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ABSTRACT OF THE THESIS 

 

Planned Missing Designs and Diagnostic Classification Models 

by 

 

Yon Soo Suh 

Master of Science in Statistics 

University of California, Los Angeles, 2022 

Professor Yingnian Wu, Chair 

 

Missing responses are often inevitable in assessments, whether they are intended 

or not. The problem is not with the missing data itself but how it is dealt with. In fact, 

as in the case of planned missing (PM) data designs, missing data can even be used to 

our advantage to promote cost-effectiveness and design efficiency in test development. 

Over the years there has been active research on the impact of, treatment for, and use 

of different kinds of missing data on psychometric models for assessments with a focus 

on first classical test theory (CTT) and then item response theory (IRT) models. IRT 

models have become one of the most popular statistical models for psychometrics and 

they have been widely used in many educational settings. Nonetheless, in an era of 

accountability in schools with increased emphasis on providing detailed and formative 

feedback on individual students, a different flavor of IRT models, coined diagnostic 

classification models (DCMs), have been fast gaining popularity in the same settings. 

DCMs specialize in the classification of respondents according to their mastery of a 

predefined set of underlying cognitive processes called attributes and is well-suited for 
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obtaining diagnostic information about individual attributes as well as their 

combinations. However, there is scant research on the impact of any kind of missing 

data that has been tailored specifically to DCMs. As a step toward filling this gap, this 

study investigates the effect of using a maximum likelihood (ML)-based approach for 

treating missing data assumed to be missing completely at random (MCAR) under 

specifically PM design scenarios using simulated data. Key factors of the type of PM 

design, the number of attributes, the structural model of DCMs, and sample size were 

experimentally manipulated to examine the extent to which item parameters of DCMs 

can be recovered and to compare the effects of various design factors. This project adds 

to the empirical knowledge base on the statistical properties of DCMs in the face of 

missing data, which in turn are expected to improve the design and use of DCMs in 

practical settings. 
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CHAPTER I 

Introduction 

1.1 Background 

In an era of accountability in schools, monitoring students’ learning progress and 

providing detailed and formative feedback is an essential issue for students and 

stakeholders alike. However, obtaining actionable information for diagnostic decision-

making or gaining insight into underlying cognitive processes is not easily available from 

the current popular set of psychometric models of item response theory (IRT; de la Torre 

& Douglas, 2004; Henson et al., 2009). Conventional IRT models assume that a 

respondent’s latent abilities are continuous and are designed to locate each respondent 

along that latent continuum quantitatively. They are more suitable for measuring 

aggregated achievement in broad, summative assessments, and making norm-reference 

interpretations (Rupp & Templin, 2008).  

On the other hand, diagnostic classification models (DCMs) or cognitive 

diagnostic models (CDMs) were developed specifically to target more fine-grained 

cognitive processes and provide diagnostic information on their states (Kaya & Leite, 

2017; Madison & Bradshaw, 2018). In DCMs, the underlying latent abilities of interest are 

assumed to be categorical, and the aim is to classify respondents with regard to these 

categorical latent traits to their most probable mastery profiles. These mastery profiles 

show which combination of latent abilities respondents have mastered or not mastered 

and provide feedback on target areas to work on. Accordingly, they have been gaining 

favor over the recent years, particularly in education, in light of the need for 

classification-based inferences regarding students’ learning, with a myriad of research 
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on these types of models following suit. Nonetheless, one area that remains unexplored 

is the impact of missing data on DCMs.  

Missing data constitute a source of concern for all kinds of statistical analyses, 

and the field of psychometrics, where DCMs live, is no exception. If missing data and its 

mechanisms are not appropriately accounted for, as in traditional methods such as 

listwise or pairwise deletion and mean substitution, missing data can result in problems 

such as lack of statistic power, biases in population parameter estimates, and thus less 

generalizability of findings, inaccurate standard errors of parameter estimates, and 

distortions in parameter distributions (Enders, 2001b; Graham, 2009; Little et al., 2013; 

Peng et al., 2006; Schafer, 1997).  

Rubin’s (1976) missing data mechanism classifies missing data into three types: 

missing completely at random (MCAR), missing at random (MAR), and missing not at 

random (MNAR). Missing data under MCAR and MAR are considered more or less 

unproblematic for likelihood-based inferences (Mislevy & Wu, 1996; Rubin, 1976) 

because the process causing the missing data is known so that the missingness can be 

controlled for. Thus, the missingness is deemed ignorable (Köhler et al., 2015; Rose et 

al., 2017). This is thanks to the development of modern missing data analysis tools such 

as multiple imputation (MI; Rubin, 1987; Schafer, 1997) and maximum likelihood (ML) 

based approaches such as full information ML (FIML). Using these methods, the 

aforementioned problems do not occur, and valid inferences can be made under the 

assumption of missing data of at least MAR. However, when there is a relationship 

between the underlying process for missing responses and the measured attribute, the 

missingness is MNAR. Then it is not ignorable and there will be consequences if treated 
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as such (i.e., biased inferences). How to deal with MNAR is still an ongoing topic of debate 

without a clear consensus. 

In the educational realm and particularly, missing data of all three types is 

common, particularly in assessment settings. While MNAR, which often occur due to 

respondents intentionally skipping or omitting items, is still problematic, the use of FIML 

and MI procedures in conjunction with IRT models have allowed researchers to obtain 

unbiased parameter estimates and reasonable standard errors when data can be treated 

as at least MAR. In fact, education is a field that has particularly used ignorable missing 

data and their modern treatments to its advantage in the form of various planned 

missing (PM) data designs. PM designs intentionally include data missingness to promote 

the cost-effectiveness and efficiency of research designs with a focus on shortening the 

length of measures to reduce respondent fatigue, assessment time, and data collection 

costs (e.g., Conrad-Hiebner et al., 2015; Graham et al., 2006; Little & Rhemtulla, 2013; 

Zhang & Yu, 2021). PM designs have been especially instrumental in the case of large-

scale assessments, where without the use of PM designs, student response data 

collection at this massive scale would be nearly impossible (Revelle et al., 2021). 

Accordingly, there has been a lot of research on missing data in psychometrics, including 

PM designs. However, as noted above, most of the research has been centered around 

IRT models (and in the past classical test theory (CTT)). Therefore, there is a severe lack 

of research on up-and-coming DCMs. Although we can theoretically expect the FIML or 

MI techniques to function similarly in the case of DCMs, there is currently no research 

that empirically shows this, let alone investigates the boundaries or conditions of 

acceptable levels for model design factors, such as the amount of missingness or DCM 

specific factors like the number of attributes or sample size.  
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1.2 Research Objectives 

This project sought to add to the literature on DCMs by focusing on the effects 

of missing data. In particular, PM designs were of interest because of their potential for 

use with DCMs applications that involve an increasingly larger number of attributes. For 

model identification and stable estimation of DCM model parameters (Fang et al., 2019; 

Hartz, 2002), researchers such as Hartz (2002) recommends at least three items per 

attribute (five have also been proported by Jang (2009)), among other requirements. As 

the number of attributes grows larger, so does the number of needed items. Furthermore, 

there is also an increased call for diagnostic feedback in even large-scale settings where 

PM designs are the default. The purpose of this study was twofold. First, the 

performance of the two common PM designs the common form design and balanced 

incomplete blocks (BIB) design is explored. The results are compared both in terms of 

the recovery of “true” parameters as well as DCMs with no missing data. Second, in this 

process, important factors for DCM estimation, specifically, the number of attributes, 

structural model formulation, and sample size, were considered, especially with regard 

to their impact on missing data. The specific research questions were: 

1) Are there differences in item parameter recovery of DCMs due to missing data arising 

from PM data designs? 

2) Are there differences in item parameter recovery of DCMs using PM data designs 

following the number of attributes? 

3) Are there differences in item parameter recovery of DCMs of PM data designs 

depending on how the structural model is formed? 
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4) Are there differences in item parameter recovery of DCMs of PM data designs 

according to sample size? 
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CHAPTER II 

Literature Review 

2.1 Missing Data and Psychometrics 

2.1.1 Missing Data Mechanisms  

In his seminal work, Rubin (1976) introduces a taxonomy based on the 

missingness nature (i.e., ignorable versus nonignorable) and identified three different 

underlying missingness mechanisms: missing completely at random (MCAR), missing at 

random (MAR), and missing not at random (MNAR). Let us consider responses  where 

respondents  ( = 1, … , ) responds to  ( = 1, … , ) dichotomous items. A missing data 

indicator  is defined as 

=                          0,           ( )1,                . (1)

The observations and missing data indicators are collected in ×  matrices  and 

, respectively.  is partitioned into an observed data part  and a missing data part 

 where = 0= 1  (2)

The complete data matrix is hence = ( , ). Let  denote the parameter 

vector of the model of , and  the parameter vector of the model of  with the 

respective parameter spaces being   and .  
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   The defining features of the different missing data mechanisms are the 

unconditional and conditional stochastic dependencies between  and .  The missing-

data mechanism is MCAR if  

  (3)

In other words, missingness is stochastically independent of the items.  

   The missing-data mechanism is MAR if  

  |  (4)

meaning conditional stochastic independence of the missing data part given the 

observed part or missingness does not depend on . Rubin’s ignorability principle 

(i.e., the missing data mechanism is “ignorable” or “uninformative” for direct likelihood 

inferences and Bayesian inferences) applies if two conditions hold: a) the missing data 

are (at least) MAR and 2) the parameters of the data distribution,  , are distinct from the 

parameters of the model for the missing data mechanism, . If both conditions are 

satisfied, with the former being more important, the distribution of , is ignorable so 

that it is possible to get unbiased parameter estimates utilizing only the part of the data 

that has no missingness (when data are MCAR) or by considering the conditional 

distribution (when data are MAR). 

