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RESIDUAL STRESSES AND MICROCRACKING INDUCED BY
THERMAL CONTRACTION INHOMOGENEITY

A.G. Evans® and D. R. Clarke'
University of California, Berkeiey* and

Rockwell International Science Center
Thousand Oaks, CA 91360

ABSTRACT

Brittle materials are subject to microcrack formation at grain boundaries
and at second phase particles. These cracks are induced by residual stress that
results from incompatibilities in thermal contraction. The development of
residual stress and its partial relaxation by diffusion {at elevated
temperatures) are described. The evolution of microcracks within the residual
stress fields are then examined. Particular attention is devoted to
considerations of the critical microstructural dimension at the onset of

microcracking.

INTRODUCTION

Many properties of ceramic materials depend on the incidence of
microcracking. The most notable physical characteristics that exhibit a strong
dependence on microcrack formation are certain mechanical (fracture toughness!
and fracture strength?) and thermal (thermal di??usivit&3) properties. The
formation of stable microcracks is primarily related to localized residual

stresses that develop because of thermal contraction mismatch or anisotropy (the
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former in multiphase materials* and the latter in single phase materialss).
Significant progress has recently been achieved in the analysis of microcracking
events by using a combination of stress analysis (based on the Eshelby concept)
and fracture mechanics.5°6s7. The intent of this paper is to examine the
microcracking phenomenon in order to emphasize both the progress that has been

achieved and the limitations of the available analyses.

One of the dominant characteristics of microcracking is its dependence on
the scale of the microstructure. Typically, there is a "critical™ microstruc-
tural dimension, ., below which microcracking is not generally observed and
above which a significant density of microcracks becomes evident.4s859 The
development of a capability for predicting ¢4, is a primary objective of micro-
cracking analyses. A critical comparison with measured values of £, is also a

demanding test of the validity of such analyses.

The amplitude of residual stress fields produced by thermal contraction
mismatch is independent of the scale of the microstructure. A criterion for
microfracture based on the peak tension would not, therefore, yield a size
dependence. This dilemma was first addressed by suggesting® that the onset of
microfracture be dictated by an equality of the loss of strain energy and the
increase in surface energy associated with the microfracture event. The former
is a volume dependent term, and the latter is a surface area term; hence, a
critical size emerges in a natural way. A reasonable correspondence with
experimental observation was achieved by specifying the ratio of the final crack
size to the dominant dimension of the microstructure. A conceptual difficulty
with the approach arises because only the thermodynamics of the initial and
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final stages of the fracture event are considered; whereas, fracture is dictated
by the rate of energy change at the critical condition for unstable crack

extension.5s9

Subsequently, since size effects in brittle fracture often derive from
statistical considerations,10 a potential role of flaw statistics was sug-
gested.l! Notably, since fracture initiates from small inhomogeneities (pores,
inclusions, etc.), the spatial and size distribution of these fracture initi-
ating sites can influence the incidence of fracture. However, if the size dis-
tribution of these inhomogeneities is independent of the scale of the micro-
structure, the fracture probability for a constant volume fraction of the
responsible microstructural phase would either be independent of size (volume
distributed inhomogeneities)!? or decrease with increase in size (interface
distributed inhomogeneities).?3 A statistically based argument must, therefore,
invoke inhomogeneities that increase in size as the microstructure enlarges.
This effect is a plausible possibility, because inhomogeneities (such as pores)
tend to increase in size during sintering, in direct proportion to the size of
the grains'* (or other microstructural entities). However, in the absence of
well-substantiated distribution functions to describe the inhomogeneity size,

the quantitative utility of the statistical approach s Timited.

More recently, it has been recognized that a size effect can stem directly
from considerations related either to the gradient of the residual stress
field5+6 or to stress relaxation.’ For example, if the fracture initiating
inhomogeneity is of sufficient size that it experiences an appreciable gradient

of stress, then dimensional considerations demand that the fracture be size
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dependent. Specifically, the stress intensity factor, K, is given byS

1
K ~ Jﬁag olx/2) Flx/a) d{x/a) (1)

where a is the inhomogeneity size, o is the stress and F(x/a) is the appropriate
Green's function. Since the stress can always be expressed in the form
alx/8) = o alx/a, a/e) - (2)

where o is the peak residual tension, the stress intensity factor can be written

1
[ alx/a, a/&) Fix/a) d(x/a) = «la/1) (3)

where w{a/t) is the function determined by integration. Now, if the stress
intensity factor is equated to its critical value for crack extension, K.,

Eqg. (3) yields a "critical size" given by
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An additional éize influence derives from the diffusive stress relaxation
that can occur at elevated temperatures.!5 The rate of relaxation will be more
rapid in fine-grained materials, because of the enhanced diffusive fluxes.
Smaller residual stresses w%?? thus obtain and the tendency for microcrack

formation will be reduced.

