Styloglossus muscle: a critical landmark in head and neck oncology

O. Laccourreye, R.K. Orosco, F. Rubin, F.C. Holsinger

Service d’otorhinolaryngologie et de chirurgie cervicofaciale, HEGP, université Paris Descartes Sorbonne Paris Cité, AP–HP, 20–40, rue Leblanc, 75015 Paris, France
Departments of otorhinolaryngology, Head and Neck Surgery, University of California San Diego, San Diego, CA, USA
Department of otolaryngology, School of Medicine, Stanford University, 875 Blake Wilbur Drive, 94305-5820 Palo Alto, CA, USA

ARTICLE INFO
Keywords:
Oropharynx
Oral cancer
Squamous cell carcinoma
Cancer
Styloglossus muscle

ABSTRACT
Goal: To document the role of the styloglossus muscle (SG) in head and neck oncology and at the time of surgical treatment and mandibular preservation surgery for squamous cell carcinoma of the lateral oropharynx (SCCLO).
Method: Based on a search conducted within the Pubmed, Embase, and Cochrane databases, using the key words SG muscle, parapharyngeal space and oropharynx, the authors discuss the embryology, physiology, anatomy and radiology of this muscle as well as its role in the oncologic staging surgery of SCCLO.
Results: The most specific radiologic exam to evaluate the involvement of SG muscle in SCCLO is magnetic resonance imaging (MRI). According to the eighth international staging classification systems, radiologic invasion of the SG muscle, at the time of MRI, leads to reclassify as T4a many tumors considered as T1-3 at the time of clinical and/or computerized tomography evaluation. This must lead to extreme care when comparing oncologic results from series published prior and after the MRI era. When transoral resection of the SG muscle is advocated for SCCLO, one must know that this maneuver brings numerous arterial and venous structures within the operative field. If difficulties to achieve safe margins of resection and/or to control bleeding are encountered, a simple trans cervical maneuver described herein is most useful.
Conclusion: The importance of the SG muscle should be emphasized as a touchstone for staging and surgeon’s guide to mandibular preservation surgery of SCCLO. The various approaches allowing the control of this muscle and its vascular environment must be taught at the time of initial training.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

While the demonstration of the role of the human papilloma virus in the genesis of oropharyngeal squamous cell carcinoma led some to predict an “epidemic” of such cancer in the future [1], the Western world has experienced a revival of mandibular preservation surgery for squamous cell carcinoma of the lateral oropharynx (SCCLO) [2–7]. Simultaneously, magnetic imaging resonance (MRI) has become more widely-used in the pre-treatment work-up of SCCLO and integrated the staging classification systems though radiological criteria [8,9]. As a result, anatomic intricacies of the lateral oropharynx and adjacent parapharyngeal space have been brought to light. An overlooked structure, the styloglossus muscle (SG) plays a critical role in the staging and surgical management of SCCLO. In this report, based on an electronic search conducted within the Pubmed, Embase and Cochrane databases using the key words styloglossus muscle, parapharyngeal space and oropharynx, the authors delve into the embryology, physiology, anatomy, radiology of the SG muscle together with considerations regarding its impact on staging and key surgical points allowing for its resection without mandibular resection in the face of SCCLO.

2. Discussion

2.1. Embryology, physiology and “conventional” anatomy

Embryologically the SG muscle originates from Reichert’s cartilage and starts investing with muscle fibers of the genioglossus and transverse muscle of the tongue in utero as early as day 42 [10,11]. Katori et al. [12] noted that the SG muscle is covered by a fascia adjoined to the carotid sheath. According to the same group, the ascending palatine artery is the major arterial supply of the pre styloid space anterior to this muscle [13].