Lastly, the missing-data mechanism is MNAR if 

  |  (5)

In this case, the missing data are nonignorable or informative (i.e.,  provides 

added information about  over and above ) and ignoring them leads to biased 

parameter estimates. In this case, a joint model of ( , ) is required for unbiased 
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estimation of . In other words, the missing data mechanism itself has to be modeled 

with sound reasoning behind the missingness and what the plausible values may be. For 

example, modeling the process that caused the missing data (Heckman, 1979) via 

locating and including the explanatory variables of the missing data process and making 

inferences concurrently on the missing data model and the intended model for the 

observed data can mitigate such adverse effects (e.g., Holman & Glas, 2005;  

O’Muircheartaigh & Moustaki, 1999). 

Missing data mechanisms have discrepant consequences for statistical results 

when they are handled improperly, as in the case of traditional approaches such as 

pairwise or listwise deletion. The consequences tend to become more severe in the order 

of MCAR, MAR, and MNAR. Deleting missing data that is MCAR prior to analyses often 

results in a loss of power due to the loss of sample size. Nonetheless, it does not bias 

parameter estimates (Enders, 2011; Graham, 2009; Nakagawa & Freckleton, 2010). On 

the other hand, when missing data are MAR or MNAR, simply excluding the missing data 

will result in biased parameter estimates along with bringing about a loss of power.  

2.1.2 Statistical Procedures for Data Assumed to be At Least Missing At 

Random (MAR) 

Most modern statistical techniques for dealing with missing data rely on the 

pattern of missingness being ignorable and, thus, either MCAR or MAR. In these cases, 

they can recapture the data that was missing by design and improve bias and coverage 

in parameter estimates without losing statistical power (Enders, 2001; Nakagawa, 2017; 

Schafer & Graham, 2002). Such model techniques can be classified as either MI methods 

or ML methods such as FIML. Extensive research has shown that both methods can 
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provide valid conclusions in the face of missing data; although there can be cases where 

one is favored over the other.  

As the name implies, multiple imputation (Rubin, 1987; Schafer, 1997; Schafer & 

Graham, 2002) involve imputing multiple plausible values for the missing data, as if they 

had been observed, and creating multiple complete datasets with the purpose of 

overcoming the problem of biased uncertainty of single imputation methods (Little et 

al., 2014). MI proceeds using a two-step approach where first a designated set of 

complete data sets are generated via the imputation of missing value using other 

observable variables. In the second step, the multiple generated data sets are each 

analyzed using standard methods as if they were complete case data sets. The resulting 

parameter estimates and standard errors are then pooled using Rubin’s rules (Little & 

Rubin, 2002; Nakagawa, 2017; Rubin, 1976; Schafer, 1997). Different kinds of 

imputation techniques are currently available other than MI, which will be touched upon 

in the context of psychometrical settings.  

MI methods are also called “data-based” missing data methods because they 

achieve results like FIML through the use of multiple datasets. Contrarily, ML approaches 

are called “model-based” methods as approaches such as FIML allow for the handling of 

missing data and parameter estimation in a single step as long as ML estimation is 

possible. Is important to note that the FIML estimator does not impute any missing 

values but directly estimates model parameters and corresponding standard errors 

(Enders, 2001). The basic idea is that partially complete observed responses can 

supplement the loss of information due to missing data (Little et al., 2014). ML methods 

use all of the available observed data to estimate parameter estimates and standard 

errors by defining a case-wise likelihood function for each row of complete data, which 
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are summed together and maximized. This maximizes the probability that the observed 

data are from the population implied by the parameter estimates (Noble & Nakagawa, 

2021).  

2.2 Missing Data and Psychometrics 

2.2.1 Classification of Missing Data 

In the realm of psychometrics, following Rubin’s framework, missing data are 

first classified as planned or unplanned, and then further divided within each category. 

In total, there are largely four categories of missing data (Lord, 1974: Pimental, 2005). 

Planned missing (PM) data is also called data that are missing by design as they occur 

because of intended decision-making and are, therefore, under the control of test 

administrators or researchers. There are two subtypes within planned missing data. The 

first category is missing data in a priori fixed incomplete tests and calibration designs 

such as matrix sampling using booklets. Usually, these kinds of PM designs are employed 

to promote the cost-effectiveness or efficiency of the measurement, which will be 

explained in more detail later on. As the missing data are a priori fixed, it is inherently 

independent of  or , so that the missing data in MCAR. Thus, ignorability 

trivially holds. The second subtype of PM data is missing occurring because of 

instrument characteristics. Examples include data from response-contingent designs 

like two-stage or multistage testing and computerized adaptive testing (CAT). Because 

the items administered (or conversely, not administered) are entirely determined by the 

observed responses, they are independent of any unobserved responses. Therefore, the 

missing data mechanism is MAR. Like this, these two types of PM data designs produce 

ignorable missing data.  
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Unplanned missing data also has two subtypes as well. Although both subtypes 

result from responses like “don’t know” or “not applicable,” they are.divided by whether 

the missing data can or cannot be ignored depending on the cause of the missingness. 

If the missing responses do not depend on the latent variable being measured, these 

responses can be considered MAR and, therefore, ignored in the analysis. On the other 

hand, if the “don’t know” or “not applicable” responses because there is a relationship 

between the propensity of a response to be missing and the response, they are resulting 

from a MNAR mechanism. Examples of MNAR responses include low-ability respondents 

failing to produce a response and skipping items (i.e., item omission) or items not being 

reached due to time constraints. In these contexts, the probability of omitting and/or 

not reaching an item depends not only on the item characteristics and latent trait(s) of 

interest but additionally on unobserved, latent variables like the missing distribution. 

As such, the assumption of MAR is violated and treating these responses as ignorable 

missing can produce the problems mentioned above (Holman & Glas, 2005; Rose et al., 

2010).  

2.2.2 Methods of Handling Missing Data 

Existing methods for dealing with missing responses in testing or survey settings 

consist of classical, imputation-based, and model-based approaches under MNAR (Finch, 

2008). Classical approaches have four subtypes. The first subtype is to ignore missing 

responses, that is, treat as though not given, and assume at least MAR so that modern 

missing data techniques such as FIML can be applied. Or missing values can be scored 

as incorrect, which involves making a deterministic decision to ignore an examinee’s 

positive probability to solve the item, conditional on ability. Yet another deterministic 

imputation method is to score missing responses as fractionally correct and give scores 
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such as the reciprocal of the total number of item categories (i.e., 1/(number of item 

response options). Lastly, a mix of the subtypes above can be utilized as in two-stage 

procedures where missing responses are ignored when calibrating item parameters but 

then are considered incorrect when scoring persons. Variants of these classical 

approaches are the default in large-scale educational assessments such as NAEP, NEPS, 

PISA, and TIMSS (Köhler et al., 2015).  

Item nonresponse imputation methods consist of three subtypes: deductive 

imputation, deterministic imputation, and stochastic imputation. In deductive 

imputation, missing data are imputed using other known information. In deterministic 

imputation, a predicted or specific value is used. In stochastic imputation, randomness 

is incorporated in the imputing process. Deductive imputation is seldom feasible in 

assessment or survey settings, but different flavors of both deterministic and stochastic 

imputations are possible. Deterministic imputation includes methods such as 

unconditional mean imputation, person mean imputation, and regression imputation. 

Classical approaches can be considered deterministic imputation as well. Stochastic 

imputation incorporates uncertainty in the imputation process through a randomness 

variable. It involves methods such as stochastic regression imputation and MI fall in this 

last category. Stochastic imputation methods are considered superior to other 

imputation methods (Finch, 2008).  

Model-based approaches, which consist of latent and manifest approaches (Rose 

et al., 2010), have been proposed to handle MNAR data. Mainly three methods fall under 

latent variable approaches. One is treating missing value code as a separate response 

category in addition to responses for observed items in a nominal response model. While 

this approach avoids adding another dimension to the model, in this case, the 
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assumption is that responses and nonresponses are all related to the same dimension(s) 

(Moustaki & Knott, 2000). The other two approaches both attempt to identify and model 

the missing-data mechanism by employing a measurement model for a latent 

response/missing propensity that is jointly estimated with a measurement model using 

the observed data for the ability of interest. For this purpose, the former of the two 

approaches computes response propensities based on the idea of employing propensity 

score methods (i.e., fitting logistic or probit regression models with binary item 

response/nonresponse variable regressed on a set of covariates) to weight item 

responses and respondents accordingly and obtain adjusted estimates 

(O’Muircheartaigh & Moustaki, 1999). The latter approach is the most widely applied 

method of a latent variable or IRT model with (at least) two latent dimensions, one for 

the latent response/missing propensity and the other for ability to be essentially a 

multidimensional IRT (MIRT) model where the correlation between the latent traits are 

estimated (Holman & Glas, 2005; O’Muircheartaigh & Moustaki, 1999). 

2.3 Planned Missing (PM) Data Designs  

PM data designs involve intentional and strategic use of missingness in the data 

to promote the efficiency of a study or assessment (Graham et al., 2006; Little & 

Rhemtulla, 2013). Examples include subjects who don’t provide responses to certain 

items or measures or at some time points. In all PM designs, random assignment of 

missingness is essential because then the missing data are by definition MCAR. Under 

MCAR, there is no bias in estimated parameters, and the diminished power can be 

recovered by modern treatments for missing data (e.g., FIML and MI; Little et al., 2014). 

In short, PM designs capitalize on the fact that missing data of MCAR or MAR process 
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(especially the former) can be easily recaptured via modern techniques (Enders, 2010; 

Graham et al., 2006; Little & Rubin, 2002).  

In PM data designs, researchers and developers are in control of missingness, 

granting them control over the missing data mechanism and are further using it to their 

advantage. Strategic implementation of PM designs allows researchers and developers 

to optimize various costs under constraints to produce an efficient and cost-effective 

study or assessment design with the best possible outcome. The benefits of PM designs 

include having to collect less data on a given participant. For instance, multiform designs 

(Graham et al., 1994), which are the focus of this study, result in an increase in the 

number of measures or items given to each participant without increasing their burden. 

This results in the shortening of lengths of instruments and measures without 

compromising validity and can also reduce respondent fatigue to promote validity 

(Graham et al., 2006; Noble & Nakagawa, 2021). In the case of repeated measurements, 

PM designs can help achieve the number of measurement occasions needed with fewer 

repeated measures from an individual (Hogue et al., 2013; Wu et al., 2016) to reap 

similar benefits.  

