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Abstract

Objective: This study aimed to explore sensitive detection methods for pathological high-

frequency oscillations (HFOs) to improve seizure outcomes in epilepsy surgery.

Methods: We analyzed interictal HFOs (80-500 Hz) in 15 children with medication-resistant 

focal epilepsy who underwent chronic intracranial electroencephalogram via subdural grids. The 

HFOs were assessed using the short-term energy (STE) and Montreal Neurological Institute 

(MNI) detectors and examined for spike association and time-frequency plot characteristics. A 

deep learning (DL)-based classification was applied to purify pathological HFOs. Postoperative 

seizure outcomes were correlated with HFO-resection ratios to determine the optimal HFO 

detection method.

Results: The MNI detector identified a higher percentage of pathological HFOs than the STE 

detector, but some pathological HFOs were detected only by the STE detector. HFOs detected 

by both detectors had the highest spike association rate. The Union detector, which detects 

HFOs identified by either the MNI or STE detector, outperformed other detectors in predicting 

postoperative seizure outcomes using HFO-resection ratios before and after DL-based purification.

*Corresponding author: Hiroki Nariai, MD, PhD, MS, Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel 
Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA, Address: 10833 Le Conte Ave, Room 22-474, Los 
Angeles, CA 90095-1752, USA, hnariai@mednet.ucla.edu. 
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Conclusions: HFOs detected by standard automated detectors displayed different signal and 

morphological characteristics. DL-based classification effectively purified pathological HFOs.

Significance: Enhancing the detection and classification methods of HFOs will improve their 

utility in predicting postoperative seizure outcomes.

Keywords

HFO; STE; MNI; machine learning; deep learning

1. INTRODUCTION:

Complete resection of the epileptogenic zone (EZ: areas of the brain responsible for 

generating seizures) is necessary to achieve freedom from seizures in drug-resistant focal 

epilepsy (Rosenow et al. 2001). Discovering a biomarker that can accurately map the spatial 

extent of EZ will be significant. Research on epilepsy, involving both humans and animals, 

has proposed that intracranially recorded interictal high-frequency oscillations (HFOs) on 

EEG is a promising spatial neurophysiological biomarker of EZ (Bragin et al. 1999a; Bragin 

et al. 1999b; Worrell et al. 2008; Zijlmans et al. 2009). There have been many studies in 

the past showing the correlation between postoperative seizure freedom and the resection 

of brain regions generating HFOs. (Jacobs et al. 2010; Wu et al. 2010; Akiyama et al. 

2011; Nariai et al. 2011; van 't Klooster et al. 2015). However, a recent multi-institutional 

prospective study was unable to reproduce the findings (Jacobs et al. 2018), and a clinical 

trial that was recently published could not demonstrate that HFO-guided resection during 

electrocorticography (ECoG) resulted in better seizure outcomes than standard spike-guided 

resection (Zweiphenning et al. 2022).

At this stage, although HFOs show promise, it is unclear whether it can be used to guide 

epilepsy surgery. Some technical issues with HFO analysis include the following: (1) The 

standard detection methods of HFOs have not been established (Remakanthakurup Sindhu 

et al. 2020; Wong et al. 2021). Currently, there are various methods available for HFO 

detection, including the STE (Staba et al. 2002), Short Line Length (SLL) (Gardner et 

al. 2007), and Hilbert transform (Crepon et al. 2010) methodologies. The recent and 

widely used method is the MNI detector (Zelmann et al. 2009), in which the HFO 

detection incorporates information from previously detected baselines to simulate expert 

HFO analysis to enhance its detection sensitivity. However, although the STE detector 

is simple and commonly used, it is still unclear whether this simpler method is less 

effective in detecting HFOs than the more sophisticated MNI detector. (2) The presence 

of physiological HFOs complicates the interpretation of the results (Frauscher et al. 2017; 

Frauscher et al. 2018). Currently, no methods are available to detect pathological HFOs, 

while rejecting physiological HFOs and artifacts. Visual analysis by a human expert is 

commonly performed, but it is time-consuming and has limitations in inter-rater reliability 

(Spring et al. 2017; Nariai et al. 2018). Although it works well for artifact rejection, human 

experts cannot confidently annotate each event as pathological or physiological except for 

recognizing HFOs with or without spikes. Efforts to selectively detect pathological HFOs 

have been attempted, including automated detection of spikes along with HFOs (Weiss et al. 

2016; Guth et al. 2021) and cross-frequency coupling analysis (Nonoda et al. 2016; Motoi 
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et al. 2019; Kuroda et al. 2021). However, the evidence of its efficacy in differentiating 

pathological and physiological HFOs is still limited. Furthermore, it remains uncertain 

whether the MNI detector is more sensitive than the simple STE-based detection in detecting 

pathological HFOs.