The considerations of microcracking d@véiep@d in this paper relate
primarily to the size effect that derives from residual stress gradients and
relaxation phenomena. Beyond the scope of this review are the residual
stresses®s17 produced by phase transformations during cooling (as in the Zr02
based alloys) and the effect of externally applied stress fields on the residual

stresses and the onset of microcracking.

RESIDUAL STRESSES

Residual stresses typically encountered in ceramic materials derive from
differences in thermal contraction (anisotropy of the thermal expansion
coefficient, a, for a single phase material, and contraction mismatch for
multiphase systems). Thermal contraction differences are important because
ceramics are fabricated at elevated temperatures (by hot pressing or sintering)
and, during cooling, stress relaxation (by diffusion or viscous flow) becomes
sufficiently inoperative below a temperature Tg that appreciable local stresses
must develop from the contraction mismatch. The elastic stresses that evolve

below T, can be computed by using adaptations of the Eshelby approach.l®

g
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Several such calculations will be presented below. A more difficult problem to

address is the definition of T,; this is also examined in the following section.

§§

Elastic Stresses

The stresses that develop below ng calculated by using the Eshelby
approach, are illustrated for the anisotropic contraction of a hexagonal grain
in Fig. 1. This method of ca?cu?atiaﬁ first extracts the microstructural entity
(or entities) sgbjéct to shape deformation and its shape is then allowed to
change (as characterized by the unconstrained transformation strain agj)e
Subsequently, its shape is restored to the shape of the matrix cavity (by
exerting a uniform stress) and it is then reinserted into the cavity. Finally,
interface forces are applied (of equal magnitude, but opposite sign, to the
restoring stress) to achieve continuity of stress. For isolated particles of
ellipsoidal geometry this process yields a uniform stress within the particle;
hence, stress analysis is relatively straightforward. More complex behavior is
expected for other geometries, such as individual grains within a poly-

crystalline aggregate.

Multiphase Materials

The stresses within a spherical particle subject to transformation strains

el (hydrostatic) and gﬁTij (deviatoric) arel6s17
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T
1 £
g = - {5a)
m“%%gﬂgn+(1@z%gﬁp »
égTa
”@’%9 2 - 1J {5b)

13 (1%\bwaj%zwﬂ%%ﬁ%«sg%gﬁmﬁ=55%)

where o is the hydrostatic stress and ﬁ@%j is the deviatoric stress. The same

hydrostatic stress level pertains for ellipsoidal particles, irrespective of
their shape; but, the deviatoric stress is sensitive to the particle shape.l6
Tw@ extremes are of interest. First, if the particles and matrix have isotropic
thermal contraction coefficients, the resultant stress is exclusively

hydrostatic; hence,

@'i o (Oﬁ - @P) ng - T) )
{1+ %w)/ZEm + {1l - ZvD}/E@

where % = % is the thermal contraction mismatch between matrix and particle,
and T s the temperature. For a particle and matrix with similar elastic
constants, Eq. (6) becomes

(o, = a) (T -T)E
1 %m ” % g
@ =- 3T =) (7)

Second, if the particle exhibits anisotropy of thermal expansion (e.g., oy and
a2}, such that the average expansion matches that of the matrix, then the stress
within the particle is purely deviatoric and is given by

1 (g, = o) (Tg - T)

Goo = =

: (8)
1§ o+ vﬁ)/Eﬁ + 21 + vm)(@ - Svm)/Em(7 - Evm)
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which for uniform elastic properties reduces to

(7 - 5\)?(% - @2)(7’9 - T) E
%1 15(1 - V)

-1
i

(9)

In general, therefore, the resultant stress, i for uniform elastic constants

is

%5 - (7 - Sv)(@m - @2) ) (o - @p) . (101
The equivalent result for ellipsoidal geometry is
s s (o = a)
i .. ™%
BT, =TT T T G T TR (o = @) (11)

where v is a function of the particle shape.'® For a needle, y = 1/2; for a
sphere, v = (7 « 5v)/15(1 - v); and for a disc, v = w{c/b) (2 = v)/4(1 - V),

where ¢ is the disc thickness and b is the disc radius.

