outcomes. Violent crimes and arrests include rape, robbery and aggravated assault.
Property crimes and arrests include burglary, theft and motor vehicle theft. See Table B.6 and Table B.7 for the list of crime
and arrest sub-types. “Crime Report Rate (911 Calls)” is the share of calls that result in an officer writing a crime incident
report. * p<0.1,** p<0.05, *** p<0.01.
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Chapter 3

The Impact of Cash Transfers to Poor

Mothers on Family Structure and

Maternal Well-Being

(with Anna Aizer, Shari Eli and Adriana Lleras-Muney)

3.1 Introduction

Since the implementation of the first means-tested cash transfer program in the US in 1911,

the Mothers’ Pension (MP) program, critics have argued that welfare leads to the erosion

of families by incentivizing mothers to remain single and have children out of wedlock,

thus trapping women and their children in a cycle of poverty (Skocpol, 1995; Chappell,

2011). Because of their high poverty rates, single-headed households with children have

always been the main target of means tested transfer programs. Indeed today, 87% of adult

welfare recipients are unmarried (ACF, 2021), suggesting to some that welfare disrupts family

formation. However, there is little empirical evidence to support this claim. Existing research

on the short run effects of welfare on marriage and fertility is ambiguous, and there is a

lack of empirical research on the lifetime effects of welfare on family structure and maternal

well-being.
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In this paper, we construct a new dataset and exploit a novel identification strategy to

estimate the lifetime effects of the MP program on family structure and maternal lifetime

well-being. The MP program was first implemented in 1911 in Illinois, adopted across

most states by 1920, and finally replaced in 1935 by the federal Aid to Dependent Children

(ADC) program, the precursor to Temporary Aid to Needy Families (TANF), today’s welfare

program. Before 1911, mothers who could not care for their children were forced to place

them in orphanages or training schools. In response to reports of high death rates and poor

outcomes of children in these institutions, states established MP programs to provide cash

transfers to poor mothers so that they could care for their children at home. Since the

inception of MP, commentators have been concerned about the unintended effects of the

program with respect to family structure (Leff, 1973). Indeed, MP recipients who remarried

lost transfers, encouraging women to remain unmarried; abandoned women could receive

transfers, encouraging men to abandon their families; finally, the transfer was an increasing

function of the number of children, encouraging out-of-wedlock fertility.

In order to estimate the short- and long-term impact of welfare receipt on marriage and

fertility, we construct a novel dataset of over 16,000 women who applied for the program

between 1911 and 1930, and follow them from the time of application until their death. It

is challenging to track women over their lifetimes due to name changes, and for this reason

historical work tends to focus on men (see Abramitzky et al., 2021 for discussion). To

overcome this, we match data from the program’s administrative records to family trees from

FamilySearch.org, federal census records and vital statistics. The family trees represent a

new source of data that aids in the tracking of changes in marital status (and names) as well

as fertility.

The MP records include mothers who applied to the program and were accepted as well

as those who passed an initial eligibility screening, but were ultimately rejected. This allows

us to implement a novel identification strategy: comparing accepted and rejected applicants

to estimate the causal impact of welfare receipt on family structure using OLS and machine
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learning approaches. Most existing work in this area leverages changes in state laws or policies

over time that modify benefits or eligibility, an intensive margin where we might expect more

limited effects (Bitler et al., 2004; Hoynes, 1996; Blank, 2002; Blundell et al., 2016; Grogger

and Karoly, 2005). Moreover, the women are typically followed for only a short period of

time. Our data allow us to estimate how the receipt of cash transfers at the extensive margin

affected marriage market outcomes (remarriage, duration to remarriage, and characteristics

of the new husband), and fertility over the mother’s lifetime.

We find no difference in the lifetime remarriage rates of women who received transfers

and those who did not: 47 percent of the women remarried, regardless of welfare receipt –

our point estimates are small and we can rule out decreases in marriage rates above 10%.

We also fail to find any effects on fertility: Although women who received transfers had more

children before the application, they did not have more children after the application. We

can rule out increases in fertility greater than 5%. However, among those who remarried,

those with transfers took about a year longer (14 months) to do so.

Could delays in remarriage be welfare-enhancing? To answer this, we develop a model of

welfare participation and search in the marriage market, similar to models of unemployment

insurance in the market for labor and as suggested by Hutchens (1979). In the model,

women search for husbands who are heterogeneous in quality. Receiving welfare benefits, like

unemployment insurance, may cause a woman to be more selective when remarrying (her

reservation “husband quality” increases) as it enables her to wait longer for the arrival of a

preferred partner. Thus, the model predicts that receiving cash transfers can lead to delays

in marriage but also increases in the quality of the husband, with implications for maternal

and child welfare.

However, similar to the empirical literature on unemployment insurance (UI), which

largely finds that UI results in longer unemployment durations but no improvement in the

quality of the next job (Card et al., 2007; Lalive, 2007; Van Ours and Vodopivec, 2008;

Schmieder et al., 2016), we find that welfare receipt results in longer time to remarriage but
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does not affect the characteristics of the new husbands. We provide two explanations for this.

The first is that the marriageability of women declines with the duration of search. This is

analogous to the explanation offered in the UI literature: as workers spend more time out

of the labor force, their productivity declines, reducing the potential quality of their next

match. Indeed, in our data, remarriage rates fall rather dramatically with maternal age,

consistent with marriageability declining with age. The second possible reason is that welfare

receipt is stigmatizing and also reduces marriageability, consistent with Moffitt et al. (1983).

Although we cannot empirically test for stigma in our setting, we show that theoretical

predictions regarding the impact of welfare on husband quality become ambiguous once

stigma is introduced.

To estimate the impact of cash receipt on women’s overall welfare, we compare the

longevity and household income of accepted and rejected mothers. Longevity is an important

determinant of overall lifetime welfare (Jones and Klenow, 2016). We find no significant

differences in the overall longevity of accepted and rejected mothers. These results are

consistent with the results of Price and Song (2018) who find no effects on adult longevity

among participants of a negative income tax experiment. We also find no changes in household

income of accepted mothers in 1940 (another important determinant of well-being), at least a

decade or more after the mother’s application. Thus, fears regarding the negative influence of

welfare on mothers do not appear to be borne out in the data: Welfare does not impoverish

women in the long run. However, welfare does not lift them out of poverty either. Overall,

welfare appears to have little impact (either positive or negative) on mothers in the long run.

This contrasts with evidence of long term benefits to children of welfare participation (Aizer

et al., 2016; Hoynes et al. 2016).

There is a large literature in economics that investigates the effects of welfare on marriage

and fertility (reviewed in detail later). The early work, reviewed by Moffitt (1992), found

small effects but was not well identified, typically comparing marriage rates and fertility

across states with different benefit levels. The second generation of papers concentrated on
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the effects of the 1996 welfare reform, which increased work incentives and reduced incentives

to remain single and to have more children. This work is better identified, though it shifts the

focus away from estimating the effects of receiving welfare to estimating the impact of changes

in the design of cash welfare benefits. Welfare reform has been found to reduce marriage

rates in some studies (e.g. Low et al., 2018) though not others (Grogger and Bronars, 2001),

with little evidence of any impact on fertility (Kearney, 2004). One factor that complicates

identification is that welfare reform in the US occurred amidst the backdrop of a strong

economy and significant demographic changes (increases in non-martial fertility). Moreover,

all these studies focus on short run effects and none consider either lifetime impacts of how

welfare might affect the qualities of the new spouse.

We make several contributions to the literature. We are the first to follow a large sample

of women over their lifespan. Our results show this matters: For marriage, the negative short-

term effects of the program fade significantly over time resulting in small and insignificant

lifetime effects. Second, our data also allow us to study the quality of the new match, which

has not previously been considered or estimated. Here, our results present a puzzle to be

resolved which mirrors the identical puzzle in the UI literature. Third, because our data

include the longevity of welfare applicants and family incomes in 1940, we can estimate the

impact of welfare on two major determinants of lifetime well-being. Taken together, our

results show that welfare receipt did not create perverse incentives as was feared by U.S.

policymakers in the early twentieth century. These same concerns played a large role in the

dismantling of cash welfare beginning in 1997.1 Today, these same fears are expressed by

policymakers during debates over expansions of non-work and non-means tested transfers

such as the Child Tax Credit or Universal Basic Income. Concerns regarding incentives

embedded in such program to remain unmarried or have more children are voiced by the

1Welfare reform in 1996 significantly reduced the availability of cash assistance in the US and added
significant conditions. In 1996, the year before welfare reform, 68% of poor mothers received welfare assistance
compared with 22% in 2018. Moreover, the form of assistance has transformed from unconditional cash, to
other, mainly non-cash, forms of assistance all of which included conditions.
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general public as well.2 Our results suggest that such concerns may be unfounded, that

unconditional cash transfers would likely not generate perverse incentive effects with respect

to family structure, nor consign parents to a lifetime of poverty. While family structure has

evolved since the early-mid twentieth century, which might raise concerns about applying

such lessons to the current setting, the short run evidence on the impact of welfare reform on

fertility, from a more recent period, is certainly consistent with our findings (Kearney, 2004).

Finally, we can incorporate the impact of maternal behaviors and outcomes in the

evaluation of the MP program by computing the Marginal Value of Public Funds (MVPF)

using the methodology of Hendren and Sprung-Keyser (2020). We show that the MVPF is

less than 1 when we consider effects on maternal behaviors and outcomes only. However,

if there are even modest benefits to the children in terms of longevity or income, as found

in Aizer et al. (2016), the program pays for itself. This suggests that the overall evaluation

of the program depends crucially on children’s outcomes and less so on the outcomes or

behaviors of mothers.

3.2 Background on the MP Program and Existing Liter-

ature

In this section we explain the structure of the MP program, including a description of

eligibility and benefit determination to clarify the incentives of the program with respect to

family structure (marriage and fertility). Then, we situate our contributions in the context

of the existing literature.

2In “Working Class Americans’ Views on Family Policy,” participants in focus groups expressed differing
opinions regarding the role of policy in shaping family structure, with older participants expressing more
concern about incentives that reduce marriage and increase fertility than younger participants (Brown, 2021).
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3.2.1 Structure and Incentives of the Mothers’ Pension Program3

In the early twentieth century, widowed or abandoned mothers had few options to earn a

living and support their children. Marriage was by far the most common way for these

women to address their economic needs.4 With limited ability to provide for their children,

many poor, single mothers were forced to place their children in orphanages, the main form

of poverty relief for children provided by local governments (see Skocpol, 1995, p. 425).

In response to poor outcomes for institutionalized children, states embraced cash transfers

to poor mothers so they could care for their children at home. Illinois was the first state

to do so in 1911, and by 1920, most states had followed suit. By 1931, every state in the

continental US had an MP program with the exceptions of South Carolina and Georgia. The

MP program inspired the eventual implementation of Aid to Dependent Children (ADC)

with the passage of the Social Security Act in 1935.

The MP program was funded and administered by individual counties, after states passed

the authorizing legislation. There was variation in how MP programs were administered

from county to county within a state, and variation in the program’s implementation across

states. For instance, in most states the program was administered through the county’s

juvenile court or county clerk’s office, but in some states, separate bureaus of child welfare

were opened to specifically adjudicate the applications of poor mothers to the MP program.

Eligibility criteria for aid differed across states.5 Widows, women with husbands in jail

or in an asylum, and women with disabled husbands were almost always eligible.6 However,

women who had been deserted or divorced were eligible in some states but not others. Some

states required periodic reapplication, while others granted payments until the child turned

14 or 16 years of age. In all states, income and property thresholds were not provided in

3We provide a brief description of the program here. More details are provided in Aizer et al. (2016).
4In the 1910 Federal Census, the vast majority of white women with children were married (92%) and

very few of them worked (4.7%) (Table C.1).
5The details for the states we study are given in Appendix Table S1 of Aizer et al. (2016).
6In three out of the ten states that we study, only widows were eligible.
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explanations of eligibility requirements. Rather, need was determined by local administrators

at the time of application who would also determine the amounts granted to each applicant.

These amounts were capped at the state level but were otherwise discretionary. The pensions

provided about one-third of family income at the time, and the median duration of transfers

was about 3 years (Aizer et al., 2016).

Women would apply to the program without knowing the income thresholds for eligibility.

They would then undergo an initial review that was usually conducted by a social worker.

After the review, a judge or adjudication panel would make a final determination regarding

the application and the amount of pension to be granted. The data we have are based on the

judge or adjudication panel decisions. That is, our sample consists not of all women who

applied, but all women who “passed” the initial eligibility screening and whose eligibility was

determined by the judge or panel.7 Women were denied pensions for many reasons. Most

commonly mothers were rejected because their income or wealth levels were deemed to be

too high.8 In Iowa, rejected applicants had a 35 percent higher predicted family income

related to accepted applicants prior to receipt of MP.9 Other reasons for rejection include the

following: 1) ineligible (which may also include income in excess of the standard of need);

2) married or husband returns; 3) moved from county; 4) no children eligible; or 5) not a

citizen.10 For one county, Clay County, Minnesota, we have detailed information collected

by a nurse who, through home visits, reviewed the living conditions and needs of all MP

recipients in the county. The records from the nurse home visits are largely consistent with

the above evidence on reason for termination: Families that appeared to have other sources

of income were removed from the rolls whereas those that appeared to be in significant need

remained on the rolls.

The program design created disincentives to remarry or move residences, as either would

7For some counties, not all years are available, but for years in which records are available, we believe we
have the universe of records for this second stage of the application process.

8See Table 2 of Aizer et al. (2016)
9See Aizer et al. (2016), p. 10-11.

10See Table 2 in Aizer et al. (2016) which shows the frequency of rejection by reason.
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immediately disqualify mothers. Transfers increased with the number of children, creating

incentives to have more children. Maximum transfers ranged from $9 to $15 per month

for the first child and $4 to $10 for each additional eligible child depending on the state.

Incentives with respect to work were less uniform across the states. This may be in part

because maternal work outside the home was relatively rare at the time particularly among

white women (Goldin, 2006). In several states (6 out of the 10 that we study), women were

required to stay home as a condition of the transfers, since the cash transfer was given in

exchange for looking after the children. Other states limited the hours women could work;

still others enacted a 100% benefit reduction rate on earnings. More generally, working

women were by definition less likely to be deemed eligible since they had a source of income.11

Given the variation across programs, for our analysis we include county of application FE to

address any heterogeneity across counties in the administration of the program.

3.2.2 Existing Literature on Cash Transfers and Maternal Behavior

Moffitt (1992) reviews the existing research on the theoretical underpinnings and empirical

evidence regarding the incentive effects of the US welfare system with respect to labor supply,

family structure, and migration. With respect to family structure, because welfare benefits

have historically been paid only to single mothers with dependent children, Moffitt writes, “the

program provides an obvious incentive to delay marriage, increase rates of marital dissolution,

delay remarriage and have children outside of a marital union” (page 27). Empirically, women

on welfare are indeed less likely to marry and have more children (Hutchens, 1979; Teitler

et al., 2009).

11While the MP program has many similarities to modern day welfare, there are important differences. Both
are means-tested programs that offer unconstrained, but limited, cash transfers. The MP program terminated
eligibility upon remarriage (to any man), creating strong disincentives to remarry. The modern-day welfare
program terminates benefits upon marriage or cohabitation with the child’s father, not necessarily any man.
The MP program discouraged work — several states required women to stay home as a condition for the
transfer, although some regulated the amount of work or simply lowered the transfers when women brought
income home. This continued to be the case in most states until the 1996 welfare reform which capped
lifetime benefits and required recipients to work.
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However, there is little evidence that these effects are causal. Women on welfare differ

in important ways from women who are not on welfare. These differences may explain

their lower marriage rates and their higher fertility rates. In fact, though the cross-sectional

comparisons across states suggest a positive relationship between welfare generosity and single

motherhood, the time series evidence does not. While welfare benefit levels were increasing

between 1960 and 1976, so were rates of single motherhood. However, when benefit levels

started to fall from 1976 to 1984, the share of single-parent headed families continued to rise,

inconsistent with welfare benefits lowering marriage rates. More detailed analyses based on

comparisons within states over time confirm this finding: Changes in benefit levels within a

state are not accompanied by changes in single motherhood (see Moffitt, 1992).

More recent work has focused on the effects of welfare reform efforts, namely the use of

sanctions, time limits, and work requirements, on maternal behavior. This literature has

found larger impacts of welfare on family structure. Moffitt et al. (2015) find that welfare

reforms did increase the probability of cohabitation with a biological father, but not other

males. Bitler et al. (2004), Bitler et al. (2006), and Low et al. (2018) find that time limits

on beneficiaries imposed by the 1996 welfare reform reduced divorce rates and increased

the likelihood that children live with unmarried parents. Kearney (2004) finds that welfare

reform efforts that reduced financial incentives to have more children did not increase fertility.

Work estimating the impact of welfare reform on intergenerational correlations in welfare

receipt suggest that welfare reform did reduce daughter’s reliance on AFDC/TANF, but not

other safety net programs such as SNAP or SSI (Hartley et al., 2022.)

There is a related literature investigating the effects of other redistributive programs on

marriage. The earned income tax credit (EITC) also contains disincentives to marry (Hotz

and Scholz, 2007), but empirical work has found these effects to be economically small or

insignificant (Dickert-Conlin and Houser, 2002, Herbst, 2011, Michelmore, 2016).

Several papers investigate how the marital status requirements embedded in women’s

eligibility for pensions upon the death of their husbands affect remarriage. These papers
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find larger effects on marriage rates (Salisbury, 2017; Brien et al., 2004; Persson, 2017). The

subjects in these studies however tend to be older and richer than the average welfare-recipient.

As a result, the opportunities for and benefits of remarriage may be lower.12

We make several contributions to this literature. First, we use a credible identification

strategy at the individual level to investigate the effect of welfare receipt on remarriage

decisions, examining the extensive margin where one might expect to see larger effects.

Second, we follow women over their lifetime and establish not only whether they marry, but

when they marry and who they marry, as well as whether they have more children. Third,

we estimate the impact of welfare on a lifetime summary measure of well-being: longevity.

Finally, we calculate the MVPF of the MP program taking into account both the behavioral

impacts on mothers and the benefits of cash transfers to children.

3.3 Model of Welfare Receipt and Search in the Marriage

Market

We adapt the canonical model of search in the labor market with unemployment insurance,

first developed by McCall (1970), to model search in the marriage market with cash transfers.

In McCall’s original model, an unemployed worker searches for employment. Offers of

employment vary in quality, as measured by the wage, with a known distribution. Unemployed

workers receive offers, which arrive at a given rate, and accept an offer if the offered wage

exceeds the worker’s reservation wage. If the worker rejects the offer and remains unemployed,

they retain the option of waiting for another potentially better offer in the next period. In

this model, unemployment insurance increases the value of remaining unemployed, thereby

increasing the reservation wage. The model yields two predictions. First, workers with

unemployment insurance will remain unemployed for longer than those without. Second,

12Dillinder (2016) also considers effects of Social Security receipt. Additionally, Fox (2017) investigates the
effect of tax incentives on marriage as do Whittington and Alm (1997) and Fitzgerald and Ribar (2004).
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when workers with unemployment insurance do accept an offer, the wage will be higher.13

We adapt this model to the marriage market where women are searching for husbands and

offers of marriage arrive at an expected rate. Like offers of employment, offers of marriage

also vary in quality. Cash transfers (welfare) have the same effects on the marriage market

that unemployment insurance has in the labor market: It increases the woman’s outside

option and therefore the “reservation quality of the match,” extending her duration of search

(the time to marriage), and resulting in a higher quality husband when she does remarry.

After describing the model, we discuss how to test its predictions with respect to the quality

of the spouse in the data.

3.3.1 A Basic Model of Search in the Marriage Market

A single woman must decide every period whether to marry or to stay single. If she stays

single, she has the option to marry the next period. If she marries, she will stay married

forever.14 Her patience level is given by her discount rate β. She searches for partners, and

prospects arrive at a Poisson rate λ. Each prospect has a value of q, which summarizes his

quality as a husband. This value has an unknown distribution in the population, q ∼ F (q)

with support
[
q, q̄
]
and q̄ > b. While she is single she receives a cash transfer of value b every

period, but this transfer is lost upon remarriage.

The value of being single is given by

Vs = b+ β
(
λ

∫ q̄

q=q

max {Vm(q), Vs} dF (q) + (1− λ)Vs
)
.

and the value of being married to prospect q is given by:

Vm(q) = q + βVm(q) =
q

1− β
.

13Other features have since been added to this model, such as simultaneous offers (Burdett and Judd,
1983).

14This is a simplifying assumption, but it is well supported by the data. Most women in our sample marry
only once (only 5.6% married more than once after the transfer).
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In this set-up, the agent accepts an offer to marry prospect q if Vm > Vs. Since the value

of marriage is strictly increasing in q, the agent will follow a cut-off rule. There is a q∗ such

that she will accept all prospects with q > q∗. The cut-off rule is implicitly defined as

Vm(q∗) = Vs.

Considering that, and rearranging the definition of Vs, we can write

(1− β)Vs = b+
βλ

1− β

∫ q̄

q=q∗

(
1− F (q)

)
dq,

This function is continuous and positive at q∗ = b and negative at q∗ = q̄, so there exists a

solution, and because it is strictly decreasing, the solution is unique. Intuitively, this equation

states that the value of the minimum acceptable marriage, q∗, should be equal to the benefit,

b, plus the option value of holding out for a good match. Given a reservation quality q∗,

the probability of marriage is λ (1− F (q∗)) and the average match quality is E[q|q > q∗].

The duration until marriage is given by D = 1/λ (1− F (q∗)) . Duration is decreasing in the

arrival rate and increasing in reservation quality.

3.3.2 Model predictions and testable implications

The following propositions are derived from this model. All proofs are provided in the

Appendix.

Proposition 1. ∂D/∂b > 0 and ∂E[q|q > q∗]/∂b > 0: An increase in benefits b increases the

number of periods the woman stays single and the average quality of the marriage.

It is straightforward to test whether receiving a transfer leads to longer durations until

re-marriage. Testing whether the quality of the match increases among those who marry

is more difficult because there is no single indicator of the quality of a match. Suppose

instead that there are many traits X that matter but that prospects can be ranked using
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a single index function q(X) as in Becker (1973). If this function is known, then we can

test the predictions in Proposition 1 by constructing this index function. Alternatively, if

the function is not known, then we can investigate how transfers affect each trait X. The

following proposition holds under the assumption that q is increasing in all its arguments X:

Proposition 2. Without further assumptions about the joint distribution of X and the

production function q(X), the sign of ∂E[xi|q > q∗]/∂b is ambiguous for all i. However, the

sign of ∂E[xi|q > q∗, x−i]/∂b > 0 for all xi so long as all relevant X are observed.

This proposition states that the theory does not provide any guidance about the effect of

transfers on any one “input” into quality without knowing their joint distribution and how

women trade-off these characteristics.15 But the proposition also states that conditioning on

one measure of quality, the other measure of quality will unambiguously increase with an

increase in the transfer. If both measures of quality are observed, we can test this empirically

by conditioning on one trait and estimating the impact of the transfer on another trait.

3.4 Data

3.4.1 Data Collection

Administrative data on MP applicants were collected directly from state and county archives

in 14 states, 10 of which included rejected applicants in their records.16 We limit the sample

to mothers from the 10 states with rejected applicants, and to those who applied before 1930,

15In fact, we might observe that the average quality for any one trait (or for all traits) might decrease with
the transfer even though the actual match is better. For example, consider a quality function q(x1, x2) = x1x2.
The joint distribution of the traits is uniformly distributed over three mass points (1, 10); (10, 1); (4, 4).
Suppose that, initially, the cutoff is q∗ = 10. The average of each trait conditional on a match is equal to 5.
Consider a small increase in the cutoff (10 < q∗ ≤ 16). The new average of each trait is 4, lower than in the
original situation, and suggesting that the average quality has gone down. However the quality of the match
after the cutoff increase is 16, higher than the average quality before the cutoff increase.

16We study 10 states with early programs (dates of passage in parentheses) for which we obtained data:
North Dakota (1915), Idaho (1913), Illinois (1911), Iowa (1913), Minnesota (1913), Ohio (1913), Oklahoma
(1915), Oregon (1913), Washington (1913) and Wisconsin (1913). See Aizer et al. (2016) for details.
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when most MP programs lost funding.17 To track MP mothers and their children, we match

these administrative data to family tree data available on FamilySearch.org, which includes

more than 1.2 billion people.18 The mother’s name, combined with the names and dates of

birth of her children, enables us to locate the mother on a family tree. Once a mother has

been found, we observe her maiden name, her date of birth, her date of death, and the names,

dates of birth and dates of death of all her husbands and children. For all women in our

sample, we employed researchers at the BYU Linking Lab to search for any evidence that she

married after the MP program using information in the trees. This strategy of using families

to create matches was pioneered by Joseph Price at the BYU Lab (see Price et al., 2019).19

In addition, we had the BYU Lab researchers hand match all other records available on

Ancestry.com and FamilySearch.org (e.g. the Social Security Death Master File, other state

death records, cemetery records, birth certificates and marriage certificates). Therefore, we

do not only rely on the family trees that were available. We improve on strategies in the

automated linking literature as well as the tree-matching literature by individually searching

for each mother’s marriage information in available records on the genealogy sites. Finally,

research assistants also manually linked mothers and their new husbands to 1910, 1920, 1930

and 1940 Census Records if these links are not already made in the family tree. We observe

several measures of the characteristics of the new husband: his education, longevity, age, and

occupation, as reported in various census years. We describe our matching methodology in

more detail in the Online Appendix.