In recent work, we developed a novel weakly-supervised DL algorithm, using channel 

resection status as DL labels, to characterize the pathological HFOs generated by EZ (Zhang 

et al. 2022b). In another related work, we utilized a similar framework, with functional 

cortical mapping results as DL labels, to characterize the physiological HFOs generated by 

the eloquent cortex (EC) (Zhang et al. 2022a). However, we applied the DL-based classifiers 

after we detected HFOs using the STE detector. It is unknown whether we had increased 

sensitivity in detecting pathological or physiological HFOs before applying the classifiers 

with the MNI detector or a combination of both.

The present study aimed to provide insights into what HFO detection methods should 

be used to maximize the sensitivity of pathological HFOs by meticulously characterizing 

HFOs detected by the STE and MNI detectors. We also engineered the Union detector, 

which encompassed events detected by either STE or MNI detectors to further enhance the 

sensitivity of the detection. Then, the detected HFOs from each detector were evaluated 

for their association with spikes and time-frequency characteristics. Finally, our previously 

developed novel DL-based classifier was applied to determine what detection methods 

would provide the most sensitive detection of pathological HFOs, and what HFO detection 

method would provide the most accurate postoperative seizure outcomes.

2. METHODS:

2.1. Patient cohort

This study employed a retrospective cohort design. We consecutively recruited children 

(under the age of 21) who were suffering from medically refractory epilepsy—characterized 

by monthly or more frequent seizures and the inefficacy of more than three anti-

seizure medications—from the Pediatric Epilepsy Program at UCLA. These children had 

intracranial electrodes implanted for epilepsy surgery planning and subsequent cortical 

resection between August 2016 and August 2018. Those who underwent a diagnostic stereo-

EEG evaluation, which wasn't intended for resective surgery, were excluded from the study.

2.2. Standard protocol approvals, registrations, and patient consent

The UCLA's institutional review board approved the involvement of human subjects and 

dispensed with the necessity for written informed consent. All the tests were regarded as 

clinically relevant for patient care, and all the EEG data used in this retrospective study was 

anonymized before it was extracted and analyzed. This study was not classified as a clinical 

trial and was not registered in any public registry.

2.3. Patient evaluation

All children referred during the study period, who were suffering from medically refractory 

epilepsy, underwent a systematic pre-surgery evaluation. This included inpatient video-EEG 
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monitoring, high-resolution brain magnetic resonance imaging (MRI) of 3.0 Tesla, and 18 

fluoro-deoxyglucose positron emission tomography (FDG-PET), coupled with MRI-PET co-

registration. The boundaries and scope of the resections were primarily based on the seizure 

onset zone (SOZ), which is clinically identified as the areas initially showing continuous 

rhythmic waveforms at the beginning of typical seizures. In certain instances, to avoid 

causing unacceptable neurological damage, the seizure onset zones were not fully resected.

2.4. Subdural electrode placement

Surgical implantation was performed for macroelectrodes, which included platinum grid 

electrodes with an intercontact distance of 10 mm, and depth electrodes, made of platinum 

with a 5 mm intercontact distance. The total number of electrode contacts for each 

patient ranged from 40 to 128, with a median of 96 contacts. The positioning of these 

intracranial electrodes was primarily guided by the results of scalp video-EEG recording and 

neuroimaging studies. All electrode plates were sewn to neighboring plates, the dura mater's 

edge, or both, in order to minimize the movement of subdural electrodes post-placement.

2.5. Acquisition of three-dimensional (3D) brain surface images

We collected high-resolution 3D magnetization-prepared rapid acquisition with gradient 

echo (MPRAGE) T1-weighted images of the whole head preoperatively. Utilizing post-

implant computed tomography (CT) images, we created a FreeSurfer-based 3D surface 

image with the locations of the electrodes directly identified on the brain surface (Zhang et 

al. 2022b). Furthermore, digital photographs were captured intraoperatively before the dura 

was closed to improve the spatial precision of electrode placement on the 3D brain surface. 

When the area was re-exposed for resective surgery, we visually verified that the electrodes 

had remained in place, matching the digital photo taken during the electrode implantation 

surgery.

2.6. Intracranial EEG (iEEG) recordings

The intracranial EEG (iEEG) data was recorded with a digital sampling frequency of 2,000 

Hz using the Nihon Kohden Systems (Neurofax 1100A, Irvine, California, USA). For each 

participant, a consistent 90-minute EEG segment was chosen, ensuring it was at least two 

hours before or after any seizures, prior to tapering of anti-seizure medications, and before 

cortical stimulation mapping. This mapping usually took place two days post-implant. All 

the iEEG data used in the study were extracted from the clinical EEG recording.