Furthermore, PM designs can be used to combine measurements of different 

variables to counteract the “fallacy of the factorial design” problem (Betini et al., 2017). 

It is also possible to combine measurements of the same variable using different 

methods to boost statistical efficiency (Hogue et al., 2013). For example, under a PM 

design, only a subset of participants can be given an extensive gold-standard measure 

while the rest are offered a cheaper alternative. This can offset the cost of the study 

while increasing sample size and, thus, statistical power (Graham et al., 2006; Little et 



15 

al., 2017). Like this, PM designs can improve statistical power along with model 

convergence relative to complete data cases (Little & Rhemtulla, 2013).   

Furthermore, PM designs can aid in counteracting problems of MNAR (Little & 

Rubin, 2002; Nakagawa, 2017) through the reduction of circumstances where 

missingness can occur unintentionally or the addition of variables that can increase the 

possibility of correlation with missingness so that the missing data becomes MAR. This 

will help to correct for nonignorable missingness which are issues for complete case 

analyses.  

2.2.1 Two Types of Planned Missing Data Designs 

A multitude of different PM designs is possible across different study scenarios. 

Some popular types of PM data designs include the multiform questionnaire protocol, 

the two-method measurement model, and the wave-missing longitudinal design (Noble 

& Nakagawa, 2021). As noted above, in this study, the focus is on multiform designs. 

Multiform designs are also referred to as split-questionnaire or matrix sampling designs. 

In this study, I will, from now on, use the term matrix sampling following the convention 

in psychometrics (earlier literature uses the term item-sampling). Matrix sampling 

(Shoemaker, 1973) is a sampling design that samples both examinees and items. In other 

words, samples of items are given to samples of examinees. Various types of matrix 

sampling designs exist (Graham et al., 2006) that try to improve the simplest matrix 

sampling by giving different items to different respondents (see Shoemaker (1973) for 

more detail). Most matrix sampling designs divide an assessment or measure subsets or 

“blocks” that ensure coverage of the subscales or constructs and administer one or more 

blocks to one or more random subsamples of the respondent pool. To reiterate, a block 

denotes a set of items or variables given to respondents. A set of blocks arranged in a 
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specific manner refer to an assessment or test “form.” That is, a test form is the actual 

set of items given to participants (Gonzalez & Rutkowski, 2010). It is also often called a 

“booklet.” Two specific types of matrix sampling explored in this thesis were the two-

form design (Adams et al., 2013) and a balanced incomplete block (BIB) spiral design. 

Two-form design (Adams et al., 2013) is a kind of three-form design developed 

with the objective of having more items or variables than that could be answered by an 

individual respondent. Also, the design needs to be able to estimate all correlations as 

well as means and variances of those items or variables. The basic design consists of a 

primary block, often denoted X, that contains a set of common items that are assigned 

to all participants. The other items or measures are also subsetted into blocks which are 

given to only a random subset of respondents. Like this, the various blocks are utilized 

in building shorter forms via concatenation of the common block (X) and the blocks of 

item subsets (Little et al., 2017). Excluding the common block, the two-form design has 

two rotated blocks of item subsets. In total, three mutually exclusive blocks of items are 

created. An example of the two-block design is given in Table 2. 1. 

Table 2. 1 Two-Form Design with Common Block X 

Form 
Item Block 

X A B 

1 1 1 0 

2 1 0 1 

Note. 1 = item block assigned; 0 = item block not-assigned. 

 

Balanced incomplete blocks (BIB) spiral designs also involve blocks of items or 

variables, and through this design, the means of all items and variables can be estimated 

as well as correlations among all pairs of items and variables (Gonzalez, Rutkowski, 2010; 

Graham et al., 2006). First suggested by Lord (1965) for use in the context of multiple-
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matrix sampling, many variants of this design (e.g., partially BIB (PBIB) designs) are in 

use today. The design is “balanced” in that every item block appears an equal number 

of times in all block positions. Accordingly, the number of respondents for each item 

block and each pair of item blocks is equal. An example of the BIB with three forms and 

three item blocks is given in Table 2. 2. As can be seen by summing across rows for 

forms, each item block appears twice. It is also possible to see from Table 2. 2 that each 

block is paired once with every other block (i.e., A with B, A with C, B with C). 

Table 2. 2 Balanced Incomplete Block Design 

Form 
Item Block 

A B C 

1 1 1 0 

2 1 0 1 

3 0 1 1 

Note. 1 = item block assigned; 0 = item block not-assigned. 

2.3. Diagnostic Classification Models (DCMs) 

DCMs are intent on estimating an examinee’s latent abilities, coined attributes, on 

a discrete scale in terms of varying statuses of mastery or attainment (e.g., mastery 

versus non-mastery) of each attribute. The main purpose of DCMs is to “diagnose” or 

assign the most likely attribute mastery patterns (i.e., attribute profiles) for each student, 

that is, the combination of attributes they have mastered or not mastered. Thus, DCMs 

make it possible to measure specific knowledge structures and processing skills (i.e., 

attributes) and provide multiple criterion-referenced interpretations and diagnostic 

feedback about the mastery and non-mastery of attributes at even very fine-grain size 

levels (Leighton & Gierl, 2007; Rupp & Templin, 2008).  
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2.3.1 Characteristics of Diagnostic Classification Models (DCMs) 

DCMs are probabilistic, confirmatory multidimensional latent-variable models 

where the latent variables are considered to be discrete. Most of these characteristics, 

excluding the key distinction with regard to the distribution of the latent traits, can be 

found in other IRT or factor analytic (FA) models as well.  

As latent variable models, DCMs make the essential distinction between manifest 

or observed variables and latent or unobservable models that are driving the responses 

to the observed variables. Latent variables are thus the true parameters of interest. In 

DCMs (as well as IRT models) the observed variables or items are assumed to be 

categorical (e.g., dichotomously and polytomously scored item responses) and are 

related to the underlying categorical latent variables via a probabilistic model. 

Elaborating, DCMs assume a probabilistic model for the observed categorical responses 

according to 1) a vector of categorical latent factors called attributes and 2) an item-

specific mapping between the attributes and the probabilities of observing a certain 

response category (e.g., correct or positive response for dichotomously scored items; 

Duck-Mayr et al., 2020). Based on this probabilistic model, individualized discrete 

attribute mastery profiles are generated as a series of probabilities on  mastery 

classifications (Rupp et al., 2010) from which the most probable profile is selected.  

Regarding the number of latent traits, DCMs generally involve multiple latent 

dimensions to be more in line with MIRT models as opposed to unidimensional IRT 

models with only one latent trait (Rupp & Templin, 2008). In fact, DCMs can be 

considered as a special type of MIRT model modified to handle latent abilities that are 

categorical in nature as opposed to continuous. In DCMs, the continuous latent traits of 

IRT models are reconceptualized as a set of attributes following categorical distributions 
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denoting mastery levels (Cai et al., 2016; Rupp & Templin, 2008). Usually, multivariate 

Bernoulli distribution (MVB) where 1 denotes mastery (presence) of an attribute and 0 

means non-mastery (absence) is assumed. Moreover, DCMs are typically concerned with 

finer-grained subdomains as opposed to more broad and general latent abilities targeted 

in IRT models. That is, DCMs produce multiple qualitative classifications on several 

finer-grained dimensions, while IRT provides quantitative scaled scores on broad 

domains (Bradshaw, 2017; Rupp et al., 2010). 

DCMs are also confirmatory in nature because the attributes and how they 

interact both with each other and in relation to items should be specified a priori based 

on solid theory. The incidence matrix, called a Q-matrix (Tatsuoka, 1983), maps items to 

attributes where rows represent items and columns represent attributes. Elements of 

the Q-matrix (refer to Table 3. 2 for an example) are assigned 1 if an item is measured 

by an attribute and otherwise 0, making it similar to loading structures in confirmatory 

FA and IRT models (Rupp & Templin, 2008). Nonetheless, these models typically assume 

simple loading structures where each item only loads on very few dimensions (Rupp & 

Templin, 2008). Contrarily, as DCMs typically deal with fine-grain constructs, there is an 

increased likelihood for complex association patterns (Cai et al, 2016), and thus complex 

structure Q-matrices where items depend on several attributes. 

2.3.2 Formulation of Diagnostic Classification Models (DCMs) 

DCMs are essentially latent class analysis (LCA) models with some restrictions. In 

LCAs, observable categorical response variables are connected to discrete latent traits 

with the purpose of finding the underlying latent class profiles (Rupp & Templin, 2008). 

Corresponding to this, in DCMs, item responses are used to measure the mastery or non-
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mastery of a set of attributes and to “diagnosis” the most likely attribute mastery 

patterns (i.e., attribute profiles) for each respondent.  

Consider  respondents = 1, , each of whom responds to  dichotomously 

scored items of an assessment ( = 1, )  with  dichotomous attributes. Let =, , ,  denote the vector of I variables. Responses to the items belong to an I -way 

contingency table with a total of = 2  cells that denote the possible response vectors = ( , , , )  where = 1,  and = {0,1} . , , … ,  represent the response 

categories of , , … , , respectively. 

Under the general LCA framework, the probability for an item response vector  

can be specified as: 

( = ) = ( = | ) = (1 )  

 

(6)

 is a mixing probability = 1.0  and denotes the probability that a 

randomly selected individual belongs to the latent class or profile .  is the probability 

of a correct response to item  given membership in attribute profile .  is respondent 

’s dichotomously scored response to item . The product across items is based on the 

conditional independence assumption of DCMs (and IRT models), where within a latent 

class, responses to items are considered to be independent.  Like this, the unconditional 

or marginal probability of a particular item response vector  is a weighted sum over 

all conditional item response probabilities with class probabilities as weights. The 

number of attributes, attribute-attribute relationships, and item-attribute relationships 

are predefined confirmatory restrictions that the DCM imposes on the general LCAs, 



21 

making DCMs restricted LCAs via the Q-matrix and specific parameterizations of the  

and  parameters (Rupp et al., 2008). 