17We also drop a small number of mothers who applied multiple times and those who did not appear to
be mothers (grandmothers, sisters and step-mothers). Sometimes a woman appears more than once in our
records. In this case, we kept a single record using the following rules: (i) Keep only the observations of the
first successful attempt. (ii) If applied successfully more than once the same year, keep the application with
more children listed. (iii) Keep the smallest family ID if applied successfully more than once the same year,
with the same number of children.

18Recent research (Kaplanis et al., 2018) suggests that data from the trees are quite accurate when validated
using genetic information. The information also appears to be roughly representative of the population, as
life expectancy and other summary measures derived from the trees reproduce population patterns.

19While our paper represents the first example of implementation of the technique of linking mothers, more
recently others have followed suit. These include working papers by Craig et al. (2021), Marchingiglio and
Poyker (2021) and Withrow (2021).
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The resulting dataset allows us to determine if a woman in our MP sample ever remarried,

the duration until the marriage and the characteristics of her new husband. They also allow

us to track all her children (and when they were born) as well as her own longevity. Thus, we

have lifetime measures of marriage, fertility and maternal longevity, as well as the quality of

her new husband. To our knowledge, this type of data has never been collected for a sample

of welfare recipients. We can also observe employment and occupation in each census year

(1920, 1930 and 1940) and income in 1940. These labor market measures, in contrast to our

measures of family structure, are only spot measures. Because these data are more limited

(and less novel), they are not the main focus of our work.

3.4.2 Summary Statistics

Our sample includes 16,228 applicants in 132 counties across 10 states. Summary statistics

are presented in Table C.2 for the full sample, and for the subsample of unmarried women

at the time of MP application (13,383 mothers, or 82% of the full sample). About 53%

of the applicants were widowed at the time of application and about 21% were married.20

The husbands of married mothers were either disabled or in jail, mental institutions or

sanatoriums. Very few (3%) were divorced. About 10% of the applicants are rejected. The

average woman in our sample was 37 years old at the time she applied and listed 2.6 children

under the age of 14 in the application. About 98% are white, and 17% are foreign born.21

Forty-eight percent of unmarried MP mothers eventually remarried, and they waited an

average of 6.4 years to do so. Only 15% of all unmarried mothers married within 3 years of

applying for welfare. When they remarried, they married men who lived almost as long as

they did (71 years for men and 74 years for women) but who were less educated than them

on average (the education gap is -0.23 years). Post-application fertility was low with only

20The rest do not have marital status, in many cases this is because only widows are eligible.
21We have data on the duration of the transfer or reason for termination for only a small subset of the

sample – for this reason they are not included here. Therefore, we cannot perform “common” tests in the UI
literature such as testing whether people marry just before the end of the transfer.
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0.26 children born on average after applying for welfare, already suggesting that any fertility

effects are likely to be small.

The information on maternal work, income and location comes from decennial census

data so we cannot observe the entire history of employment, income and location. Only 12%

of MP mothers were in the labor force in 1910. Women’s labor force participation remained

low despite their high poverty rates: rising to a max of 37% in 1930 and falling to 26% by

1940. Women’s wages and occupational scores were low, as were their incomes (Figure C.1).

3.4.3 Data Quality and Limitations

Historical administrative data have several advantages for this analysis. They allow a long

follow-up period and have lower attrition than modern survey data. We discuss these aspects

now.

Data Quality. Of the sample of 13,383 mothers who were unmarried at the time of

application, we found remarriage data for 84% of the sample. Among those who remarry

(5,435), we have the exact date of marriage for 70% of the sample. With respect to measures of

new husband quality, we measure longevity for the entire sample, but for other measures such

as his wage income from the 1940 census, we find only 52% (see Table C.2). For the mothers,

we determined maternal longevity for 80% of the sample and found maternal education for

85% of those who were alive in 1940.22

These match rates compare favorably with recent work using US census data from the

early part of the twentieth century which hover around 10 to 30%.23 These rates are also

higher than follow-up rates in modern survey data tracking women on welfare. For example,

22There are several reasons we might not find a person. Many of our outcomes come from censuses, which
undercount the population particularly in the past (Hogan and Robinson, 1993). We might also fail to find
them due to spelling errors or other inaccuracies in the data. Finally birth, marriage and death records are
not always available.

23For example, Abramitzky et al. (2014) estimating the impact of migration on earnings trajectories achieve
match rates of 16% for the native born and 12% for foreign born men. On the higher end, the Life-M Project
matches about 30% of birth certificates to death certificates in the states of Ohio and North Carolina (Bailey
et al., 2022).
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the follow up rate in the SIPP is about 63% over 12 waves/years (Zabel, 1998). In the PSID,

the follow-up rate for mothers collecting welfare is lower than 40% over 35 years.

All of our data were hand-matched across multiple sources and all data entry were double

checked. A validation exercise showed the accuracy of the matches to the tree, the death

certificates and the 1940 census to be very high (above 97% in all three cases). We discuss

strategies to address missing data and data quality below.

Limitations. We are unable to generalize our results to African American mothers as

they accounted for only 1.3% of the population in the counties we study and 2% of applicants

in our data.24 Because of the small number of women who were rejected (only 10% of the

sample), we cannot conduct heterogeneity analysis with any precision, though we do present

results in an appendix and investigate it using random forest approaches. Last, as previously

mentioned, the data on women’s labor market outcomes are limited.

3.5 Empirical Strategy and Identification

3.5.1 Empirical Strategy

We test the model’s predictions using the following equation:

yict = β0 + β1Acceptedict + θXict + γc + γt + εict

where yict is an outcome for woman i applying to the program in county c in year t.

Accepted is an indicator equal to one if the mother was given a cash transfer and it is

equal to zero if she applied for the transfer but was denied after investigation. We also

include county and year of application fixed effects γc and γt in all baseline specifications

to account for the fact each county had a different program that varied over time, and to

24States and counties with large black populations often did not implement the Mothers’ Pension program
(Eli et al., 2022), and when they did, they appear to have systematically discriminated against them as many
were never deemed eligible (Eli and Salisbury, 2016; Roberts, 1993; Ward, 2009).
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account for secular trends in outcomes over this period. We can also include a vector of

controls (Xict) that includes the characteristics of the mother and family at the time of

application: the number of children, age of the oldest and youngest, her marital status at

application (widowed, divorced or missing), maternal age at application, and county-level

and state-level time varying covariates.2526 We report standard errors clustered at the county

level. We also estimate standard errors just correcting for heteroskedasticity or clustering at

the county-by-year level. The results are robust to these alternatives. Finally, although our

main model is linear for many outcomes, we consider alternative function forms.

Our main coefficient of interest is β1, which represents the impact of welfare receipt on

the outcome. Thus, our strategy consists of comparing the mean outcomes of accepted and

rejected mothers who applied in the same county and year and were similar on observables.

For rejected mothers to be an appropriate counterfactual, it must be the case that they are

not otherwise different than mothers who were accepted, as discussed below.

In addition to estimating standard OLS models with and without covariates, we also

estimate the average treatment effect (ATE) of the cash transfer on outcomes using the causal

random forests methods recently developed by Wager and Athey (2018) and Athey et al. (2019).

This approach has several advantages over OLS. First it is a matching approach which provides

consistent estimates of the ATE under the standard assumption of unconfoundedness. Like

25A difference-in-differences analysis using variation across counties or states over time in the creation
of a MP program cannot be conducted given likely violation of identifying assumptions for the following
reasons. First, eligibility and generosity varied considerably across states and counties, complicating our
ability to use other states or counties as “counterfactuals” in our specification. Second, we do not know for
all counties whether/how quickly after a state authorized MP programs the counties developed their MP
programs. It could be that a state authorized an MP program but it took years for most counties to develop
their programs. As a result, it’s not clear how much of a state is actually treated. Third, we cannot identify
likely eligible mothers in counties/states before the MP program from available data (e.g., marital status
alone does not determine eligibility). Given this, the strongest identification strategy involves comparison of
outcomes for mothers who applied in the same county, under the same eligibility rules.

26County controls include: sex ratio (M/F) aged 18-55, share females in the labor force aged 18-55, share
Black aged 18-55, share rural aged 18-55. County controls match linear interpolated information from the
1910, 1920 and 1930 census with the year of application to the program. State-varying controls include:
manufacturing wages, education/labor laws (age must enter school, age can obtain a work permit, and whether
a continuation school law is in place), state expenditures in logs (education, charity, and total expenditure in
social programs), state laws concerning MP transfers (work required, reapplication required, the maximum
legislated amount for the first child, and the legislated amount for each additional child).
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other matching estimators it assumes that untreated observations with similar propensities to

be treated as treated observations provide appropriate counterfactuals. This method leverages

machine learning, specifically random forests, to find the “nearest neighbors” and computes

treatment effects for each treated unit using these untreated but similar observations.27

Since we obtain individual level treatment effects, this method allows to investigate if

treatment effects are heterogeneous, a second major advantage of this alternative approach.

Sloczynski (2022) shows that in the presence of heterogeneity, OLS estimates a weighted

average of the treatment effects across groups, where larger groups get smaller (rather than

larger) weights. In our case the rejected group is substantially smaller than the treated

group, and thus if the treatment effect is heterogeneous, it is possible that the OLS differs

from the ATE, the Average Treatment on the Treated (ATT) and the Average Treatment on

the Untreated (ATU). The random forest approach allows us to investigate this possibility

without imposing any specific functional form in the estimation of the propensity score (and

without imposing linearity in the treatment as OLS does). We report the ATE and the ATT

that results from this approach. Details of the implementation of this procedure are in the

Appendix.

3.5.2 Identification: Comparing Accepted and Rejected Mothers

Three pieces of evidence presented in Aizer et al. (2016) showed that rejected mothers were

slightly better off. We summarize these here and also offer additional evidence based on our

new data.

First, investigating the basis for rejection (when available), we found the most common

reason (35%) was “other means of support,” suggesting rejected mothers had greater incomes.

Second, comparing accepted and rejected mothers, we found that the rejected had on average

fewer children and that their children were older. We used these characteristics and marital

status to predict family income using the 1915 Iowa State Census—the only income data

27In this method the nearest neighbors are the observations that fall under the same leaves of a given tree.
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available in the US prior to 1940. Women who were rejected from the program have higher

predicted income than those who were accepted, consistent with the evidence on reasons

for rejection. A third piece of evidence comes from a comparison of the pre-application

characteristics of accepted and rejected mothers whom we can find in either the Iowa State

Census of 1915 (for the Iowa sample of mothers) or in the 1900-1920 US Federal Census for

the Ohio sample of mothers.28 In both cases, we find that for the majority of the variables

we observe, accepted applicants were worse off (Aizer et al., 2016).

We use our newly collected data to further assess the pre-determined differences between

the two groups. Specifically, we now have information on the mother’s educational attainment

(from 1940 census records), her date of birth, place of birth, race and ethnicity, the longevity

of her first husband, and information on all her children, including those who died prior to

applying for the pension, and those who were too old to be eligible (and were therefore not

listed in the MP records) but could potentially provide income or other resources to their

mothers. We also observe the number of siblings the mother had who could also serve as

alternative means of support.

We continue to find that rejected mothers were slightly better off than accepted mothers

when comparing them on these newly collected predetermined characteristics (Table C.3).29

To assess the magnitude of the observed differences between accepted and rejected mothers,

we repeat our previous analysis and predict maternal income again but include these newly

collected measures. Accepted mothers are more likely to be at the lower end of the distribution

of predicted income (Figure 3.1), but these differences are modest. The predicted income

of accepted mothers is about 50 dollars (6 percent) lower than that of rejected mothers

(Table C.3). Thus with the newly collected data on mothers, we confirm our previous findings

28We focused on Ohio because a large portion of our records come from Ohio.
29Controlling for county and year of application fixed effects, accepted mothers had more children who

died before the application (which is significant for the sample of unmarried mothers) and fewer children over
the age of 14. They were also younger, and had husbands who died more recently and at a younger age. All
other differences (number of siblings, race, foreign born status, work and occupation in 1910 or education
levels in 1940) are not statistically significant in the full sample or in the sample of unmarried mothers.
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that, on average, accepted mothers appear to be slightly poorer than rejected mothers.30

Based on this finding, we may be biased towards finding more harmful effects of welfare

on maternal outcomes. For example, this slightly negative selection into MP receipt would

likely bias downwards any positive impact of cash transfers on maternal longevity, and lead

to overestimates of the impact of welfare receipt on marriage delay and fertility. We conduct

two exercises to assess the extent of omitted variable bias. First, we report bounds for β1

using the Oster (2019) proposed correction to assess the extent to which our assumptions

about unobservables affect the coefficient estimates.31 Second we estimate causal random

forest treatment effects, which as explained above flexibly account for observables to construct

counterfactual groups, in the spirit of matching methods.

3.5.3 Assessing the Impact of Missing or Low Quality Data on our

Estimates

Missing data. Although attrition in our data is low, missing data can bias our results if

the data are missing differentially for accepted and rejected mothers. We investigate whether

accepted mothers are differentially missing outcomes by regressing an indicator for missing

on the indicator for accepted (Table C.4, Panel A). We find no differential attrition in our

data for all outcomes related to family structure (remarriage, duration, husband quality and

fertility).32

We do however find evidence of differential attrition for our labor market outcomes in

30The mean predicted income of the accepted and rejected groups using the Iowa samples are both higher
than in Aizer et al. (2016). The main reason is that we can now observe the age of the mother and use
this age in the prediction. This results in significantly higher predicted family incomes. We have predicted
incomes using many different specifications and control variables and we find very similar results across all of
these: Although the means vary, the accepted group is always slightly poorer than the rejected group.

31To compute these bounds we assume that the R-max is 1.3 times greater than the R-squared that is
estimated in the regression with controls, as suggested by Oster. We assume that δ = (-1, 1) for lower and
upper bounds to capture that the omitted variables are positively or negatively correlated with the regressor
of interest.

32Accepted status predicts only one marriage related outcome at the 5% level (whether the new husband’s
age at death is observed).
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1930 and 1940. Labor force participation, occupation scores and family income in 1940 are all

less likely to be missing for accepted mothers (Table C.4, Panel B). Conditional on controls,

the differences are about 10%. The same is true for location and family income in 1940

(Table C.4, Panel B).

To address this issue we take two approaches. First, we estimate OLS models that account

for attrition using the semi-parametric two-stage approach proposed by Newey (2009). In the

first stage we predict attrition, including a predictor (an instrument) that is not part of the

main equation of interest. Our instrument for selection is research assistant (RA) finding rates.

RAs are assigned arbitrarily to the mothers in our data. RA quality affects the likelihood of

finding a match. Thus differences in finding rates reflect RA ability rather than underlying

likelihood that the record can be matched based on observables. In the second stage, we

estimate a linear regression of the outcome on controls and a fourth degree polynomial

of predicted values from the first stage, i.e. a semi-parametrical selection correction term.

Second we estimate Inverse Propensity Weight (IPW) OLS models that use the estimated

probability of a match as an (inverse) weight in the regressions, as recommended by Bailey

et al. (2020) when matching historical data sets. We report both of these alternative estimates

in the tables.33

Mismatched data. There is considerable debate among economic historians regarding

the quality of linked data and how it varies based on various matching methods (Bailey et al.,

2017; Abramitzky et al., 2019). We test whether the quality of the match influences our

results. To do this, we compute measures of the quality of matches and re-estimate results

using only high quality matches.34 We also present results using data from multiple sources –

for example we can compare our marriage information from the trees to the information that

33We do not implement these robustness checks for the random forest estimators for which these adjustments
have not been developed. Since we find little evidence of heterogeneity (see results section), we view the OLS
adjustments to be informative.

34A high quality match is a match with quality above the median. The quality measure is a weighted sum
of Jaro-Winkler distance assessing the similarity of the name, place of birth and age match between the
different datasets. The data codebook details how we compute each quality measure.
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is derived from the census. If the results are similar across different data sets, this reduces

concerns that matches to one source of information may be incorrect.

3.6 The Effects of Welfare on Marriage and Fertility

3.6.1 How does Welfare Affect Marriage Decisions?

Unmarried mothers on welfare are not less likely to remarry over their lifetime (Table 3.1,

Column 1). Accepted mothers are slightly (1.4 percentage points) less likely to remarry than

rejected mothers (conditional on controls), but the difference is not statistically significant and

it is small relative to the average remarriage rate for rejected mothers (47 percent). This effect

is not sensitive to how we estimate the standard errors, correct for missing data or whether

drop the lowest quality matches. The causal random forest ATE and ATT are somewhat

more negative (-0.02 and -0.026 respectively) but they are also statistically insignificant and

small in magnitude. Interestingly the ATE, ATT and OLS are similar – in fact we cannot

reject the null that they are the same, i.e. that there is no heterogeneity in the treatment

effects.35

How large are these effects? Using the largest Oster bound, being accepted lowered the

probability of remarriage by 0.02 percentage points, an economically small effect. If we use

the confidence interval from our main OLS specification or the one from the random forest,

we can reject declines in marriage rates larger than 10%. If we compare the estimated impact

of MP receipt on remarriage to the impact of age at MP application, we find that the impact

of MP receipt on marriage is roughly equivalent to a one year increase in maternal age.

Next we investigate the impact of welfare receipt on duration until remarriage. A histogram

of the duration to remarriage suggests that rejected mothers were more likely to marry soon

(within two years) after applying (Figure 3.2, Panel A). Kaplan-Meier survival estimates of

35A test that OLS is equal to ATE cannot be rejected. We also test for heterogeneity as suggest by Athey
et al. (2019) and find no evidence of significant heterogeneity.
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the probability of remaining single, where the clock starts the day of the MP receipt and

ends at death, show a similar pattern: accepted mothers remain single for longer and are

more likely to remarry later (Figure 3.2, Panel B). While women on welfare are not less likely

to ever remarry, they wait longer to do so.36

How much longer? A regression of time to remarriage on accepted status suggests 1.3 years

longer, which is identical to the causal random forest ATE and ATT estimates (Table 3.1,

Column 2). The coefficient is similar with the Oster bound (1.4) but smaller (0.9) if we drop

low quality matches or use IPW. Relative to the duration of 5.47 years to remarriage for

rejected mothers, this represents an increase of 20-24 percent relative to the mean. Estimates

from an Accelerated Failure Time model (AFT), using the log of the duration as the outcome,

are very similar around 24% ( column 3).

To further explore timing, we estimate regressions where the dependent variable is whether

the mother remarries within a year, two years, five years, etc. For these regressions, mothers

who did not ever remarry are coded as zero. Mothers whose marital status could not be

defined, or who are missing marriage dates are excluded. We find a marginally significant

effect of receiving welfare on short durations but no significant differences on longer durations,

consistent with Figure 3.2 (Table 3.1, last 5 columns). The coefficient estimate suggests that

remarriage within one year is 2.4 percentage points lower for mothers on welfare. Because the

baseline is low in the first year (0.04), the relative effects are large: Welfare receipt lowers the

likelihood of remarriage by 60% within a year. This falls to 15% within 5 years and is small

and insignificant after five years.37 The year-by-year estimates are presented in Figure 3.2,

Panel C and show that the effects, as a percentage of the baseline, are large but decline and

become insignificant. The short run effects are larger if we drop low quality matches, but

lower if we use the IPW. Overall they are still small and insignificant after the fifth year. The

36We corroborate these findings using another source of data on marriage in the Census. While there are no
differences in marriage rates in 1930 or 1940, there is a statistically significant 25% decline in the likelihood of
being married in 1920 (See Table C.5, Columns 2-4). These results also suggest that cash transfers increased
the duration until marriage in the short run, but not the in medium or long run.

37We also estimate Logit models. The results are very similar to those reported here.
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ATE and ATT estimates are somewhat larger but they also decline magnitude relative to the

mean. By the 10th year the effect is about a 10% decline in the probability of remarriage.

In sum, duration to remarriage increases between 0.9 and 1.4 years with welfare receipt.

This effect is accounted for by short run behavior: women are less likely to remarry but only

in the short run. After five years, there are no large differences in marriage rates. Over the

lifetime we can reject declines in marriage rates greater than 10%. Our results are consistent

with previous research finding of immediate effects of welfare reform on remarriage (Low

et al., 2018), but we are the first to show that over a longer follow-up period, the difference

falls to zero. Overall, we conclude that the effects of welfare on marriage are modest, and not

as large as short-term estimates imply.

3.6.2 Who Do Mothers on Welfare Remarry?

Were these marriage delays associated with increases in the quality of the husband and match

as theory predicts? In this section, we describe how we construct our measures of husband

and match quality. We follow this with an analysis of whether waiting does increase quality

and conclude with an analysis of whether welfare receipt, which leads to delays in remarriage,

results in a higher quality husband or match.

Measuring Husband and Match Quality

We calculate five measures of the quality of the new match: three characteristics of the

husband and two of the match. The former includes his longevity, his education and his

predicted income based on occupation score. Longevity is an excellent measure of health

and also an indirect measure of his lifetime resources, as it partly reflects the socioeconomic

conditions he experienced as a child and as an adult.38 Education is a good predictor of

38Many papers document that conditions in utero affect health and longevity (for a review see Almond and
Currie, 2011). Another extensive literature shows that individuals nutrition as well as their parents’ income
and education while growing up predict health (Case et al., 2002; Hayward and Gorman, 2004, see Almond
et al., 2017 for a review). Finally, socio-economic status (education, occupation and income) in adulthood
are very large predictors of longevity (Cutler et al., 2006; Chetty et al., 2016).
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permanent income and is also associated with marital stability (Lundberg et al., 2016), but

it can only be observed in the 1940 Census and therefore not observed for all.39 Finally,

we predict the husband’s lifetime income (in 1950 dollars) using the latest pre-marriage

occupation observed in census data.40

We construct two measures of the quality of the match: the age and education gaps

between spouses. We assume that the optimal age gap is 2.5 years based on previous work.41

For the second measure of match quality, the education gap, a more equal distribution is

preferred (Doss, 2013; Hitsch et al., 2010). We can only compute the latter for couples in

which neither has died prior to 1940.

Finally, we combine these measures of husband and match quality into a single index,

using two methods. In the first, we standardize all the measures and sum them, giving each

equal weight.42 In the second, we combine them into an index using the model calibrated by

Grow and Van Bavel (2015) which is based on marriage patterns in contemporary Europe.43

This index corresponds to the utility associated with a given match, which is a function of

both the woman’s and the man’s traits.

39Because 18% of remarried husbands died prior to 1940, it is not observed for all men.
40We use the IPUMS constructed “occscore.” This measure assigns income to individuals based on their

occupation, imputing income in that occupation in 1950. We assign each man the occupation score we observe
in the latest census where he is observed before marriage under the assumption that this is the most likely
occupation that the MP woman would have observed at the time of her marriage decision.

41Empirically, small age gaps predict greater satisfaction (Lee and McKinnish, 2018) and lower divorce
rates (Lillard et al., 1995), and they are preferred in online dating (Hitsch et al., 2010). The optimal gap of
2.5 is based on work by Grow and Van Bavel (2015).

42To do this, we first normalize each measure (subtracting the mean and dividing by the standard deviation)
and then sum them together as in Kling et al. (2007). To maximize sample size we use any measure available,
so the index is defined for those that have any measures.

43We use the utility function and the parameters defined and calibrated in Grow and Van Bavel (2015). The
index is given by vij =

(
Smax−|si−sj|

Smax

)ws
(

yi
Ymax

)wy
(
Amax−|αi−αj |

Amax

)wa

. The first term of the equation is the
similarity of education, the second term is the earnings prospects and, the last term is the age gap. We follow the
same categorization of variables as in the original paper, except for education, where we divide it in 4 quartile
categories instead of the four categories in the paper (no schooling, primary, secondary and tertiary). The
calibration parameters are given by Smax = 4; Y max = 5;Amax = 800;ws = 0.385;wy = 1.201;wa = 10.833.
Note that this is not a sorting index like those used in Becker’s assortative matching models.
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Duration to Remarriage and the Quality of the Husband and Match

The basic model predicts that if women delay marriage they will marry more desirable

husbands. Duration to remarriage is indeed positively and statistically significantly related

to husbands’ education, occupation, and longevity; duration is also statistically significantly

associated with smaller education gaps and age gaps (Figure 3.3). To our knowledge this is

the first paper documenting that there is a strong correlation between waiting to marry and

the quality of the husband.

Welfare Receipt and Quality of the Husband and Match

Comparing the estimated densities of the quality measures for accepted and rejected mothers

does not support the prediction that welfare receipt improves the quality of the husband or

the quality of the match (Figure 3.4). The new husbands of welfare recipients do appear to

live a bit longer, but they are not more educated or likely to be employed in higher paying

occupations. The distribution of match quality (age and education gaps) is also very similar

for both groups. We cannot reject the null that the distributions of any trait are identical for

accepted and rejected.