2.7. Automated detection of High frequency oscillations

For the HFO analysis, a customized average reference was applied, which involved 

excluding electrodes that exhibited significant artifacts (Nariai et al. 2019). Two sets of 

candidate interictal HFOs were identified using the STE detector (Staba et al. 2002) and 

the MNI detector (Zelmann et al. 2009). HFOs were defined as spontaneous EEG patterns 

in the frequency range of 80-500 Hz, consisting of at least four oscillations that can be 

distinguished from the background. The STE detector (Staba et al. 2002) uses a sliding 

window approach to detect segments in the EEG signal as candidate interictal HFOs. The 

root mean square (RMS) energy of the segment under consideration is compared with a 
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global energy threshold that is computed from the sequence of the RMS values of the 

entire EEG signal. In contrast, the MNI detector (Zelmann et al. 2009) takes a more 

localized approach and detects HFO segments by comparing them with the surrounding 

baseline activity. The MNI detector consists of a baseline detector block and an energy-

based event detector block. The baseline detector block identifies the baseline segments 

in the EEG, and the event detector block identifies the HFO segments using the energy 

threshold computed using the baseline segments. The detected baselines characterizes the 

background activity and plays an important role in channels where a large number of 

interictal epileptiform discharges (IED) are present. From this point onwards, we will refer 

to the set of candidate interictal HFOs detected by the STE and the MNI detector as STE 

set and MNI set, respectively. This study used the Matlab code and their default detector 

settings on RippleLab software (Navarrete et al. 2016).

2.8. Creation of each HFO set and subsequent training of deep learning-based 
classification (Figure 1: study workflow)

2.8.1. The Jaccard similarity between two detected HFO events (Figure 1. A)
—Assume there are two detected HFO events, represented by a tuple of start and end times, 

(s1,e1) and (s2,e2). Without loss of generality, we can assume that s1 < s2. Then, we define 

the Jaccard similarity between the two detected HFO events d(s1,s2,e1,e2) in the following 

manner (see the study workflow):

• If e2 < e1, the detected HFO2 is a subset of the detected HFO1, then we set the 

Jaccard similarity d(s1,s2,e1,e2) = 1

• If s2 > e1, the two detected HFOs are disjoint, then we set the Jaccard similarity 

d(s1,s2,e1,e2) = 0

• If e2 > e1, and e1 > s2, the two detected HFOs have partial overlap, and then we 

set the Jaccard similarity d(s1,s2,e1,e2) = (e1-s2)/(e2-s2)

2.8.2. Decomposition of STE and MNI set into three disjoint sets (Figure 1. 
B)—We used the Jaccard similarity metric to decompose the STE and MNI set into three 

disjoint sets of HFOs: the set of HFOs that are detected by both the STE and MNI detector 

(Intersection set), the set of HFOs that are detected by the MNI detector but missed by the 

STE detector (MNI only set) and the set of HFOs that are detected by STE detector but 

missed by the MNI detector (STE only set).

We populated the three disjoint sets using an algorithm described below:

• Step 1: For each HFO in the MNI set (sMNI,eMNI), we compute its Jaccard 

similarity to all the HFOs detected by the STE detector and sort them in 

descending order

• Step 2: If there is an HFO in the STE set, (sSTE,eSTE), with a Jaccard similarity 

greater than 0.95, then we place both the HFOs (sMNI,eMNI) and (sSTE,eSTE) in 

the Intersection set. If there is no HFO in the STE set with a Jaccard similarity 

greater than 0.95, then we place the HFO (sMNI,eMNI) in the MNI only set.
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• Step 3: Keep repeating Steps 1 and 2 until all the HFOs in the MNI set have been 

placed in either the Intersection or the MNI only set.

• Step 4: The HFOs in the STE set that have not been placed in the intersection set 

are used to populate the STE only set

The empirical distribution of Jaccard similarity scores was bimodal with two peaks at 0 and 

1, prompting us to use a strict threshold of 0.95 for our greedy algorithm.

2.8.3. Training epileptogenic HFO (eHFO) detector (Figure 1. C/D)—We 

introduced the class of eHFOs, which aimed to capture HFOs generated from the 

epileptogenic tissues of the brain (Zhang et al. 2022b). It is obtained by training a DL-based 

detector for the HFOs that are distinctively present in the SOZ channels and other resection 

channels in post-operative seizure free patients. Since it is a data-driven procedure, the exact 

DL model is a function of the type of HFO detector. A defining characteristic of such 

data-driven eHFOs — irrespectively of the type of the HFOs used — is high amplitude in 

time-frequency plots across frequency bands at HFO onset (the inverted T-shaped template) 

(Hoogteijling et al. 2022).

The HFOs obtained by running the 90-minute intracranial EEG data through the STE and 

MNI detector were passed through the decomposition block to obtain the three disjoint 

HFO sets: MNI only set, Intersection set, and the STE only set. We constructed the Union 

HFO set by taking the Union of the three disjoint sets (MNI only + Intersection + STE 

only). Similarly, we constructed the MNI HFO set by taking the Union of Intersection and 

MNI only sets (Intersection + MNI only). A pre-trained artifacts detector (Zhang et al. 