Measurement Model 

The portion of Equation (6) with the product term (i.e., (1 ) ) is 

called the measurement model. It specifies how observed item responses are related to 

attributes and is therefore concerned with the estimation of  or the probability of a 

correct response to an item for a respondent  in latent class c. A plethora of different 

DCM variants has been developed with a focus on the measurement model via 

condensation rules, which dictate how multiple attributes are “condensed” to produce a 

response to an item response (Rupp & Templin, 2008). Simple structure items where 

only one attribute is measured by an item are not affected by such rules to give the same 

results regardless. Conjunctive, disjunctive (Rupp, & Templin, 2008), and additive 

condensation rules (de la Torre, 2011) are commonly employed rules (Ravand & Baghaei; 

2020) contingent on the assumptions of the compensatory versus non-compensatory 

relationship among the attributes in question (Rupp et al., 2010). Compensatory DCMs 

propose that the lack of one or more attributes can at least be partially or completely 

offset through the possession of other required attributes, while non-compensatory 

models assume that a deficit in one attribute cannot be compensated by the presence of 

other required attributes. 

The deterministic-input, noisy-and-gate (DINA) model is the most popular fully 

non-compensatory DCM, which follows a conjunctive condensation rule postulating that 

all relevant attributes must occur in conjunction with each other. The deterministic input, 

noisy-or-gate (DINO) model is the most well-known disjunctive model (Ravand & Baghaei, 

2020) and assumes that the maximal probability of a positive or correct item response 
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can be achieved through mastery of at least one of the measured attributes (Henson et 

al., 2009). Thus, it can be considered an extreme compensatory DCM as a single attribute 

can fully offset the non-mastery of all others (Rupp et al., 2010). The compensatory 

reparameterized unified model (C-RUM) is a widely used additive model (Rupp et al., 

2010) that supposes mastery of each related attribute to an item leads to an increase in 

the probability of item endorsement independent of the mastery statuses of others. The 

nature of the C-RUM model allows mastery of attributes to at least partially compensate 

for non-mastery in others.  

The main distinction among different measurement models for DCMs is based on 

how the latent attributes are combined to generate a correct response to an item. Many 

of these models can be subsumed and brought under a unified framework using general 

DCMs such as the log-linear cognitive diagnosis model (LCDM; Henson et al., 2009). This 

study also applies this framework due to the flexibility it affords us in model building, 

parameter estimation, and model evaluation. As can be inferred by the name, LCDM uses 

a log-linear framework to parametrize the relationship between examinee attribute 

mastery and probabilities of correct item responses. Elaborating, the LCDM item 

response function for  is 

 = 1 = exp , + ( , )1 + exp , + ( , )  (7) 

= 1  refers to the probability that respondent j with the attribute profile 

 correctly or positively responds to item i. Item parameters include an intercept of ,  , 

which is the baseline log-odds of success for individuals with no mastery. The 

multiplicative portion ( , ) consists of  and ( , ).  is a column vector of 
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simple main effects for specific attributes as well as interaction effects between the 

attributes for an item . These parameters give the necessary change in log-odds for item 

endorsement as attributes and their combinations are added to the model. ( , ) is a 

vector of size 2 1 that take on values of 0 or 1 depending on attribute mastery 

indicators  and Q-matrix entries .  

Parametric forms for specific DCMs of conjunctive, disjunctive, as well as additive 

DCMs, can all be derived under the LCDM framework by constraining the parameters in 

Equation 7 accordingly (Hansen & Cai, 2013; Henson et al., 2009).  

Structural Model  

The portion of Equation (6) with the additive term   refers to the structural 

model of a DCM (as opposed to the measurement part related to item response 

probabilities). The structural parameters ( ’s) of this part of the DCM refers to the base 

rate probability of each latent class or attribute profile in the population. They make up 

the latent attribute space and allow us to examine the marginal distributions of the 

mastery rate of attributes as well as the correlations among attributes. In the case of  

binary latent attributes, the maximum number of s is equal to the number of attribute 

profiles or 2 . Estimating all of these possible attribute profiles is denoted as an 

“unstructured” structural model where 2 1 parameters (the minus 1 is necessary 

because of the constraint that the probabilities must sum to unity: = 1)  are 

directly estimated.  

Although the most flexible, the number of parameters to be estimated increases 

exponentially with the addition of attributes. Thus, methods for reducing the number of 

structural parameters are desirable, especially as the number of attributes grows larger. 
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Different structural models have been suggested in the literature (Rupp et al., 2010). One 

such structural model is the independence model. As the name suggests, it assumes that 

attributes are statistically independent. Accordingly, it is one of the most parsimonious 

models as only A structural parameters are estimated. These structural parameters refer 

to the population proportions for each attribute.  

Nonetheless, attributes are rarely independent, and structural models for the 

joint distribution of latent attributes have been developed for the dual purpose of 

reducing model complexity and incorporating hypothesized structures. For this purpose, 

log-linear structural models (Henson & Templin, 2005) are frequently used due to their 

flexibility and ability to provide both a “top-down” approach to deciding on the number 

of structural parameters to be estimated as well as an a priori specified structure 

(Thompson, 2018). Under a log-linear parameterization, the s are further modeled 

using a log-linear model containing main effects and interaction effects, not unlike the 

one used for the LCDM parameterization of the measurement model. The kernel for 

latent class  is  

 ,( ) + , , + + ,( , ,… )  (8) 

,( ) are the main effect parameters for each attribute mastered by respondents 

in a class and the rest are interaction parameters between the mastered attributes (with 

, ,  referring to two-way interactions all the way up to the A-way interaction 

parameter of ,( , ,… ). A saturated log-linear structural model including parameters up 

to the A-way interaction term results in the unstructured structural model. Usually, only 

the main effects and lower-order interaction terms (up to two-way interaction terms) are 
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modeled for computational efficiency. The estimation of only the main effects is 

equivalent to the independence model. The addition of the two-way interaction terms 

allows for correlations between estimates to be estimated (Thompson, 2018) 

Two models involving tetrachoric correlations: the unstructured tetrachoric 

model (Hartz, 2002) and the structured tetrachoric model (de la Torre & Douglas, 2004) 

have also been suggested where discretized multivariate normal distributions are 

imposed for the attributes. In the former parameterization, the full tetrachoric 

correlation matrix for all attribute pairs is estimated without additional constraints on 

the correlation patterns, making it akin to the log-linear parametrization with only main 

effects and two-way interactions. The latter tetrachoric parameterization places 

additional constraints on the tetrachoric correlation matrix to make it more structured 

and to further reduce the number of parameters. Such structured tetrachoric 

parameterizations can include a higher-order factor model where mastery of the 

attributes is considered a function of one or more higher-order continuous latent 

variables.  

Imposing a higher-order structure on  where the higher-order, continuous 

latent traits s are regressed on the attributes is also popular. The probability of 

mastering each attribute then depends on a respondent’s location on this higher-order 

dimension. If we assume that the mastery of a set of skills for a respondent is related to 

a unidimensional trait , and assume conditional independence of the attributes given  , the probability model of  conditional on  is 

 (  | ) = (  | ) (9) 
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where  is the total number of attributes. If the attributes are binary variables, 

they can be treated as if they were dichotomously scored items and technically, any IRT 

model may be used for ( = 1 | ) (Henson, 2013). For example, if a two-parameter 

logistic (2PL) model is imposed for all attributes, then 

 ( = 1 | ) = 11 + exp ( ( + )) (10) 

where  and  are the intercept and slope parameters, respectively, that 

resemble item easiness and discrimination parameters in traditional IRT models. 

However, it is important to distinguish that these are higher-order structural parameters 

and that the higher-order model is being fit to attribute profile probabilities and not the 

observed item response patterns. 

Another possible structure for the attributes that is gaining traction is using 

attribute hierarchies to specify dependencies among attributes. The idea of attribute 

hierarchies is far from new, having been suggested from the advent of the rule space 

model (RSM; Taksuoka, 1983) and attribute hierarchy method (AHM). However, their 

use has grown substantially since their integration into the LCDM framework 

(Templin & Bradshaw, 2014) and the rise of learning progressions. Four types of 

attribute hierarchies prevalent are linear, convergent, divergent, and unstructured 

hierarchies.  
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CHAPTER III 

Methods 

The study examined the effects of PM designs on the item parameter recovery of 

DCM models using a Monte Carlo simulation study. More specifically, two different types 

of PM designs of a common item design and a BIB design were compared along with the 

impact of the number of attributes, structural model formulation, and sample size.  

3.1 Data Generation 

3.1.1 Fixed Conditions 

The fixed conditions for this simulation study are summarized in Table 3. 1 and 

explained in more detail below. 

Q-matrix Design: Not only can Q-matrix design misspecifications have dire 

consequences, but the number of attributes measured per item or item complexity can 

substantially affect parameter estimation, classification, and reliability (Lai et al., 2012; 

Madison & Bradshaw, 2015; Rupp & Templin, 2008). In order to avoid confounding 

results due to a complex Q-matrix structure where a single item measures multiple 

attributes, a Q-matrix design of a simple structure, meaning that each item measured 

exactly one attribute, was considered. The Q-matrix design is given in Table 3. 2. 

Number of Items per Attribute: While the number of attributes was varied, the 

number of items with each attribute was kept equal. Literature on model identification 

and estimation stability of DCMs, recommends a minimum of three items per attribute 

as well as having at least one simple structure item per attribute, which was followed in 

this study. 
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Measurement Model: The LCDM model described in section 2.3.2 was used due to 

its flexibility as a general DCM model. As a simple structure Q-matrix was assumed, the 

form of the LCDM for each model had two types of parameters: an intercept parameter 

and a main effect parameter for the one attribute which an item was mapped to. 

Item Parameters: In the context of DCMs, item quality is measured by item 

discrimination which can be defined as the difference in item response probabilities for 

different groups of examinees (Bradshaw & Madison, 2016). In line with this, item 

parameters were generated so that non-masters of an attribute had probabilities 

between 0.15 and 0.30 for correctly responding to each item related to that attribute, 

while masters of an attribute had probabilities between 0.60 and 0.90 for a correct 

response to the item. The randomly generated item parameters based on these criteria 

are given in Table 3. 3. 

