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Using Isosurface Methods for Visualizing
the Envelope of a Swept Trivariate Solid

Jason Conkey∗

Kenneth I. Joy†

Center for Image Processing and Integrated Computing
Department of Computer Science
University of California, Davis

Abstract

We present a method for calculating the envelope surface
of a parametric solid object swept along a path in three-
dimensional space. The boundary surface of the solid is
the combination of parametric surfaces and an implicit sur-
face where the Jacobian of the defining function has a rank-
deficiency condition. Using this condition, we determine a
set of square sub-Jacobian determinants that must all van-
ish simultaneously on the implicit surface. When the gen-
erator of the swept surface is a trivariate tensor-product B-
spline solid and the path is a B-spline curve, we can give a
robust algorithm to determine the implicit surface. This al-
gorithm is based upon the “marching tetrahedra” method,
which is adapted to work on 4-simplices. The envelope of
the swept solid is given by the union of the parametric and
implicit surfaces.

Keywords: swept surface; envelopes; boundary surface de-
termination; trivariate B-spline solids; rank-deficient Jaco-
bians; marching tetrahedra.

1 Introduction

The definition of a swept object depends on three fac-
tors: the specification of the generator – the object to be
swept; the specification of the trajectory – the sweeping
path; and the specification of the orientation of the gener-
ator as it progresses along the trajectory. Thus, given a gen-
eratorg(u, v, w), a trajectory curvec(t), and acoordinate
frame transformationR(t), defined over the same domain
asc, the swept objects is defined to be the set of points
where

s(u, v, w, t) = c(t) + R(t)g(u, v, w) (1)

∗conkey@cs.ucdavis.edu
†joy@cs.ucdavis.edu

for somet in the domain of the curvec and some(u, v, w)
in the domain ofg. The swept objects defined by this def-
inition are actually quite general. They allow an arbitrary
parametric solid to be swept along a parametric curve, uti-
lizing an arbitrary coordinate frame transformation to define
the orientation/distortion of the solid at a point of the curve.
This allows, for example, the generator to be scaled, rotated
or distorted (the coordinate frame elements need not be mu-
tually perpendicular) as it proceeds along the curve.

In this paper, we are interested in the boundary surfaces
(the envelope) ofs. These surfaces consist of two types:
the envelopes of swept surfaces that correspond to bound-
aries of the domain space, and an isosurface determined by
the Jacobian ofs. We utilize the techniques of Joy [5],
Joy and Duchaineau [6] and Abdel-Malek and Yeh [2] to
calculate these surfaces. The Jacobian ofs is not square
(it is 4 × 3) and the methodology of Abdel-Malek and
Yeh provides means to break up the Jacobian, giving sub-
Jacobians that can be used in our calculations. The tech-
niques of Joy and Duchaineau provide the surface genera-
tion techniques for the swept surfaces that define the para-
metric boundaries. If the generators are defined as trivariate
tensor-product B-spline solids, the trajectories are defined
to be B-spline curves, and the coordinate frames are spec-
ified by B-splines, a robust test can be developed that in-
dicates the presence of an implicit boundary surface in a
region of the domain space. An adaptive subdivision pro-
cedure is generated which splits regions of the domain into
four-dimensional cells that (1) do not contain the solid, or
(2) that may contain the solid.

After determining a set of cells in the domain space that
may contain the implicit surface, we use an isosurface gen-
eration scheme to generate the implicit surface. Here we
split the four-dimensional cells into 4-simplices and adapt a
“marching tetrahedra” algorithm to generate the isosurface.
The union of the envelopes of the surfaces swept from the
boundary of the domain, together with the isosurface gener-
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ated from the sub-Jacobians then approximate the boundary
surface of the solid.

In Section 2, we review research related to the sweep-
ing of parametric solid models, and the calculation of the
boundary surfaces of trivariate solids. Section 3 reviews the
basic mathematical principles necessary for the generation
of the swept solid. Section 4 develops the defining function
for the swept solid, and Section 5 develops the algorithm
for finding the implicit surface. The isosurface generation
algorithm is presented in Section 6. Results of the use of
the algorithm are shown in Section 7.