2022b) was used to filter the artifacts in the HFO set. We adopted the same structure of 

DL input and training strategy (weak supervision) as performed in the prior studies (Zhang 

et al. 2022a; Zhang et al. 2022b). In short, we extracted three features from each HFO in 

the set as our prior studies (Zhang et al. 2022a; Zhang et al. 2022b): i) a time-frequency 

plot (scalogram) generated using continuous Gabor wavelet transforms ranging from 10-500 

Hz, ii) an EEG-tracing plot generated on a 2000 x 2000 image by scaling the time-series 

signal into the 0-2000 range to represent the EEG waveform's morphology, iii) an amplitude-

coding plot generated to represent the relative amplitude of the time series signal: for every 

time point, the pixel intensity of a column of the image represented the signal's raw value 

at that time. These three images were resized into the standard size (224 x 224), serving as 

the input to the neural network. We adopted a weak labeling scheme to generate the labels 

for each HFO: HFOs in the set that originated from the resected channels (obtained from 

the channel status) were assigned a label of 1, and HFOs in the set that originated from 

the preserved channels (obtained from the channel status) were assigned a label of 0. The 

extracted features and the weak labels were then used to train a state-of-the-art DL model, 

namely ResNet-18 (He et al. 2016). Each of the three different detectors was trained by each 

training set: Union eHFO detector trained with Union HFO set, MNI eHFO detector trained 

with MNI set, and STE eHFO detector trained with STE set.

A patient-wise elimination training strategy was adopted to validate the findings of the 

detectors and generate the receiver operating characteristics curve. In this training strategy, 

we trained ten models in total: one model each for the seizure-free patients (9 seizure-free 
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patients) and one model for the non-seizure-free patients. The model for a seizure-free 

patient was trained by excluding the iEEG data of that seizure-free patient from the training 

set. For example, we trained a model for a particular patient by constructing the training set 

from iEEG data of the remaining 8 seizure-free patients. The model for the non-seizure-free 

patients was trained by constructing the training set from iEEG data of the 9 seizure-free 

patients. In the inference stage, we used the patient-wise models to predict the outcome 

of the seizure-free patients and the non-seizure-free model to predict the outcome of the 

non-seizure-free patients. Therefore, we are using an independent cohort of EEGs to validate 

the findings of the detectors, as there is no overlap between the training and test set.

2.9. Evaluating the performance of eHFO detectors in predicting postoperative seizure 
outcomes

The trained eHFO detectors were used to classify the HFOs in the Union HFO set into 

epileptogenic HFOs (eHFO) and non-epileptogenic HFOs (non-eHFO). The ratio of the 

rates of eHFO in the resected region to the preserved region was used as a feature to train 

a logistic regression model for predicting the postoperative seizure outcomes of 15 patients. 

By varying the classification threshold on the ratio, a receiver operating characteristics curve 

(ROC) was generated. The area under the ROC curve was computed and used as a metric 

to evaluate the performance of the eHFO detectors in predicting the postoperative seizure 

outcome (seizure freedom at 24 months after surgery) of patients.

2.10. Time-frequency plot characteristics of the HFOs in the three HFO sets

We computed the mean time-frequency scalogram of HFOs in the three sets (Intersection, 

MNI only, STE only) by averaging the power across all the scalograms of HFOs in the sets. 

The mean scalograms were then compared across the three sets in four distinct frequency 

bands (10-30 Hz, 30-80 Hz, 80-250 Hz, 250-500 Hz) by performing a t-test between the 

mean scalograms. We also created a customized scalogram, using the same technique as in 

our previous work (Zhang et al. 2022b), to visually represent the frequency ranges in which 

the scalograms of the HFOs belonging to different sets varied in. For every pixel (x,y) in the 

224*224 image, we created two sets of data points: Sint(x,y) and Smni(x,y), where Sint(x,y) 

consists of the intensity values of the scalogram of the HFOs in the Intersection set and 

Smni(x,y) consists of the intensity values of the scalogram of the HFOs in the MNI only 

set. Then we performed one-tailed t-tests to determine whether a random variable A(x,y), 

whose samples are given by Sint(x,y), is greater than that of a random variable B(x,y) whose 

samples are given by Smni(x,y). If this hypothesis is found to be true, with a p-value less 

than 0.001, we set the pixel value I(x,y) = 1; otherwise, I(x,y) = 0. Similarly, by following 

the above procedure, we compared the time-frequency scalogram of HFOs in the MNI only, 

and the STE only sets with two sets of data points: Smni(x,y) and Sste(x,y).

2.11. Distribution of HFO with spike and epileptogenic HFO in three HFO sets

We passed the three HFO sets (Intersection, MNI only, STE only) through the trained spike 

detector (Zhang et al. 2022b) to classify them into HFOs with spikes (spk-HFO) and HFOs 

without spikes (non-spk-HFO) categories. Similarly, we passed the three HFO sets through 

the trained union eHFO detector to classify them into eHFO and non-eHFO categories. We 

compared the distribution of HFO with spike and eHFO across the three HFO sets.
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2.12. Relationship between epileptogenic HFOs and HFOs with spikes

We passed the Union HFO set through the three trained eHFO detectors (Union, MNI, and 

STE) to classify the HFOs into eHFO and non-eHFO categories. We also passed the Union 

HFO set through the trained spike detector to classify the HFOs into HFOs with spikes 

(spk-HFO) and HFOs without spikes (non-spk-HFO) categories. For each eHFO detector 

type, we computed the overlap between the eHFO and spk-HFO set and then compared the 

overlap across the three eHFO detectors.