Attribute Base-rates and Correlations: The attribute base rate for each attribute, 

also called marginal attribute difficulty because it refers to the proportion of examinees 

who are masters of an attribute, was set equal for all attributes at 0.5. In addition, the 

tetrachoric correlations reflecting the relationship between factors were also set to a 

common value of 0.7 (Kunina-Habenicht, Rupp, & Wilhelm, 2012).  

Table 3. 1 Fixed Simulation Conditions 

DCM measurement model LCDM 

Q-matrix Design Simple Structure of one attribute per item 

Number of Items per 
Attributes 

3 

Item Parameters 
Non-masters: 0.15 ~ 0.30 probability of correct response 

Masters: 0.60 ~ 0.90 probability of correct response 

Attribute Pre-test Base-rates 
and Correlations 

Attribute Base-rates: 0.5 
Attribute Correlation: 0.7 
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Table 3. 2 Q-Matrix Design 

Item Att 1 Att 2 Att 3 Att 4 Att 5 Att 6 Att 7 Att 8 

1 1 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 0 
4 0 1 0 0 0 0 0 0 
5 0 1 0 0 0 0 0 0 
6 0 1 0 0 0 0 0 0 
7 0 0 1 0 0 0 0 0 
8 0 0 1 0 0 0 0 0 
9 0 0 1 0 0 0 0 0 

10 0 0 0 1 0 0 0 0 
11 0 0 0 1 0 0 0 0 
12 0 0 0 1 0 0 0 0 

13 0 0 0 0 1 0 0 0 
14 0 0 0 0 1 0 0 0 
15 0 0 0 0 1 0 0 0 
16 0 0 0 0 0 1 0 0 
17 0 0 0 0 0 1 0 0 
18 0 0 0 0 0 1 0 0 
19 0 0 0 0 0 0 1 0 
20 0 0 0 0 0 0 1 0 
21 0 0 0 0 0 0 1 0 
22 0 0 0 0 0 0 0 1 
23 0 0 0 0 0 0 0 1 
24 0 0 0 0 0 0 0 1 

Note. The box inside Table 3.2 refers to the Q-matrix for the 4 attribute case.  

 

Table 3. 3 “True” Item Parameters 

Item     Item    

1 A1_1 -1.373 3.214  13 A5_1 -0.961 2.048 

2 A1_2 -1.246 2.397  14 A5_2 -1.432 3.280 

3 A1_3 -1.569 2.866  15 A5_3 -1.098 2.607 

4 A2_1 -1.364 3.234  16 A6_1 -1.568 2.559 

5 A2_2 -0.874 1.776  17 A6_2 -0.860 1.730 

6 A2_3 -1.587 2.488  18 A6_3 -1.421 3.194 
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7 A3_1 -1.722 3.661  19 A7_1 -1.605 3.062 

8 A3_2 -1.553 2.564  20 A7_2 -1.554 3.595 

9 A3_3 -0.987 2.414  21 A7_3 -0.888 2.083 

10 A4_1 -0.943 2.268  22 A8_1 -0.999 2.532 

11 A4_2 -1.225 2.546  23 A8_2 -0.865 1.873 

12 A4_3 -1.130 2.883  24 A8_3 -1.372 3.272 

 

3.1.2 Manipulated Conditions  

The manipulated factors for this simulation study are summarized in Table 3. 4 

and explained in more detail below.  

Planned missing Design: The two types of PM designs a common form design 

and a BIB design were considered. The common form design was more specifically a 

two-form design consisting of a block of common items and two sets of non-common 

items. The latter BIB design consisted of a total of three forms or “booklets” and three 

item blocks, with each block appearing twice in each of the two possible positions and 

each block being paired once with every other block. Despite the difference in the 

number of forms, the percentage of missingness for each student was kept to the equal 

reasonable amounts found in the literature of 33% of the complete data, making them 

comparable. The specific PM designs for this simulation study are in Table 3. 5 for the 

two-form design and Table 3. 6 for the BIB design. The particular items allocated to the 

forms are organized in Table 3. 7 for both designs. It is important to note that these 

designs are only one possibility for item allocation using a specific PM design.  

Number of Attributes: Research shows that the most common number of 

attributes is four. Four and double its number of eight were chosen to represent the 

average and a large number of attributes. 
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Structural Model: Various structural models can be imposed on the measurement 

model. The choice of which model can greatly influence the number of structural 

parameters to be estimated as the number of attributes grows. For example, for eight 

attributes, a fully saturated model requires the estimation of 2 1 = 256 structural 

parameters. When a log-linear model with main and two-way interaction effects is 

imposed, this reduces to 8 + × = 36 structural parameters being estimated. If a higher-

order one-parameter (1PL) model is used, this further reduces to only 2 + 1 = 9 

structural parameters being estimated. These three structural models the fully 

saturated model, log-linear model of lower-order effects, and the higher-order 2PL 

DCM are estimated.   

Sample Size: As with many statistical models, estimation and, thus parameter 

recovery is shown to improve following increases in sample size. However, realistically, 

it is often not possible to have a large sample size. Sample sizes were selected based on 

the literature on DCMs, where 600 is considered a small sample size, 1200 can be 

considered the average sample size for DCM studies, and 48000 examinees can be said 

to be a large sample size.  
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Table 3. 4 Manipulated Simulation Conditions 

 
Attribute 4 Attribute 8 

N=600 N=1200 N=4800 N=600 N=1200 N=4800 

Saturated 
Structural 

Model 

Two-
Form 

Design 

S_2F_A4 
_600 

S_2F_A4 
_1200 

S_2F_A4 
_4800 

S_2F_A8 
_600 

S_2F_A8 
_1200 

S_2F_A8 
_4800 

BIB 
Design 

S_BIB_A4 
_600 

S_BIB_A4 
_1200 

S_BIB_A4 
_4800 

S_BIB_A8 
_600 

S_BIB_A8 
_1200 

S_BIB_A8 
_4800 

None 
S_NA_A4 
_600 

S_NA_A4 
_1200 

S_NA_A4 
_4800 

S_NA_A8 
_600 

S_NA_A8 
_1200 

S_NA_A8 
_4800 

Log-Linear 
Structural 

Model 

Two-
Form 

Design 

LL_2F_A4 
_600 

LL_2F_A4 
_1200 

LL_2F_A4 
_4800 

LL_2F_A8 
_600 

LL_2F_A8 
_1200 

LL_2F_A8 
_4800 

BIB 
Design 

LL_BIB_A4 
_600 

LL_BIB_A4 
_1200 

LL_BIB_A4 
_4800 

LL_BIB_A8 
_600 

LL_BIB_A8 
_1200 

LL_BIB_A8 
_4800 

None 
LL_NA_A4 
_600 

LL_NA_A4 
_1200 

LL_NA_A4 
_4800 

LL_NA_A8 
_600 

LL_NA_A8 
_1200 

LL_NA_A8 
_4800 

Higher-
Order 

Structural 
Model 

Two-
Form 

Design 

HO_2F_A4 
_600 

HO_2F_A4 
_1200 

HO_2F_A4 
_4800 

HO_2F_A8 
_600 

HO_2F_A8 
_1200 

HO_2F_A8 
_4800 

BIB 
Design 

HO_BIB_A4
_600 

HO_BIB_A4
_1200 

HO_BIB_A4
_4800 

HO_BIB_A8
_600 

HO_BIB_A8
_1200 

HO_BIB_A8 
_4800 

None 
HO_NA_A4
_600 

HO_NA_A4
_1200 

HO_NA_A4
_4800 

HO_NA_A8
_600 

HO_NA_A8
_1200 

HO_NA_A8 
_4800 

Table 3. 5 Two-Form Design in Simulation Study 

Common  Form 1 Form 1 

A1_1 A1_2 A1_3 

A2_1 A2_2 A2_3 

A3_1 A3_2 A3_3 

A4_1 A4_2 A4_3 

A5_1 A5_2 A5_3 

A6_1 A6_2 A6_3 

A7_1 A7_2 A7_3 

A8_1 A8_2 A8_3 

Note. A= Attribute. 
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Table 3. 6 Balanced Incomplete Block Design in Simulation Study 

Form  Item Block 

A1_1, 
A2_1, 
A3_1, 
A4_1 

A1_2, 
A2_2, 
A3_2, 
A4_2 

A1_3, 
A2_3, 
A3_3, 
A4_3 

A5_1, 
A6_1, 
A7_1, 
A8_1 

A5_2, 
A6_2, 
A7_2, 
A8_2 

A5_3, 
A6_3, 
A7_3, 
A8_3 

1 1 1 0 1 1 0 

2  1 1  1 1 

3 1  1 1  1 

Note. A= Attribute. 

 

Table 3. 7 Item Allocation by Form by PM Data Design 

2-Form Design   BIB Design 

Form 1  Form 2   Form 1 Form 2 Form 3 

A1_1 A1_1   A1_1 A1_2 A1_3 

A2_1 A2_1   A2_1 A2_2 A2_3 

A3_1 A3_1   A3_1 A3_2 A3_3 

A4_1 A4_1   A4_1 A4_2 A4_3 

A5_1 A5_1   A5_1 A5_2 A5_3 

A6_1 A6_1   A6_1 A6_2 A6_3 

A7_1 A7_1   A7_1 A7_2 A7_3 

A8_1 A8_1   A8_1 A8_2 A8_3 

A1_2 A1_3   A1_2 A1_3 A1_1 

A2_2 A2_3   A2_2 A2_3 A2_1 

A3_2 A3_3   A3_2 A3_3 A3_1 

A4_2 A4_3   A4_2 A4_3 A4_1 

A5_2 A5_3   A5_2 A5_3 A5_1 

A6_2 A6_3   A6_2 A6_3 A6_1 

A7_2 A7_3   A7_2 A7_3 A7_1 

A8_2 A8_3   A8_2 A8_3 A8_1 

Note. A= Attribute. 
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3.2 Analysis Steps 

In total, two different types of PM designs, two magnitudes of the number of 

attributes, three different kinds of structural models, and three varying levels of sample 

size were of interest. Furthermore, a reference condition built under the same fixed 

simulation configurations without any possibility of missing data was also considered 

to serve as the yardstick for comparing results from conditions where missing data was 

introduced. Including this complete data condition, the total number of simulation 

conditions was 3 × 2 × 3 × 3 = 54 conditions.  