Regression analysis yields similar findings. The results (Table 3.2, Panel A) suggest that

mothers on welfare marry husbands who are roughly similar: Except for longevity, all the

coefficients for accepted are statistically insignificant. The results without covariates are

very similar (Table C.6). While some point estimates are positive (longevity), several are

negative (predicted income and education). Estimates of the impact of welfare receipt on

match quality (age and education gaps) are also insignificant and often of different signs. A

joint test (Column 6) shows that we cannot reject the null that all coefficients are equal to

zero at the 5 percent level.

Using the index based on equal weights (Table 3.2, Panel A, columns 7 and 8), we find

a positive and significant effect of welfare receipt on husband and match quality, but this

result is mostly driven by the positive impact on longevity and it is small, on the order of 10
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percent of a standard deviation in the index. Using the index based on Grow and Van Bavel

(2015), the coefficient is small and insignificant (Table 3.2, Panel A, Column 9). The results

using causal random forests are very similar and suggest no overall effect on husband quality

(Panel D).

However recall that this test may not be informative since the theory is ambiguous about

the effect of transfers on any given trait and there is uncertainty about how to combine the

traits into a single index. To address this we repeat the analysis but controlling for other

husband traits, as proposition 2 of the model (Table 3.2, Panel B) suggests. The results are

roughly similar and do not unambiguously point to an increase in quality, except for longevity.

None of these results are affected by Oster corrections, corrections for missing data or quality

of the data (Table C.6). We worried in particular about our use of occupation as a means

to assess income since the mapping between occupation and wages/income varied overtime.

Our results are very similar if we use two alternative measures of occupation-based income

computed by Olivetti and Paserman (2015).44

We also rule out that the transfers affected assortative mating (Figure C.2). More educated

women were more likely to marry more educated men as they do today. However, this is

equally true among both accepted and rejected women. A final test of the hypothesis that

quality of the match increased is to examine whether husband and wife live together in 1930

or 1940: these are indicators that the marriage was long-lasting and therefore a good match.

We find that accepted mothers are less likely to be living with their spouses in 1930 and in

1940, suggesting that if anything these matches are of worse, not better quality (columns

9 and 10 of Table C.7). We conclude that the transfers did not meaningfully improve the

quality of the matches.

44In Table C.6, we show results for these alternative occupation measures and also show additional
specifications for the results. In Table C.7 we show results for several other traits of the new husband (1940
income or earnings score, foreign born status, farming status and number of children). The coefficients on
accepted are never statistically significant and vary in their sign. In Table C.10, we show heterogeneity in
results.
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3.6.3 Why Does the Theory Fail?

We consider five possibilities. First, it may be that the attractiveness of women declines with

age, just as the human capital of workers declines when they are unemployed. If so, waiting

to marry a higher quality husband would result in a depreciation of the mother’s own quality

or attractiveness (her age and fertility). Figure C.3 shows that, as in other settings, women

are much less likely to marry as they age. Theory (proposition 3 in the Appendix) suggests

this should not affect the predictions of the effects of the cash transfer–those who receive

the transfer should still find better men. But it does suggest that the effects might be small

if waiting to marry reduces her attractiveness. If we control for the age at marriage of the

mother, our conclusions are unchanged (Table 3.2, Panel C).

A second possibility is that there is negative selection into marriage among those who

delay (the “best” women marry first). There is little evidence of this once age is accounted

for. There are no predetermined characteristics that predict duration to remarriage, aside

from her age and number of children (Table C.8), suggesting that negative selection likely

does not explain this.

A third possibility is that stigma associated with welfare receipt reduces the quality of

the husband. Proposition 6 in the Appendix states that if transfers lower the rate of arrival

of prospects or worsens their quality, then the predictions of the model become ambiguous.45

Thus once stigma is included in the model, the predictions with respect to partner quality can

reverse, even if duration is increasing.46 We cannot provide empirical evidence for stigma but

historical accounts suggest that there has always been strong stigma from receiving charitable

help, from private or public institutions, and this was also true during the period we study

45Cutoff quality moves in the same direction as the benefits, the change in the probability of proposals, λ,
and the distribution of quality, F (q). With stigma, the program increases b but lowers λ or the distribution
of quality. The original effect increases the cutoff but the stigma effect lowers it. It is unclear which one we
should expect to dominate.

46The predictions of the model with respect to quality are still ambiguous even though duration increases.
This is because a duration increase is to be expected even if quality doesn’t change. The only way duration
could decrease is if the quality cutoff was substantially lower with the transfer. In other words, both an
increase and a small decrease in quality are consistent with duration increasing.
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(Skocpol, 1995).

Fourth, perhaps welfare did not affect marriage prospects because it created incentives not

to move since mothers would loose the transfer upon moving. Though welfare would reduce

incentives to move, mothers who do move, should move to “better” places (see Appendix),

because location influences marriage prospects and determines long-term outcomes of children

(Chyn and Katz, 2021). We do find women who receive welfare are about eight percent more

likely to live in the same county where they applied for welfare compared those that were

rejected (Table 3.3, Columns 1 and 2).47 Thus welfare receipt significantly lowers geographic

mobility. However accepted women move to similar places as rejected women. Moreover,

neither group appears to move to better areas relative to where they applied, where “better”

places are defined as having higher levels of education, or higher sex ratios. Thus while

geographic mobility was affected by transfers, it would seem that marital prospects were not.

Finally, our insignificant results maybe be due to our large standard errors. While for

some measures of husband quality we can rule out large differences in quality (e.g. education

and occupation), for others we cannot (eg, longevity, the indices) due to lack of statistical

precision. Specifically using the 95% confidence intervals, we can rule out increases in the

education of the husband greater than 3%, or increases in his occupation-based income larger

than 5%. For longevity we can only rule out increases larger than 4 years of life (a 6%

increase). As a result, the indices that use weights could improve as much as 20% driven

largely by the longevity gains.

The bulk of the evidence presented here suggest that even though the transfers did initially

delay marriage, in the long run, women who received welfare married similar men and at

similar rates relative to women who did not receive welfare. This is most consistent with

aging and stigma effects, though our large standard errors do not allow us to completely rule

out the possibility quality increased particularly in terms of the husband’s longevity. Because

47We find no effects on the likelihood of staying in the same state. Thus, the reduction in mobility is local.
The Oster bounds are tight for these outcomes (Table 3.3, Panel B). The largest upper bound we estimate
for the effect is 0.10 (from the CI of the Newey estimates), which is a 15 percent increase in the likelihood of
remaining in the same county.
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most women had lost their husbands, it’s possible that they valued health and longevity

highly when finding a new husband.

3.6.4 Effects on Fertility

The MP program incentivized fertility. We test empirically whether welfare recipients had

more children after receiving welfare. Fertility post application to the MP program was

modest: Only 14% of mothers had any children post welfare application and the differences

across the two groups are very small (Figure 3.5). Women on welfare did have 0.421 more

children on average, but this difference existed pre-welfare receipt (Table C.3). As Table 3.4

shows, there is no effect of getting welfare on post-welfare fertility, among all mothers or

among unmarried mothers only. To rule out that this is due to the relatively old age of

mothers in our sample (median age 37), we show that the results are identical if we look at

only the youngest mothers in the sample (Table 3.4, last two columns).

These conclusions do not change when we correct for missing data, drop observations

with low quality, or compute Oster bounds. The causal random forest ATE and ATT are

very similar to the OLS estimates: negative, small and statistically insignificant. Nor are

they changed when we estimate fertility from census data which only include the number of

children in her household in the 1930 and 1940 census (Table C.9). These results, like the

results for marriage are closer to precisely estimated zeroes: Among all mothers, we can rule

increases in fertility larger than 0.01 children, a small number relative to the mean number of

children of 4.5.

In sum, we find no significant effects on fertility post-welfare receipt, although there are

significant differences before.
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3.7 Lifetime Maternal Welfare and Implications for Pro-

gram Evaluation

3.7.1 Overall Maternal Welfare

Critics of welfare often argue that welfare is harmful to women as it traps them in a cycle

of poverty and dependence.48 To shed light on this, we collected two measures of maternal

long-run well-being: longevity and her household income in 1940. In Figure 3.6, we compare

the distributions of longevity (Panel A) and 1940 household income (Panel B) of the mother

by acceptance status. In both cases, we cannot reject that the distributions are identical

(p-values reported in the figure). We confirm this in our regression analysis. There do not

appear to be any large or significant effects of welfare receipt on long run maternal well-being

(Table 3.5): Receiving welfare has a small and positive but insignificant effect of 0.25 years on

maternal longevity (Column 1), and a small and negative but insignificant effect of roughly

$60, -6% decline relative to the rejected applicants’ meanincome (Column 2). A difference of

6% is almost identical to the difference in predicted income at the time of application (last

column of Table C.3). These estimates are more sensitive to accounting for attrition: The

IPW are positive and statistically significant for longevity (0.9) and essentially 0 for income,

perhaps suggesting there are indeed some improvements.

However, these results are imprecise. The OLS CI for longevity ranges from -0.8 to 1.4

years . While not statistically different from the OLS point estimates, the causal random

forest estimates are larger and the confidence interval for the ATE is [-0.35; 1.4], which

includes small to moderate negative effects and large positive effects.

For income the OLS CI ranges from -12% to 1%, and the causal random forest CI is [-9%;

5%]. Given an initial gap of 6%, this suggest that welfare could have decreased income by

6% (3%) or increased by 7% (11%). While not insignificant, these magnitudes do not suggest

large effects on economic outcomes. Thus mothers who applied for welfare were poor and

48For example, see Cato Handbook for Policymakers, 8th Edition (2017) chapter 41 Poverty and Welfare

123



remained so by 1940, regardless of welfare receipt, having roughly half of a typical household’s

income.

Consistent with these results for income, we find that cash transfers had no large disin-

centive effects on labor market outcomes (Table C.11), though the data on this are more

limited in great part because we observe these only in 1920 and 1930.49 To estimate these

effects we restrict the samples only to women who applied for the MP transfer between 1918

and the census in 1920 (and similarly for 1930) and investigate whether their labor market

outcomes in 1920 (1930) differ as a result of the transfer. Although we cannot confirm that

all women in this sample are still receiving welfare, the median duration in our records is

of 3 years so we expect most are still in the program. We find no statistically significant

effects of receiving welfare on the likelihood that women were in the labor force or that they

worked. In addition, we find no statistically significant effects of receiving welfare on their

earned incomes or their occupational scores when they worked (Table C.11). The labor supply

estimates are very noisy though — they are statistically insignificant and include both large

positive and negative effects of the transfers. The lowest 95% CI for the estimates correspond

to labor supply effects that range from -6% (a small response) to -30% (a more substantial

response) associated with a 30% increase in income due to the MP transfer. For comparison,

the estimated extensive margin elasticity in the EITC range from 0.7 to 1 (Bastian, 2020;

Nichols and Rothstein, 2016). Our estimate is so imprecise likely because we are missing

these data for much of our sample and the measure, when we do observe it, is a spot measure.

Indeed, the inadequacies of these data are the main reason maternal labor supply response is

not the focus of this paper. Interestingly by 1940 (when most applicants would no longer

be on welfare) our estimates are positive and significant for labor force participation and

work. Thus our estimates suggest that in the long run welfare moms returned to work. Given

that welfare did not affect marriage rates and the type of husbands women married, and

that it doesn’t change labor market outcomes for women, it is not surprising that family

49Also because these data are missing at higher rates and differentially by accepted status, see the data
section.
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income is unchanged, and that ultimately health was not affected either. If mother’s longevity

did not change as a result of the transfer why did the longevity of her children increase?

Together these findings are consistent with the idea that childhood is a critical period for

physical development, and is in line with other research that finds that the returns to various

government programs is largest for children and young adults (Hendren and Sprung-Keyser,

2020).

In sum we find very few significant changes in the economic and demographic circum-

stances of women associated with welfare receipt, explaining why we also find no significant

improvements or declines on their long-term wellbeing. Thus, the long run evidence from the

first welfare program in the US does not support the claim that welfare harms women.

3.7.2 Was the Program Worth it? Marginal Value of Public Funds

Computations.

Our previous work documented large positive effects of welfare receipt on the education,

income and longevity of their sons (Aizer et al., 2016). Here we find that cash transfers

resulted in marriage delays of about a year and decreases in geographic mobility. But they

otherwise had no statistically significant negative impacts on maternal behavior and no

positive effects on maternal outcomes. We now compute the MVPF of the program using the

methodology of Hendren and Sprung-Keyser (2020) to determine how these estimates change

the overall evaluation of the program.

The computations are in Table 3.6 Panel A lists the dollar value (in 2019 dollars) of all

the benefits and costs associated with the program, using the results from this paper and

Aizer et al. (2016) documenting increases in the education, income and longevity of recipients’

sons. The benefits of the program are given by the total willingness to pay of recipients.

This includes the value of the transfer which lasted three years (about $20,000), plus the

value of the spillovers to sons, minus the dollar value of the negative behavioral responses. In

Column 1, we ignore spillovers to children. The negative behavioral response we estimate is
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a delay in remarriage of about a year, costing about $3,500. The total costs of the program

are given by the size of the transfers ($20,715) plus or minus the changes in taxes received by

the government. Since we estimate that labor supply increases (though this is statistically

insignificant), the total cost of the program is a bit lower ($500) as a result. Considering only

the benefits to mothers, once we include the dollar value of behavioral responses, the MVPF

of the program is 0.84, below one.

However, a more realistic and comprehensive calculation would also consider whether the

transfers benefitted children. Aizer et al. (2016) find that boys’ longevity increase by about

1.5 years and that labor market income increased by 10% as a result of the transfer. We use

their results on the effects of the transfer on the survival curves, along with estimates of the

value of life to compute the present discounted value of children’s longevity and earnings

increases (using a 3% discount rate). These amount to about $61,000 which are added to the

total willingness to pay estimates. More earnings also reduce the cost of the program through

increased taxes, which, assuming at 10% tax rate, amounts to a savings of about $5,000.

Once we incorporate these benefits to the sons, we find that the MVPF of the program is

greater than 5, even with maternal behavioral responses (Column 2). The results are similar

if we only include spillovers in the benefits and do not count the transfers itself (Column 3,

MVPF 3.86).

These computations are subject to uncertainty. Aizer et al. (2016) only tracked the

longevity of about 50% of the sons, and the incomes of roughly 15% of the sons in 1940.

Additionally they could not track outcomes for daughters. Our computations so far include

only benefits for sons and assume there are no benefits for daughters.To address this issue, we

compute the smallest increases in income or longevity of the sons that would be needed for

the MVPF to be larger than one. We find that if the sons’ income over their lifetime increases

by only 0.75% then the MVPF exceeds one. Alternatively if their longevity increases by 0.3

years of life, the MVPF would also exceed one. Thus, relatively small benefits for at least

some children allows the program to pay for itself, in part because behavioral responses from
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the mother are relatively minor, and the benefits accrue to sons over a long time horizon.50

3.8 Conclusion

Tracking over 16,000 women who applied for the first welfare program in the US between 1911

to 1930, we establish that cash transfers to poor women had no effect on lifetime remarriage

rates and fertility. Those with transfers were not less likely to remarry over their lifetime,

and they delayed remarriage only in the short-term. The cumulative effect was to delay

time to remarriage by about a year. These findings underscore the importance of conducting

long-term evaluations, as short-term effects can be misleading.

Why were the effects of the program on marriage so modest? One reason is that the

transfers were small relative to the lifetime income that a marriage would bring. The average

woman that remarried in our sample was 39 years old and married a 43 year old man who

died at age 71. Marriage would bring 22 years of income with relative certainty (assuming

retirement at age 65). Cash transfers instead accounted for less than half of the income these

women needed to live, and receipt was not guaranteed: Women had to reapply and could lose

the transfer if they moved, for instance. The median duration of transfers was three years.

Thus, a very rough back-of-the-envelope calculation shows that cash transfers represent only

7% of what a marriage would bring over a lifetime.51

We also find that women who received transfers did not marry different men. Although

women who wait to remarry do marry better husbands in general, delays induced by welfare

receipt are not associated with improvements in the quality of the matches. Thus our findings

reject the predictions of a simple search model of welfare and the marriage markets. Other

forces such as age and stigma may be more important determinants of marriage behaviors

50The table also shows alternative computations. For example in the benefits of the program we count the
transfer as a benefit. If we do not count it, and instead only count the benefits for the children, then we
require a 6% increase in child income or a 1.5 increase in longevity for the MVPF to be greater than one.

51Assuming that a marriage brought in 100% of family income and that the transfer brought in 50% of
that income, we compute that the ratio of cash transfer income to marriage income is 3*50/22*100 = 7%)
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than the monetary incentives embedded in these government programs. Incorporating these

forces into standard models of behavior and further assessing their empirical importance is

an important area for future research.

We conclude that the program did not generate large negative incentive effects as predicted

by economic models and as feared by policy makers, nor did it help mothers escape poverty.

It did, however, appear to help alleviate short-term cash constraints. Thus, ultimately the

program should be judged largely by the impact it had on its intended beneficiaries — the

children.
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3.9 Figures & Tables

Figure 3.1: Welfare Recipients Have Lower Predicted Incomes Pre-Application
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Kolmogorov−Smirnov equality of distribution test, p−value =.03
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Notes: Data come from administrative data collected by the authors. Sample includes women with non missing predicted
income. Income<1 set to =1. Sample includes 5332 individuals for whom we could compute predicted income using the Iowa
Census. The predicted income was computed by running a regression of family income on covariates (widow, mother age at
application, number of kids at each age (0-18), age of the youngest and oldest kid, number of kids over 14, mother is foreign,
black, education and occupation score. We include interactions of the covariates with the variable widow, and some of the
covariates are included in a dummy format.) in the Iowa Census and then using the estimated betas to predict income for all
mothers in the MP sample. In the MP sample we use the 1910 census occupation scores and 1940 census education.
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Figure 3.2: Welfare Recipients Delay Time to Remarriage

A. Histograms of duration until
the first remarriage (in years) by
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B. Survival curves over 40 years:
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C. Effect of obtaining cash
transfer on probability of

remarriage by year, as a function
of baseline probability of

remarriage
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Notes: Panel A: The figure plots the duration until the first remarriage by accepted among women who were not married at
the time of the application. We cannot reject that the distributions are equal. Sample includes only women that remarried.
Panel B: The figure plots the survival curves by accepted for the duration until the first remarriage. Panel C: The figure plots
the estimated coefficients of “accepted” divided by the baseline probability of remarriage among rejected applications and 95%
confident intervals. Coefficients come from regressions where we regress a dummy indicating that the mother remarried within
x years on accepted status and all predetermined characteristics. Standard errors are clustered at the county level. See
information in Table 3.1.
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Figure 3.3: Delaying Remarriage Improves the Quality of the New Husband
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Figure 3.4: Welfare Recipients Do Not Marry Better Men
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Figure 3.5: Welfare recipients do not have more children after receiving welfare
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Notes: The figure plots the distribution of kids born after application by accepted. The sample includes all women.
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Figure 3.6: Welfare Recipients’ Long-Term Well-Being Is Not Affected By Receiving Welfare

A. Distribution of longevity of the
mother by accepted
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B. Distribution of 1940 household
income of the mother by accepted
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Notes: Panel A: The figure plots the distribution of the longevity of the mother by accepted. We cannot reject that both
distributions are equal. The sample includes all women with non-missing longevity. Panel B: The figure plots the distribution
of 1940 household income by accepted. We cannot reject that both distributions are equal. The sample includes all women
with non-missing and non-zero household income.
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Table 3.1: Welfare recipients with cash transfers delay remarriage

Notes: Sample includes only women who were not married at the time of application. Standard errors clustered at the county
level. Controls for county and year-of-application fixed effects and individual, county and state controls. Individual controls:
Kids: MP age of the youngest and oldest, MP dummies for number, FS number older than 14, FS number that died before
MP, FS number with dates missing. Mother: last name length, dummies for divorced, widowed and missing marital status,
age at application, missing age, number of siblings, foreign, missing nativity, first husband’s longevity, first husband’s
longevity is missing. County controls: for ages 18-55: sex ratio (M/F), shares of white married mothers in the labor force,
black and rural. County controls match linear interpolated information from the 1910, 1920 and 1930 census with the year of
MP application. State controls: manufacturing wages, education/labor laws (age must enter school, work permit age, and
continuation school law in place), state expenditures in logs (education, charity, and social programs), state laws concerning
MP transfers (work required, reapplication required, maximum amount for the first child and for each additional child). 1The
duration measure starts at 0.5 (the variable is duration + 0.5, so we assume that marriages occur uniformly within a year).
We also assume that if women married the same year they applied for the pension (and the exact data of marriage is missing)
that the marriage took place after the MP application. 2Low quality of match is defined as observations with remarriage dates
that do not include day, month and year of marriage. Omitted variable bounds: We use Oster (2017) to construct omitted
variable bias (OVB) bounds. We assume that the R-max is 1.3 times greater than the R-squared from panel B. We assume
delta = (-1, 1) for lower and upper bounds. Sample Selection Correction: We follow the two-step estimation suggested by
Newey (2009) to correct for sample selection. First, we regress the dummy indicating whether the outcome is missing on RA
fixed effects (73 dummies) and all other controls. We report the F-statistic of the test of relevance of these dummies. Second,
we estimate a linear regression of the outcome on controls and on a fourth degree polynomial of predicted values from the first
stage. We jointly bootstrap the two stages and report the 95% bias corrected confidence interval clustered at the county level,
from 200 repetitions. Quality of match: Regressions that drop low quality matches (quality measure below its median) include
all controls and cluster the standard errors at the county level. The quality of match between census, family search and
administrative data is constructed as the weighted sum of variables that access the similarity between first name, last name,
full name, age and place of birth in each dataset. IPW: We estimate the average treatment effect using the estimated
probability weights to address for potential missing outcomes. The standard errors are clustered at the county level and a
logit model is used to predict the accepted status. Causal Forest: We implement the generalized random forest algorithm
proposed by Athey, Tibshirani, and Wager (2019). We estimate the average treatment effects using a doubly robust
augmented-inverse-propensity weighting estimation method and report the ATE and ATT. See Appendix for more details.
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Table 3.2: Welfare receipt does not increase quality of Post-MP husband

Notes: Standard errors clustered at county level. See Table 3.1 for description of controls, restrictions and checks. Panel B
includes the other inputs (Post-MP Husband longevity, age gap, Post-MP Husband latest occ. score, Post-MP Husband 1940
education and education gap) as controls (except if the input is the regression dep. var.). In column 6, we present the P-value
of the test with null hypothesis that the estimates from columns 1 to 5 are jointly equal to zero. 1Age gap is defined as the
absolute value of the husband’s age minus the mother’s age minus 2.5. 2Defined from pre-marriage data: uses 1940 if available,
then 1930, then 1920, then 1910. Never uses a measure that is observed post-MP marriage. 3Education gap is defined as the
absolute value of difference in highest grade between the mother and the husband. 4Equal Weights regressions give the same
weight to each of the quality measures. Values are standardized to zero mean and variance equals one. 5Satisfaction weights
include husband’s occ. score, education and longevity. We use the utility function and the parameters defined and calibrated
in Grow and Van Bavel (2015) to construct the dependent variable. The equation below presents the utility function. The
first term of the equation is the similarity of education, second term is the earnings prospect and, last term is the age gap. We
follow the same categorization of variables as in the original paper, except for education, where we divide it in 4 quartile
categories instead of the four categories in the paper (no schooling, primary, secondary and tertiary). αi = ai + 25 To take
into account that female agents prefer partners who are about 2.5 years older. The parameters are: Smax = 4; Ymax = 5;
Amax = 800; ws = 0.385; wy = 1.201; wa = 10.833. vij =

(
Smax−|si−sj|

Smax

)ws
(

yi
Ymax

)wy
(
Amax−|αi−αj |

Amax

)wa
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Table 3.3: Welfare receipt lowered geographic mobility

Notes: Sample: all mothers in application. Refer to Table 3.1 for a full description of the controls, restrictions and checks.
Counties are ranked by the average schooling in the population between 18 and 55 years old in the 1940 census. Counties are
ranked by the sex ratio at the year of application (interpolated between 1910, 1920 and 1930 censuses). We then estimate
whether women moved to places above of below the median.
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Table 3.4: Welfare recipients do not have more children

Notes: Standard errors clustered at the county level. Refer to Table 3.1 for a full description of the controls, restrictions and
checks.
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Table 3.5: Welfare receipt did not benefit or hurt mothers in the long run

Notes: Sample includes all mothers regardless of marital status. Please refer to Table 3.1 for a full description of the controls,
restrictions and checks. The quality measure uses the standardized Jaro-Winkler distance for longevity in column 1, and the
standarized Jaro-Winkler distance for the 1940 census match in Column 2.
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Table 3.6: Marginal Value of Public Funds for the Mothers’ Pension Program