2.13. Statistical analysis

We used Python (version 3.7.3; Python Software Foundation, USA) for above mentioned 

statistical calculations. PyTorch (version 1.6.0; Facebook's AI Research lab) was used 

to develop the deep neural network. Quantitative measures are described by medians 

with interquartile or mean with standard deviations. Comparisons between groups were 

performed using chi-square for comparing two distributions and Student's t-test for 

quantitative measures (in means with standard deviations). All comparisons were two-sided, 

and significant results were considered at p < 0.05 unless stated otherwise. The particular 

statistical tests executed for each experiment are detailed in their respective sections.

2.14. Data sharing and availability of the methods

The anonymized EEG data utilized in this research can be obtained by sending a reasonable 

request to the corresponding author. The Python-based code employed for this study 

can be freely accessed at (https://github.com/roychowdhuryresearch/HFO-Classification). 

Individuals can use this to train and test the deep learning algorithm on their own data, thus 

validating the effectiveness and usefulness of our methods.

3. RESULTS:

3.1. Patients' characteristics:

There were 15 patients (8 females) enrolled during the study period. The median age at 

surgery was 13 years (range: 3-20 years). The median electrocorticography monitoring 

duration was four days (range: 2-12 days), and the median number of seizures captured 

during the monitoring was 7 (range: 1-35). All 15 patients underwent resection immediately 

following intracranial monitoring and provided postoperative seizure outcomes at 24 months 

(9 of 15 became seizure-free). Details of patients' clinical information are listed in Table 1.

3.2. Interictal HFO detection and HFOs' classification

A total of 105622 HFOs were detected with the STE detector and 47143 with the MNI 

detector in 90-minute EEG data from the 15 patients. Of those, 29668 were the Intersection 

set. After artifact rejection, there were 84602 HFOs detected with the STE detector, 34965 

with the MNI detector and 21248 of them belonged to the Intersection set. We classified the 

HFOs in the three sets (Intersection, MNI only, and STE only) into HFOs with spikes and 

HFOs without spikes. Across 15 patients, on average, 88% of HFOs in the Intersection set 

were HFOs with spikes, 87% of HFOs in the MNI only set were HFOs with spikes, and 36% 

of HFOs in the STE only set were HFOs with spikes. The percentage of HFO with spikes 
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was significantly higher in the Intersection and the MNI only set when compared to the STE 

only set (Intersection vs. STE only: mean 0.88 versus 0.36, p < 0.001; MNI only vs. STE 

only: mean 0.87 versus 0.36, p < 0.01) (Figure 2).

3.3. Spectral Characteristics of HFOs in three HFO sets

The analysis of the mean time-frequency map averaged across the 15 patients demonstrated 

that HFOs in the Intersection set showed higher amplitude in all the frequency bands (fast 

ripple: 250-500 Hz; ripple: 80-250 Hz; gamma: 30-80; and beta: 10-30 Hz) than HFOs in 

the MNI only or STE only set (p < 0.0001 for all comparisons). However, comparisons of 

the amplitude between the MNI only and the STE only HFOs did not show differences in 

fast ripple, ripple, and gamma bands (p = 0.90, 0.99, and 0.99, respectively). In the beta 

band, HFOs in the MNI only set have more amplitude than the ones in the STE only set 

(p < 0.001) (Figure 3A). With more detailed pixel-by-pixel analysis, we demonstrated that 

the HFOs in the Intersection set had higher amplitude than HFOs in the MNI only set in all 

four frequency bands, with a noticeable difference in the 30-80 Hz and 80-250 Hz frequency 

bands. Similarly, HFOs in the MNI only set have higher amplitude than HFOs in the STE 

only set in the 10-30 Hz and 30-80 Hz frequency bands, with a significant difference in the 

10-30 Hz frequency band (Figure 3B).

3.4. Overlap between eHFOs and HFOs with spikes in three eHFO detectors

We classified the HFOs in the Union HFO set (Intersection + MNI only + STE only) into 

HFOs with spikes and HFOs without spikes. We also classified the HFOs in the Union HFO 

set into eHFOs and non-eHFOs using the three types of eHFO detectors (Union, MNI, and 

STE). Across the 15 patients, there was an overlap ratio of 0.79, 0.95, and 0.78 between 

HFOs with spikes and eHFOs with the Union, MNI, and STE eHFO detectors, respectively. 

The overlap percentage was significantly higher in the MNI HFOs than in the Union and 

STE HFOs (MNI vs. Union: mean 0.95 vs. 0.79, p < 0.001; MNI vs. STE: mean 0.95 

vs. 0.78, p < 0.001). There were no significant differences in the overlap percentage when 

comparing the Union and STE HFOs (Union vs. STE: mean 0.79 vs. 0.78, p = 0.042, which 

became insignificant after Bonferroni correction) (Figure 4).