2 Related Work

The research on swept surfaces and solids is quite vast
and we refer the interested reader to the review by Abdel-
Malek et al. [1] for a good review of the results in this area
over the past few years.

Boltianskii [4] has an excellent introduction to envelope
theory. Wang and Wang [13] utilized Boltyanskii’s work
to find a geometric definition of the envelope. They find
that the envelope of a generatorg(u, v, w) along a curve
c(t) can be characterized at a pointt0 by boundary points
(u0, v0, w0) of the generator where the normal vector to the
generator at(u0, v0, w0) is perpendicular to the tangent vec-
tor of c at t0.

Joy [5] discusses the sweeping of a trivariate solid, and
uses a subdivision strategy to generate the image of the
solid. This algorithm subdivides the trajectory curve until
a sweep of the domain boundaries accurately represents the
solid. Unfortunately, this algorithm must subdivide the ob-
ject into very small pieces and renders many surfaces within
the solid.

Madrigal and Joy [8] have proposed an algorithm that
generates characteristic curves on the envelope for each
step along the trajectory curve. Points on these character-
istic curves have the property that the normal vectors to the
points are perpendicular to the tangent vectors at the respec-
tive points on the trajectory curve. A “zippering” algorithm
generates triangle strips from characteristic curves of two
consecutive steps along the trajectory. For each step, the
generator is placed at its position, and the curves calculated.
Unfortunately, the zippering algorithm fails when complex
objects are rotated while being swept. These rotations can
create complex characteristic curves on the envelopes.

Abdel-Malek and Yeh [2] and Abdel-Maleket al. [3],
have developed a rank-deficiency condition that character-
izes the Jacobians of swept solids in any dimension. If a
swept solid is characterized byn-dimensional equations,
then the Jacobian is an×3 matrix. They have shown that the
implicit surface is defined when all the3× 3 sub-Jacobians
are simultaneously zero. The paper gives examples on how

to find these surfaces by solving the sub-Jacobians explic-
itly.

Joy and Duchaineau [6] have developed algorithms for
rendering of the trivariate B-spline solid. This solid can be
visualized as the sweep of a continuously changing B-spline
patch along a B-spline curve. They show that the boundary
surface of such a solid consists of two components: surfaces
that are images of the domain boundary, and an implicit
surface defined as the isosurface of the Jacobian determi-
nant with isovalue zero. They utilize cone approximations
to give a robust test to see if the implicit surface exists in
a domain cell, and employ a subdivision algorithm to focus
the attention of the algorithm on smaller and smaller cells.
An adaptive isosurface routine is used to generate the im-
plicit surface.

In this paper, we combine the results of Joy and
Duchaineau [6] with Abdel-Malek and Yeh [2] to develop
an isosurface-based method for sweeping a trivariate B-
spline solid along a B-spline curve. We provide a robust
method that guarantees the presence of the implicit bound-
ary and renders it to a desired accuracy. To do this, we
approximate the Jacobian sub-determinants using interval
techniques, and subdivide the domain space to isolate recti-
linear cells in the domain that contain the implicit surface.
To determine the isosurface within these cells, we present a
new isosurface algorithm for four-simplices. We split cells
into 4-simplices and determine the isosurface within each
simplex, combining the results to produce the implicit rep-
resentation of the surface.

3 Calculating the Envelope

The mathematics of swept objects is rooted in the Im-
plicit Function Theorem [11]. This theorem implies that
surfaces contributing to the envelope that contains the swept
solid include the boundary surfaces of solids defined by the
boundaries of the domain space, and those points where the
Jacobian has a rank-deficiency condition.

If we assume that the domain space for our solids is a
4-dimensional rectangle defined by0 ≤ u, v, w, t ≤ 1, then
by the Implicit Function Theorem, the superset of the sur-
faces that make up the boundary ofs includes the following:

• The boundary surfaces of the solids(u, v, w, 0) corre-
sponding to the domain boundaryt = 0. This is a copy
of the generator, translated toc(0) and transformed by
R(0).