The stresses within the matrix are more difficult to analyze and, with the
exception of sphericall® and cylindrical particles,!972! have not been computed
exactly. Eshelby shows that if the harmonic and biharmonic potentials of the

particle (however arbitrary its shape) are known, then the displacements in the

matrix are related to the transformation strain aijT in the particle by
GT v T
b = dk gk ik Pk (12)
i lewul(l - v LY
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where 5§k is the stress derived by Hooke's law from the strain ng

i3°
The matrix stresses can then be obtained from the displacement derivatives. 1In
the case of a spherical particle subject to hydrostatic strain, the matrix

stresses are particularly simple,

G = olrg /1, o= (o/2) (r /) (13)

where o is the particle radius and r is the distance from the particle center.

The harmonic and biharmonic potentials for a very long cylindrical particie
(fiber) have recently been calculated?® and may be used to compute the matrix
stresses from Egq. (12):

o = 2w 2 an (r/r,) (14a)

2, 2 2 2 2 2
{(r° - o } = wr ©r° % Ty /2 (F/ﬁg) (14b)

=
v 0

0

For the case of thermal contraction mismatch between the fiber and matrix,
described by a hydrostatic strain eTg the matrix stresses are

2,2 2

¢ g TB-2y fo X -y

7R AT A

% = o1 (15)

2
r. = %y

92 © =) A

A case of particular interest is that of the cylindrical particle exhibiting an
anisotropy of thermal contraction in the plane perpendicular to the long axis of
the cylinder such that the average contraction matches that of the matrix. The
stresses generated within the matrix are of the form?2!

9
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c _ 11 §
1T TTF T = 24T |
g;%z 7o - (16)
4(1 - v2 i ?6
where

T.
ey = Loy = o) (T = T)

However, since the stresses immediately adjacent to the interface are of
greatest interest for microfracture problems, some pertinent information can be
obtained by deriving the stresses in the matrix just outside the inclusion. For
an ellipsoidal inclusion subject to dilatation, the stresses in the matrix can
be written quite generally as:16

I
(ﬁiﬁj - l/3§ij) (1n

where ngj are the normals to the ellipsoid surface. Particular values for the
stresses at the particle matrix interface have been calculated for disc and
needle shaped particles.2? The stresses are a maximum near the termination of
the major axis of the ellipsoid. However, as described .earlier, the gradient in
stress (in addition to the stress level at the particle interface) is of
importance in dictating the size effect. As far as the authors are aware, the
stress gradients around ellipsoidal particles subject to a transformation strain
have not been calculated and remain a subject for further work.

Single Phase Materials

Grains in single phase materials exhibit relatively complex geometric
configurations, and stress analysis is more complex than for the isolated
ellipsoidal particle. However, some useful approximations can be obtained quite
straightforwardly. The general level of residual stress within the grains can
be obtained by simply requiring a grain to be contained within an isotropic ma-
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trix, with the average properties of the polycrystalline aggregate, and
inserting the anisotropic contraction coefficients into Eq. (10). However, this
simplification neglects the stress enhancing influence of grain junctions, an
effect which has important consequences for microfracture.

Estimates of the stresses that develop in the vicinity of grain Jjunctions
can be obtained by adopting two-dimensional analogues, such as an array of
hexagonal grains. The stresses that develop in such an array can be determined
by firstly establishing the resultant body forces at each grain boundary facet
(see Fig. 1). These body forces, p, generate non-uniform stresses that
superimpose upon the uniform stresses developed during shape restoration. Of
principal interest are the stresses at the grain boundaries, because these are
the dominant sites for microfracture. The stresses at a site (x,z) inclined at
an angle B to the boundary, (Fig. 2) are of the form®

oy, 1 (z + o sin g)

p cos g

0 E@?em 2a{z sin g8 - x cos B) + (xz + 22)3

- V) - 201 + v){a cos g - x)

E2+2( 7 % da (18)
o a(z sin B - x cos B) + (x° + 2°)]

Equation (18) should be used to obtain the stresses on boundary AB (Fig. 3)
from the body forces of the four adjacent boundaries (AA', AA™, BB', BB"). For
more remote boundaries sufficient accuracy can be achieved by placing a single
force at the grain facet center,?3 which represents the total body force on that
boundary (Fig. 3). These stresses superimpose on a uniform stress {(equal in
magnitude to half the initial stress) which derives from the body forces on AB
coupled with the initial stress.