3.5. Characteristic differences of eHFOs vs. non-eHFOs controlled by spike status

We investigated the differences in the time-frequency characteristics between eHFOs and 

non-eHFOs controlled by spike status. Across four frequency bands, eHFOs with spikes 

showed higher power than non-eHFOs with spikes, and eHFOs without spikes showed 

higher power than non-eHFOs without spikes (p < 0.0001 in all comparisons with Welch 

t-test with unequal variances). (Figure 5)

3.6. Distribution of eHFO in three HFO sets

We classified the HFOs in the three sets (Intersection, MNI only, and STE only) into eHFOs 

and non-eHFOs using the Union eHFO detector. Across 15 patients, on average, 82%, 85%, 

and 45% of HFOs in the Intersection set, MNI only set, and STE only set were eHFOs, 

respectively. The percentages of eHFOs were significantly higher in the Intersection, and 

MNI only set when compared to the STE only set (Intersection vs. STE only: mean 82% 
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versus 45%, p < 0.001; MNI only vs. STE only: mean 85% versus 45%, p = 0.03). We 

plotted the distribution of the confidence scores (the probability of each HFO being eHFO) 

returned by the Union eHFO detector for the three sets. The distribution for the Intersection 

and the MNI only set was skewed towards 1 (higher confidence towards eHFO), while the 

STE only set showed a more balanced distribution (Figure 6).

3.7. Predicting postoperative seizure outcomes using HFO resection ratios

We used the HFO and eHFO resection ratio (ratio = total number of resected HFOs/ total 

number of detected HFOs) as a classifier to predict the postoperative seizure outcomes. 

Three types of HFO detectors (Union, MNI, and STE) were used for computing the ratios. 

For both cases (HFO and eHFO resection ratios), the Union HFO detector achieved the 

best performance in predicting the postoperative seizure outcome (AUC of 0.78 and 0.89), 

followed by the MNI HFO detector (AUC of 0.76 and 0.85), and then the STE eHFO 

detector (AUC of 0.72 and 0.81) (Figure 7).

3.8. Post-hoc sensitivity analysis

We conducted a post-hoc sensitivity analysis to prove that the superior performance of the 

Union eHFO detector was not due to biased HFO samples. We trained the STE and the 

Union eHFO detector using the same number of training samples (n = 84602). In training 

the STE eHFO detector, the training set only consisted of HFO samples from the STE set. 

In training the Union eHFO detector, the training set consisted of an equal number of HFO 

samples from the STE and MNI set. The trained models were then used to predict the patient 

outcomes and generate receiver operating characteristics (ROC) curves. We plotted the area 

under the ROC curve (AUC) as a function of the number of training samples used to train 

the detectors. From the plot, it can be observed that there is a significant gap between the 

curves showing that even for the same number of training samples union eHFO detector 

performs better in terms of predicting the seizure outcomes (Supplementary Data).

4. DISCUSSION:

Although HFOs are widely investigated as one of the spatial biomarkers of the EZ, the 

definition of what constitutes an HFO event is computational and algorithm-dependent 

(Frauscher et al. 2017; Remakanthakurup Sindhu et al. 2020). There have been some efforts 

at comparing the signal characteristics of the two widely used detectors, namely the MNI 

and the STE detectors; for example, the study (Zelmann et al. 2010) that introduced the MNI 

detector, showed it could detect HFO events in EEG data with noisy background (based 

on the baseline adjustment principle) that were often missed by the STE detector (Zelmann 

et al. 2012). However, this does not answer whether the MNI detector—which has more 

stringent settings—also misses the detection of certain physiological and pathological HFOs 

that could have clinical impact. Thus, a comprehensive study comparing the signal and 

morphological differences of STE and MNI HFOs, especially in the context of pathological 

HFOs, is needed. In this study, we first verified that, even at the level of individual subjects, 

each detector produced unique HFO events not detected by the other (referred to as MNI 

only and STE only HFO sets, respectively) while sharing an intersection set of HFOs 

(Intersection-set HFOs). We further showed that the Intersection set HFOs, which were 
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detected by both detectors, contained most pathological features demonstrated by high 

association rates with spikes and their signal characteristics being consistent with eHFOs 

(high amplitude in time-frequency plots across frequency bands at HFO onset) as reported 

in our previous study (Zhang et al. 2022b). The MNI HFOs were more biased towards 

HFOs with spikes and eHFOs and the STE HFOs were more biased towards HFOs without 

spikes and non-eHFOs. However, both the MNI only and STE only HFO sets contained 

significant number of pathological HFOs (for example, the STE only HFO set has 36% of 

total spk-HFO that are thus missed by the MNI detector). Thus the Union eHFO detector 

that processes all the HFOs by either the MNI or the STE detector could potentially better 

capture the characteristics of HFOs that are distinctively present in EZ. We then created 

three different eHFO detectors namely Union eHFO, STE eHFO, and MNI eHFO. Indeed, 

we demonstrated that (i) using any eHFO resection ratio outperformed the unclassified HFO 

resection ratio in any HFO detection method in post operative seizure outcome prediction; 

(ii) the Union eHFO detector outperformed all other detectors in postoperative seizure 

outcome prediction.