• The boundary surfaces of the solids(u, v, w, 1) corre-
sponding to the domain boundaryt = 1. This is a copy
of the generator, translated toc(1) and transformed by
R(1).

• The boundary surfaces of the solids(0, v, w, t) corre-
sponding to the domain boundaryu = 0. This solid
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is a boundary patchg(0, v, w) of the generator, swept
along the trajectory curvec(t).

• The boundary surfaces of the solids(1, v, w, t) corre-
sponding to the domain boundaryu = 1. This solid
is a boundary patchg(1, v, w) of the generator, swept
along the trajectory curvec(t).

• The boundary surfaces of the solids(u, 0, w, t) corre-
sponding to the domain boundaryv = 0. This solid
is a boundary patchg(u, 0, w) of the generator, swept
along the trajectory curvec(t).

• The boundary surfaces of the solids(u, 1, w, t) corre-
sponding to the domain boundaryv = 1. This solid
is a boundary patchg(u, 1, w) of the generator, swept
along the trajectory curvec(t).

• The boundary surfaces of the solids(u, v, 0, t) corre-
sponding to the domain boundaryw = 0. This solid
is a boundary patchg(u, v, 0) of the generator, swept
along the trajectory curvec(t).

• The boundary surfaces of the solids(u, v, 1, t) corre-
sponding to the domain boundaryw = 1. This solid
is a boundary patchg(u, v, 1) of the generator, swept
along the trajectory curvec(t).

• The surface defined where the rank of the “Jacobian”
of s is less than or equal to two.

In our case, the Jacobian is a4× 3 matrix defined by
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∂x
∂t

∂y
∂t

∂z
∂t


Abdel-Malek and Yeh [2] have shown that the rank-
Jacobian condition is equivalent to the vanishing of the de-
terminants of the four possible3 × 3 sub-Jacobians ofJ .
These sub-Jacobians,J123, J124, J134, andJ234 are defined
as follows:

J123 =

∣∣∣∣∣∣
∂x
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∣∣∣∣∣∣
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J234 =

∣∣∣∣∣∣
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∂x
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∣∣∣∣∣∣
A point s(u, v, w, t) is on the surface of the envelope, if

J123 = J124 = J134 = J234 = 0

at (u, v, w, t).
Using equation (1), we can expand the partial derivatives

as follows:

∂s
∂u

= R(t)
∂g
∂u

(u, v, w)

∂s
∂v

= R(t)
∂g
∂v

(u, v, w)

∂s
∂w

= R(t)
∂g
∂w

(u, v, w)

∂s
∂t

=
dc
dt

(t) +
dR

dt
(t)g(u, v, w)

and we have that

J123(u, v, w, t) =

∣∣∣∣∣∣
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∣∣∣∣∣∣
= |R(t)|
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∂v
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∂v
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∂w
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∂w
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∂w

∣∣∣∣∣∣∣
This is the product of the determinant ofR(t) and the Ja-
cobian determinant ofg. If we assume that the determinant
of R(t) does not vanish (i.e., no degeneracies exist in the
coordinate frame transformation), thenJ123 is non-zero if
and only if the Jacobian determinant ofg is non-zero. We
can use this to show the following theorem.

Theorem 3.1
If there are no points on the generator g where J123 = 0,
then the boundary of the swept solid contains points only
from the parametric boundaries of the domain space.