The analysis proceeded in the following steps: first, complete item response data 

was generated according to the above simulation conditions. In simulating the PM or 

matrix sampling designs, item responses from the original complete data sets were 

deleted for randomly sampled subsets of respondents according to item-by-form 

allocation guidelines in Table 3. 6. Second, all complete and missing-by-design datasets 

were calibrated using the LCDM model with a simple structure Q-matrix design. In the 

case of datasets with missing data, concurrent calibration was used where all items were 

estimated simultaneously with missing responses treated as is based on FIML estimation. 

Finally, item parameter estimation was examined by calculating the means of the 

evaluation criteria over 25 replications of each simulation condition. Thus, the total 

number of simulations was 54 × 25 = 1350. 

3.3 Evaluation Criteria 

Three types of evaluation criteria were used in this study: model convergence, 

parameter recovery, and model fit indices (Dai et al., 2021). First, as an initial check, the 



35 

model convergence rate across replications was recorded and compared across 

conditions. 

Second, the accuracy of item parameter recovery was evaluated using average bias 

and average root mean square error (RMSE), which compared the estimated item 

parameters with their true counterparts averaged across the item parameters as well as 

over the number of replications. More specifically, each criterion for each parameter was 

calculated as follows 

 = ( )
 (11) 

 =  (12) 

where  refers to an item parameter and  is the number of parameters in a parmeter 

type. Average bias and RMSE are the averages of these values across the number of 

replications. That is, average or mean bias and RMSE were obtained as the average 

difference between the estimated and “true” parameters across items of parameter types 

and replications. 

Lastly, model fit indices of the log-likelihood (LL), Akaike information criteria 

(AIC), and Bayesian information criteria (BIC) were obtained and compared with 

particular focus on the differences between the different structural models across the 

simulation conditions. 
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Chapter IV 

Results  

4.1 Model Convergence Rates 

The primary goal of the research was to examine the effects of missing data, 

specifically PM data designs, on the item parameter recovery of DCMs. For this purpose, 

data were generated and analyzed under two different PM designs of the two-form and 

BIB design which were each compared to each other and the condition of complete data.  

Model convergence information was collected for each replication of each 

simulation condition. All models converged across all conditions of PM data design, 

number of attributes, structural model imposed, and sample size. In other words, the 

convergence rate was 100% for all simulation conditions.  

4.2 Item Parameter Recovery Results 

The average Bias and RMSE of the recovery of each parameter type (i.e., intercept 

and main effect) derived from 25 replications of each simulation condition are organized 

in Table 4. 1, Table 4. 2, Table 4. 3, and Table 4. 4. As expected, the condition of no 

missing data resulted in the lowest average bias and RMSE values and, thus best 

parameter recovery for both intercept and main effect parameters across all simulation 

conditions when compared to both types of PM data designs. Nonetheless, it was 

possible to see that item parameters of DCMs were also reasonably well recovered in 

most conditions even with missing data, and extremely well recovered in some of those 

conditions. There also seemed to be differences between the two types of PM designs; 

although they both generally showed similar trends across the conditions. Although the 
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amount of missingness was set equal per respondent, the two designs differed regarding 

whether they included common items as well as the number of forms. Among the two, 

results showed that using the BIB design resulted in a somewhat better recovery of 

overall model parameters when compared to the common item or two-form design. 

Furthermore, the degree to which the parameter recovery results of PM data designs 

agreed with the non-missing data condition differed depending on the other 

manipulated factors, which will be explored in more detail below. One noticeable thing 

regarding the item parameter recovery of the two types of parameters was that bias was 

always positive (or near zero) for intercept parameters while always negative (or near 

zero) for main effect parameters. RMSE of the main effect parameters were always larger 

than their intercept counterparts. More detail can be found in the upcoming sections. 

Table 4. 1 Average Bias of Intercept Parameters 

Sample Size Model Attribute Two-Form BIB None

600 Saturated 4 0.103 0.076 0.066

600 Saturated 8 0.207 0.174 0.038

600 Log-Linear 4 0.080 0.044 0.056

600 Log-Linear 8 0.013 0.020 0.008

600 Higher-Order 4 0.078 0.038 0.055

600 Higher-Order 8 0.009 0.022 0.002

1200 Saturated 4 0.102 0.077 0.064

1200 Saturated 8 0.065 0.086 0.035

1200 Log-Linear 4 0.077 0.061 0.055

1200 Log-Linear 8 0.032 0.037 0.019

1200 Higher-Order 4 0.077 0.066 0.057

1200 Higher-Order 8 0.026 0.036 0.018
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Sample Size Model Attribute Two-Form BIB None

4800 Saturated 4 0.042 0.034 0.043

4800 Saturated 8 0.015 0.018 0.002

4800 Log-Linear 4 0.029 0.025 0.035

4800 Log-Linear 8 0.010 0.010 0.003

4800 Higher-Order 4 0.031 0.027 0.035

4800 Higher-Order 8 0.008 0.011 0.003

 

Table 4. 2 Average RMSE of Intercept Parameters 

Sample Size Model Attribute Two-Form BIB None

600 Saturated 4 0.354 0.374 0.249

600 Saturated 8 0.684 0.563 0.214

600 Log-Linear 4 0.337 0.345 0.249

600 Log-Linear 8 0.296 0.310 0.190

600 Higher-Order 4 0.339 0.337 0.251

600 Higher-Order 8 0.290 0.310 0.185

1200 Saturated 4 0.275 0.272 0.215

1200 Saturated 8 0.222 0.229 0.137

1200 Log-Linear 4 0.262 0.265 0.210

1200 Log-Linear 8 0.193 0.190 0.128

1200 Higher-Order 4 0.266 0.263 0.211

1200 Higher-Order 8 0.186 0.187 0.128

4800 Saturated 4 0.201 0.195 0.185

4800 Saturated 8 0.101 0.103 0.069

4800 Log-Linear 4 0.197 0.192 0.183

4800 Log-Linear 8 0.098 0.097 0.068

4800 Higher-Order 4 0.200 0.194 0.184
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Sample Size Model Attribute Two-Form BIB None

4800 Higher-Order 8 0.097 0.097 0.067

Table 4. 3 Average Bias of Main Effect Parameters 

Sample Size Model Attribute Two-Form BIB None

600 Saturated 4 -0.182 -0.176 -0.057

600 Saturated 8 -0.475 -0.355 -0.089

600 Log-Linear 4 -0.170 -0.169 -0.061

600 Log-Linear 8 -0.077 -0.056 -0.033

600 Higher-Order 4 -0.179 -0.160 -0.059

600 Higher-Order 8 -0.050 -0.039 -0.017

1200 Saturated 4 -0.101 -0.081 -0.049

1200 Saturated 8 -0.131 -0.145 -0.063

1200 Log-Linear 4 -0.114 -0.084 -0.053

1200 Log-Linear 8 -0.059 -0.062 -0.039

1200 Higher-Order 4 -0.111 -0.083 -0.052

1200 Higher-Order 8 -0.044 -0.050 -0.029

4800 Saturated 4 -0.030 -0.040 -0.023

4800 Saturated 8 -0.034 -0.037 -0.010

4800 Log-Linear 4 -0.035 -0.044 -0.026

4800 Log-Linear 8 -0.024 -0.026 -0.011

4800 Higher-Order 4 -0.036 -0.042 -0.025

4800 Higher-Order 8 -0.013 -0.018 -0.005
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Table 4. 4 Average RMSE of Main Effect Parameters 

Sample Size Model Attribute Two-Form BIB None

4 Saturated 600 0.741 0.825 0.517

8 Saturated 600 1.332 0.999 0.339

4 Log-Linear 600 0.715 0.810 0.524

8 Log-Linear 600 0.474 0.476 0.292

4 Higher-Order 600 0.724 0.791 0.522

8 Higher-Order 600 0.422 0.439 0.276

4 Saturated 1200 0.594 0.617 0.532

8 Saturated 1200 0.364 0.341 0.209

4 Log-Linear 1200 0.610 0.617 0.532

8 Log-Linear 1200 0.292 0.267 0.193

4 Higher-Order 1200 0.602 0.617 0.531

8 Higher-Order 1200 0.277 0.255 0.186

4 Saturated 4800 0.498 0.514 0.486

8 Saturated 4800 0.155 0.143 0.098

4 Log-Linear 4800 0.499 0.514 0.486

8 Log-Linear 4800 0.149 0.138 0.099

4 Higher-Order 4800 0.741 0.825 0.517

8 Higher-Order 4800 1.332 0.999 0.339
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4.2.1 Results by Number of Attributes 

Along with the PM designs’s impact on the item parameter recovery of DCMs, 

their relationships with the other manipulated factors of the number of attributes, 

structural model, and sample size were of interest. Graphical representations of the 

average bias and RMSE values with a focus on the number of attributes are provided in 

Figure 4. 1. The results show that for most conditions, the cases with eight attributes 

showed better parameter recovery. The exception was the eight attribute cases where 

the data were estimated using a saturated model, which showed the worst performance 

in parameter recovery across all conditions when data was missing (for both BIB and 

two-form designs). The non-missing data conditions displayed better parameter 

recovery compared to the missing data cases and more so for the four attribute 

conditions as opposed to the eight attribute conditions. Comparing within missingness 

conditions, we find that there is less difference between the two PM designs relative to 

the complete data case. While there is some preference for the BIB design over the two-

form design in the four attribute conditions, this preference is not so in the eight 

attribute conditions. In fact, the reverse happens in some eight attribute conditions 

where the two-form design has lower bias and RMSE values compared to the BIB design. 
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Figure 4. 1 Item Parameter Recovery Results of PM Data Designs focusing on the Number 

of Attributes 
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4.2.2 Results by Type of Structural Model 