Our findings are clinically meaningful. We presented the data to show that neither the MNI 

nor the STE detector is sensitive enough to evaluate pathological HFOs. When we use HFO 

evaluation in clinical context, we might consider using several types of detection methods, 

as proposed in our study, to enhance the sensitivity of the detection. In addition, not all 

detected HFOs are pathological. In a recent clinical trial and observational study, issues 

with the feasibility of utilizing HFOs in clinical settings were elucidated (Jacobs et al. 

2018; Zweiphenning et al. 2022). These included the time constraints of expert-based visual 

analysis in detecting and classifying HFOs (artifacts, pathological HFOs, and physiological 

HFOs). Automated and reproducible detection and classification of HFOs will be crucial 

to use HFOs in clinical practice. In our more recent work, data from cortical stimulation 

mapping were used to characterize HFOs with origin in the eloquent cortex and hence, 

physiological in origin (Zhang et al. 2022a). If HFOs can be automatically classified into 

such HFOs that are expressed in the eloquent cortex, then one can start localizing the 

eloquent cortex from HFO detections, which would have a significant clinical impact. Since 

the STE detector can detect many more of such physiological HFOs than the MNI detector, 

it further underscores the need for using both detectors and then designing DL-assisted 

classifiers to automatically extract clinically relevant information.

Given that discovering the characteristics of pathological HFOs is an active area of research, 

we now discuss the relationship of such work with our findings. For example, HFOs with 

higher amplitude are hypothesized to be characteristics of pathological HFOs (Charupanit et 

al. 2020). Similarly, HFOs with spikes are believed to be correlated with the pathological 

nature of HFOs (Weiss et al. 2016). Our study also substantiated such findings as we 

observed that the Intersection-set HFOs had higher amplitude in all the frequency bands 

and a high spike association rate. We further investigated characterizations of pathological 

HFOs using a DL based data-driven approach as introduced in our recent work (Zhang 

et al. 2022a), where no a priori feature engineering is required to train the algorithms. In 

particular, data from patients who became seizure-free post-surgery was used to characterize 

HFOs into eHFOs and non-eHFOs. Such eHFOs were shown to share known characteristics 

of pathological HFOs (Zhang et al. 2022b). Thus, data obtained from post operative seizure 
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free patients along with DL can be used to automatically distill manually defined HFOs 

to provide clinically useful localization information about EZ, and thus obtain automatic 

characterizations of pathological HFOs. Future studies utilizing larger datasets and more 

sophisticated DL-architectures may further characterize pathological and physiological 

HFOs (Hoogteijling et al. 2022).

There are several limitations to our study. We only tested the STE and MNI detection 

methods of HFO analysis. We plan to investigate other methodologies, such as short line 

length (SLL) (Gardner et al. 2007) and Hilbert detections (Crepon et al. 2010). The iEEG 

data was recorded by placing intracranial strips and grid electrodes. Although we expect 

the analysis to hold in a clinical setting where the data is recorded using stereotactic EEG 

(sEEG), the analysis and the deep learning model need to be validated on a dataset of sEEG 

recordings. Another potential limitation of our study is the diversity of the dataset in terms 

of the number of patients, age group of the patients, state of the patients (we analyzed 

sleep segment only), and the duration of the EEG recordings. We used EEG data from 

non-REM sleep, as pathological HFOs were more commonly detected during this state (von 

Ellenrieder et al. 2017). Awake EEG data can be affected by many factors, such as subjects' 

motion, thus we did not prepare such a dataset. Since the morphology of the detections 

might be affected by the age and vigilance state of the patients, the transferability of the 

analysis and the model needs to be verified in a larger cohort of patients with a diversified 

age range, vigilance state, and epilepsy etiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Study workflow
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Figure 2: Distribution of HFOs with spikes in three HFO sets:
(A) An example of HFO with spike from each HFO set (Intersection, MNI only, and STE 

only) is shown. The first row shows the original tracing, the second row shows the filtered 

tracing (80-500 Hz), and the third shows the time-frequency plot. (B) The proportion of 

HFO with spikes in 15 patients is plotted as box plots and labeled by the HFO set type. 

Across a patient body of 15 patients, the Intersection set has the highest proportion of HFO 

with spikes on average, followed by the MNI and STE only set. The proportion of HFOs 

with spikes was significantly higher in the Intersection, and MNI only set compared to the 

STE only set (Intersection vs. STE only: mean 0.88 versus 0.36, p < 0.001; MNI only vs. 

STE only: mean 0.87 versus 0.36, p < 0.01).