For s(u, v, w, t), we can characterize the points on the
boundary of the swept solid by defining the Jacobian deter-
minants in terms of triple scalar products. We have

J123 = |R(t)|
(

∂g

∂u

)
·
[(

∂g

∂v
× ∂g

∂w

)]
J124 = −

(
dc

dt
(t) +

dR

dt
(t)g(u, v, w)

)
·
[
R(t)

(
∂g

∂u
× ∂g

∂v

)]
J134 =

(
dc

dt
(t) +

dR

dt
(t)g(u, v, w)

)
·
[
R(t)

(
∂g

∂u
× ∂g

∂w

)]
J234 = −

(
dc

dt
(t) +

dR

dt
(t)g(u, v, w)

)
·
[
R(t)

(
∂g

∂v
× ∂g

∂w

)]
These four equations imply that points on the implicit sur-
face must satisfy the following:
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• the vectors∂g
∂u , ∂g

∂v , and ∂g
∂w must be coplanar, and

• the vectors [
R(t)

(
∂g
∂u

× ∂g
∂v

)]
,[

R(t)
(

∂g
∂u

× ∂g
∂w

)]
, and[

R(t)
(

∂g
∂v

× ∂g
∂w

)]

must be perpendicular to the vector

(
dc
dt

(t) +
dR

dt
(t)g(u, v, w)

)

4 Applying the Method to Trivariate B-
Spline Solids

If all functional components ofs are given in B-spline
form, then the resulting sweep can also be put in B-spline
form, as follows: Letg be the trivariate B-spline generator

g(u, v, w) =

n1∑
i=0

n2∑
j=0

n3∑
k=0

gi,j,kNi,m(u)Nj,m(v)Nk,m(w)

and letc be the B-spline curve trajectory

c(t) =
n4∑
l=0

clNl,m(t)

with a coordinate frame transformationR(t) =
(b(t),n(t), t(t)) given by

b(t) =
n4∑
l=0

blNl,m(t)

n(t) =
n4∑
l=0

nlNl,m(t)

t(t) =
n4∑
l=0

tlNl,m(t)

where the frame functions are defined over the same knot
sequence asc. The swept solids(u, v, w, t) can be written

as

s = c(t) + xg(u,v,w)b(t) + yg(u,v,w)n(t) + zg(u,v,w)t(t)

=

n4∑
l=0

[
cl + xg(u,v,w)bl + yg(u,v,w)nl + zg(u,v,w)tl

]
Nl,m(t)

=

n4∑
l=0

cl +

 n1∑
i=0

n2∑
j=0

n3∑
k=0

xgi,j,k Ni,m(u)Nj,m(v)Nk,m(w)

bl

+

 n1∑
i=0

n2∑
j=0

n3∑
k=0

ygi,j,kNi,m(u)Nj,m(v)Nk,m(w)

nl

+

 n1∑
i=0

n2∑
j=0

n3∑
k=0

zgi,j,kNi,m(u)Nj,m(v)Nk,m(w)

 tl

 Nl,m(t)

=

n4∑
l=0

n1∑
i=0

n2∑
j=0

n3∑
k=0

[
cl + xgi,j,kbl + ygi,j,knl + zgi,j,ktl

]
Ni,m(u)Nj,m(v)Nk,m(w)Nl,m(t)

which is a 4-dimensional B-spline with control points

cl + xgi,j,k
bl + ygi,j,k

nl + zgi,j,k
tl

for 0 ≤ l ≤ n4, 0 ≤ k ≤ n3, 0 ≤ j ≤ n2, and0 ≤ i ≤ n1.
In this case, the eight parametric solids defining the

boundaries of the sweep are all trivariate solids and can be
rendered using the algorithm of [6]. To calculate the im-
plicit surface we can utilize subdivision to locate those do-
main rectangles where the implicit surface exists.

5 The Algorithm

Assuming thats(u, v, w, t) is given in B-spline form, we
can use an adaptive subdivision algorithm to generate the
implicit boundary surface ofs where

J123 = J124 = J134 = J234 = 0.

Assuming that the domain space is defined by a four-
dimensional rectangle where0 ≤ u, v, w, t ≤ 1, the al-
gorithm proceeds as follows:

• Using subdivision onu, v andw, find a set of cells
whereJ123 = 0. This can be done by analyzing the
trivariate generatorg, see [6].

• Using subdivision ont, refine the remaining cells, re-
moving those cells where the sub-Jacobians cannot be
simultaneously zero.

• Split each four-dimensional cell into 24 4-simplices
using CMK-splits, see [9, 10].