All values expressed in 2019 dollars

Notes: This table computes the Marginal Value of Public Funds (MVPF) using the methodology of Hendren and
Sprung-Keyser (2019). We correct for discounting using a 3% rate, and we do not consider the implications of life extensions
on Medicare and SSA pensions. We ignore the effects of the pension on marriage rates, type of husband, and years of
schooling of the children. These are treated as intermediate outcomes whose ultimate value is reflected in increases in income
and longevity. The dollar value of maternal behavioral response includes the discounted effects on marriage delay and mobility
decrease. The value of spillover for kids includes the discounted effects on mortality from age 10 to 85 and discounted income
effects for the children’s average working period, 45 years. We assume a 10% tax rate that is discounted for mothers and
children average working periods (27 and 45 years, respectively). The total transfer takes into account that mothers are in the
program, on average, for 3 years. 1Assumes no change in kids income. 2 Assumes there is no change in kids longevity and
takes into account the increase in income taxes from kids.
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Appendix A

Appendix to “The Effect of Robot

Assistance on Skills”

A.1 Figures & Tables

Figure A.1: Strike Zone
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Notes: The figure describes the strike zone and the umpire’s decision classification. Pitches that are called
strikes and ball are in blue and red, respectively. A pitch is correctly called if it crosses the strike zone and
called strike or missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone
but called strike or crosses the strike zone but called ball. The strike zone is defined as an imaginary
rectangular region over the home plate that extends roughly between the batter’s shoulders and kneecap and
the dimension is about 20 by 25 inches. Axes are in feet.
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Figure A.2: Strike Zone - Robot Implementation Adjustment
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Notes: The figure describes the strike zones. The red-dashed lines represent the adjusted strike zone
implemented for the robot since July 20, 2021 and the black-solid line represents the original strike zone. The
strike zone is defined as an imaginary rectangular region over the home plate that extends roughly between
the batter’s shoulders and kneecap and the dimension is about 20 by 25 inches. Axes are in feet.
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Figure A.3: Chronology of Robot Implementation

A. Major League

No Robot

2019 2020 2021 2022 2023 2024

B. Triple-A Pacific Coast

No Robot COVID-19 No Robot RobotRobot (Challenge)

2019 2020 2021 2022 2023 2024

C. Triple-A International

No Robot COVID-19 No Robot Robot (Challenge)

2019 2020 2021 2022 2023 2024

D. Single-A Florida State

No Robot COVID-19 Robot Robot (Challenge)

2019 2020 2021 2022 2023 2024

E. All Other Leagues

No Robot COVID-19 No Robot

2019 2020 2021 2022 2023 2024

Notes: The figure shows timeline of the implementation of the robot in different leagues. COVID-19 pause is
shown in red. “Robot” indicate that the league implemented the robot and “Robot (Challenge)” indicate that
the challenge system described in Section A.3 is used.
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Figure A.4: Pitch Distribution and Accuracy

A. Major League Umpires
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B. Minor League Treated Umpires
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Notes: X-axis is the pitch distance from the nearest border of the strike zone in feet and y-axis shows the
average accuracy rate. To the left of origin are pitches falling outside of the strike zone, and to the right are
pitches falling inside the strike zone. Panel A shows the distribution of pitches for the umpires who worked in
the Major League from 2021 to 2023 and Panel B shows for the umpires who worked in Triple-A Pacific in
2022 and games without robot in 2021 and 2023.
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Figure A.5: Robot Implementation and Umpire Moves
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Notes: The figure describes potential lateral and vertical movements of umpires across leagues and robot
implementation. In 2022, Triple-A Pacific Coast League implemented robot and 66 umpires (41 with more
than 10 games with robot) are assisted by the robot. These umpires, in 2021, worked in Double-A leagues
and Triple-A leagues. In the following year, in 2023, these umpires stayed in Triple-A and/or moved up to
the Major League. In 2023, games held on Tuesdays to Thursdays used robot and games on Fridays to
Sundays are called by umpires without robot. DRobot

it = 1 indicates the games with robot and DPostRobot
it = 1

indicates the games without robot in 2023.
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Figure A.6: Pitch Distribution and Called Strike
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Notes: X-axis is the pitch distance from the nearest border of the strike zone in feet and y-axis shows the
average called strike rate. To the left of origin are pitches falling outside of the strike zone, and to the right
are pitches falling inside the strike zone.
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Figure A.7: Event-Study - Umpire Decisions

A. Incorrectly Called Strikes
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B. Incorrectly Called Balls

β Robot Use: -0.006***
β Post-Robot Use: -0.005***
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Notes: All regressions include year-by-month, umpire and team-by-year fixed effects. Standard errors are
clustered at the umpire-level. “Robot Use” indicate that robot is assisting umpires calling the game and
“Post-Robot Use” indicate that the umpire returned following robot-assistance. X-axis is months relative to
the first month of robot implementation. A pitch is correctly called if it crosses the strike zone and called
strike or missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but
called strike or crosses the strike zone but called ball. * p<0.1,** p<0.05, *** p<0.01.
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Figure A.8: Called Strike Heatmaps - By Situations without Robot
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B. Previous Pitch was Called Strike
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C. Count is “3-0”
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D. Count is “0-2”
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Notes: The figures plot the share of pitches that are called strike by pitch location and by game situations.
The black dotted line shows the strike zone for an average batter.
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Figure A.9: Event-Study - Umpire Ejections

A. Ejections

β Robot Use: -0.024***
β Post-Robot Use:  0.001
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Notes: All regressions include a vector of covariates at the pitch-level, year-by-month, umpire and
team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Use” indicate that
umpire is calling the game with robot-assistance and “Post-Robot Use” indicate that the human umpire
returned following robot-assistance. X-axis is months relative to the first month of robot implementation. *
p<0.1,** p<0.05, *** p<0.01.
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Figure A.10: Player Pitch Heatmaps

A. Pitchers Facing Umpire with Robot-Assistance

0
1

2
3

4
5

Y-
C

oo
rd

in
at

e
 

-2 -1 0 1 2
 

X-Coordinate

.19

.17

.15

.13

.11

.09

.07

.05

.03

.01

percent

B. Major League Pitchers
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Notes: The figures plot the share of pitches by pitch location of pitchers facing right-handed batters. The
black dotted line shows the strike zone for an average batter and the red dotted line in Panel A shows the
adjusted strike zone that was implemented on July 20, 2021 for games with robot.
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Figure A.11: Event-Study - Pitchers Game-Level

A. Pitched Inside
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Notes: All regressions include a vector of covariates at the pitch-level (excluding pitch location controls),
year-by-month, umpire and player and team-by-year fixed effects. Standard errors are clustered at the
player-level. “Pitched Inside” indicates that a pitch falls inside the strike zone. Distances are measured in
feet. X-axis is number of games relative to the last game with robot.
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Figure A.12: Event-Study - Pitchers Month-Level
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Notes: All regressions include a vector of covariates at the pitch-level (excluding pitch location controls),
year-by-month, umpire and player and team-by-year fixed effects. Standard errors are clustered at the
player-level. “Pitched Inside” indicates that a pitch falls inside the strike zone. Distances are measured in
feet. X-axis is months relative to the first month of robot implementation.
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Figure A.13: Event-Study - Different Estimators

A. Residualized Accuracy
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Notes: The figure plots coefficients from four different event study estimators and two-way fixed effects
model (Borusyak et al., 2024; Callaway and Sant’Anna, 2021; De Chaisemartin and d’Haultfoeuille, 2020;
Sun and Abraham, 2021). X-axis is months relative to the last month of robot implementation. A pitch is
correctly called if it crosses the strike zone and called strike or missed the strike zone and called ball. The
outcomes in Panel A and B are decision accuracy residualized for pitch location and fixed-effects and raw
decision accuracy. The outcomes are collapsed at the month-level.
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Figure A.14: Does Skill Distribution Compress?
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Notes: The figure plots the results in Table A.12 and Table A.14. All regressions include a vector of
covariates at the pitch-level, year-by-month, umpire and team-by-year fixed effects. “Mean Accuracy” is
measured in 2021. “Robot Effect” indicate the effect of robot assisting the umpire calling the game and
“Post-Robot Effect.” indicate that the effect of human umpire returning following robot-assistance. A pitch is
correctly called if it crosses the strike zone and called strike or missed the strike zone and called ball. A pitch
is incorrectly called if it misses the strike zone but called strike or crosses the strike zone but called ball. I
restrict the sample to never-treated umpires and umpires treated in Triple-A implementation in 2022.
Umpires’ skill are measured in 2021 and divided into quartiles. Umpires’ years of experience are measured in
2021.
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Figure A.15: Umpire Skill by Age and Experience
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Notes: The figure plots the average accuracy of the Major League umpires in 2022 by age and years of
experience.
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Figure A.16: Treatment Intensity Distribution

A. Full Sample
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Notes: In 2023, games held on Tuesdays to Thursdays used robot and games on Fridays to Sundays are
called without robot. “Dosage” is # of games with robot

# of total games . Panel A plots the dosage for full sample of Triple-A
league games in 2023 at the umpire-game level. Panel B plots the dosage for the umpire’s first, fifth and
tenth game of the season.
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Figure A.17: Are Dosages Quasi-Random?
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Notes: In 2023, games held on Tuesdays to Thursdays used robot and games on Fridays to Sundays are
called without robot. “Dosage” is # of games with robot

# of total games . The figure plots the umpire’s years of experience on
the Y-axis and the dosage on the X-axis.
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Figure A.18: Event-Study - Game Outcomes
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Notes: All regressions include year-by-month and team fixed effects and league specific time trend. Standard
errors are clustered at the team-level. “First Season’ indicate that it is the first season of robot
implementation and “Second Season’ indicate that it is the second season of robot implementation. The
sample includes games from Single-A Florida State and Carolina leagues. * p<0.1,** p<0.05, *** p<0.01.
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Table A.1: Player Outcomes Summary Statistics

Full Sample With Robot Without Robot

Mean SD Mean SD Mean SD

Pitch Characteristics

Pitch Distance from Center 0.991 ( 0.544) 1.072 ( 0.559) 0.988 ( 0.543)

Pitch Distance from Border 0.403 ( 0.282) 0.426 ( 0.344) 0.402 ( 0.278)

Pitched Inside 0.511 ( 0.500) 0.426 ( 0.494) 0.515 ( 0.500)

Pitched Edge 0.596 ( 0.491) 0.618 ( 0.486) 0.595 ( 0.491)

Batter Swung 0.489 ( 0.500) 0.478 ( 0.500) 0.489 ( 0.500)

Game Characteristics - Pitchers

Pitcher Strike Out 4.718 ( 2.351) 4.584 ( 2.234) 4.724 ( 2.356)

Pitcher Hit Allowed 4.946 ( 2.254) 4.606 ( 2.228) 4.959 ( 2.253)

Pitcher Home Run Allowed 0.589 ( 0.802) 0.615 ( 0.817) 0.588 ( 0.801)

Pitcher Walk Allowed 1.952 ( 1.394) 2.196 ( 1.471) 1.942 ( 1.390)

Game Characteristics - Batters

Batter Struck Out 0.959 ( 0.899) 1.025 ( 0.920) 0.956 ( 0.898)

Batter Hit 0.926 ( 0.892) 0.928 ( 0.895) 0.926 ( 0.891)

Batter Home Run 0.108 ( 0.330) 0.119 ( 0.346) 0.107 ( 0.329)

Batter Walked 0.428 ( 0.652) 0.543 ( 0.732) 0.423 ( 0.648)

Number of Games 66,297 2,731 63,566

Number of Pitchers 7,821 1,948 7,657

Number of Batters 7,496 1,537 7,383

Notes: Distances are measured in feet. “Pitched Inside” indicates that a pitch falls inside the strike zone
and “Pitched Edge” indicates that a pitch falls between 0.5 and 1.5 feet from the center of the strike zone.
Outcomes in “Game Characteristics” panel are collapsed at the game-level. I restrict the sample to pitchers
who faced at least 15 batters in an appearance and batters with at least 3 at-bats. A batter’s at-bat ends in
a walk (or base on balls) when the count reaches 4 balls. Robot is used in games in Single-A Florida from
2021, in Triple-A Pacific Coast League in 2022 and in select games in both Triple-A leagues in 2023.
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Table A.2: Summary Statistics - Are Robot-Assisted Umpires Different?

Never-Treated Umpires Robot-Assisted Umpires Post-Robot Umpires

Mean SD Mean SD Mean SD

Pitch Characteristics

Called Strike 0.338 ( 0.473) 0.337 ( 0.473) 0.337 ( 0.473)

Called Correctly 0.953 ( 0.212) 0.953 ( 0.211) 0.953 ( 0.211)

Residualized Accuracy 0.0000 (0.2016) 0.0000 (0.2013) 0.0001 (0.2006)

Horizontal distance 0.740 ( 0.434) 0.737 ( 0.435) 0.739 ( 0.436)

Vertical distance 0.844 ( 0.567) 0.840 ( 0.557) 0.838 ( 0.557)

Game Characteristics

Ejection by Umpire 0.070 ( 0.309) 0.061 ( 0.286) 0.062 ( 0.290)

Number of Games 15,067 10,750 9,630

Number of Pitches 2,089,927 1,493,225 1,337,175

Number of Umpires 313 70 62

Notes: “Never-Treated Umpires” are those who have never been assisted by the robots, “Robot-Assisted
Umpires” include those who have been assisted by the robots and “Post-Robot Umpires” include those who
have been assisted and subsequently moved to another league without the robots. The statistics are from
before any robot implementation and from the Minor Leagues. A pitch is correctly called if it crosses the
strike zone and called strike or missed the strike zone and called ball. “Residualized accuracy” residualizes
whether a decision was correct for pitch location and team-by-year fixed effect to account for pitch coordinates
that may depend on calibration for each stadium and stringer plotting coordinates. Distances are in feet.
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Table A.3: Do Umpires Lose Skill? - Restricting to More Ambiguous Decisions

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called 0.123*** ( 0.018) -0.037*** ( 0.005) 0.864 4,166,996

Correctly Called Strike 0.015*** ( 0.005) 0.004** ( 0.002) 0.267 4,166,996

Correctly Called Ball 0.108*** ( 0.017) -0.041*** ( 0.006) 0.597 4,166,996

Incorrectly Called Strike -0.111*** ( 0.018) 0.047*** ( 0.007) 0.126 4,166,996

Incorrectly Called Ball -0.012*** ( 0.002) -0.011*** ( 0.001) 0.010 4,166,996

Called Strike -0.097*** ( 0.017) 0.052*** ( 0.007) 0.393 4,166,996

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. A pitch is correctly called if it crosses the strike zone and called strike
or missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called
strike or crosses the strike zone but called ball. Sample is restricted to pitches that are within 0.5 feet from
the nearest border of the strike zone from the outside and within 0.2 feet from the nearest border of the
strike zone from the inside. Baseline mean is calculated using the data before 2021, the year of first robot
implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table A.4: Do Umpires Suffer More From Decision Biases?

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Omission Bias (3-0) -0.077*** ( 0.023) 0.029*** ( 0.008) 0.088 58,580

Omission Bias (0-2) -0.002 ( 0.003) -0.003** ( 0.001) 0.010 62,490

Gambler’s Fallacy -0.012* ( 0.006) -0.003* ( 0.002) 0.011 61,839

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. Outcomes are indicators that a call is incorrectly called given a situation.
The outcome for “Omission Bias (3-0)” is that a pitch was incorrectly called strike when the count is 3-0.
The outcome for “Omission Bias (0-2)” is that a pitch was incorrectly called ball when the count is 3-0. The
outcome for “Gambler’s Fallacy” is that a pitch was incorrectly called ball when the previous pitch was called
strike. Baseline mean is calculated using the data before 2021, the year of first robot implementation. *
p<0.1,** p<0.05, *** p<0.01.
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Table A.5: Summary Statistics - Are Umpires who Move Different?

Umpires who Stayed Moved Umpire Promoted Umpire

Mean SD Mean SD Mean SD

Pitch Characteristics

Called Strike 0.330 ( 0.470) 0.328 ( 0.470) 0.325 ( 0.469)

Called Correctly 0.950 ( 0.219) 0.944 ( 0.230) 0.936 ( 0.244)

Residualized Accuracy -0.0000 (0.2070) 0.0000 (0.2151) -0.0002 (0.2253)

Horizontal distance 0.738 ( 0.432) 0.723 ( 0.424) 0.722 ( 0.424)

Vertical distance 0.837 ( 0.553) 0.846 ( 0.550) 0.862 ( 0.553)

Game Characteristics

Ejection by Umpire 0.075 ( 0.353) 0.066 ( 0.293) 0.063 ( 0.287)

Number of Games 915 5,444 2,850

Number of Pitches 132,937 782,866 407,161

Number of Umpires 86 161 80

Notes: “Umpires who Stayed” are umpires who have not moved between the leagues in 2022, “Moved Umpire”
represents the umpires who primarily called games in different league than in 2022 and “Promoted Umpire”
represents the umpires who moved up the league class from 2022. The statistics are from 2021 and from the
Minor Leagues as 2020 season was canceled due to the COVID-19 pandemic. A pitch is correctly called if it
crosses the strike zone and called strike or missed the strike zone and called ball. “Residualized accuracy”
residualizes whether a decision was correct for pitch location and team-by-year fixed effect to account for pitch
coordinates that may depend on calibration for each stadium and stringer plotting coordinates. Distances are
in feet.
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Table A.6: Are Results Sensitive to Different Control Groups?

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Control Group: Umpires Switched League

Correctly Called 0.062*** ( 0.009) -0.025*** ( 0.004) 0.951 4,814,684

Correctly Called Strike 0.017*** ( 0.004) -0.011*** ( 0.002) 0.294 4,814,684

Correctly Called Ball 0.045*** ( 0.007) -0.014*** ( 0.003) 0.657 4,814,684

Incorrectly Called Strike -0.056*** ( 0.009) 0.031*** ( 0.004) 0.042 4,814,684

Incorrectly Called Ball -0.006*** ( 0.001) -0.007*** ( 0.001) 0.007 4,814,684

Called Strike -0.039*** ( 0.007) 0.021*** ( 0.003) 0.336 4,814,684

Control Group: Promoted Umpires

Correctly Called 0.061*** ( 0.009) -0.027*** ( 0.004) 0.951 3,879,268

Correctly Called Strike 0.019*** ( 0.004) -0.011*** ( 0.002) 0.296 3,879,268

Correctly Called Ball 0.042*** ( 0.007) -0.015*** ( 0.003) 0.656 3,879,268

Incorrectly Called Strike -0.055*** ( 0.009) 0.034*** ( 0.004) 0.042 3,879,268

Incorrectly Called Ball -0.006*** ( 0.001) -0.007*** ( 0.001) 0.007 3,879,268

Called Strike -0.036*** ( 0.007) 0.023*** ( 0.003) 0.338 3,879,268

Control Group: Single-A Umpires

Correctly Called 0.061*** ( 0.009) -0.031*** ( 0.004) 0.951 3,191,497

Correctly Called Strike 0.019*** ( 0.004) -0.013*** ( 0.002) 0.297 3,191,497

Correctly Called Ball 0.042*** ( 0.007) -0.018*** ( 0.003) 0.655 3,191,497

Incorrectly Called Strike -0.054*** ( 0.009) 0.039*** ( 0.004) 0.042 3,191,497

Incorrectly Called Ball -0.006*** ( 0.002) -0.008*** ( 0.001) 0.007 3,191,497

Called Strike -0.035*** ( 0.007) 0.026*** ( 0.003) 0.338 3,191,497

Control Group: Major League Umpires

Correctly Called 0.065*** ( 0.008) -0.027*** ( 0.003) 0.913 4,723,320

Correctly Called Strike 0.029*** ( 0.005) -0.014*** ( 0.002) 0.266 4,723,320

Correctly Called Ball 0.036*** ( 0.005) -0.013*** ( 0.002) 0.647 4,723,320

Incorrectly Called Strike -0.057*** ( 0.008) 0.034*** ( 0.004) 0.077 4,723,320

Incorrectly Called Ball -0.008*** ( 0.001) -0.007*** ( 0.001) 0.010 4,723,320

Called Strike -0.028*** ( 0.005) 0.020*** ( 0.002) 0.343 4,723,320

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. A pitch is correctly called if it crosses the strike zone and called strike or
missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called strike
or crosses the strike zone but called ball. Each panel uses different control groups: “Umpires Switched League”
refers to any umpires who switched league between seasons; “Promoted Umpires” refers to umpires who
moved up in the league system; “Single-A Umpires” and “Major League Umpires” are the umpires working in
the lowest and highest system, respectively. Baseline mean is calculated using the data before 2021, the year
of first robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table A.7: Do Players Alter Their Behaviors?

Treated Players

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Pitch Distance from Center -0.016*** ( 0.003) -0.008*** ( 0.003) 0.980 17,327,268

Pitch Distance from Border -0.017*** ( 0.002) -0.003** ( 0.001) 0.404 17,327,268

Pitched Inside 0.070*** ( 0.002) 0.005** ( 0.002) 0.527 17,327,268

Pitched Edge 0.001 ( 0.002) 0.002 ( 0.002) 0.588 17,327,268

Batter Swung -0.014*** ( 0.003) 0.000 ( 0.003) 0.491 17,325,584

Notes: All regressions include a vector of covariates at the pitch-level, year-by-month, umpire and player and
team-by-year fixed effects, otherwise specified. For distance outcomes, pitch location controls are omitted.
Standard errors are clustered at the player-level. “Robot Mo.” indicate that robot is assisting umpires calling
the game and “Post-Robot Mo.” indicate that the umpire returned following robot-assistance. Distances
are measured in feet. “Pitched Inside” indicates that a pitch falls inside the strike zone and “Pitched Edge”
indicates that a pitch falls between 0.5 and 1.5 feet from the center of the strike zone. Baseline mean is
calculated using the data before 2021, the year of first robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table A.8: Do Umpires Lose Skill? - Reweighing for Player Responses

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called 0.080*** ( 0.012) -0.024*** ( 0.004) 0.931 8,685,514

Correctly Called Strike 0.013*** ( 0.004) -0.005*** ( 0.001) 0.286 8,685,514

Correctly Called Ball 0.067*** ( 0.010) -0.020*** ( 0.004) 0.645 8,685,514

Incorrectly Called Strike -0.074*** ( 0.012) 0.030*** ( 0.004) 0.060 8,685,514

Incorrectly Called Ball -0.006*** ( 0.001) -0.006*** ( 0.001) 0.009 8,685,514

Called Strike -0.061*** ( 0.010) 0.025*** ( 0.004) 0.346 8,685,514

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Regressions reweigh the data to have same distribution of pitches
as the pitches in the Major League in 2021. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. A pitch is correctly called if it crosses the strike zone and called strike
or missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called
strike or crosses the strike zone but called ball. Baseline mean is calculated using the data before 2021, the
year of first robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table A.9: Do Pitch-Level Controls Matter?

Treated Umpires

Main Specification Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

without Pitch-level Controls

Correctly Called 0.051*** ( 0.008) -0.015*** ( 0.002) 0.932 8,864,801

with Pitch-level Controls

Correctly Called 0.064*** ( 0.009) -0.020*** ( 0.003) 0.932 8,864,667

Dosage Specification With Robot S.E. Dosage S.E. Baseline Mean N

without Pitch-level Controls

Correctly Called 0.041*** ( 0.001) -0.017** ( 0.007) 0.885 330,188

with Pitch-level Controls

Correctly Called 0.052*** ( 0.001) -0.020*** ( 0.007) 0.885 330,185

Notes: All regressions for pitch-level outcomes include year-by-month, umpire and team-by-year fixed effects.
Standard errors are clustered at the umpire-level. “Treated Games” indicate that robot is assisting umpires
calling the game and “Dosage” is # of games with robot

# of total games . A pitch is correctly called if it crosses the strike zone
and called strike or missed the strike zone and called ball. A pitch is incorrectly called if it misses the
strike zone but called strike or crosses the strike zone but called ball. Baseline mean is calculated using the
data before 2021, the year of first robot implementation for the Main Specification panel. Baseline mean is
calculated using the first game of the year without robot-assistance for the Dosage Specification panel. *
p<0.1,** p<0.05, *** p<0.01.
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Table A.10: Does Data Quality Matter?