The component of the stress from the four adjacent boundaries dominates the
behavior in the vicinity of the grain junction. This stress component is of the
form®

11
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+ z2 + 24(z sin g - x cos g) |

XZ"*’ZZ

| 24 + 2 sin 8 - x cos 8]
L 2lz cos B+ x sin g} |

|z tan B - x|
572(2 + X tan 6)5

+ AB(Z, By Vv, X, 2) (19)

where Ay, A2, and A3 are relatively complex functions in the range t 2w. The
Togarithmic term is singular at the grain junction and is thus the most
influencial with regard to microcrack formation.d

The specific stress magnitudes that develop depend on the relative
orientations of the grains circumventing the boundary of interest. Preliminary
calculations have been conducted for the orientation that has been assumed to
yield the maximum stress; this depicted in Fig. 4a, and the results are shown in
Fig. 4b. Calculations for more general grain orientation relations are now in
progress.23 These results will provide a full perspective of residual stress
distributions in polycrystalline aggregates in which there is a random
distribution of contraction anisotropy orientations.

STRESS RELAXATION EFFECTS

Stress relaxation in ceramics occurs primarily by diffusion (or by viscous
flow in the presence of an amorphous phase). These relaxation processes are
usually motivated by local gradients in hydrostatic stress, and thus occur in
response to localized thermal contraction stresses, while the material is at
elevated temperatures.

Multiphase Materials

For isotropic multiphase materials, there is no gradient of hydrostatic
stress within the isolated phase (Eq. 5). However, large shear stresses exist
within the surrounding matrix (note that the hydrostatic stress is zero). The
shear stresses within the matrix cause grain boundary siiding, and diffusive
deformation will occur in response to local normal stresses induced by

12
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s1iding.2* The deformation field will be similar to that of a cavity subject to
internal pressure. Initially, radial fiow in the matrix will redistribute the

residual stress. Reduction of the stresses will begin when the redistribution
extends across the sample, following the onset of interaction between the stress
fields around adjacent particles. The authors are not aware of solutions for
this problem, although the analysis is relatively straightforward.

Polycrystalline Single Phase Aggregates

It has already been demonstrated that anisotropic thermal contraction in
polycrystalline aggregates develops tensile or compressive stresses on grain
boundaries. A gradient of chemical potential suitable for diffusive relaxation
(Fig. 5) is thus established. The "initial" stress involves singularities near
grain junctions (Fig. 4). But the singularities are weak (logarithmic) and
should be rapidly dispersed by localized diffusive fluxes. The rate controlling
relaxation process involves diffusion between adjacent grain facets (Fig. 5),
such that atoms are removed from the boundaries subject to compression and are
deposited on boundaries under tension., If it is assumed that the relaxation
times are sufficiently rapid that atom deposition and removal occurs uniformly
along the respective grain boundaries, a parabolic “steady-state" stress dis-
tribution must develop along the boundaries during the relaxation process. The
extent of strain relaxation can then be deduced by using well-established mathe-
matical procedures for diffusive flow. This mode of analysis is only permiss-
able when the diffusivities are large, notably at the highest temperatures. The
stress evolution at intermediate temperatures requires "transient” solutions
involving more complex formulations. Such analyses have not yet been performed.
Currently, therefore, it is only possible to obtaiﬂ.approximate solutions by
permitting "steady-state” relaxation above a "freezing" temperature Tg and
invoking fully elastic stress development below Tge

The stress relaxation problem can be posed by first establishing the normal
elastic displacement 61 of the boundaries during cooling (the driving force for
the diffusive flow, Fig. 5) and the displacement relaxation 82 due to diffusion.