• For each 4-simplex, determine a set of tetrahedra that
approximates the points whereJ123 = 0, see Sec-
tion 6.
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• For each tetrahedron, determine the isosurface corre-
sponding toJ124 = J134 = J234 = 0.

The triangles generated through this process define the im-
plicit surface bounding the swept solids.

Following [6], we use cone approximations to the partial
derivative vectors to get bounds on the individual Jacobian
determinants. The strategy is to use subdivision and con-
tinually refine the approximations, throwing out those cells
where the Jacobian determinants cannot be simultaneously
zero. In this way, we obtain a set of small cells in which the
envelope surface lies and can use the isosurface methods of
the following section to determine the surface.

6 Isosurface Determination in 4-Simplices

The marching tetrahedra algorithm [14, 12, 10] is a sim-
plification of the marching cubes algorithm [7] for finding
isosurfaces in gridded data sets. Assuming a scalar field
over a tetrahedral mesh and an isovaluev for which we must
determine an isosurface, each tetrahedron can be classified
into three cases:

• A tetrahedron whose vertices have associated scalar
values that are all greater than, or less thanv. In this
case, we say that no isosurface is present.

• A tetrahedron having one vertex with scalar value less
thanv and three vertices with scalar values greater than
v. In this case, we approximate the isosurface with a
triangle, using linear interpolation to define the points
on the edges. (The case where three vertices have
scalar values greater thanv, and one vertex with value
less thanv is handled similarly.) This case is shown in
Figure 1a.

• A tetrahedron having two vertices with scalar value
greater thanv and two vertices with values less than
v. In this case, the surface is represented by a quadri-
lateral, using linear interpolation to define the points
on the edges. This quadrilateral is usually triangulated
by using one of the possible two triangulations. This
case is shown in Figure 1b.

Consider a 4-simplexT , and letp1, p2, p3, p4 andp5 be
the five vertices ofT . T has five 3-dimensional tetrahedra
as boundaries:

∂T1 : with verticesp1,p2,p3, andp4

∂T2 : with verticesp1,p2,p3, andp5

∂T3 : with verticesp1,p2,p4, andp5

∂T4 : with verticesp1,p3,p4, andp5

∂T5 : with verticesp2,p3,p4, andp5

(a) (b)

Figure 1. Determining isosurfaces of a scalar
field over tetrahedra. This illustration shows
the two non-trivial cases. In (a), we approx-
imate the isosurface with a single triangle.
In (b), we approximate the isosurface with a
quadrilateral.

An isosurface of a scalar field defined over the vertices ofT
will be three-dimensional, and can be approximated by sets
of tetrahedra in four-dimensions. Without loss of general-
ity, we assume that the desired isosurface has isovalue zero.
There are two cases to consider:

CASE I: Suppose, without loss of generality, thatp5

has a scalar value greater than zero andp1, p2, p3 and
p4 have isovalues less than zero. Then we have the case
shown in Figure 2a. Here, the “isosurface” can be approx-
imated by a single tetrahedron. The vertices of the tetrahe-
dron are calculated by linear interpolation on the edges of
the 4-simplex.

CASE II : Suppose thatp4 and p5 have scalar values
greater than zero, and thatp1, p2, andp3 have scalar val-
ues less than zero. The five boundary tetrahedra of the 4-
simplexT can be separated into two classes:∂T1 and∂T2

each have three vertices with negative scalar values and one
with a positive value;∂T3, ∂T4, and∂T5 each have two ver-
tices with negative scalar values and two vertices with posi-
tive values. In the first case, the isosurface on each boundary
tetrahedron can be approximated by a single triangle. In the
second case, the isosurface on each boundary tetrahedron
can be approximated by a quadrilateral. The three quadri-
laterals and two triangles form a three-dimensional prism in
the 4-simplexT , as is shown in Figure 2b.