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called 0.033*** ( 0.006) -0.015*** ( 0.002) 0.919 8,815,175

Correctly Called Strike 0.038*** ( 0.007) -0.020*** ( 0.003) 0.267 8,815,175

Correctly Called Ball -0.005 ( 0.004) 0.005*** ( 0.001) 0.652 8,815,175

Incorrectly Called Strike -0.035*** ( 0.005) 0.017*** ( 0.003) 0.075 8,815,175

Incorrectly Called Ball 0.002 ( 0.002) -0.002*** ( 0.000) 0.006 8,815,175

Called Strike 0.003 ( 0.004) -0.003** ( 0.001) 0.342 8,815,175

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. I use the manually-plotted coordinates for all pitches. Standard errors
are clustered at the umpire-level. “Robot Mo.” indicate that robot is assisting umpires calling the game and
“Post-Robot Mo.” indicate that the umpire returned following robot-assistance. A pitch is correctly called if
it crosses the strike zone and called strike or missed the strike zone and called ball. A pitch is incorrectly
called if it misses the strike zone but called strike or crosses the strike zone but called ball. Baseline mean is
calculated using the data before 2021, the year of first robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table A.11: Do Umpires Lose Skill? - Restricting to Triple-A and Major League Umpires

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called 0.089*** ( 0.003) -0.036*** ( 0.003) 0.913 1,920,905

Correctly Called Strike 0.046*** ( 0.003) -0.021*** ( 0.002) 0.261 1,920,905

Correctly Called Ball 0.043*** ( 0.003) -0.015*** ( 0.002) 0.652 1,920,905

Incorrectly Called Strike -0.081*** ( 0.003) 0.044*** ( 0.003) 0.079 1,920,905

Incorrectly Called Ball -0.008*** ( 0.001) -0.008*** ( 0.001) 0.008 1,920,905

Called Strike -0.035*** ( 0.004) 0.024*** ( 0.002) 0.340 1,920,905

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. A pitch is correctly called if it crosses the strike zone and called strike or
missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called strike
or crosses the strike zone but called ball. I restrict the sample to the Major League umpires and umpires
treated in Triple-A implementation in 2022. Baseline mean is calculated using the data before 2022, the year
of robot implementation for the Triple-A umpires. * p<0.1,** p<0.05, *** p<0.01.
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Table A.12: Do High-Skilled Umpires Lose More Skill?

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Bottom Quartile

Correctly Called 0.105*** ( 0.009) -0.009 ( 0.006) 0.901 459,518

Correctly Called Strike 0.058*** ( 0.011) -0.005 ( 0.004) 0.250 459,518

Correctly Called Ball 0.047*** ( 0.009) -0.004 ( 0.004) 0.651 459,518

Incorrectly Called Strike -0.096*** ( 0.005) 0.011 ( 0.007) 0.090 459,518

Incorrectly Called Ball -0.010* ( 0.005) -0.003* ( 0.001) 0.009 459,518

Called Strike -0.038*** ( 0.011) 0.007 ( 0.005) 0.340 459,518

IQR

Correctly Called 0.091*** ( 0.007) -0.046*** ( 0.005) 0.948 353,885

Correctly Called Strike 0.036*** ( 0.004) -0.022*** ( 0.003) 0.287 353,885

Correctly Called Ball 0.054*** ( 0.007) -0.024*** ( 0.003) 0.661 353,885

Incorrectly Called Strike -0.082*** ( 0.005) 0.056*** ( 0.006) 0.048 353,885

Incorrectly Called Ball -0.009** ( 0.003) -0.010*** ( 0.001) 0.004 353,885

Called Strike -0.046*** ( 0.006) 0.034*** ( 0.004) 0.335 353,885

Top Quartile

Correctly Called 0.084*** ( 0.008) -0.047*** ( 0.002) 0.961 232,069

Correctly Called Strike 0.043*** ( 0.008) -0.032*** ( 0.003) 0.291 232,069

Correctly Called Ball 0.041*** ( 0.010) -0.015*** ( 0.003) 0.670 232,069

Incorrectly Called Strike -0.063*** ( 0.006) 0.061*** ( 0.003) 0.034 232,069

Incorrectly Called Ball -0.021*** ( 0.007) -0.014*** ( 0.001) 0.004 232,069

Called Strike -0.019* ( 0.009) 0.029*** ( 0.003) 0.325 232,069

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. A pitch is correctly called if it crosses the strike zone and called strike
or missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called
strike or crosses the strike zone but called ball. I restrict the sample to never-treated umpires and umpires
treated in Triple-A implementation in 2022. Umpires’ skill are measured in 2021 and divided into quartiles.
Baseline mean is calculated using the data before 2022, the year of robot implementation for the Triple-A
umpires. * p<0.1,** p<0.05, *** p<0.01.
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Table A.13: Do Umpires Improve with Experience?

Experience S.E. Outcome Mean N

All Umpires

Accuracy 0.0007 (0.0005) 0.9162 893

1(Ejection) 0.0007 (0.0008) 0.0566 893

Number of Ejection 0.0002 (0.0010) 0.0685 893

Umpires Experience ≤ 5 yrs.

Accuracy 0.0020*** (0.0006) 0.9467 317

1(Ejection) 0.0040* (0.0023) 0.0593 317

Number of Ejection 0.0040 (0.0029) 0.0699 317

Umpires Experience ∈ (5,10] yrs.

Accuracy -0.0052*** (0.0017) 0.9216 208

1(Ejection) -0.0008 (0.0026) 0.0650 208

Number of Ejection -0.0017 (0.0038) 0.0808 208

Notes: All regressions for pitch-level outcomes include umpire fixed effects. Standard errors are clustered at
the umpire-level. Experience is measured in years. A pitch is correctly called if it crosses the strike zone and
called strike or missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone
but called strike or crosses the strike zone but called ball. Outcomes are collapsed at the umpire-by-year
level. * p<0.1,** p<0.05, *** p<0.01.
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Table A.14: Do More-Experienced Umpires Lose More Skill?

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Umpire Experience ≤ 6 years

Correctly Called 0.094*** ( 0.008) -0.053*** ( 0.003) 0.953 157,135

Correctly Called Strike 0.014* ( 0.008) -0.031*** ( 0.002) 0.288 157,135

Correctly Called Ball 0.080*** ( 0.011) -0.022*** ( 0.002) 0.666 157,135

Incorrectly Called Strike -0.084*** ( 0.008) 0.064*** ( 0.002) 0.042 157,135

Incorrectly Called Ball -0.010*** ( 0.003) -0.011*** ( 0.001) 0.004 157,135

Called Strike -0.069*** ( 0.011) 0.033*** ( 0.002) 0.330 157,135

Umpire Experience ∈ (6, 9] years

Correctly Called 0.079*** ( 0.004) -0.042*** ( 0.003) 0.948 460,100

Correctly Called Strike 0.039*** ( 0.004) -0.022*** ( 0.002) 0.284 460,100

Correctly Called Ball 0.040*** ( 0.005) -0.020*** ( 0.003) 0.664 460,100

Incorrectly Called Strike -0.074*** ( 0.004) 0.052*** ( 0.004) 0.046 460,100

Incorrectly Called Ball -0.005** ( 0.002) -0.011*** ( 0.001) 0.005 460,100

Called Strike -0.035*** ( 0.005) 0.031*** ( 0.003) 0.331 460,100

Umpire Experience > 9 years

Correctly Called 0.092*** ( 0.008) -0.018*** ( 0.005) 0.895 1,100,884

Correctly Called Strike 0.058*** ( 0.006) -0.009*** ( 0.003) 0.249 1,100,884

Correctly Called Ball 0.035*** ( 0.008) -0.009*** ( 0.003) 0.646 1,100,884

Incorrectly Called Strike -0.084*** ( 0.008) 0.021*** ( 0.006) 0.096 1,100,884

Incorrectly Called Ball -0.008*** ( 0.002) -0.003*** ( 0.001) 0.009 1,100,884

Called Strike -0.026*** ( 0.008) 0.012*** ( 0.004) 0.345 1,100,884

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. A pitch is correctly called if it crosses the strike zone and called strike or
missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called strike
or crosses the strike zone but called ball. I restrict the sample to the Major League umpires and umpires
treated in Triple-A implementation in 2022. Umpires’ years of experience are measured in 2021. Baseline
mean is calculated using the data before 2022, the year of robot implementation for the Triple-A umpires. *
p<0.1,** p<0.05, *** p<0.01.
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Table A.15: Do Umpires Lose More Skill if They Are Further Away from Promotion?

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Umpire without MLB Experience

Correctly Called 0.082*** ( 0.005) -0.049*** ( 0.002) 0.953 512,674

Correctly Called Strike 0.028*** ( 0.004) -0.026*** ( 0.002) 0.290 512,674

Correctly Called Ball 0.054*** ( 0.006) -0.023*** ( 0.002) 0.664 512,674

Incorrectly Called Strike -0.073*** ( 0.004) 0.060*** ( 0.002) 0.042 512,674

Incorrectly Called Ball -0.009*** ( 0.003) -0.011*** ( 0.001) 0.004 512,674

Called Strike -0.045*** ( 0.006) 0.035*** ( 0.002) 0.332 512,674

Umpire with MLB Experience

Correctly Called 0.093*** ( 0.005) -0.015*** ( 0.004) 0.897 1,205,489

Correctly Called Strike 0.053*** ( 0.006) -0.009*** ( 0.003) 0.249 1,205,489

Correctly Called Ball 0.040*** ( 0.005) -0.007*** ( 0.003) 0.647 1,205,489

Incorrectly Called Strike -0.085*** ( 0.005) 0.020*** ( 0.005) 0.094 1,205,489

Incorrectly Called Ball -0.007*** ( 0.002) -0.004*** ( 0.001) 0.009 1,205,489

Called Strike -0.032*** ( 0.006) 0.011*** ( 0.003) 0.343 1,205,489

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. A pitch is correctly called if it crosses the strike zone and called strike or
missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called strike
or crosses the strike zone but called ball. I restrict the sample to the Major League umpires and umpires
treated in Triple-A implementation in 2022. Umpires’ prior experience in the Major League is measured
in 2021. Baseline mean is calculated using the data before 2022, the year of robot implementation for the
Triple-A umpires. * p<0.1,** p<0.05, *** p<0.01.
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Table A.16: 2023 Triple-A Implementation Summary Statistics

Full Sample With Robot Without Robot

Mean SD Mean SD Mean SD

Pitch Characteristics

Called Strike 0.310 ( 0.462) 0.308 ( 0.462) 0.311 ( 0.463)

Called Correctly 0.918 ( 0.275) 0.940 ( 0.237) 0.901 ( 0.299)

Residualized Accuracy -0.0000 (0.2630) 0.0297 (0.2316) -0.0220 (0.2820)

Horizontal distance 0.763 ( 0.490) 0.757 ( 0.488) 0.768 ( 0.492)

Vertical distance 0.839 ( 0.575) 0.836 ( 0.573) 0.842 ( 0.576)

Game Characteristics

Ejection by Umpire 0.056 ( 0.283) 0.043 ( 0.234) 0.065 ( 0.314)

Number of Games 2,126 888 1,238

Number of Pitches 330,188 140,588 189,600

Number of Umpires 71 64 70

Dosage 0.420 ( 0.137)

Notes: A pitch is correctly called if it crosses the strike zone and called strike or missed the strike zone
and called ball. “Residualized accuracy” residualizes whether a decision was correct for pitch location and
team-by-year fixed effect to account for pitch coordinates that may depend on calibration for each stadium
and stringer plotting coordinates. Distances are in feet. Robot is used in games played between Tuesday and
Thursday in both Triple-A leagues in 2023. “Dosage” is # of games with robot

# of total games .
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Table A.17: 2020 COVID Pause Summary Statistics

Never-Returned Umpires Returned Umpires

Mean SD Mean SD

Pitch Characteristics

Called Strike 0.334 ( 0.472) 0.333 ( 0.471)

Called Correctly 0.957 ( 0.203) 0.952 ( 0.213)

Residualized Accuracy -0.0001 (0.1945) 0.0003 (0.2034)

Horizontal distance 0.745 ( 0.437) 0.738 ( 0.431)

Vertical distance 0.849 ( 0.575) 0.857 ( 0.575)

Game Characteristics

Ejection by Umpire 0.062 ( 0.279) 0.068 ( 0.304)

Number of Games 1,382 3,358

Number of Pitches 193,254 465,809

Number of Umpires 83 84

Notes: A pitch is correctly called if it crosses the strike zone and called strike or missed the strike zone and
called ball. Distances are in feet. “Never-Returned Umpires” are those who have not returned to call games
since the COVID-19 pandemic and “Returned Umpires” are those who have returned from the COVID-19
canceled season. The statistics are from 2019 before the COVID-19 canceled 2020 season and from the Minor
Leagues.
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Table A.18: Are Umpires Following the Other Guideline?

Treated Umpires

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitch-level Outcomes

Correctly Called 0.038*** ( 0.006) -0.009*** ( 0.002) 0.932 8,864,667

Correctly Called Strike 0.013*** ( 0.004) -0.006*** ( 0.001) 0.281 8,864,667

Correctly Called Ball 0.025*** ( 0.003) -0.004** ( 0.002) 0.651 8,864,667

Incorrectly Called Strike -0.024*** ( 0.004) 0.007*** ( 0.001) 0.059 8,864,667

Incorrectly Called Ball -0.014*** ( 0.002) 0.002*** ( 0.001) 0.008 8,864,667

Called Strike -0.011*** ( 0.003) 0.002 ( 0.002) 0.340 8,864,667

Notes: All regressions for pitch-level outcomes include a vector of covariates at the pitch-level, year-by-month,
umpire and team-by-year fixed effects. Standard errors are clustered at the umpire-level. “Robot Mo.”
indicate that robot is assisting umpires calling the game and “Post-Robot Mo.” indicate that the umpire
returned following robot-assistance. A pitch is correctly called if it crosses the strike zone and called strike or
missed the strike zone and called ball. A pitch is incorrectly called if it misses the strike zone but called strike
or crosses the strike zone but called ball. Accuracy is measured using the alternate strike zone implemented
for the robot-assisted games on July 20, 2021. Baseline mean is calculated using the data before 2021, the
year of first robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table A.19: Do the Leagues Benefit from Robot Implementation?

Treated Team

First Season S.E. Second Season S.E. Baseline Mean N

Game-level Outcomes

Attendance 265.2** ( 123.1) 3.3 ( 121.2) 2135.2 6,826

Duration (in min.) 21.1*** ( 2.9) 15.5*** ( 2.9) 166.2 7,219

Num. of Pitches 11.2*** ( 2.7) 0.5 ( 3.6) 272.4 7,220

Total Score 1.1* ( 0.5) -0.1 ( 0.5) 8.5 7,220

Delay -17.9 ( 24.3) -16.8 ( 20.3) 64.2 845

Notes: All regressions include year-by-month and team fixed effects and league specific time trend. Standard
errors are clustered at the team-level. “First Season’ indicate that it is the first season of robot implementation
and “Second Season’ indicate that it is the second season of robot implementation. The sample includes
games from Single-A Florida and Carolina leagues. Baseline mean is calculated using the data from 2019, the
season before robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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Table A.20: Do Players Perform Better Following Robot Implementation?

Treated Players

Robot Mo. S.E. Post-Robot Mo. S.E. Baseline Mean N

Pitcher Outcomes

Pitcher Strike Out -0.015 ( 0.072) -0.129 ( 0.080) 4.650 118,876

Pitcher Walk Allowed 0.125*** ( 0.046) -0.030 ( 0.048) 1.908 118,876

Pitcher Hit Allowed -0.039 ( 0.070) -0.040 ( 0.059) 5.170 118,876

Pitcher Home Run Allowed 0.039* ( 0.023) 0.013 ( 0.018) 0.559 118,876

Batter Outcomes

Batter Struck Out 0.004 ( 0.013) 0.027* ( 0.014) 0.914 1,089,716

Batter Walked 0.031*** ( 0.009) -0.013 ( 0.009) 0.393 1,089,716

Batter Hit -0.002 ( 0.009) -0.024*** ( 0.009) 0.938 1,089,716

Batter Home Run 0.009** ( 0.004) 0.000 ( 0.003) 0.099 1,089,716

Notes: All regressions include year-by-month, umpire and player and team-by-year fixed effects. Standard
errors are clustered at the player-level. “Robot Mo.” indicate that robot is assisting umpires calling the
game and “Post-Robot Mo.” indicate that the players are playing in games called by umpires following
robot-assistance. The outcomes are collapsed at the player-by-game level. I restrict the sample to pitchers
who faced at least 15 batters in an appearance and batters with at least 3 at-bats. A batter’s at-bat ends in
a walk (or base on balls) when the count reaches 4 balls. Baseline mean is calculated using the data before
2021, the year of first robot implementation. * p<0.1,** p<0.05, *** p<0.01.
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A.2 Baseball Game Description

Baseball is often referred to as America’s pastime and has captivated fans for over a century.

In this section, I briefly describe a typical baseball game.

Setup A baseball game is played between two teams, each consisting of nine players. One

team takes on the role of the batting team, while the other becomes the fielding team. The

objective of the batting team is to score runs, while the fielding team aims to prevent runs.

The field is divided into four bases arranged in a diamond pattern: first base, second base,

third base, and home plate.

Game The game begins with a pitcher, standing on the pitcher’s mound, throwing a pitch.

The pitcher’s objective is to throw the baseball to the batter while trying to prevent them

from hitting it. The batter stands at home plate, ready to swing at any pitch that comes his

way. The batter’s goal is to hit the pitched ball and safely reach a base. To score a run, a

batter must make a complete circuit around all four bases, returning to home plate.

A game consists of nine innings, with each team having the opportunity to bat and field.

Each inning is divided into two halves: the top and bottom. The team with the most runs at

the end of the nine innings wins.

Inning An inning refers to the period of play. A standard baseball game comprises nine

innings, although extra innings can occur if the game is tied after the regulation nine innings.

In the top half of the inning, the team (usually an away team) is designated as the “batting

team” and gets its chance to score runs. Each player gets a chance to bat in a specific order

(“batting lineup”) until three outs are accumulated. At the end of the top half of an inning,

there is a brief break as the teams switch roles. At the end of the bottom half of an inning,

another short break occurs as the teams switch roles again. This pattern continues until nine

innings are completed.
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At-Bat An “at-bat” refers to the specific plate appearance of a batter during a game. Each

at-bat involves a sequence of pitches thrown by the pitcher, and the count represents the

number of balls and strikes during this plate appearance. The count consists of two numbers.

The first number represents the number of balls, and the second number represents the

number of strikes. The count starts with 0 balls and 0 strikes. A ball is called when the

pitcher throws a pitch outside the strike zone, and the batter does not swing. A strike is

called when the pitcher throws a pitch inside the strike zone and the batter does not swing,

or the batter swings and misses. If a batter accumulates four balls, he is awarded first base,

a situation known as a “walk.” If a batter accumulates three strikes, he is called “out.”
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A.3 More Details about Robot Implementation

In 2021, the Major League successfully implemented an automated ball-and-strike system at

Single-A Florida State League. The system expanded to the Triple-A Pacific Coast League

in 2022 and the entire Triple-A in 2023. The technology is used in two different systems: full

ABS in which the game is called with the robot and a “Challenge” system.

Challenge System In the Single-A Florida State League, in 2022, the Major League

explored an alternative system called a “Challenge” system. In select games with the challenge

system, umpires call pitches as before without the robot, but the players (pitcher, catcher

and batter) can appeal these calls and check with the robot. Each team were given three

challenges in a game and if an appeal is successful, then the team retains the challenge.1,2 The

challenge system expanded to Triple-A leagues in 2023 and was also used in select games.3

Data In the data, I observe the number of successful and unsuccessful challenges in these

select games, but I do not know the exact pitch that resulted in a challenge. I observe the

ultimate call on the pitch.

In an average game, the umpire calls about 150 pitches. The average number of challenges

is about 4.4 per game and the average success rate is about 33%. Therefore, about 1.4 pitches

are overturned in a game with the challenge system (or about 0.9%). The average accuracy in

these games is 90.1%, but with 1.4 overturned pitches, the accuracy will be about 89.2%. The

main result of the paper is that the umpires’ accuracy declines following the implementation

of robots. If anything, the challenge system biases me away from finding the negative results.

Sample Restriction To account for the alternating implementation of the challenge system

and full robot-assisted games, I impose the following sample restrictions.

1A challenge must be made within 2 seconds of the call.
2The average number of challenges is about 4.4 per game and the average success rate is about 33%.
3Games held on Fridays to Sundays used the challenge system.
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In the main difference-in-differences specification (Equation 1.1), I drop the games with

the full robot system in the second year of the implementation. For example, if an umpire

worked in the Triple-A Pacific in 2022 and continued to work in the Triple-A Leagues in 2023,

I drop the full robot-assisted games in 2023. This restriction is made to estimate the effect of

robot implementation on human skills.

In the dosage model (Equation 1.3), I exploit the alternating system and keep all these

games.
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A.4 Pitch Coordinates

The Major League provides detailed pitch-level data including the X and Y coordinates

for every thrown pitch. There are two different coordinate systems: manually-plotted and

pitch-tracking technology-plotted coordinates.

A.4.1 Manually-Plotted Pitch Coordinates

The league hires “stringers” who digitally score games to provide data that are available on

the MLB Stats API. Most stadiums hire about three stringers and each work about 25-30

games in a season. New stringers go through an 8-10 weeks training program and score

practice games with the more experienced stringers before working alone. The main task of

these stringers is to enter the results of every pitch and play. They work at the press box in

each stadium with the Major League representative who oversees the job. In particular, to

record pitch coordinates, the stringer “clicks” on the software and records where he sees the

pitch go through the plate. These are, therefore, recorded in the pixel coordinate system.

A.4.2 Technology-Plotted Pitch Coordinates

Starting in 2003, the Major League started installing technology that tracks pitches in Major

League stadiums. “Questec” was used to measure umpires’ performances, yet it was criticized

for reliability.

In 2005, the league started installing cameras in stadiums to track pitches and completed

in 2007. “PITCHf/x” used three cameras, strategically located in the stadium, to track pitches

as it goes through the strike zone. Sportvision, the company that developed PITCHf/x,

claims that the system tracks pitches with an accuracy of better than one inch.

In 2017, the league replaced “PITCHf/x” with “TrackMan” which uses cameras and

Doppler radar to track pitches. And in 2020, “TrackMan” was replaced with “Hawk-Eye”

which uses the optical-tracking and vision-processing system that enables tracking pitches
184



with an accuracy of better than 0.1 inch.

The pitch coordinates from these systems are recorded as X and Y coordinates in feet.

A.4.3 Transforming Coordinates

To create a dataset with a uniform coordinate system, I convert the manually-plotted pitch

coordinates in pixels into feet. First, each stringer might have a unique bias that could

depend on the vantage point. To account for this, I transform the coordinates at the

team(stadium)-by-year level.4 At the team-by-year level, I generate a heatmap of umpires’

ball-strike decisions and find the corners of the strike zone. In particular, I find the region

where the pitches are called strike more than 95% of the time and take the top, bottom, left

and right points. Using these four points, I linearly transform the pitch coordinates into

feet-unit as I know the four corners of the strike zone in feet.

All of the analyses include team-by-year fixed effects to account for these transformations

unless otherwise mentioned.

4I do not observe who the stringer is for each game, so I cannot employ stringer-FEs.
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A.5 Players’ Productivity

Table A.20 displays per-game outcomes for players.5 In the season with robot assistance, as

they adjusted their behaviors, the number of walks increased for both pitchers and batters.

This is likely due to the pitcher pitching closer to the edge and the batter swinging less

(See Table A.7). Batters, following robot exposure, become less offensively productive in

the following season. They strike out 0.03 more and generate 0.02 hits less per game.

Collectively, these findings suggest the players’ productivity is negatively impacted by the

robot adoption despite small change in their strategic behaviors. A potential explanation

includes an adjustment in the prior season that hindered the growth of players relative to

players who didn’t have to adjust. Readjusting to inconsistent calls by readjusting strategies

might have affected performances.