13
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Then, the resultant displacement § (= &1 - 62), which determines the level of
the relaxed stress, can be derived. The solution for a constant cooling
rate T will be presented.25

The elastic stress level on a grain boundary normal to the direction of
maximum contraction s

BE(T, - Tt) Aa
Ty = T3] (20)

where Ty is the initial temperature, Aa s the deviation of the contraction
coefficient from the average, and B is a coefficient that depends on the
orientations of the adjacent grains. The corresponding elastic displacement s

_ V32 8T t Aa
S Bl (21)
The relaxations of these displacements by diffusion are governed by the
relation26
d olx,t) . . (22)

ax’

where Dy g, is the diffusion parameter, @ the atomic volume and §
is assumed to be uniform (as noted above). Integration of Eq. (22) gives the
stress distribution

@gxg
alx,t) = e ¥ Clx + CZ (23)

where £ = kT%g(tB/Q Dbsb and C; and C, are the integration constants. The
positions of zero flux (do/dx = 0} in the system are at the grain facet center 0
and at the grain junction J (Fig. 5). Hence, since the flux must be continuous
at the grain corner A, the constant C; must be equal to £4/2. If o, is the
stress at A, the stress distribution becomes

2
olx,t) = - %+ %£+ 9, (24)
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The equivalent average stress is

2

<or{t) = §%§9+ 9, (25)

Volume conservation requires that the volume of material deposited on the
tensile boundary must equal the volume removed from the compressed boundary. The
stress at the grain corner thus becomes

o, = £92/12 (26)
and the average stress reduces to

(27)

The average stress on each boundary must also be related to the resultant
displacement of the grain:

‘%Tﬁd? =4 - :Sz (28)

Substituting &, from Eq. (21) and 6§, from Eq. (27}, and noting that Dy is
temperature dependent

= =Q/kT
D, = D, @ (29)
where Q is the activation energy for boundary diffusion, the following
differential equation obtains

1296, D E eaQ/kT

d<o> b
3 T

=

di /3k g

€ B o o (30)

—3ol o

The solution to this equation must be conducted numerically. However, an
approximate series expansion may be derived?S for comparison with the elastic
result expressed in terms of a "freezing" temperature Tg:
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<l + vl |
Tg- T

From this, 'T'g is given approximately by

T ~ Q/k o : (31)
9 anf129 DOSbE/Jﬁnkz T]

The trends in Tg with the influential variables are immediately apparent.
In particular, Tg increases as the grain size and cooling rate increase and as
the diffusivity and modulus decrease. This behavior is exemplified for Al203
(Dyd = 1079 m3 71, q = 100 kcal/mole, @ ~ 10729 m3, n = 30, £ = 420 GN m2),

for which:

50,000

T.,
9 29,5 - gn g

> 1

where £ is in microns, T in K s”! and T
and T = 1K s"}, T

is in K. Specifically, for 2 =1 um
= 2210K,

9

= 1695K; whereas for £ =10 pmand T = 1K s}, T

g 9

MICROCRACK FORMATION

The formation of microcracks at grain boundaries or at second phase
particles has been considered to depend on the existence of a distribution of
small inhomogeneities that pre-exist at the boundaries {especially at three
grain junctions) or interfaces.®:6»7 These inhomogeneities have been proposed
because the stress intensification levels associated with the residual stress
fields do not appear to be of sufficient magnitude to induce fracture in defect
free material (although further study is needed to establish whether this possi-
bility can be discounted)}. The role of the proposed inhomogeneities is to fur-
ther enhance the stress intensification to a level suitable for microcrack evo-
Tution. It is certainly reasonable to presume that inhomogeneities do exist at
boundaries or interfaces in ceramics, e.g., small pores remaining at grain
triple points. However, little effort has yet been devoted to the elucidation
of the inhomogeneities that induce microfracture in specific miocrostructural
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situations. It is thus generally assumed that the inhomogeneities exhibit the
stress concentrating properties of small microcracks: a presumption that is
evidently an over-simplification. Thereafter, stress intensity factors can be
calculated (from the residual stress levels) and compared with the critical
values for grain boundary separation. Approximate stress intensity factors are
conveniently calculated with a superposition method, based on the prior stress
field.5*® A typical example, illustrated in Fig. 6, is where a microcrack
develops along two symmetrically stressed grain facets, initfating at the common
triple junction. The stress intensity factor for such a crack is given by