The prism can be split into three tetrahedra. There are
six ways to do this, each corresponding to the specification
of the diagonals of the quadrilateral faces of the prism, see
Figure 3. Since we have a free choice of the six possible
splits, we choose to split the prism into the three tetrahedra
that correspond to the minimum length (in four-dimensions)
diagonal of each quadrilateral face. If we choose a regular
split of the domain space, where all cells are the same size,

5
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Figure 2. Two cases for approximating the isosurface in 4-simplices. In (a), one tetrahedron is formed
to approximate the surface. In (b), a four-dimensional prism is formed.

Figure 3. Six ways to split a prism into tetra-
hedra

this eliminates any “cracking” problems in the isosurface,
because adjacent prisms will have common face diagonals
chosen in the same manner.

7 Results

Figure 4 illustrates a torus that has been swept along
a semi-circular arc. Since the torus contains no surfaces
where the Jacobian determinant of the defining function is
zero, the boundary surfaces of the swept object are con-
tained completely in the surfaces of the swept trivariate
solids that are defined by the boundary of the domain space.
The generator is composed of four trivariate solids, each
consisting of one-quarter of the torus. The semi-circular arc
is approximated by B-splines. The torus is rotated by ap-
proximating the Frenet frame of the curve with B-splines.
Figure 5 illustrates a cylinder that has been tumbled180◦

as it is swept along a linear path. The cylinder has been
approximated by a trivariate B-spline, and the coordinate
frame vectors have been approximated by B-spline curves.

Figure 6 illustrates a trivariate generator swept along a
curve. Here, the generator is not rotated. The protrusion
from the cube in the generator is created by pulling out the
interior control points of the trivariate B-spline. On the sur-
face of this protrusion,J123 = 0. When swept, this protru-
sion tests the full capabilities of our algorithm.

In Figure 7, the generator is a trivariate approximation
of a cylinder, with some interior control points pulled to the
exterior of the object. The generator is rotated about the
linear trajectory as it is swept along the curve.

Figure 8 illustrates a swept solid using the generator of
Figure 6. The generator is swept along a semi-circular curve
and rotated.
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(a)

(b)

(c)

Figure 4. Sweeping a toroid along a semi-
circular arc. The generator is shown in (a). In
(b), the generator has been swept along the
arc and the boundary surfaces are shown. In
(c), the generator was first rotated into the
plane of the arc, and then swept.

(a)

(b)

(c)

Figure 5. Sweeping a cylinder along a linear
path. The cylinder is rotated as it is swept.
The generator is shown in (a) and two illus-
trations of the swept object are shown in (b)
and (c).
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(a)

(b)

Figure 6. Sweeping along a general B-spline
curve. The generator is shown in (a), and the
swept surface is shown in (b).

(a)

(b)

Figure 7. Sweeping along a linear curve with
rotation. The generator is shown in (a), and
the swept surface is shown in (b).
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Figure 8. Sweeping the generator of Figure 6
along a semi-circular arc. The generator is
tumbled as it is swept.

8 Conclusions

The concept of determining the envelope of a solid ob-
ject swept along a curve has been a fundamental problem
in geometric modeling, solid modeling, robotics, manufac-
turing automation and computer graphics since the early
1960s. The goal is to determine the outer boundary of
an object during its motion along the curve from an ini-
tial to a final position. While the mathematics has become
more sophisticated, the difficulty remains the identification
of this boundary using rigorous mathematical techniques
and robust methods that lead to implementable algorithms
on computer systems.

We have presented an algorithm that generates the
boundary surfaces of a swept trivariate solid. This algorithm
generates the boundary through a combination of paramet-
ric and implicit surfaces. Generation of the implicit surface
is accomplished through an isosurface routine that has been
adapted to 4-simplices in four-dimensional space. We have
found that this algorithm can be used to generate a variety
of swept solids. The algorithm depends on the B-spline rep-
resentation only to calculate the bounds on each cell and to
use the algorithm presented in [6] for the trivariate B-spline
solids generated by the method. It can be extended to other
surface types if similar approximation techniques can be de-
veloped.

This method generates a superset of the actual boundary
of the swept solid, generating some surfaces on the interior

of the solid. In future work, we will identify these inte-
rior points and eliminate them from the description of the
boundary.
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