In addition to the styloglossus and stylohyoid muscles, the SG belong to the group of muscles that originate from the styloid

https://doi.org/10.1016/j.anorl.2017.11.012
1879-7296/© 2018 Elsevier Masson SAS. All rights reserved.
process [14–17]. As depicted in Figs. 1 and 2, the SG muscle is medial and anterior to the stylohyoid muscle, and runs lateral to the superior constrictor muscle [14–17]. The stylohyoid muscle is also superior and medial to a well-recognized anatomical landmark used by radiologists, radiation therapists, and head and neck surgeons routinely used to delineate, stage, radiate and resect the nodes within the neck of patients with SCCLO: the posterior belly of the digastric muscle.

Rouvière [15], Gray’s [16] and Pernkopf’s [17] anatomy text books teach that the styloglossus muscle, whose action is to elevate and retract the tongue base backwards, attaches inferiorly along the lateral surface of the tongue and the upper border of the mylohyoid muscle (Fig. 2). At this level, Saito and Itoh [18] noted that more than ten SG muscle fibers bundles formed an arched, multi-layered structure involved with the genioglossus muscle and the intrinsic transverse muscle of the tongue, all the way to the lingual septum. Laterally, they noted that it is also intimated with the fibers of the superior pharyngeal constrictor muscle.

Prades et al. [14], in a cadaver dissection of ten adult heads (20 sides) noted that the glossopharyngeal nerve (IXth cranial nerve) did not appear to be in close relationship with the SG muscle. The nerve turned around the stylopharyngeus muscle – superiorly with a vertical segment posterior to the stylopharyngeus, and inferiorly with a horizontal segment lateral to the same muscle. The meeting point of these two segments of the IXth cranial nerve is about 10 mm anterior from the transverse process of the atlas [14].

Fig. 1. Schematic representation from outside (mandible and cheek resected) of the relationship between the posterior belly of the digastric muscle (4), stylohyoid muscle and ligament (3), palatoglossus muscle (1), superior constrictor muscle (2), mylohyoid muscle (5), and styloglossus muscle (6).

Fig. 2. Schematic representation from outside following transection and deflection of the posterior belly of the digastric muscle (4) and stylohyoid muscle and ligament (3). Note the relationship between the palatoglossus (1), superior constrictor (2), mylohyoid (5), styloglossus (6), and stylopharyngeus (7) muscles. Dotted white line indicates projection of the palatine tonsil.
2.2. Radiology of the styloglossus muscle

The eighth European and American TNM staging classification systems integrated the radiological work up in the pre-treatment staging of SCCLO [8,9]. Within the pharynx, these staging systems classified a T4a cancer as one that invaded the deep extrinsic lingual muscles; namely, at the level of the lateral oropharynx: the palatoglossus, and SG muscles [8,9].

It is widely held that MRI is superior to computed tomography (CT) in the delineation of mucosal and muscular involvement of cancers of the oropharynx [19]. On MRI, the course of the SG muscle within the lateral oropharynx till its insertion in the tongue base musculature is generally well-visualized. It is in extremely close anatomical relationship with the oropharynx mucosa with when it reaches the tongue: 1.3 mm (0.33–1.48) on the right muscle and 2.91 mm (0.66–7.68) for the left [20]. Due to the radiographic staging criteria mentioned above, this extreme proximity with the mucosa of the lateral oropharynx leads to a frequent radiographic up-staging. Based on the radiographic evidence of SG muscle involvement, Boland et al. [21] noted that up to 52% of cases clinically considered as T1–3 have been shown to be reclassified as T4a. However, the validity and relevance of radiographic up-staging is this scenario is controversial.