5I restrict to pitchers who faced at least 15 batters in an appearance and batters with at least 3 at-bats.
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Appendix B

Appendix to “The Impact of Fear on

Police Behavior and Public Safety”

B.1 Figures & Tables

Figure B.1: Sample Construction and Restrictions

Crime
N, Agencies: 22,033

N, Deaths: 770
N, Obs: 4,909,284

FBI UCR Data Sets:
Agencies with monthly data (crime and arrests) and UCR 

LEOKA Data

Arrests
N, Agencies: 22,033

N, Deaths: 770
N, Obs: 4,803,750

Crime
N, Agencies: 1,578

N, Deaths: 135
N, Obs: 366,501

Arrests
N, Agencies: 1,578

N, Deaths: 135
N, Obs: 366,501

UCR Analysis Sample:
9 Years of Consecutive Data, Including 2018

(Average Length of Panel: 18.7 years) 

Other Data Sets:
Matched to Agencies in UCR Analysis Sample 

(Sub-set of Group)

Traffic Stops 
(Stanford Open 

Policing Project)
N, Agencies: 18

N, Deaths: 5
N, Obs: 2,235

Traffic Fatalities
(NHTSA FARS)
N, Agencies: 1,252

N, Deaths: 74
N, Obs: 49,959

911 Calls
(City Police Data)

N, Agencies: 56
N, Deaths: 14
N, Obs: 7,935

Crime Report Rate
(City Police Data)

N, Agencies: 47
N, Deaths: 11
N, Obs: 6,510

Fatal Use of Force
(Supplementary 

Homicide Report,  
UCR)

N, Agencies: 1,472
N, Deaths: 126
N, Obs: 40,991

Fatal Use of Force
(Fatal Encounters)

N, Agencies: 537
N, Deaths: 21
N, Obs: 3,948

Police Employment*
(Florida Data)
N, Agencies: 366

N, Deaths: 28
N, Obs: 71,736

Treatment Characteristics
ODMP Data
N, Deaths: 135

Notes: This figure displays the sample construction and restrictions for the various outcomes used in the study. The left
columns display how the analysis sample restrictions in the UCR data, namely the restriction for at least 9 years of
consecutive monthly data that includes 2018, impacts the set of agencies and treatment events in the data. This base sample
is then merged to different sources of outcome data on the right, which creates different sub-sets used for analysis. The Florida
employment data uses a slightly different analysis sample in the UCR, which contains Florida agencies that regularly report
crimes and arrests to the UCR at the annual level, given that no agencies in Florida report monthly crime data to the UCR.
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Figure B.2: Variation in Officer Deaths

A. Officer Deaths by Year
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Notes: In 1,578 departments in our sample, there are a total of 135 officer death events in which 151 officers were killed.
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Figure B.3: Distribution of Coefficients Dropping Single Treated Agency
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Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and
year-by-month fixed effects and department-specific linear time trends. Regressions also include a dummy variable for 12 or
more months after the occurrence of an officer death. Standard errors are clustered at the department level. We re-estimate
the model dropping one treatment city at a time. There are 82 treated cities.
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Figure B.4: Placebo Treatment Timing
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Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and
year-by-month fixed effects and department-specific linear time trends. Regressions also include a dummy variable for 12 or
more months after the occurrence of an officer death. Standard errors are clustered at the department level. The timing of
officer deaths among treated agencies is randomized holding the number of officer deaths per agency constant. The model is
re-estimated 100 times to construct the placebo distribution.
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Figure B.5: Event-Study: Sun and Abraham (2021)

A. Total Arrests
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Notes: This figure plots Sun and Abraham (2021)’s proposed “interaction-weighted” coefficient estimator. This estimator
combines cohort-specific treatment effects, based on treatment timing, using strictly positive weights. To estimate this model,
we include a separate panel for each treatment event, rather than each city. All regressions include a vector of covariates at
the department-by-year level, department-by-calendar month and year-by-month fixed effects and department-specific linear
time trends. Months -6 and 6 include all months before month -6 and all months after month 6, respectively. Standard errors
are clustered at the department level.
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Figure B.6: Event-Study: Omitting Agency-Specific Linear Time Trends

A. Total Arrests
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Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and
year-by-month fixed effects. Months -6 and 6 include all months before month -6 and all months after month 6, respectively.
Standard errors are clustered at the department level.
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Figure B.7: Raw Data: Nearest Neighbor Matching and Synthetic Control
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Notes: This figure plots the data around the officer death events. The blue lines plot the raw outcomes of the treated agencies.
The light gray lines use the nearest-neighbor matching approach to match treatment event to 5 control agencies using
information on demographic characteristics in the treatment year and lagged monthly crime and arrest levels in the year prior
to treatment. The darker gray lines use the synthetic difference-in-differences estimation method. A set of 100
nearest-neighbor agencies that do not experience officer death within a year of treatment agency’s officer death event is
generated by matching on demographic characteristics in the treatment year and lagged monthly crime and arrest levels in the
year prior to treatment. Then, from this set, a synthetic control agency is created by matching on demographic characteristics
in the treatment year. The synthetic difference-in-differences is estimated and control and treatment series of all periods are
obtained. There are 120 matched pairs in both sets. In Panel A, “Nearest-Neighbors” line ranges from 5.25 to 5.29 and
“Synthetic Difference-in-Differences” line ranges from 4.57 to 4.59. In Panel B, “Nearest-Neighbors” line ranges from 5.14 to
5.17 and “Synthetic Difference-in-Differences” line ranges from 4.41 to 4.44.
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Figure B.8: Arrest to Crime Curve
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C. Year Effect Zoomed-In (t = 0, ..., 11)
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Notes: The residual changes in arrest and crime are estimated conditional on covariates, a department-specific linear time
trend, department-by-calendar month and year-by-month fixed effects and differenced relative to the month prior to a
line-of-duty death. The x-axis on all plots shows the residual change in arrests in the month of an officer death. Figure A
shows the residual change in crime in the month of an officer death. The Year Effect plots the average monthly residual
change in crimes in the year following the officer death event. Each plot has 50 binned values of the residuals. Residuals that
are below 5th percentile or above 95th percentile are dropped from the plots. Standard errors (dashed lines) are produced by
reproducing the results through block bootstrapping (re-sampling police department panels) 200 times and plotting the 5th
and 95th percentile of the local linear regression lines from these iterations. The gray bars represent the 90-10 percentile range.
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Figure B.9: Crime Impact by Length of Arrest Decline
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B. Year Effect (t = 0, ..., 11)
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Notes: The residual changes in arrest and crime are estimated conditional on covariates, a department-specific linear time
trend, department-by-calendar month and year-by-month fixed effects and differenced relative to the month prior to a
line-of-duty officer death. The length of arrest effect (x-axis) is determined by the number of consecutive months where the
department’s estimated arrest residuals are more negative than the residual for the month prior to the line-of-duty officer
death. Each plot shows the treated department’s values of the residuals, during the month of the officer death, or the average
effect for the year following an officer death. The gray bars represent the 95% confidence interval for each duration of arrest
decline calculated using a bootstrapping approach with 200 replications. The bootstrap re-samples police departments and
recalculates the arrest decline duration as well as the corresponding residual change in crime for each bin in each iteration.
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Figure B.10: Google Trends Analysis, Search Volume Relative to Benchmarks
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B. Officers Killed in the Line-of-Duty
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Notes: Each search term is an exact first and last name for the individual. We identify high-profile civilian deaths using a list
compiled by Black Lives Matter, and identify officer deaths by linking the FBI LEOKA data we use in this project to records
from the Officer Down Memorial Page to obtain officer names. Each search is centered around the time period of -1. Each
search is benchmarked by topical searches for the most common cause of death, heart disease, which is relatively stable in
popularity across time and locations within the U.S. Google Trends plots relative search intensity with a maximum search
popularity in each search of 100. Relative search intensity is calculated in the year around the event in the state of the event.
The gray line plots the search popularity for myocardial infraction. The gray shaded area represents the 95% confidence
interval from regressing search popularity on weeks with the individual fixed effect.
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Figure B.11: Arrest-to-Crime Elasticity (this paper) vs. Police Manpower-to-Crime Elasticities
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Notes: The estimates of the police elasticities of violent and property crimes are from recent articles. Draca et al. (2011)
estimates an elasticity of total crime with respect to police employment. For the Levitt (1997) estimates, we take the elasticity
estimates from McCrary (2002) correcting for a coding error in the original paper. The estimates from this paper use the
crime elasticity with respect to changes in total arrest enforcement. The red bars represent the average elasticities of all
articles excluding our estimates, weighted by the inverse of their variance.
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Table B.1: Summary Demographic Characteristics

Full Sample Treated Agencies
Mean S.D. N Mean S.D N

Characteristics of Cities
Number of Police Officers 75.2 ( 349.7) 29564 582.8 (1397.1) 1544
Number of Officers Killed by Felony 0.005 ( 0.085) 29564 0.096 ( 0.332) 1544
Number of Officers Assaulted 10.8 ( 48.1) 29564 74.9 ( 176.6) 1544
% Black 7.7 ( 12.0) 29564 15.0 ( 17.8) 1544
% Hispanic 16.8 ( 20.8) 29564 22.6 ( 21.2) 1544
% White 68.0 ( 24.7) 29564 54.2 ( 24.6) 1544
% Male 48.8 ( 3.4) 29564 48.9 ( 1.8) 1544
% Female-Headed Household 31.3 ( 8.2) 29564 33.8 ( 7.1) 1544
% Age <14 20.2 ( 4.7) 29564 20.8 ( 4.4) 1544
% Age 15-24 14.3 ( 6.8) 29564 16.6 ( 6.9) 1544
% Age 25-44 27.2 ( 5.2) 29564 28.4 ( 3.9) 1544
% Age >45 38.3 ( 8.6) 29564 34.2 ( 7.8) 1544
% < High School 15.9 ( 11.0) 29564 17.7 ( 9.4) 1544
% High School Graduate 28.3 ( 9.5) 29564 25.7 ( 7.1) 1544
% Some College 28.3 ( 7.3) 29564 29.4 ( 5.7) 1544
% College Graduate or More 27.6 ( 16.1) 29564 27.2 ( 13.3) 1544
Unemployment Rate 4.8 ( 3.1) 29564 5.6 ( 2.3) 1544
Poverty Rate 12.7 ( 8.7) 29564 15.7 ( 7.5) 1544
Median Household Income 45658.5 (20918.3) 29564 40249.9 (15112.0) 1544
Population 41205.4 (133018.3) 29564 243160.3 (504777.6) 1544

Number of Agencies 1578
Number of Treated Agencies 82

Notes: The characteristics information are from the data with crime activity outcomes. Officer related information are from
the FBI’s Law Enforcement Officer Killed or Assaulted (LEOKA) that covers the period 2000-2018. Demographics data come
from the 2000 U.S. Census and the American Community Survey 5-year estimates from 2010 to 2018. For years 2001 to 2009,
the demographics information are linearly interpolated.
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Table B.2: Robustness Specifications

1st Month 2nd Month Long-Term Outcome Mean
(t=0) S.E. (t=1) S.E. (t=2,...,11) S.E. Full Treated N

(1) Baseline Specification
Murder Offenses 0.391*** ( 0.058) 0.033 ( 0.039) 0.015 ( 0.013) 0.22 2.35 354504
adj. for Officer Death 0.052 ( 0.047) 0.031 ( 0.039) 0.015 ( 0.012) 0.22 2.34 354495

Arrests -0.095*** ( 0.026) -0.044* ( 0.023) -0.001 ( 0.023) 151.9 964.5 354507
Violent Crimes -0.036 ( 0.027) 0.039 ( 0.029) -0.034* ( 0.018) 18.3 165.8 354507
Property Crimes 0.010 ( 0.018) 0.012 ( 0.016) 0.002 ( 0.014) 121.6 857.7 354507

(2) Restrict to Treated Cities
Murder Offenses 0.393*** ( 0.058) 0.031 ( 0.039) 0.013 ( 0.013) 2.35 2.35 18510
Arrests -0.097*** ( 0.026) -0.044** ( 0.022) -0.005 ( 0.021) 964.5 964.5 18510
Violent Crimes -0.037 ( 0.028) 0.035 ( 0.030) -0.036* ( 0.018) 165.8 165.8 18510
Property Crimes 0.010 ( 0.020) 0.013 ( 0.016) 0.005 ( 0.014) 857.7 857.7 18510

(3) Separate Panel for Each Event
Murder Offenses 0.379*** ( 0.057) 0.034 ( 0.038) 0.014 ( 0.011) 0.64 6.51 366498
Arrests -0.100*** ( 0.024) -0.050** ( 0.020) -0.008 ( 0.018) 255.4 1888.9 366501
Violent Crimes -0.024 ( 0.025) 0.048* ( 0.028) -0.022 ( 0.016) 43.9 415.4 366501
Property Crimes 0.012 ( 0.016) 0.015 ( 0.013) 0.005 ( 0.010) 235.5 1935.9 366501

(4) Counting Multiple Officer Deaths Additively
Murder Offenses 0.359*** ( 0.056) 0.035 ( 0.032) 0.019* ( 0.011) 0.22 2.35 354504
Arrests -0.085*** ( 0.023) -0.043** ( 0.021) -0.004 ( 0.021) 151.9 964.5 354507
Violent Crimes -0.025 ( 0.022) 0.038 ( 0.025) -0.026 ( 0.016) 18.3 165.8 354507
Property Crimes 0.009 ( 0.017) 0.011 ( 0.014) 0.001 ( 0.012) 121.6 857.7 354507
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Table B.2: Robustness Specifications (Continued)

1st Month 2nd Month Long-Term Outcome Mean
(t=0) S.E. (t=1) S.E. (t=2,...,11) S.E. Full Treated N

(5) Drop Agency × Month
Murder Offenses 0.393*** ( 0.058) 0.033 ( 0.037) 0.016 ( 0.013) 0.22 2.35 354504
Arrests -0.092*** ( 0.026) -0.040* ( 0.024) -0.002 ( 0.023) 151.9 964.5 354507
Violent Crimes -0.036 ( 0.025) 0.037 ( 0.028) -0.033* ( 0.018) 18.3 165.8 354507
Property Crimes 0.011 ( 0.019) 0.013 ( 0.018) 0.002 ( 0.014) 121.6 857.7 354507

(6) Add State-by-Year FE
Murder Offenses 0.389*** ( 0.058) 0.032 ( 0.039) 0.013 ( 0.013) 0.22 2.35 354504
Arrests -0.102*** ( 0.026) -0.049** ( 0.023) -0.005 ( 0.022) 151.9 964.5 354507
Violent Crimes -0.036 ( 0.027) 0.039 ( 0.030) -0.028 ( 0.018) 18.3 165.8 354507
Property Crimes 0.004 ( 0.018) 0.007 ( 0.015) -0.003 ( 0.013) 121.6 857.7 354507

(7) Remove DUI Arrests
Murder Offenses 0.391*** ( 0.058) 0.033 ( 0.039) 0.015 ( 0.013) 0.22 2.35 354504
Arrests -0.090*** ( 0.026) -0.037 ( 0.024) 0.002 ( 0.023) 139.2 895.4 354507
Violent Crimes -0.036 ( 0.027) 0.039 ( 0.029) -0.034* ( 0.018) 18.3 165.8 354507
Property Crimes 0.010 ( 0.018) 0.012 ( 0.016) 0.002 ( 0.014) 121.6 857.7 354507

(8) Levels Model
Murder Offenses 1.337*** ( 0.502) 0.053 ( 0.271) -0.153 ( 0.130) 0.22 2.35 354504
Arrests -69.192* (36.695) -21.615 (51.944) -3.457 (47.503) 151.9 964.5 354507
Violent Crimes -4.655 ( 8.450) 2.090 ( 9.000) -5.475 ( 9.548) 18.3 165.8 354507
Property Crimes -8.650 (21.749) 12.234 (20.065) -24.597 (26.627) 121.6 857.7 354507
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Table B.2: Robustness Specifications (Continued)

1st Month 2nd Month Long-Term Outcome Mean
(t=0) S.E. (t=1) S.E. (t=2,...,11) S.E. Full Treated N

(9) Per Capita Model (Per 100K Residents)
Murder Offenses 1.944*** ( 0.407) 0.133 ( 0.113) 0.013 ( 0.042) 0.29 0.65 354504
Arrests -41.918*** (10.609) -22.632** ( 9.960) -6.843 ( 9.320) 456.1 457.1 354507
Violent Crimes -1.752 ( 1.446) 0.863 ( 1.484) -1.676 ( 1.090) 32.2 51.9 354507
Property Crimes -1.383 ( 6.385) 3.669 ( 5.623) -0.121 ( 5.216) 293.2 344.9 354507

(10) Inverse Hyperbolic Sine Model
Murder Offenses 0.498*** ( 0.074) 0.039 ( 0.049) 0.020 ( 0.016) 0.11 0.72 354504
Arrests -0.097*** ( 0.026) -0.045* ( 0.024) -0.002 ( 0.023) 4.8 6.4 354507
Violent Crimes -0.042 ( 0.031) 0.045 ( 0.033) -0.041** ( 0.019) 2.0 4.1 354507
Property Crimes 0.010 ( 0.019) 0.011 ( 0.017) 0.002 ( 0.014) 4.4 6.2 354507

(11) Sun & Abraham (2020) IW Estimator
Murder Offenses 0.380*** ( 0.044) 0.032 ( 0.034) 0.011 ( 0.007) 0.64 6.51 366498
Arrests -0.090*** ( 0.024) -0.040* ( 0.021) 0.003 ( 0.009) 255.4 1888.9 366501
Violent Crimes -0.029 ( 0.024) 0.043 ( 0.027) -0.028*** ( 0.007) 43.9 415.4 366501
Property Crimes 0.012 ( 0.017) 0.014 ( 0.015) 0.005 ( 0.006) 235.5 1935.9 366501

(12) Drop Time Trend
Murder Offenses 0.376*** ( 0.059) 0.017 ( 0.039) -0.002 ( 0.011) 0.22 2.35 354504
Arrests -0.138*** ( 0.028) -0.089*** ( 0.024) -0.049** ( 0.023) 151.9 964.5 354507
Violent Crimes -0.044 ( 0.029) 0.030 ( 0.031) -0.041** ( 0.020) 18.3 165.8 354507
Property Crimes -0.007 ( 0.022) -0.007 ( 0.019) -0.017 ( 0.017) 121.6 857.7 354507

(13) Nearest Neighbor Matching
Murder Offenses 0.380*** ( 0.058) 0.015 ( 0.041) 0.002 ( 0.017) 1.7 6.5 31097
Arrests -0.126*** ( 0.026) -0.064*** ( 0.022) -0.025 ( 0.018) 699.7 1987.7 31098
Violent Crimes -0.046 ( 0.033) 0.052 ( 0.034) -0.039** ( 0.018) 122.8 423.4 31098
Property Crimes -0.014 ( 0.020) -0.010 ( 0.018) -0.023 ( 0.014) 645.4 1947.9 31098

Notes: The baseline specification is a replicate of output in Table 2.2 and each subsequent model is a variant of this baseline.
Model (2) restricts the sample to treated cities. Model (3) uses a separate panel for each officer death treatment rather than
each department. Model (4) counts multiple death events additively rather than as a single event. Model (5) drops the agency-
by-month fixed effect. Model (6) adds state by year fixed effects. Model (7) removes the DUI arrests counts from the total
arrests. Models (8), (9) and (10) consider alternate functional forms, using a levels, a per capita and an inverse hyperbolic sine,
respectively. Model (11) uses Sun and Abraham (2021)’s proposed estimator. Model (12) drops the department-specific linear
time trends and Model (13) uses a nearest neighbor matching approach. Standard errors are clustered at the department level.
* p<0.1,** p<0.05, *** p<0.01.
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Table B.3: Predicting Treatment-Specific Synthetic Control Arrest Effects

Predicting Agency-Level Arrest Effect Agency S.E. Incident S.E. All S.E.
Log Population 0.024** ( 0.012) 0.020 ( 0.012)
% White Population 0.002 ( 0.001) 0.002 ( 0.001)
% Less than HS 0.006** ( 0.003) 0.005* ( 0.003)
% Poverty -0.003 ( 0.003) -0.000 ( 0.003)
Crime Rate 0.006 ( 0.008) 0.006 ( 0.008)
Officer Non-White -0.022 ( 0.038) -0.039 ( 0.038)
Officer Female -0.079 ( 0.076) -0.062 ( 0.076)
During Traffic Stop -0.009 ( 0.049) 0.004 ( 0.048)
Not Cleared within 48 hrs -0.099** ( 0.043) -0.084* ( 0.045)

Weighted Mean -0.081 -0.081 -0.081
Variance 0.029 0.029 0.029
F-Statistic 2.098 1.793 1.777
p-value 0.071 0.135 0.080
R-squared 0.084 0.059 0.127
Observations 120 120 120

Notes: A set of 100 nearest-neighbor agencies that do not experience officer death within a year of treatment agency’s officer
death event is generated by matching on demographic characteristics in the treatment year and lagged monthly crime and arrest
levels in the year prior to treatment. Then, from this set, a synthetic control agency is created by matching on demographic
characteristics in the treatment year. There are 120 matched pairs. The synthetic difference-in-differences is estimated and
post-period treatment effects are obtained. The table shows the results of regressing agency-level treatment effect for each
respective post-period on covariates. The covariates are the first reported measure for each department. “Weighted Mean”
shows the average treatment effect weighted by inverse of the standard error squared and “Variance” is the variance of the
treatment effects. * p<0.1,** p<0.05, *** p<0.01.
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Table B.4: Agency-Level Characteristics by Predicted Arrest Effect Size

Agency-Level Characteristics Full Sample Top Quartile IQR Bottom Quartile
by Predicted Arrest Effect Size E(τ |X) < E(τ |X) ∈ E(τ |X) >

(Months 0 & 1) −0.084 (−0.084,−0.024) −0.024
Log Population 12.041 10.932 12.215 12.803
% White Population 51.423 60.546 48.826 47.494
% Less than HS 22.613 14.976 22.655 30.167
% Poverty 14.596 11.402 15.198 16.587
Crime Rate 4.753 3.509 5.042 5.419
Officer Non-White 0.217 0.133 0.233 0.267
Officer Female 0.050 0.133 0.033 0.000
During Traffic Stop 0.133 0.200 0.133 0.067
Not Cleared within 48 hrs 0.158 0.367 0.133 0.000

Notes: A set of 100 nearest-neighbor agencies that do not experience officer death within a year of treatment agency’s officer
death event is generated by matching on demographic characteristics in the treatment year and lagged monthly crime and arrest
levels in the year prior to treatment. Then, from this set, a synthetic control agency is created by matching on demographic
characteristics in the treatment year. There are 120 matched pairs. The synthetic difference-in-differences is estimated and
post-period treatment effects are obtained. This table shows the department characteristics splitting the sample by the predicted
treatment effect size from Table B.3. * p<0.1,** p<0.05, *** p<0.01.
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Table B.5: Additional Outcomes

1st Month 2nd Month Long-Term Outcome Mean
(t=0) S.E. (t=1) S.E. (t=2,...,11) S.E. Full Treated N

A. 911 Call Outcomes
Officer-Initiated Interactions -0.047* ( 0.027) -0.020 ( 0.022) 0.019 ( 0.029) 4996.5 8292.8 5873
Officer Presence 0.002 ( 0.002) 0.003 ( 0.003) 0.006 ( 0.004) 0.2 0.3 5813

B. Employment Outcomes, Florida
Full-Time Equivalent Officers 0.005 ( 0.014) 0.003 ( 0.014) 0.004 ( 0.014) 108.0 512.7 71736
Number of Hired Officers 0.229 ( 0.204) -0.231 ( 0.157) -0.080 ( 0.065) 0.8 2.9 71736
Number of Fired Officers 0.022 ( 0.075) 0.109* ( 0.058) 0.003 ( 0.022) 0.1 0.4 71736
Number of Officer Deaths 0.630*** ( 0.049) 0.024 ( 0.031) 0.002 ( 0.006) 0.0 0.1 71736
Number of Officer Quits -0.047 ( 0.062) 0.039 ( 0.072) -0.042** ( 0.021) 0.6 2.4 71736

C. Traffic Accidents
Fatal Traffic Accidents -0.023 ( 0.045) -0.016 ( 0.031) -0.025* ( 0.013) 0.26 1.60 283906

Accidents involving Alcohol 0.012 ( 0.043) -0.004 ( 0.032) -0.018 ( 0.022) 0.09 0.57 256978

D. Fatal Use-of-Force
Supplementary Homicide Report 0.024 ( 0.025) -0.024 ( 0.018) 0.003 ( 0.006) 0.02 0.16 359733
Fatal Encounters 0.044 ( 0.037) -0.025 ( 0.039) 0.030** ( 0.014) 0.03 0.26 172760

E. Accidental Officer Death
Murder Offenses 0.006 ( 0.040) 0.061 ( 0.044) 0.005 ( 0.015) 0.23 2.45 329669
Arrests -0.019 ( 0.026) 0.008 ( 0.031) 0.011 ( 0.030) 155.2 967.9 329672
Violent Crimes 0.031 ( 0.045) 0.004 ( 0.044) 0.019 ( 0.023) 19.0 183.3 329672
Property Crimes 0.009 ( 0.027) -0.049 ( 0.037) -0.005 ( 0.024) 125.1 986.9 329672

Notes: All regressions include department-by-calendar month and year-by-month fixed effects and department-specific linear
time trends. Regressions in Panels A, C, D and E additionally include a vector of covariates at the department-by-year level.
Regressions also include a dummy variable for 12 or more months after the occurrence of an officer death. Outcomes are
defined as Yit = log(yit + 1) and outcome means are given in levels. Standard errors are clustered at the department level.
“Officer-Initiated Interactions” refers to the number of officer-initiated incidents (e.g. traffic stops, on-sight investigations).
“Officer Presence” represents the proportion of Census block groups visited by an officer in response to a 911 call. “Employment
Outcomes, Florida” panel uses the officer-level data from the Florida Department of Law Enforcement and covers all law
enforcement agency officer employment spells from 2000 to 2016. Reasons for termination include violations of policies or
standards, failure to qualify, misconduct, etc. Officer quits include all voluntary separations. “Accidents involving alcohol” is
the number of fatal traffic accidents with at least one driver with the blood alcohol concentration 0.01 g/dL or higher involved
in a crash. Fatal Use-of-Force panel includes two measures of civilians killed by police. First measure is a count of deaths at
the hands of officers from the Supplementary Homicide Report of the FBI UCR series. Second, Fatal Encounters is a count of
civilians killed by police from a crowd-sourced data series, which we restrict to the sample period of 2010-2018 for data quality
reasons. Both measures exclude records of deaths of suspects involved in the line-of-duty officer death event during month 0,
as well as records of civilian deaths that occur before the officer death in month 0. “Accidental Officer Death” panel shows the
four main outcomes using the accidental officer death as a treatment instead of felonious death. There are 73 officer accidental
death events. * p<0.1,** p<0.05, *** p<0.01.
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B.2 Heterogeneity by Offense Type and Arrestee Demo-

graphics

In this appendix, we include additional heterogeneity analysis by both crime type and

demographics of arrestees.