HFOs: high-frequency oscillations; MNI: Montreal Neurological Institute (detector); STE: 

Short-term energy.
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Figure 3. Time-frequency plot characteristics of HFOs in three HFO sets:
(A) The time-frequency plots of HFOs, averaged across all patients (n=15), are plotted and 

labeled based on their set type and four distinct frequency bands. Across four frequency 

bands, HFOs in the Intersection set have higher amplitude than HFOs in the MNI only set 

and STE only set. HFOs in the MNI only set have higher amplitude than STE only set in 

the 10-30 and 30-80 Hz frequency bands. (B) Pixel-wise analysis of time-frequency plot 

amplitude differences among three HFO sets: We created a custom scalogram to visually 

represent the frequency ranges where the HFOs belonging to different sets varied. The 

lighter-colored regions in the figure indicate pixels where the mean amplitude of one HFO 

set is statistically higher (p-value below 0.005 from a one-tailed t-test) than the other HFO 

set. From the left plot, it is clear that the HFOs in the Intersection set have higher amplitude 

than HFOs in the MNI only set in all four frequency bands, with a noticeable difference in 

the 30-80 Hz and 80-250 Hz frequency bands. Similarly, the right plot shows that HFOs in 

the MNI only set have higher amplitude than HFOs in the STE only set in the 10-30 Hz and 

30-80 Hz frequency bands, with a significant difference in the 10-30 Hz frequency band.

HFOs: high-frequency oscillations; MNI: Montreal Neurological Institute (detector); STE: 

Short-term energy.
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Figure 4. Overlap between eHFO and HFO with spike set in three eHFO detectors:
The overlap ratio between eHFO and HFO with spike set in 15 patients is plotted as box 

plots and labeled by the eHFO detector type. Across the cohort of 15 patients, there was 

significant overlap between the eHFOs and HFOs with spikes for all three eHFO detectors. 

The overlap ratio was significantly higher in the MNI eHFO detector when compared to the 

Union and STE eHFO detectors (MNI vs. Union: mean 0.95 versus 0.79, p < 0.001; MNI 

vs. STE: mean 0.95 versus 0.78, p < 0.001) while there was no significant difference in the 

overlap ratio between Union and STE eHFO detectors (Union vs. STE: mean 0.79 versus 

0.78, p = 0.042).

HFOs: high-frequency oscillations; eHFOs: epileptogenic HFOs; MNI: Montreal 

Neurological Institute (detector); STE: Short-term energy.
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Figure 5. Time-frequency plot characteristics of eHFOs vs. non-eHFOs controlled by spike 
status:
The time-frequency plots of eHFOs and non-eHFOs (detected with Union HFO detector) 

averaged across all patients (n=15) were plotted based on spike status (with or without 

spikes). Across four frequency bands, eHFOs with spikes showed higher amplitude than 

non-eHFOs with spikes, and eHFOs without spikes showed higher amplitude than non-

eHFOs without spikes (p < 0.0001 in all comparisons with Welch t-test with unequal 

variances).

HFOs: high-frequency oscillations; eHFOs: epileptogenic HFOs
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Figure 6. Distribution of eHFO in three HFO sets:
(A) Proportion of eHFO in 15 patients is plotted as box plots and labeled by the HFO 

set type. Across the cohort of 15 patients, MNI only set has the highest proportion of 

eHFO on average, followed by Intersection and STE only set. The proportion of eHFO was 

significantly higher in the Intersection, and MNI only set when compared to the STE only 

set (Intersection vs. STE only: mean 0.82 versus 0.45, p < 0.001; MNI only vs. STE only: 

mean 0.85 versus 0.45, p = 0.03). (B) Confidence scores of eHFOs in 15 patients were 

plotted as a histogram and labeled by the HFO set type. The histogram for the Intersection 

and MNI only set has a skewed distribution strongly biased towards 1 (direction towards 

eHFO), while the STE only set has a more uniform distribution.

HFOs: high-frequency oscillations; eHFOs: epileptogenic HFOs; MNI: Montreal 

Neurological Institute (detector); STE: Short-term energy.
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Figure 7. Accuracy of postoperative seizure outcomes using HFO resection ratios:
We constructed a postoperative seizure outcome prediction model using the resection ratio 

derived from 90-minute EEG data (n=15) (same approach as in our previous work (Zhang 

et al. 2022a). Each receiver-operating characteristics (ROC) curve delineates the accuracy 

of seizure outcome classification of a given model, using the area under the ROC curve 

(AUC) statistics. A) The HFO resection ratio (detected HFOs filtered for artifacts) obtained 

from 3 models (Union, MNI, and STE) was used to predict the seizure outcome. Union 

and MNI detectors have higher AUC values than a model obtained by the STE detector. B) 

eHFO resection ratio (detected HFOs filtered for artifacts and non-eHFO) obtained from 3 

models (Union, MNI, and STE) was used to predict the seizure outcome. Overall significant 

improvement in prediction performance was seen, with the Union detector model having the 

highest AUC of 0.89.

HFOs: high-frequency oscillations; eHFOs: epileptogenic HFOs; MNI: Montreal 

Neurological Institute (detector); STE: Short-term energy.
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