The first “negative” point of this radiological up-staging is the fact that it prevents any comparison with the oncologic data reported prior to the introduction of MRI while the real value of this exam to evaluate mucosal and muscular invasion in SCCLO is still under debate. In a retrospective analysis of 37 patients with SCCs originating from the tonsil who underwent primary resection, Park et al. [22] noted that there was no significant statistical correlation between the invasion depth measured on MRI and the invasion depth measured histologically on the pathology specimens. The second problem relies to the therapeutic indications; when “early” (T1–2) SCC that would be amenable to a surgical conservative approach with an excellent prognosis are up-staged to “advanced” stage (T4a), a non-surgical treatment plan is more likely. This prevents true surgical and pathologic staging assessments, may expose patients to otherwise-avoidable risks related to postoperative radiation or chemotherapy and limit the use of radiation therapy when a metachronous second primary SCC occurs at the level of the upper aero digestive tract. Finally, when not representative of the true disease state, radiographic up-staging invalidates the conventional head and neck oncologic concept that rely T stage to local failure in patients managed with conservative approaches with an increase in the local failure rate as the T stage progresses from 1 to 4. Thereby, Laccourreye et al. [23], when using the lateral pharyngotomy approach for SCCLOs noted that, in terms of local control, the “T4a” group will tend to parallel the results achieved in T2 tumors. Likewise, inappropriate radiographic up-staging artificially mixes the T4 stage grouping by introducing low-volume tumors with apparent styloglossus involvement, contradicting the well-documented finding that the tumor volume is a predictor of outcome after surgical or radiation treatment for SCCLO [24,25]. And recently, Murthy et al. [26] following a prospective analysis of 87 patients with oral tongue squamous cell carcinoma which had MRI prior to surgery advocated the removal of extrinsic muscle involvement in defining stage T4 of the oral cavity considering the modification made in the staging classification system as a “fallacy”.

2.3. Surgical anatomy of the styloglossus muscle

From a surgical anatomical perspective, the SG muscle may be encountered when performing a resection either via a transoral approach, or a trans cervical route for SCCLO.

Through a transoral approach, the SG muscle is often encountered crossing from outside to inside by the level of the lower pole of the tonsil (Figs. 1–3). At this level, the SG muscle crosses the internal carotid artery in the parapharyngeal space before it invests with the fibers of the tongue base musculature [27]. Various reports suggested that the other main vessels encountered per-orally are the ascending palatine artery (arising from the facial artery), and the ascending pharyngeal artery (arising from the medial surface of the external carotid artery) [28–30]. Wang et al. [30] noted that both the ascending pharyngeal and ascending palatine arteries crossed the SG muscle. The ascending pharyngeal artery crossed the SG muscle 12.6 ± 3.9 mm from the insertion into the tongue, and in 58% of cases it ascends vertically to the skull base between the internal carotid artery and the constrictor muscles along the capitus muscle (as depicted in Perknkoff’s text book [17]). A noteworthy finding in 8% of cases in Wang’s series, was that the external carotid artery bulged into the parapharyngeal fat between the SG and stylopharyngeus muscles [30]. There are also numerous vessels from the venous plexus that lie in close relationship with the external surface of the SG muscle and the external carotid artery [28–31].

When performing a trans cutaneous approach, the SG muscle located just above level II is hidden by the posterior belly of the digastic muscle and the stylohyoid muscle and ligament (Figs. 1, 2, 4, 5). As depicted in Figs. 2 and 5, the SG muscle is easily exposed by transecting the posterior belly of the digastic muscle, the stylohyoid muscle and ligament from the lesser horn of the hyoid bone and rotating them outside [28,31]. This opens the external plane of the SG muscle and the adjacent arterial vessels (Figs. 2 and 5). The space and the view achieved may be enlarged anteriorly by ligating and transecting the facial artery when it enters the submandibular space and, eventually, posteriorly by ligating and dividing the terminal extent of the external carotid artery when it enters the parotid space [28,31]. This technique, which permits direct visualization and control of the above-mentioned arteries and venous plexus as well as wide resection of the SG muscle under palpation and direct vision, may be most useful if bleeding occurs when performing a transoral approach [28,31–35].
3. Conclusion

This review article suggests that the transoral and the transcervical approaches to the lateral oropharynx should be seen as a continuum of head and neck surgery and closely linked, rather than in opposition. Understanding this key relationship between the SG muscle, the neck and increasing complexity of surrounding vasculature may increase the safety and accuracy of surgery and thus spare patients from mandibulotomy unless absolutely necessary.

Disclosure of interest

The authors declare that they have no competing interest.

Acknowledgments

This study was supported in part by the Progrès 2000 Association and Stanford H&N Research Fund.

References