B.2.1 Crime and Arrest Sub-Types

Next, we estimate the baseline model separately for each crime and arrest sub-type in the

analysis to explore which categories are driving changes in the aggregate outcome sums.

Table B.6 displays the sub-type results for index crime arrests and index crimes. For index

crime arrests, we find significant decreases in robbery, aggravated assault, and motor vehicle

theft arrests. There is a long-term decline in aggravated assault arrests; here, we are cautious

to interpret this as a treatment effect given the lack of long-term effects for any other sub-

category of serious arrests. For index crime, we observe no significant changes in any category

in the first month of treatment or the month after.

The results for “quality of life” arrests and “non-index” arrests provide a more detailed

picture of what types of arrests are reduced as a result of treatment. Table B.7 shows that

there are large and significant declines in arrests for weapons offenses, prostitution, driving

under the influence of alcohol (DUI) (which is classified as a mid-level “non-index” offense),

drug sale, drug possession, and arrests that are uncategorized in the UCR.1 Several of these

declines correspond to reductions that are greater than 10%. The results imply that over

the two month period following an officer death, officers make 1.5 fewer arrests for weapons

offenses, 3 fewer arrests for prostitution, 19 fewer DUI arrests, 9 fewer arrests for drug sales,

22 fewer arrests for drug possession, and 27 fewer uncategorized arrests in each treated city.2

1The results also show marginally significant second month effects for other assault and vandalism.
2We assume that uncategorized arrests are likely to be for offenses that are not listed as options for

reporting in UCR. Given the broad number of offense categories available for reporting in UCR, we argue
that these arrests are for other low-level offenses.
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Given that we observe a large reduction in DUI arrests, we explicitly measure the subset of

fatal traffic accidents that involve a drunk driver (Table B.5). These alcohol-related accidents

do not respond to the reduction in DUI arrests associated with an officer death. Likewise, as

discussed above, the decline in total arrests persists after excluding DUI arrests (see Table B.2,

specification (7)).

B.2.2 Demographics of Arrestees

Another treatment dimension of interest is who is affected by the reduction in arrests that we

observe. We investigate whether the declines are concentrated among particular demographic

groups by regressing demographic-specific measures of log arrests on our treatment, using our

preferred specification. Table B.8 shows that we observe arrest declines across all race, gender,

and age groups following an officer death in the line-of-duty. While the point estimates vary

somewhat across groups, we cannot reject that any of the demographic sub-group declines

differ in magnitude from the total arrest effect of a 9.5% decline. The share of Black arrestees,

36%, and male arrestees, 76%, exceeds their respective population shares of 15% and 49% in

the treatment sample. As a result, the equivalent percent declines across groups leads to a

reduction in the disparity, in levels, of arrests across races and genders.
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Table B.6: Index Crimes and Arrests by Type

1st Month 2nd Month Long-Term Outcome Mean
(t=0) S.E. (t=1) S.E. (t=2,...,11) S.E. Full Treated N

A. Murder Outcomes
Murder Offenses 0.391*** ( 0.058) 0.033 ( 0.039) 0.015 ( 0.013) 0.22 2.35 354504
Murder Arrests 0.111** ( 0.044) 0.071 ( 0.043) -0.000 ( 0.023) 0.17 1.57 354507

B. Index Arrests
Rape -0.014 ( 0.029) -0.042 ( 0.033) -0.001 ( 0.018) 0.28 2.08 354507
Robbery -0.094*** ( 0.035) -0.059 ( 0.047) 0.003 ( 0.023) 1.7 15.6 354507
Aggravated Assault -0.088** ( 0.035) -0.036 ( 0.028) -0.056** ( 0.025) 6.4 44.3 354506
Burglary 0.004 ( 0.040) 0.022 ( 0.045) 0.014 ( 0.028) 3.7 20.7 354507
Theft -0.072* ( 0.042) -0.034 ( 0.042) -0.022 ( 0.034) 14.9 82.6 354507
Motor Vehicle Theft -0.098* ( 0.055) -0.118* ( 0.062) -0.044 ( 0.062) 1.4 11.8 354507

C. Index Crime
Rape -0.040 ( 0.035) 0.042 ( 0.038) -0.006 ( 0.021) 1.3 10.1 353656
Robbery -0.004 ( 0.030) 0.009 ( 0.032) -0.017 ( 0.017) 5.9 61.0 354382
Aggravated Assault -0.044 ( 0.034) 0.036 ( 0.030) -0.034 ( 0.021) 11.1 94.8 354355
Burglary 0.041 ( 0.029) 0.023 ( 0.031) 0.010 ( 0.020) 24.0 175.3 354478
Theft -0.026 ( 0.029) -0.013 ( 0.026) -0.022 ( 0.022) 81.9 541.9 354506
Motor Vehicle Theft 0.026 ( 0.033) -0.009 ( 0.031) 0.011 ( 0.023) 15.7 140.5 354389

Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and year-
by-month fixed effects and department-specific linear time trends. Regressions also include a dummy variable for 12 or more
months after the occurrence of an officer death. Outcomes are defined as Yit = log(yit + 1) and outcome means are given in
levels. Standard errors are clustered at the department level. * p<0.1,** p<0.05, *** p<0.01.
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Table B.7: Non-Index Arrest Outcomes by Type

1st Month 2nd Month Long-Term Outcome Mean
(t=0) S.E. (t=1) S.E. (t=2,...,11) S.E. Full Treated N

A. Non-Index Arrests
Manslaughter 0.013 ( 0.024) 0.014 ( 0.024) -0.005 ( 0.010) 0.01 0.10 354507
Arson 0.023 ( 0.041) -0.058 ( 0.041) -0.012 ( 0.022) 0.15 0.85 354507
Other Assault -0.028 ( 0.034) -0.058* ( 0.035) -0.002 ( 0.030) 13.6 89.2 354507
Weapons -0.083** ( 0.042) -0.007 ( 0.038) -0.018 ( 0.023) 2.3 17.1 354507
Prostitution -0.079* ( 0.042) -0.104* ( 0.057) -0.038 ( 0.041) 1.2 15.5 354507
Other Sex Offense -0.052 ( 0.034) -0.042 ( 0.040) -0.010 ( 0.028) 0.92 6.68 354507
Family Offense -0.022 ( 0.050) 0.057 ( 0.043) 0.032 ( 0.040) 0.58 4.14 354506
DUI -0.164*** ( 0.048) -0.108*** ( 0.042) -0.031 ( 0.034) 12.7 69.1 354507
Drug Sale -0.154* ( 0.088) -0.101 ( 0.091) -0.108 ( 0.110) 3.8 35.4 354506
Forgery -0.006 ( 0.039) -0.037 ( 0.043) -0.002 ( 0.028) 1.04 5.38 354507
Fraud -0.011 ( 0.046) -0.007 ( 0.046) 0.053 ( 0.033) 1.71 8.29 354507
Embezzlement -0.028 ( 0.046) -0.017 ( 0.033) 0.019 ( 0.025) 0.23 1.07 354507
Stolen Property 0.008 ( 0.048) 0.056 ( 0.047) 0.056 ( 0.042) 1.49 7.49 354505
Runaway 0.034 ( 0.041) 0.015 ( 0.043) 0.011 ( 0.045) 1.16 7.87 354507

B. Quality of Life Arrests
Disorderly Conduct -0.013 ( 0.049) -0.023 ( 0.050) 0.011 ( 0.043) 5.3 29.4 354506
Curfew/Loitering -0.069 ( 0.067) 0.018 ( 0.059) -0.019 ( 0.065) 2.3 30.7 354507
Vandalism -0.069 ( 0.042) -0.073* ( 0.043) -0.040 ( 0.035) 2.9 17.1 354507
Gambling -0.049 ( 0.031) -0.004 ( 0.032) -0.016 ( 0.021) 0.06 0.65 354506
Vagrancy 0.007 ( 0.077) -0.006 ( 0.075) 0.042 ( 0.075) 0.55 6.02 354507
Drunkenness -0.056 ( 0.068) 0.015 ( 0.064) -0.010 ( 0.060) 8.9 44.3 354507
Liquor -0.058 ( 0.071) -0.053 ( 0.068) -0.001 ( 0.059) 5.0 27.8 354507
Drug Possession -0.107** ( 0.054) -0.109* ( 0.060) -0.044 ( 0.063) 17.5 102.8 354507
Uncategorized Arrests -0.100* ( 0.059) -0.003 ( 0.043) 0.056 ( 0.044) 40.1 260.5 354507

Notes: All regressions include a vector of covariates at the department-by-year level, department-by-calendar month and year-
by-month fixed effects and department-specific linear time trends. Regressions also include a dummy variable for 12 or more
months after the occurrence of an officer death. Outcomes are defined as Yit = log(yit + 1) and outcome means are given in
levels. Standard errors are clustered at the department level. * p<0.1,** p<0.05, *** p<0.01.
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Table B.8: Heterogeneity, Arrestee Demographics

1st Month 2nd Month Long-Term Outcome Mean p-value
(t=0) S.E. (t=1) S.E. (t=2,...,11) S.E. Full Treated N Diff. total

Policing Activity
Total Arrests -0.095*** ( 0.026) -0.044* ( 0.023) -0.001 ( 0.023) 151.9 964.5 354507

Black -0.069** ( 0.029) -0.006 ( 0.030) 0.015 ( 0.022) 40.0 353.1 354507 0.499
White -0.107*** ( 0.029) -0.062** ( 0.025) -0.005 ( 0.024) 108.2 590.7 354507 0.760
Male -0.093*** ( 0.026) -0.042* ( 0.023) -0.003 ( 0.022) 114.1 736.6 354507 0.951
Female -0.097*** ( 0.029) -0.049* ( 0.028) 0.004 ( 0.025) 37.8 227.9 354507 0.959
Adult -0.096*** ( 0.028) -0.043* ( 0.025) 0.000 ( 0.024) 130.5 832.7 354507 0.980
Juvenile -0.097** ( 0.042) -0.077* ( 0.045) -0.019 ( 0.036) 21.3 131.9 354507 0.980

Notes: Regressions in include a vector of covariates at the department-by-year level, department-by-calendar month and year-
by-month fixed effects and department-specific linear time trends. Regressions also include a dummy variable for 12 or more
months after the occurrence of an officer death. Outcomes are defined as Yit = log(yit + 1) and outcome means are given in
levels. Standard errors are clustered at the department level. The last column reports the p-value from testing whether the
first month effects of the sub-group are equal to the total arrests effect. Juvenile is defined to be people arrested under 18 years
of age. * p<0.1,** p<0.05, *** p<0.01.
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B.3 Nearest Neighbor and Synthetic Control Methods

This appendix details the estimation methods for the Nearest Neighbor and Synthetic Control

estimates used in the paper. These estimates are used in Table B.3, Figure 2.5, specification

(13) of Table B.2, Figure B.7, and Table B.4.

The purpose of these exercises is twofold. First, we aim to estimate effects where treatment

events are matched to highly similar control units based on pre-treatment characteristics. This

matching to control units allows us to compare post-treatment outcomes across treatment and

control units in a parsimonious way, omitting x-variables and time trends in these matched

comparisons. Second, the synthetic control methods allow us to recover an individual

treatment effect for each event in our data, which we use to examine heterogeneity of

treatment effects.

Below are the steps used in these analyses:

1. Apply the Nearest Neighbor matching algorithm to treatment events with at least

one year of pre-treatment data. For each treatment, we restrict the pool of possible

controls to agencies that do not have an officer death event in the year prior or after

the treatment death event. We use a matching algorithm that minimizes the distance

between matched covariates. The covariates we use are counts of violent and property

crimes and arrests for periods -1, -2, and -3, and the slope of these outcomes between

periods -3 to -12, as well as the treatment year city-level poverty rate, share white,

share with a high school degree or less education, and log population.

2. Obtain the set of 100 nearest neighbors from step (1). This is the donor pool for the

synthetic control analysis.

3. Using the 10 closest nearest neighbors for each treatment from step (1), estimate a

parsimonious difference-in-difference model in this sample that contains no x-variables

or unit-specific time trends. This estimate is the “Nearest Neighbor” specification and
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is reported in specification (13) of Table B.2. The average outcomes of treatment and

control using this method are also presented in the top panel of Figure B.7.

4. Conduct a synthetic control match using the synthetic difference-in-differences command.

This match allows each treatment’s matched control unit to be a weighted average of

multiple units in the donor pool in (2), which has a size of 100 for each treatment. The

match uses the following x-covariates: treatment year city-level poverty rate, share

white, share with a high school degree or less education, and log population.

5. Run the synthetic difference-in-differences command to obtain a treatment event specific

estimate for each treatment, τ̂i. This command requires the treatment and synthetic

control units to have matched pre-treatment trends, but permits pre-treatment levels

to differ, similar to a traditional difference-in-differences model. The average outcomes

for all treated units versus all synthetic control units is shown in the bottom panel of

Figure B.7.

6. Estimate a standard error for each τ̂i using placebo methods. For each treatment,

randomly draw a control unit from the donor pool in (2) and assign this unit as the

treated agency. Estimate the synthetic control estimate for this placebo agency, τ̂b.

Repeat this exercise 100 times to obtain the distribution of τ̂b; use the standard deviation

of this distribution as the estimate of the standard error, se(τ̂i).

7. Use τ̂i as the outcome for the heterogeneity tests in Table B.3. This exercise asks how

treatment agency and incident characteristics relate to the size of the arrest treatment

effect for the first treatment month. Weight these regressions by 1/se(τ̂i)
2 using the

estimates from (5) and (6).

8. From the tests in (7), estimate predictions of τ̂i (for the one month arrest effect) based on

pre-treatment characteristics, E(τ̂i|X). This prediction is constructed using a “leave-out”

version of Column 3 of Table B.3, where each estimate of E(τ̂i|X) is determined from
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all treatments other than i.

9. Bin treatment events by values of E(τ̂i|X) for arrests into: top quartile, bottom quartile

and inter-quartile range. Within these bins, plot the distribution of τ̂i for arrest and

crime outcomes over time. This analysis shows how the crime and arrest effects vary

for agencies with “predicted” large versus small arrest declines, where predictions only

leverage variation in pre-treatment covariates. This analysis is shown in Figure 2.5.

Summary statistics of treatment events/agencies in each bin are shown in Table B.4.

We next note additional features of the analysis. First, to the extent possible, we use a

common set of matching variables in the nearest neighbor, synthetic control, and heterogeneity

prediction table described above, for consistency and transparency.

Second, we define our donor pool for the synthetic control exercise using the 100 nearest

neighbors determined from the Nearest Neighbor matching algorithm. We do this for

computational reasons. Our synthetic control analysis takes approximately one week to run

on our machines, and this run-time increases when more units are added to the donor pool.
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B.4 Google Search Trends Description

Each search term is an exact first and last name for the individual in the U.S. state where

the death occurred. We identify high-profile civilian deaths using a list compiled by Black

Lives Matter, and identify officer deaths by linking the FBI LEOKA data we use in this

project to records from the Officer Down Memorial Page to obtain officer names. Each

search is centered around the time period of -1. Further, each search is benchmarked by

topical searches for the most common cause of death, heart disease, which is relatively stable

in popularity across time and locations within the U.S. Google Trends plots relative search

intensity with a maximum search popularity in each search of 100. A benchmark would not

be necessary if Google Trends data contained absolute search volume, but unfortunately

this data series only includes relative measures of search volume that are a function of the

topics and terms used to pull the data. The use of a benchmark is therefore critical to this

analysis, as it helps to rescale other outcomes in terms of their importance over time and

across geographic areas.

B.5 Data Appendix

B.5.1 Data Sources

Law Enforcement Officers Killed or Assaulted (UCR LEOKA) The FBI’s Law

Enforcement Officers Killed or Assaulted (LEOKA) data set contains detailed information on

total officer employment and officers that are killed or assaulted in the field for each month.

We use officers feloniously killed in the line-of-duty as a measure of officer deaths and all

assaults on sworn officers whether or not the officers suffered injuries. We verify each officer

fatality event in the sample using the web resource Officer Down Memorial Page (ODMP)

and exclude death events from LEOKA that are not able to be verified in ODMP. This

website is also used to gather characteristics of the fatality event and officer who was killed,
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which is used in the heterogeneity analysis. We utilize the version cleaned and formatted

by Jacob Kaplan available from ICPSR (Kaplan, 2020b). This dataset covers the period

2000-2018.

Crime Offense Data (UCR Crime) and Arrest Data (UCR Arrest) The Uniform

Crime Report Offenses Known and Clearances By Arrest (UCR Crime) data set contains

offenses reported to law enforcement agencies. The crimes reported are homicide, forcible

rape, robbery, aggravated assault, burglary, larceny-theft, and motor vehicle theft for each

month. The Uniform Crime Report Arrests by Age, Sex, and Race (UCR Arrest) data set

contains the number of arrests for each crime type by age, sex and race at the month level.

We use the total arrests and arrest sub-types in our analysis. We utilize the version cleaned

and formatted by Jacob Kaplan available from ICPSR (Kaplan, 2020a). This dataset covers

the period 2000-2018. We include all departments that consistently and continuously report

monthly data on both crime and arrests for at least 9 years in this period, up until and

including the last year of the data, 2018.

Use-of-Force Data (UCR Supplementary Homicide Reports) The Uniform Crime

Report Supplementary Homicide Reports (UCR Supplementary Homicide Reports) data

set contains the number of homicides. We utilize the version cleaned and formatted by

Jacob Kaplan available from ICPSR (Kaplan, 2020c) covering the period 2000-2018. We use

the “felons killed by police” circumstance in our analysis after restricting the sample to the

agencies with other UCR outcomes. We exclude treatment events in which a suspect was

killed during the officer fatality event in order to measure the police behavioral response to

an officer fatality, rather than features of the event itself.

Use-of-Force Data (Fatal Encounters) Fatal Encounters is a national crowd-sourced

database of all deaths through police interaction. We remove suicidal deaths from our

analysis and restrict the sample to the agencies with other UCR outcomes. As in the UCR
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Supplementary Homicide Report, we exclude treatment events in which a suspect was killed

during the officer fatality event. Fatal Encounters was established in 2013 and backfills earlier

record years which causes quality to decrease in earlier record years. To address this issue,

we restrict attention to the period 2010-2018.

Employment Data: Florida Department of Law Enforcement (FDLE) Florida

Department of Law Enforcement (FDLE) has information on all officer employment spells

employed including the employing agency, start and end dates of the spell and the reason for

separation. We restrict attention to all law enforcement agency officer employment spells

that cover the period 2000 to 2016.

Traffic Stop Data We use the standardized traffic stop data from the Stanford Open

Policing Project. Each row of the data represents a traffic stop that include information

on date, location, subject and officer characteristics and stop characteristics. We collapse

the data at city-month level and drop the first and last month for each city to account for

incomplete months. We then use the intersection between this data set and our analysis

sample.

Traffic Accident Data: Fatality Analysis Reporting System (FARS) We use the

Fatality Analysis Reporting System (FARS) of the National Highway Traffic Safety Admin-

istration (NHTSA) to create measure of traffic fatalities and those involving alcohol. The

data include information on fatal injuries in a vehicle crashes. We collapse the accident-level

data at city-month level to generate counts. For the accidents involving alcohol, we use the

number of drunk drivers involved in a crash. This data element is most reliable from 2008

to 2014 when drivers with the blood alcohol concentration (BAC) 0.01 g/dL or greater are

counted. Prior to 2008, all individuals involved in accidents are counted. After 2014, the

BAC level measure is changed to 0.001 g/dL or greater for counting. The data covers 2000

to 2018 for any accidents and 2008 to 2014 for accidents involving alcohol.
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911 Call Dispatch Data We have hand-collected administrative 911 dispatch call records

through submitting open-records requests to cities across the U.S. The data sets for each

city vary in the way that they record calls and must be cleaned in order to harmonize the

data across cities. Each data set collected is first cleaned to categorize calls into records of

interactions that were initiated by officers and civilian complainant calls. Officer-initiated

interactions are sometimes included in dispatch data when an officer reports his location in

such an interaction to a dispatcher and these may include records of officers assisting other

officers in distress, assisting the fire department, or responding to traffic violations. We also

calculate the share of calls that result in an officer writing a crime incident report or “Crime

Report Rate (911 Calls)” through examining the outcome or disposition of each call which is

coded as a field in our data. Lastly, we also construct a measure of officer presence. In 51 of

the 56 cities in this sample, we geocode calls to Census block groups and we calculate the

share of Census block groups with a 911 call or officer-initiated interaction.

Demographic Data (U.S. Census and American Community Survey) We use the

2000 United States Census and the American Community Survey (ACS) 5-year estimates

from 2010 to 2018 to provide information on city characteristics. Specifically, we report

each city’s population, share Black, Hispanic and white, share male, the share of female-

headed household, the share in each age category, the share in each education category, the

unemployment rate, the poverty rate and median household income. We linearly interpolate

these covariates for the years 2001 to 2009.

B.5.2 Sample Restrictions

The UCR data suffer from reporting and measurement issues. To alleviate concerns about data

quality, we take following procedures to extensively clean the outcomes of interest. First, we

restrict our analysis to municipal police departments serving cities with population larger 2,000

residents and to the period 2000-2018. Then, we keep departments that consistently report
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these outcomes after replacing any negative arrest or crime values as missing. Specifically,

we only retain agencies that report both crimes and arrests monthly each year in the period

2000-2018 (for example, this procedure drops agencies that report annually or biannually).

To increase sample size, we include any agency that reports at least 9 years of consecutive

data through 2018, or agencies that begin reporting between 2000-2010.