KL+ V) o a/0) (32)
EAcATV
where «la/2) is the function plotted in Fig. 6. It is noted that the stress
intensity factor exhibits a maximum, K. This is typical of crack extension in
residual or spatially varying stress fields. The principal maximum in the
present analysis essentially coincides with a crack front located at the first
triple junction, where the residual stress changes sign (i.e., the residual
stress becomes compressive along the impinging boundaries). Equating K
to the boundary separation ?e$%stanceskgs yields an absolute minimum condition
for the formation of microcracks. This corresponds to an upper bound for the
critical grain facet size;

(33)

where ¢ is the magnitude of the normalized stress intensity factor at the
maximum. Estimates of specific values of the grain facet sizes that induce
microcracking involve statistical considerations based on flaw distributions.

More exact calculations of the stress intensity factor can be obtained by
using numerical (finite element or finite difference) methods. A recent
example’ is the use of a finite difference scheme for calculating the stress

17
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intensity factor for a crack at the interface of a spherical second phase
particle. A convenient use of the finite difference method involves the
calcutation of the strain energy, U, as a function of crack length, a. The
stress intensity factor is then deduced from the crack Tength derivative of the
strain energy. A maximum value, £§ is obtained. The corresponding absolute
minimum requirement for microcrack initiation is

RC B oo (34)

where Ké is the resistance of the interface to fracture and <o is the stress in.
the uncracked particle.

Further progress in the elucidation of microfracture is achieved by
incorporating defects that reduce the critical size below the upper bound
values. Little progress has yet been achieved in selecting appropriate defects
and defect size distributions; although results could clearly be obtained by
selecting arbitrary distributions {such as one of the extreme value distribu-
tions). Careful obsevations coupled with pertinent stress intensity factor
calculations are needed to establish a more fundamental appreciation of micro-
cracking. Comparison of the available calculations of K with experimental
observations of microcracking suggest5°6s7 that triple point defects in the size
range, 0.1 < 2a/2 < 0.3, are typically invoived in the microcrack initiation
process. However, more direct observations and further calculations are needed
to substantiate and refine this result.

CONCLUSION

This paper has described methods for calculating the residual stresses that
develop at the microstructural level because of thermal contraction
inhomogeneity. The stresses are typified by locally large amplitudes (with some
singularities) and rapid gradients. These characteristics are central to the
onset of microcracking, both microcrack initiation and arrest.

The stress level is also shown to depend on the rate of stress relaxation
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at elevated temperatures, by diffusion or viscous flow. The relaxation rate is
a strong function of microstructure: rapid relaxation rates obtain in fine
grained materials or in materials containing an amorphous boundary phase. These
relaxation effects have been demonstrated to be manifest in an effective freez-
ing temperature, a temperature at which elastic residual stresses begin to
develop.

The onset of microcracking within the residual stress field has been
considered to depend on the presence of smail microstructural inhomogeneities
(such as voids) at the susceptible interfaces. These features certainly exist,
but have not yet been uniquely correlated with the onset of microcracking. By
treating these pre-existent inhomogeneities as crack-l1ike entities, stress
intensity factors have been calculated. The level and variation in stress
intensity factors indicate the potential for microcrack initiation and arrest at
grain boundaries and interfaces.

In particular, a lTower bound for the critical microstructural size needed
to initiate microcracks has been identified (no microcracks can be observed at
size levels below this bound). The actual formation of microcracks above the
lower bound depends on the statistical characteristics {size and spatial) of the
pre-existent inhomogeneities. This issue has not been addressed.
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Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

FIGURE CAPTIONS

A schematic indicating the Eshelby method for calculating the residual
stresses and strains generated by anisotropic thermal expansion of an
hexagonal grain,

The 1inear boundary segment used to compute the relaxation stresses,
showing the coordinate system (x, z).

An hexagonal grain array showing the body forces used to calculate the
stress at the central facet AB.

The grain configuration that yields large values of the residual stress
at facet AA' and the stresses calculated to exist along that facet.

The elastic and diffusion displacement that occurs during cooling,
indicating the direction of the diffusive flux. Also shown are the
stresses that develop during steady-state diffusive flow.

The variation of the normalized stress intensity factor with crack
length for the grain, crack configuration indicated on the inset.
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