Plots of the average bias and RMSE values for item parameters with a focus on 

the structural part of DCMs are depicted in Figure 4. 2. Overall, the results indicate that 

imposing a more structured model on the structural part, be it as a log-linear model or 

high-order model, results in better item parameter recovery across conditions. Within 

each type of structural model, although the complete data case displayed better 

parameter recovery over the PM designs in almost all conditions, the results showed that 

excluding conditions for the saturated structural model for the eight attribute case with 

small sample size, model parameters were adequately recovered across the conditions 

even with missing data, with performance improving as sample size was increased. Most 

noticeable are the particularly pronounced bias and RMSE values for item parameters 

for the eight attribute case when a saturated model is used in conjunction with small 

sample sizes in the case of missing data. That is, it seemed that the choice of the 

structural model for DCMs had a greater impact when data were missing with increasing 

attribute sizes and decreasing sample sizes. Although the complete data also showed 

better recovery when a structure was imposed, there was much less difference in the 

results. There was also some preference for the BIB design over the two-form design for 

each structural model of DCMs. Furthermore, it was possible to see that the two-form 

design was more impacted by the structural model than the BIB design. Elaborating, the 

former design showed better performance in terms of parameter recovery when a 

higher-order model was imposed relative to a log-linear model. The BIB design did not 

seem to prefer either structural model. 
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Figure 4. 2: Item Parameter Recovery Results of PM Data Designs focusing on the Number 

of Type of DCM Structural Model 
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4.2.3 Results by Sample Size 

The results of average bias and RMSE for parameter recovery with focus on the 

sample size are graphically presented in Figure 4. 3. It is evident that parameter recovery 

improves as sample size increases. This trend is regardless of the type of missingness 

design (that is, whether there was missing data or not). However, the results also show 

that increasing sample sizes impacts item parameter recovery more for cases with 

missing data relative to cases where no missing data were assumed. The most obvious 

instance is the missing data cases where the saturated model was the structural model 

with eight attributes. There was a large gap between going from sample size of 600 and 

1200, which did not appear in the complete data cases. Furthermore, there was more 

difference in parameter recovery going from small to average sample sizes than moving 

from average to large sample sizes for the same cases. Also, the results implied that the 

BIB design performed better than the two-form design for these scenarios. The results 

also found that BIB design had better recovery than the two-form design for four 

attributes and sample sizes of 600 and, to a lesser extent, 1200. While we could see 

interaction effects between sample size and number of attributes as well as the saturated 

structural model, there didn’t seem to be much difference between the log-linear and 

higher-order structural models depending on sample size. In the case of very large 

sample sizes, the parameter recovery across all missingness conditions was extremely 

comparable, even in the case a saturated structural model was fit.  
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Figure 4. 3: Item Parameter Recovery Results of PM Data Designs focusing on the Number 

of Type of DCM Structural Model 
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4.3 Model Fit Results 

Model fit across simulation conditions was assessed using the log-likelihoods, AIC 

and BIC indices. The focus was on comparing the different structural models across 

conditions. The average of model fit results across replications are organized in Table 5. 

5, Table 5.6, and Table. 5.7 for all the simulation conditions. Both the log-linear 

structural model and the higher-order structural model is nested within the saturated 

structural model so it is possible to conduct likelihood ratio tests between the satuarated 

and either of the log-linear and higher-order models. The goal was to see whether the 

reduction in model parameters do to imposing constraints on the structural model 

significantly impacted model fit. Likelihood ratio test results across all replications of 

all simulation conditions did not show a single case where the saturated model was 

preferred over the log-linear or higher-order model. That is, imposing a log-linear or 

higher-order model did not significantly impact model fit.  

AIC and BIC indices corroborated such results where the AIC and BIC values for 

the log-linear and higher-order structural models were always smaller compared to those 

for the saturated model. AIC and BIC was also used to compare the relative model fit 

between the log-linear model and the higher-order model. In all cases, the higher-order 

structural model had lower AIC and BIC values compared to the log-linear model. In 

short, the AIC and BIC values could be ordered from saturated, log-linear, and higher-

order structural model. There were large differences in the AIC and BIC values for the 

staturated and either the log-linear and higher-order model. The differences between the 

loge-linear and higher-order model was much smaller but still the higher-order model 

had the smaller AIC and BIC values. That is, according to these relative fit indices, the 

higher-order model was most preferred. Considering that the log-linear model consisted 
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of sixe parameters, thre first-order and three second-order parameters, and the higher-

order model was a 1PL model with only four parameters (one slope parameter and three 

intercept parameters), this implies that the higher-order model does the same job using 

a lesser number of parameters. Thus, the higher-order structural model may be the 

preferable of the two. 

Table 4. 5 Average Log-Likelihood Values across Simulation Conditions 

Attribute Sample.Size Model Two-Form BIB None

4 600 Saturated 3,035.971 3,058.562 4,445.208

4 600 Log-Linear 3,038.671 3,061.367 4,448.253

4 600 Higher-Order 3,041.707 3,063.194 4,451.475

4 1200 Saturated 6,090.095 6,135.161 8,916.844

4 1200 Log-Linear 6,093.618 6,138.172 8,921.616

4 1200 Higher-Order 6,097.375 6,141.297 8,925.917

4 4800 Saturated 24,462.166 24,611.342 35,769.049

4 4800 Log-Linear 24,468.616 24,616.785 35,776.888

4 4800 Higher-Order 24,474.766 24,623.523 35,785.422

8 600 Saturated 5,943.649 5,966.721 8,712.349

8 600 Log-Linear 6,000.263 6,022.441 8,785.182

8 600 Higher-Order 6,013.797 6,036.116 8,796.199

8 1200 Saturated 11,923.875 11,990.468 17,469.844

8 1200 Log-Linear 11,991.348 12,054.444 17,554.996

8 1200 Higher-Order 12,005.986 12,066.232 17,566.313

8 4800 Saturated 48,116.396 48,289.433 70,365.824

8 4800 Log-Linear 48,208.789 48,381.227 70,481.651

8 4800 Higher-Order 48,215.517 48,386.990 70,479.023
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Table 4. 6 Average AIC Values across Simulation Conditions 

Attribute Sample.Size Model Two-Form BIB None

4 600 Saturated 6,149.942 6,195.124 8,968.416

4 600 Log-Linear 6,145.341 6,190.734 8,964.505

4 600 Higher-Order 6,141.415 6,184.388 8,960.951

4 1200 Saturated 12,258.190 12,348.321 17,911.688

4 1200 Log-Linear 12,255.237 12,344.343 17,911.232

4 1200 Higher-Order 12,252.750 12,340.595 17,909.834

4 4800 Saturated 49,002.331 49,300.685 71,616.098

4 4800 Log-Linear 49,005.232 49,301.570 71,621.777

4 4800 Higher-Order 49,007.533 49,305.046 71,628.844

8 600 Saturated 12,493.299 12,539.443 18,030.697

8 600 Log-Linear 12,168.526 12,212.883 17,738.364

8 600 Higher-Order 12,141.594 12,186.232 17,706.398

8 1200 Saturated 24,453.750 24,586.935 35,545.687

8 1200 Log-Linear 24,150.695 24,276.888 35,277.993

8 1200 Higher-Order 24,125.972 24,246.464 35,246.625

8 4800 Saturated 96,838.791 97,184.867 141,337.648

8 4800 Log-Linear 96,585.578 96,930.453 141,131.302

8 4800 Higher-Order 96,545.033 96,887.979 141,072.046
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Table 4. 7 Average BIC Values across Simulation Conditions 

Attribute Sample.Size Model Two-Form BIB None

4 600 Saturated 6,321.422 6,366.604 9,139.896

4 600 Log-Linear 6,294.837 6,340.230 9,114.001

4 600 Higher-Order 6,268.926 6,311.899 9,088.462

4 1200 Saturated 12,456.703 12,546.834 18,110.201

4 1200 Log-Linear 12,428.299 12,517.406 18,084.295

4 1200 Higher-Order 12,400.362 12,488.207 18,057.446

4 4800 Saturated 49,254.910 49,553.263 71,868.677

4 4800 Log-Linear 49,225.428 49,521.767 71,841.973

4 4800 Higher-Order 49,195.347 49,492.860 71,816.658

8 600 Saturated 13,825.569 13,871.712 19,362.967

8 600 Log-Linear 12,537.868 12,582.225 18,107.706

8 600 Higher-Order 12,392.219 12,436.857 17,957.023

8 1200 Saturated 25,996.043 26,129.229 37,087.980

8 1200 Log-Linear 24,578.262 24,704.455 35,705.559

8 1200 Higher-Order 24,416.107 24,536.598 35,536.760

8 4800 Saturated 98,801.132 99,147.207 143,299.989

8 4800 Log-Linear 97,129.593 97,474.468 141,675.318

8 4800 Higher-Order 96,914.187 97,257.132 141,441.199
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Chapter V 

Discussion 

5.1 Summary of Results 

Recently, DCMs and their capability to classify respondents into their most 

probable mastery profiles and provide diagnostic feedback have been gaining ground, 

particularly in education. While research on DCMs has been very active, there is a dearth 

of studies on the impact of missing data on DCMs. Missing data is almost inevitable in 

assessments and studies, and it can cause various problems for models and their 

consequent conclusion if not appropriately accounted for. While missing data is viewed 

as generally unfavorable, strategically incorporating missing data in the form of PM 

designs can have many benefits, which is boosted due to the improvement of techniques 

of handling missing data that can be assumed to be at least MAR. In the field of education, 

especially in large-scale assessments, PM designs are appealing as they help alleviate 

concerns about data collection costs, respondent fatigue, and data quality by allowing 

many items and variables to be collected while reducing the number of individuals 

having to respond to each item (Gonzalez & Rutkowski, 2010).  