We merge the UCR data together using the originating agency identifiers, the Traffic Stop,

FARS and 911 Calls data using the city name and Census data using the Federal Information

Processing Standards (FIPS) Place code.
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Appendix C

Appendix to “The Impact of Cash

Transfers to Poor Mothers on Family

Structure and Maternal Well-Being”

C.1 Figures & Tables

Figure C.1: Census Figures
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Figure C.1: Census Figures (Continued)
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Figure C.2: Cash transfers do not change the degree of assortative mating in education,
longevity and age at marriage
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Figure C.3: Share of MP applicants remarrying by age
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Table C.1: The Status of Poor Women with Children in 1910

Notes: Author’s computation using data from the 1910 census.
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Table C.2: Summary Statistics for MP Applicants
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Table C.2: Summary Statistics for MP Applicants (Continued)

Notes: 1Unmarried MP applicants include widowed, divorced and never married women. 2People who remarried and have
missing dates are dropped. The duration measure starts at 0.5 (the variable is duration + 0.5, so we assume that marriages
occur uniformly within a year). We also assume that if women married the same year they applied for the pension (and the
exact data of marriage is missing) that the marriage took place after the MP application. 3Defined from pre marriage data:
uses 1940 if available, then 1930, then 1920, then 1910. Never uses a measure that is observed post-MP marriage. 4Measured
in year of application. Yearly measures are constructed through linear interpolation using census data from 1910, 1920 and
1930. All measures use the universe of people who are between 18 and 55 years old. Sample restriction: we drop mothers that
applied after 1930 or records for mothers that applied multiple times so mothers only appear once in the data and individuals
who we discovered in the family tree were not the mother (a handful of grandmothers, sisters and step-mothers).
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Table C.3: Accepted Moms are slightly worse off at time of application

225



Table C.3: Accepted Moms are slightly worse off at time of application (Continued)

Notes: Controls include county and year of application fixed effects. The sample drops mothers that applied after 1930, and
applications made by a person who is not the mother, keeps only the observations of the first successful attempt (It keeps the
application with more children listed if multiple successful applications in the same year. Keep the smallest FS ID if applied
successfully more than once the same year, with the same number of children.) The predicted income is obtained using the
1915 Iowa census to estimate the coefficients to predict income for all recipients. The regression includes only the covariates
observed in both our data and the Iowa census. It includes widow status, mother’s age, number of kids, number of kids at
each age, age of youngest and oldest kid at application, number of kids over 14 years old at application, an indicator if the
mother is foreign-born, and indicator of being Black, schooling and occupation score.1Only includes kids with eligible age.
2Occupational score inputs zeros for mothers out of the labor force. 3Death to MP application if >0.
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Table C.4: Does accepted status predict missing data for marriage outcomes?
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Table C.4: Does accepted status predict missing data for marriage outcomes? (Continued)

228



Table C.4: Does accepted status predict missing data for marriage outcomes? (Continued)

Notes: Please refer to Table 3.1 for a full description of the controls, restrictions and checks.
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Table C.5: Welfare recipients are not less likely to remarry

Notes: Sample includes only mothers that were not married at MP application (or whose marital status is missing). See
Table 3.1 for other sample restrictions. Panel B controls for county and year-of-application fixed effects and individual, county
and state controls. Individual controls: Kids: MP age of the youngest and oldest, MP dummies for number, FS number older
than 14, FS number that died before MP, FS number with dates missing. Mother: last name length, dummies for divorced,
widowed and missing marital status, age at application, missing age, number of siblings, foreign, missing nativity, first
husband’s longevity, first husband’s longevity is missing. County controls: for ages 18-55: sex ratio (M/F), shares of white
married mothers in the labor force, black and rural. County controls match linear interpolated information from the 1910,
1920 and 1930 census with the year of MP application. State controls: manufacturing wages, education/labor laws (age must
enter school, work permit age, and continuation school law in place), state expenditures in logs (education, charity, and social
programs), state laws concerning MP transfers (work required, reapplication required, maximum amount for the first child
and for each additional child). Omitted variable bounds: We use Oster (2017) to construct omitted variable bias (OVB)
bounds. We assume that the R-max is 1.3 times greater than the R-squared from panel B. We assume delta = (-1, 1) for lower
and upper bounds. Sample Selection Correction: We follow the two-step estimation suggested by Newey (2009) to correct for
sample selection. First, we regress the dummy indicating whether the outcome is missing on RA fixed effects (73 dummies)
and all other controls. We report the F-statistic of the test of relevance of these dummies. Second, we estimate a linear
regression of the outcome on controls and on a fourth degree polynomial of predicted values from the first stage. We jointly
bootstrap the two stages and report the 95% bias corrected confidence interval clustered at the county level, from 200
repetitions. Quality of match: Regressions that drop low quality matches (quality measure below its median) include all
controls and cluster the standard errors at the county level. The quality of match between census, family search and
administrative data is constructed as the weighted sum of variables that access the similarity between first name, last name,
full name, age and place of birth in each dataset. IPW: We estimate the average treatment effect using the estimated
probability weights to address for potential missing outcomes. The standard errors are clustered at the county level and a
logit model is used to predict the accepted status. Causal Forest: We implement the generalized random forest algorithm
proposed by Athey, Tibshirani, and Wager (2019). We estimate the average treatment effects using a doubly robust
augmented-inverse-propensity weighting estimation method and report the ATE and ATT. See Appendix for more details.
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Table C.6: Does welfare increase quality of Post-MP husband?
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Table C.6: Does welfare increase quality of Post-MP husband? (Continued)

Notes: Standard errors are clustered at the county level. Please refer to Table 3.1 for a full description of the controls,
restrictions and checks. Panel C includes the other inputs (Post-MP Husband longevity, age gap, Post-MP Husband latest
occupational score, Post-MP Husband 1940 education and education gap) as controls (except if the input is the regression
dependent variable). 1Age gap is defined as the absolute value of the husband’s age minus the mother’s age minus 2.5.
2Defined from pre marriage data: uses 1940 if available, then 1930, then 1920, then 1910. Never uses a measure that is
observed post-MP marriage. Columns 4 and 5 use the alternative measures of occupation score from Olivetti and Paserman
(2015). 3Education gap is defined as the absolute value of the difference in highest grade between the mother and the husband.
4Equal Weights regressions give the same weight to each of the quality measures. Values are standardized to zero mean and
variance equals one. 5Satisfaction weights include husband’s occupational score, education and longevity. We use the utility
function and the parameters defined and calibrated in Grow and Van Bavel (2015) to construct the dependent variable. The
equation below presents the utility function. The first term of the equation is the similarity of education, the second term is
the earnings prospect and, the last term is the age gap. We follow the same categorization of variables as in the original paper,
except for education, where we divide it in 4 quintile categories instead of the four categories in the paper (no schooling,
primary, secondary and tertiary). αi = ai + 25 To take into account, that female agents prefer partners who are about 2.5
years older. The parameters are:Smax = 4; Ymax = 5; Amax = 800; ws = 0.385; wy = 1.201; wa = 10.833.
vij =

(
Smax−|si−sj|

Smax

)ws
(

yi
Ymax

)wy
(
Amax−|αi−αj |

Amax

)wa
. All indices use the occupation score defined in Column 3.
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Table C.7: Does welfare increase quality of Post-MP husband? Results for additional quality
measures?

Notes: Standard errors are clustered at the county level. Please refer to Table 3.1 for a full description of the controls,
restrictions and checks. Panel C includes the other inputs (Post-MP Husband longevity, age gap, Post-MP Husband latest
occupational score, Post-MP Husband 1940 education and education gap) as controls. ∗Defined from pre marriage data: uses
1910 if available, then 1920, then 1930, then 1940. Never uses a measure that is observed post-MP marriage.
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Table C.8: Determinants of remarriage and time to remarriage

Notes: OLS regressions. S.E. clustered at the county level. Specifications also include year of app FE. State & county
covariates not shown.
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Table C.9: Do the cash transfers affect Fertility?

Notes: Please refer to Table 3.1 for a full description of the controls, restrictions and checks.
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Table C.10: Heterogeneity in results - controls
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Table C.10: Heterogeneity in results - controls (Continued)
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Table C.10: Heterogeneity in results - controls (Continued)

Notes: Please refer to Table 3.1 for a full description of the controls, restrictions and checks. 1Age gap is defined as the
absolute value of the husband’s age minus the mother’s age minus 2.5. 2Defined from pre marriage data: uses 1940 if available,
then 1930, then 1920, then 1910. Never uses a measure that is observed post-MP marriage. Columns 4 and 5 use the
alternative measures of occupation score from Olivetti and Paserman (2015). 3Education gap is defined as the absolute value
of the difference in highest grade between the mother and the husband. 4Equal Weights regressions give the same weight to
each of the quality measures. Values are standardized to zero mean and variance equals one.
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Table C.11: Do the cash transfers affect Labor supply and wages?

Notes: Please refer to Table 3.1 for a full description of the controls, restrictions and checks. Refer to Table 3.2 for a
description of the quality measure. Note from IPUMS: Census practice on collecting occupational data (in OCC) for persons
not currently in the labor force changed over time. In the earliest samples, no time referent was specified for when the person
was gainfully employed. In 1900, past occupation was specifically requested for persons unable to secure any work during the
preceding year, but not for persons who had permanently retired. Similarly, for the 1910-1930 surveys, occupation was to be
reported for persons temporarily unemployed, but not for those permanently retired. This changed markedly in 1940 and
1950. In those years, OCC was reserved for those in the labor force (working, with a job, or looking for work) in the week
prior to the census. For 1940 and 1950, past occupation was separately collected via different questions and variables (UOCC
and ROCC) for formerly-employed persons not currently in the labor force.
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C.2 Model and Proofs

A woman is either single or married. While single, she receives a flow benefit of b and, with

probability λ, she finds a potential partner with quality q (the flow utility she would get

from marriage) and decides whether to marry him or stay single. For simplicity, we say that

marriage lasts forever. The quality of a partner q is distributed F (q) with support
[
q, q̄
]
and

q̄ > b. She discounts the future at rate β.

The value of being single is

Vs = b+ β

(
λ

∫ q̄

q=q

max {Vm(q), Vs} dF (q) + (1− λ)Vs

)
.

The value of being married to a partner with quality q is

Vm(q) = q + βVm(q) =
q

1− β
.

Since the value of marriage is strictly increasing in q, the agent will follow a cut-off rule.

There is a cutoff quality, q∗, such that she will accept all prospects with q > q∗. The cutoff

rule is implicitly defined as

Vm(q∗) = Vs.

Considering that, and rearranging the definition of Vs, we can write

Vs = b+ βVs + βλ

∫ q̄

q=q

(
max {Vm(q)− Vs, 0}

)
dF (q),

Vs = b+ βVs + βλ

∫ q̄

q=q∗

(
Vm(q)− Vs

)
dF (q),

Vs = b+ βVs +
βλ

1− β

∫ q̄

q=q∗

(
1− F (q)

)
dq,

(1− β)Vs = b+
βλ

1− β

∫ q̄

q=q∗

(
1− F (q)

)
dq,

where the third line followed from integration by parts. From the definition of q∗, we have
240



obtained an implicit equation for q∗ (which contains no other endogenous variables)

q∗ = b+
βλ

1− β

∫ q̄

q=q∗

(
1− F (q)

)
dq. (C.1)

0 = −q∗ + b+
βλ

1− β

∫ q̄

q=q∗

(
1− F (q)

)
dq.

We can see that this function is continuous and positive at q∗ = b and negative at q∗ = q̄, so

there exists a solution. Also, the function is strictly decreasing so its solution is unique.

Intuitively, this equation says that the value of the minimum acceptable marriage, q∗

should be equal to the benefit, b, plus the option value of holding out for a good match.

Given a reservation quality, q∗, the probability of marriage is λ (1− F (q∗)) and the average

match quality is E[q|q > q∗]. The duration until remarriage is given by D = 1/λ (1− F (q∗)).

Before proving Proposition 1, we establish the following useful result.

Lemma 1. The reservation quality, q∗, is increasing in benefits, b. Moreover, the reservation

quality is also increasing in the probability of finding prospects, λ, and the distribution of

quality F (q) (in the senses of first-order stochastic dominance).

Proof. This result can be seen on equation 1. An increase in b, λ, or the distribution F

increases the right-hand side of the equation which corresponds to the value of waiting. In

order to preserve the equality, the cutoff must be higher. Waiting is more attractive when

the benefits are higher, the offers appear more often, or the offers are stochastically better.

Then, the woman will only find it worthwhile to settle for a higher cutoff quality. �

Now, we are ready to prove Proposition 1.

Proposition 3. ∂D/∂b > 0and ∂E[q|q > q∗]/∂b > 0: An increase in benefits, b, increases

the number of periods the woman stays single and the average quality of the marriage.

Proof. From our previous lemma, an increase in benefits will increase the cutoff quality.

Since the probability of marriage is decreasing in the cutoff quality, the increase in benefits
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decreases the probability of marriage and increases the expected number of periods the

woman stays single. The average quality of the marriage increases because the woman now

rejects relatively lower quality proposals. �

In order to test the second prediction of Proposition 1, we would need to observe the

quality of the marriage. what we observe are several traits that matter for the quality. We

assume that there exists a quality function, q : X → [q, q̄], that maps a vector of characteristics

into a single quality index. For exposition, and without loss of generality, we assume that the

function q is increasing in each trait.

Proposition 4. Without further assumptions about the joint distribution of X and the

production function q(X), the sign of ∂E[xi|q > q∗]/∂b is ambiguous for all i. However the

sign of ∂E[xi|q > q∗, x−i]/∂b is positive for all xi so long as all relevant X are observed.

It might seem natural to expect that higher benefits would result in higher (better) traits

in the accepted marriages. This is not necessarily true and it could be that every trait

becomes worse.

Example 1. Consider a quality function q(x1, x2) = x1x2. The joint distribution of the traits

is uniformly distributed over three mass points (1, 10); (10, 1); (4, 4). Suppose that, initially,

the cutoff is q∗ = 10. The average of each trait conditional on a match is equal to 5. Consider

a small increase in the cutoff (10 < q∗ ≤ 16). The new average of each trait is 4.

As the example shows, each trait could be, on average, lower with a higher cutoff quality.

Still, we can predict an increase in a particular trait when conditioning for all the other

relevant traits. In order to see this, notice that for a given value of the other traits, a higher

cutoff will only eliminate matches where the trait we are interested in was low.
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Extensions

Age

We show that the predictions of the model still hold when we incorporate aging considerations.

In order to maintain the simple recursive structure of the model, we model aging as a random

independent process that moves the agent from a young state to an old state. In the young

state, a woman receives a proposal with probability λY . In the old state, she receives a

proposal with probability λO < λY . There is a probability π of transitioning from young

to old and, naturally, no probability of the reverse transition. The transition, or lack of, is

realized at the end of each period after the offer has been accepted or rejected.

The old single woman’s problem is the same as the original problem. Let us define Vs,O

and q∗O as the value of being single and the cutoff quality when old.

The young woman’s problem is slightly different. The opportunity cost of accepting a

proposal is given by V := (1− π)Vs,Y + πVs,O, where Vs,Y is the value of being single when

young.

Vs,Y = b+ β

(
λY

∫ q̄

q=q

max {Vm(q), V } dF (q) + (1− λY )V

)
.

The cutoff rule is defined by Vm(q∗Y ) = q∗Y /(1−β) = V . Then, π(Vs,Y−Vs,O) = π
1−π (V −Vs,O) =

π
1−π

q∗Y −q∗O
1−β .

Vs,Y = b+ βV + βλY

∫ q̄

q=q

(
max {Vm(q)− V, 0}

)
dF (q),

Vs,Y = b+ βV + βλY

∫ q̄

q=q∗Y

(
Vm(q)− V

)
dF (q),

Vs,Y = b+ βV +
βλY
1− β

∫ q̄

q=q∗Y

(
1− F (q)

)
dq,

(1− β)V = b+ π(Vs,O − Vs,Y ) +
βλY
1− β

∫ q̄

q=q∗Y

(
1− F (q)

)
dq,

q∗Y = b− π

1− π
q∗Y − q∗O
1− β

+
βλY
1− β

∫ q̄

q=q∗Y

(
1− F (q)

)
dq,
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This equation takes into account the probability of transitioning into old age. It is easy to

see that the cutoff quality will not be the same if λY > λO.

Proposition 5. If the arrival rate λ falls with age then ∂E[q|q > q∗]/∂b > 0 and ∂D/∂b > 0.

Proof. First, for the old woman, the analysis of the basic model applies and the result follows

immediately. Second, for the young woman, we can apply the same kind of analysis. Higher

benefits increase the value of waiting both directly and indirectly. The direct effect comes

from enjoying the benefits while single and young and the indirect effect comes from the

benefits while old (which shows up through the cutoff quality of old). Thus, all cutoff qualities

increase which implies higher expected qualities conditional on a match and a higher duration

of single-hood. �

Stigma

Getting the benefits could also bring about negative effects if there is stigma associated with

participating in the program. In the model, we can think of this issue in two ways. First,

being in the program lowers the probability of receiving an offer. Second, the distribution of

offers gets worse.

In either case, the presence of the stigma makes the predictions of the model ambiguous.

Proposition 6. If b lowers the rate of arrival of prospects λ or worsens the distribution

F (q) in the sense of first-order stochastic dominance (in addition to increasing the per period

utility) then the sign of ∂E[q|q > q∗]/∂b and ∂D/∂b becomes ambiguous.

Proof. Lemma 1 established that the cutoff quality moved in the same direction as the

benefits, the change in the probability of proposals, λ, and the distribution, F (q). With a

stigma effect, the program increases b but lowers λ or F . The original effect increases the

cutoff but the stigma effect lowers it. It is unclear which one we should expect to dominate.

�
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Work

The initial predictions are maintained when we introduce a labor decision in the model. In

this extension, a woman has a probability λE of receiving an employment opportunity. A

job offer is characterized by its wage w which is distributed G(w) with support [w.w̄] and

w̄ > b. We assume that marriage lasts forever and that an employed woman loses her job with

probability δ each period. We also assume that an employed woman can receive marriage

offers at rate λm,e and with quality distributed F̂ (q).

In this extension, there exist three possible states: single and unemployed, single and

employed, and married. The value of being single and unemployed is

Vs,u = b+βλm

∫
q
max{Vm,u(q), Vs,u}dF (q)+βλe

∫
w
max{Vs,e(w), Vs,u}dG(w)+β(1−λm−λe)Vs,u.

The value of being married to a partner with quality q is

Vm,u(q) = q + βVm,u(q) = q/(1− β).

The value of being employed at wage w is

Vs,e(w) = w + βλm,e

∫ q̄

q=q

max{Vs,e(w), Vm,u(q)}dF̂ (q) + βδVs,u + β(1− λm,e − δ)Vs,e(w).

Letw∗ be the cutoff wage and q∗ be the cutoff quality for the single, unemployed woman.

Then, by definition of cutoff wage and quality

(1− β)Vs,u = (1− β)Vs,e(w
∗) = (1− β)Vm,u(q

∗) = q∗.

Evaluating the expression above at w∗, we get

q∗ = w∗ +
βλm,e
1− β

∫ q̄

q=q∗
[q − q∗]dF̂ (q) = w∗ +

βλm,e
1− β

∫ q̄

q=q∗
[1− F̂ (q)]dq. (C.2)
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For each wage w, there will be a cutoff marriage quality, q(w), such that all proposals with

quality q > q(w) will be taken. The cutoff marriage quality is implicitly defined by

Vs,e(w) = Vm,u(q(w)) =
q(w)

1− β
.

Then, we can write,

[1− β(1− δ)]Vs,e(w) = w + βλm,e

∫ q̄

q=q

max{0, Vm,u(q)− Vs,e(w)}dF̂ (q) + βδVs,u.

[1− β(1− δ)]Vs,e(w) = w +
βλm,e
1− β

∫ q̄

q=q(w)

[1− F̂ (q)]dq + βδVs,u.

[1− β(1− δ)][Vs,e(w)− Vs,u] = w +
βλm,e
1− β

∫ q̄

q=q(w)

[1− F̂ (q)]dq − (1− β)Vs,u.

[1− β(1− δ)][Vs,e(w)− Vs,u] = w +
βλm,e
1− β

∫ q̄

q=q(w)

[1− F̂ (q)]dq − q∗.

[1− β(1− δ)][Vs,e(w)− Vs,u] = w − q∗ +
βλm,e
1− β

∫ q̄

q=q(w)

[1− F̂ (q)]dq.

q(w) = q∗ +
1− β

1− β(1− δ)
(w − qñ∗) +

βλm,e
1− β(1− δ)

∫ q̄

q=q(w)

[1− F̂ (q)]dq. (C.3)

We can directly establish the existence and uniqueness of the solution of q(w∗) (the cutoff

marriage quality at the reservation wage) by evaluating this expression at w = w∗. The cutoff

marriage quality accounts for the current wage, the search value, and the possibility of the

job being lost.
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Now, the value of being single and unemployed is given as before.

(1− β)Vs,u = b+ βλM

∫ q̄

q=q

(
max {Vm(q)− Vs,u, 0}

)
dF (q) + βλE

∫ w̄

w=w

(
max {Vs,e(w)− Vs,u, 0}

)
dG(w),

(1− β)Vs,u = b+ βλM

∫ q̄

q=q∗

(
Vm(q)− Vs,u

)
dF (q) + βλE

∫ w̄

w=w∗

(
Vs,e(w)− Vs,u

)
dG(w),

(1− β)Vs,u = b+
βλM
1− β

∫ q̄

q=q∗

(
1− F (q)

)
dq +

βλE
1− β(1− δ)

∫ w̄

w=w∗

(
1−G(w)

)
dq(w),

(1− β)Vs,u = b+
βλM
1− β

∫ q̄

q=q∗

(
1− F (q)

)
dq +

βλE
1− β(1− δ)

∫ w̄

w=w∗

(
1−G(w)

)
dq(w),

q∗ = b+
βλM
1− β

∫ q̄

q=q∗

(
1− F (q)

)
dq +

βλE
1− β(1− δ)

∫ w̄

w=w∗

(
1−G(w)

)
dq(w). (C.4)

Then, we can solve for all cutoffs in the following way. We first solve for the cutoffs at the

single, unemployed state. Those cutoffs are w∗ and q∗. Equation (C.2) is increasing in w∗

while equation (C.4) is decreasing in w∗. This means that if a solution exists, it is unique.

We can also solve for the cutoff marriage quality at a job with wage w using equation (C.3).

Clearly, q(w∗) = q∗ and q(w) is a strictly increasing function.

We can now establish the comparative statics with respect to the benefits.

Proposition 7. An increase in benefits b increases the number of periods the woman stays

single and the average quality of the marriage. An increase in benefits b also increases the

number of periods the woman stays unemployed and the average wages of the women that

become employed.

Proof. As before, all we need to do is establish that the increase in benefits increases the

cutoff qualities and wages. For the single and unemployed cutoffs, notice that equation (C.4)

is the only one affected by the change in benefits and that this equation is decreasing in w∗.

Therefore, q∗ and w∗ must increase.

For the single and employed cutoffs, the higher benefits have an indirect effect through

the single and unemployed cutoff which we already established was increasing. Intuitively,

higher benefits make it better to wait before marrying even when employed because if the
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woman were to lose the job, she would enjoy those benefits. �

Fertility

An extra dimension that we can consider is fertility. A woman’s incentives to have more

children are affected by the program. We model this dimension as a binary decision that a

woman makes in each period. If a woman decides to have children, she gets one next period

with probability πc. In the model, we limit the number of extra children a woman can have

to one. We do this by considering a small state space. That is, a woman can be single with n

children, single with n+ 1 children, or married with n and n+ 1 children. A decision to have

children while married does not affect the analysis and is thus omitted.

Let us compare the decision of having children when enrolled in the program and when

not. The value of being single with n children is

V i
s,n = bin + an + β

(
λin

∫ q̄

q=q

max
{
Vm(q), V̂ i

s,n

}
dF̃n(q) + (1− λin)V̂ i

s,n

)
,

where the i superscript is either 0 or 1, indicating if the woman is participating in the program.

V̂ i
s,n is the optimal continuation (next period) value of a single woman who has n children in

this period. V̂ i
s,n = max{V i

s,n, πcV
i
s,n+1 + (1− πc)V i

s,n}.

Also, an is the utility flow of having n children. Finally, bin is the transfers that a woman

who has n children receives. Some conditions change when a woman enrolls in the program.

For instance, if a woman is enrolled in the program, she will receive a transfer b1
n > b0

n = 0. If

b1
n+1 > b1

n, the program provides extra incentives to have children (becauseb0
n+1 = b0

n). At the

same time, if λin+1 < λin andλ1
n+1− λ1

n < λ0
n+1− λ0

n (the effect of an extra child on the arrival

of prospects is more negative when participating in the program), there are fewer incentives

to have children. When combined with the effect of the higher transfers, the overall effect of

the program on fertility is ambiguous.

Proposition 8. If b is an increasing function of the number of children then fertility will
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increase when b increases. But if more children while single lower the rate of arrival of prospects

in the labor and marriage market, then the predictions about fertility become ambiguous.

Mobility

Now, we introduce the possibility of moving to a new location. Locations are indexed by j

and have different characteristics (λj). We consider the case where the transfer is lost upon

moving to a new location. Opportunities to move to a new location arrive randomly with

probability µ. We assume that a married woman does not receive moving opportunities.

Vs = b+ β

(
λ

∫ q̄

q=q

max {Vm(q), Vs} dF (q) + µ

∫
j

max {Vs,j, Vs} dH(j) + (1− λ− µ)Vs

)
.

The value of being married to a partner with quality q is

Vm(q) = q + βVm(q) =
q

1− β
.

We take the value of being single in the new location, Vs,j, as exogenous. While we could

make it endogenous, the only relevant assumption is that for each specific new location, the

value of being single there is not affected by b.

The decision to migrate is governed by max{Vs,j, Vs}. Define the set of locations the agent

would move to as J∗ := {j|Vs,j ≥ Vs}. The probability of moving to a new location is given by

µH(J∗). The expected quality of new locations a woman moves to is given by E[Vs,j|j ∈ J∗].

Proposition 9. If b increases, then mobility falls, and those who do migrate, move to better

locations.

Proof. By applying standard dynamic programming arguments, we can show that Vs is a

strictly increasing function of b,. [First, the Bellman operator satisfies Blackwell’s sufficient

conditions for a contraction so there is a fixed point and it is unique. Second, the operator

preserves the property of being an increasing function of b, and the operator maps weakly
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increasing functions of b to strictly increasing functions of b.] Since Vs is a strictly increasing

function of b and each Vs,j is constant on b, the set J∗ is decreasing in b (i.e., when b increases,

the set gets smaller as some locations are now excluded). Thus, the probability of moving is

lower. Finally, the expected quality of a new location a woman moves to is higher when b is

higher. That is because the expected quality when b is lower is a weighted average of the

locations that remain when b is higher and the locations that were excluded. By construction,

the latter has a lower value than any of the former which proves the result. �

C.3 Causal Forest

We implement the generalized random forest algorithm proposed by Athey et al. (2019). The

algorithm, first, trains a causal forest using a full set of covariates and second, estimates

conditional average treatment effects (CATE).

An individual tree in a causal forest is trained by drawing a random subsample from

the dataset and the sample is split into several nodes to form a tree. Each node in a tree

is split using a random subset of covariates and some value of the covariate. The GRF

algorithm measures the goodness of a split using heterogeneity across nodes and maximizes

the difference in treatment effects across nodes. Then, a prediction is made using a weighted

average of each tree’s prediction where the weight is the similarity across trees.

We make the following decisions to train a causal forest. First, we use 50% of the full

dataset to grow each tree. Second, we train 100,000 trees in a causal forest. Davis and Heller

(2017) use 100,000 trees and Beaman et al. (2021) use 250,000 trees but find no meaningful

increase in stability when increasing the number of trees from 100,000. In training each tree,

we consider
√
x + 20 number of variables for each tree where x is the number of variables

and set 20 as the minimum number of observations in each leaf.

We estimate the average treatment effects using a doubly robust augmented-inverse-

propensity weighting estimation method (Robins et al., 1994). We report the average
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treatment effects on the full and treated samples. We also estimate the overlap-weighted

average treatment effect recommended by Li et al. (2018) that addresses an issue of estimated

propensities being close to 0 or 1 and find similar results to ATE.
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