PM designs can be helpful in DCMs applications which are increasingly coming to 

involve more and more attributes. For model identification and stable estimation of 

model parameters, this means that the number of items per attribute must increase as 

well. In addition, the likelihood of DCMs being used in large-scale settings is increasing 

following the need for diagnostic feedback. Accordingly, this thesis aimed to explore the 

effects of missing data with a focus on two PM designs based on matrix sampling on the 

parameter recovery of DCMs. The two PM designs considered were the two-form design 
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and the BIB design. The impact of various factors in DCM estimation, specifically the 

number of attributes, structural model formulation, and sample size was examined in 

relation to the PM design. The results were compared in terms of the recovery of “true” 

parameters and to corresponding results from DCMs with no missing data.  

Results showed that while the complete data cases resulted in the best parameter 

recovery across the simulation conditions, the item parameter recovery in the cases of 

missing data under both PM designs also ranged from adequate to extreme good for 

most conditions. Elaborating, parameter recovery improved as the number of attributes 

increased, when constraints were imposed on the structural part of DCMs, and as sample 

size increased. Out of the three factors, the most salient was the effect of sample size, 

followed by choice of the structural model, and lastly, attributes.  

Large sample sizes were found to be the most important, resulting in the best 

parameter recovery not only in terms of each missingness design (i.e., none, two-form 

design, and BIB design) but also resulting in nearly identical results across missingness 

designs. It could even compensate for using a saturated structural model. Such large 

sample sizes like 4800 might not be feasible in real-life settings, and the results show 

that an average sample size of around 1000 is also favorable. Nonetheless, researchers 

should aim to recruit as many participants as possible. Furthermore, when the sample 

size is small, they must be more careful with other DCM design factors, such as the 

structural model used. 

In terms of the structural model factors, reducing the number of structural 

parameters to be estimated by setting a certain model had lower bias and RMSE values 

overall, particularly in cases of small sample sizes. There wasn’t much difference in the 

choice of a log-linear structural model relative to a higher-order one, however, the two-
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form design slightly preferred the latter. However, the log-linear model in this study 

consisted of six parameters of the first and second-order parameters, while the higher-

order model was a 1PL model with only four parameters. This implied that the higher-

order model does the same job using a lesser number of parameters. Thus, the higher-

order structural model may be the preferable of the two. Relative model fit indices of 

the AIC and BIC corroborated such results. 

It was somewhat surprising that increasing the number of attributes led to better 

parameter recovery. This is perhaps more so the effect of the increase in the number of 

items following the increase of attributes. Nevertheless, the number of attribute factors 

showed the largest variability in conjunction with other factors to show us the 

importance of having a clear structural model when the number of attributes is large 

and sample sizes are small. 

 Regarding the two PM data designs, they both mostly displayed similar trends 

across the simulation conditions. However, the BIB design was preferred in more 

conditions than the two-form design. This difference in parameter recovery, even though 

the amount of missingness was set equal per respondent, points to the fact that although 

the amount of missing data itself is important, the specific PM design used, whether it 

be in terms of the number of forms used or the types of items allocated, also matters. 

Thus, the effects of the PM design need to also be carefully investigated, and the best 

design chosen. 

 



54 

BIBLIOGRAPHY 

Adams, R. J., Lietz, P., & Berezner, A. (2013). On the use of rotated context questionnaires 

in conjunction with multilevel item response models. Large-scale assessments in 

education, 1(1), 1-27. 

Betini, G. S., Avgar, T., & Fryxell, J. M. (2017). Why are we not evaluating multiple 

competing hypotheses in ecology and evolution?. Royal Society Open 

Science, 4(1), 160756. 

Bradshaw, L. (2017). Diagnostic classification models. The handbook of cognition and 

assessment: Frameworks, methodologies, and applications, 297-327.  

Bradshaw, L. P., & Madison, M. J. (2016). Invariance properties for general diagnostic 

classification models. International Journal of Testing, 16(2), 99-118. 

Cai, L., Choi, K., Hansen, M., & Harrell, L. (2016). Item response theory. Annual Review 

of Statistics and Its Application, 3, 297-321. 

Dai, S., Vo, T. T., Kehinde, O. J., He, H., Xue, Y., Demir, C., & Wang, X. (2021). Performance 

of polytomous IRT models with rating scale data: An investigation over sample 

size, instrument length, and missing data. In Frontiers in Education (p. 372). 

Frontiers. 

De La Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 

179-199. 

De la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive 

diagnosis. Psychometrika, 69(3), 333-353. 

Duck-Mayr, J., Garnett, R., & Montgomery, J. (2020, August). GPIRT: A Gaussian Process 

Model for Item Response Theory. In Conference on Uncertainty in Artificial 

Intelligence (pp. 520-529). PMLR. 



55 

Fang, G., Liu, J., & Ying, Z. (2019). On the identifiability of diagnostic classification 

models. Psychometrika, 84(1), 19-40. 

Finch, H. (2008). Estimation of item response theory parameters in the presence of 

missing data. Journal of Educational Measurement, 45(3), 225-245. 

Enders, C. K. (2001). A primer on maximum likelihood algorithms available for use with 

missing data. Structural Equation Modeling, 8(1), 128-141. 

Enders, C. K. (2010). Applied missing data analysis. Guilford press. 

Gonzalez, E., & Rutkowski, L. (2010). Principles of multiple matrix booklet designs and 

parameter recovery in large-scale assessments. IEA-ETS Research Institute 

Monograph, 3, 125-156. 

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing 

data designs in psychological research. Psychological methods, 11(4), 323. 

Hansen, M. P. (2013). Hierarchical item response models for cognitive diagnosis. 

(Doctoral dissertation, UCLA). 

Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive 

abilities: Blending theory with practicality. University of Illinois at Urbana-

Champaign. 

Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis 

models using log-linear models with latent variables. Psychometrika, 74(2), 191.  

Hogue, C. M., Pornprasertmanit, S., Fry, M. D., Rhemtulla, M., & Little, T. D. (2013). Planned 

missing data designs for spline growth models in salivary cortisol 

research. Measurement in Physical Education and Exercise Science, 17(4), 310-

325. 



56 

Holman, R., & Glas, C. A. (2005). Modelling non-ignorable missing-data mechanisms with 

item response theory models. British Journal of Mathematical and Statistical 

Psychology, 58(1), 1-17. 

Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: 

Validity arguments for Fusion Model application to LanguEdge 

assessment. Language Testing, 26(1), 031-73. 

Köhler, C., Pohl, S., & Carstensen, C. H. (2015). Taking the missing propensity into 

account when estimating competence scores: Evaluation of item response theory 

models for nonignorable omissions. Educational and Psychological 

Measurement, 75(5), 850-874. 

Kunina-Habenicht, O., Rupp, A. A., & Wilhelm, O. (2012). The impact of model 

misspecification on parameter estimation and item-fit assessment in log-linear 

diagnostic classification models. Journal of Educational Measurement, 49(1), 59-

81. 

Leighton, J., & Gierl, M. (Eds.). (2007). Cognitive diagnostic assessment for education: 

Theory and applications. Cambridge University Press. 

Little, T. D., Gorrall, B. K., Panko, P., & Curtis, J. D. (2017). Modern practices to improve 

human development research. Research in Human Development, 14(4), 338-349. 

Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, E. W. G. (2014). On the joys of missing 

data. Journal of pediatric psychology, 39(2), 151-162. 

Little, T. D., & Rhemtulla, M. (2013). Planned missing data designs for developmental 

researchers. Child Development Perspectives, 7(4), 199-204. 

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). John 

Wiley & Sons. 



57 

Lord, F. M. (1974). Estimation of latent ability and item parameters when there are 

omitted responses. Psychometrika, 39(2), 247-264. 

Moustaki, I., & Knott, M. (2000). Weighting for item non-response in attitude scales by 

using latent variable models with covariates. Journal of the Royal Statistical Society: 

Series A (Statistics in Society), 163(3), 445-459. 

Nakagawa, S. (2017). Missing data: Mechanisms, methods, and messages. In Fox G. A., 

Negrete-Yankelevich S., & Sosa V. J. (Eds.), Ecological statistics: Contemporary theory 

and application (pp. 81–105). Oxford University Press.  

Noble, D. W., & Nakagawa, S. (2021). Planned missing data designs and methods: Options 

for strengthening inference, increasing research efficiency and improving animal 

welfare in ecological and evolutionary research. Evolutionary Applications, 14(8), 

1958-1968. 

O'muircheartaigh, C., & Moustaki, I. (1999). Symmetric pattern models: a latent variable 

approach to item non-response in attitude scales. Journal of the Royal Statistical 

Society: Series A (Statistics in Society), 162(2), 177-194. 

Ravand, H., & Baghaei, P. (2020). Diagnostic classification models: Recent developments, 

practical issues, and prospects. International Journal of Testing, 20(1), 24-56. 

Rose, N., von Davier, M., & Nagengast, B. (2017). Modeling omitted and not-reached items 

in irt models. Psychometrika, 82(3), 795–819. https://doi.org/10.1007/s11336-

016-9544-7 

Rose, N., Von Davier, M., & Xu, X. (2010). Modeling nonignorable missing data with item 

response theory (IRT). ETS Research Report Series, 2010(1), i-53. 

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592. 



58 

Rupp, A. A., & Templin, J. L. (2008). Unique characteristics of diagnostic classification 

models: A comprehensive review of the current state-of-the-art. Measurement, 6(4), 

219-262. 

Rupp, AA., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, 

methods, and applications. Guilford Press. 

Schafer, J. L. (1997). Analysis of incomplete multivariate data. CRC press. 

Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the 

art. Psychological methods, 7(2), 147. 

Shoemaker, D. M. (1973). Principles and procedures of multiple matrix sampling. 

Ballinger. 

Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based 

on item response theory. Journal of educational measurement, 345-354. 

Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family 

of models for estimating and testing attribute hierarchies. Psychometrika, 79(2), 

317-339. 

Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using 

cognitive diagnosis models. Psychological methods, 11(3), 287. 

Thompson, W. (2018). Evaluating model estimation processes for diagnostic classification 

models (Doctoral dissertation, University of Kansas). 

 




