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ABSTRACT OF THE THESIS

Applications of Large Language

Models in Education: Literature

Review and Case Study

by

John DuChateau Baierl

Master of Science in Statistics

University of California, Los Angeles, 2023

Professor Mark S. Handcock, Chair

The rapid rate of improvement of natural language processing (NLP) systems and large

language models (LLMs) begets a wide array of applications in the field of education and

classroom instruction. The possibility of individualized practice and immediate student

feedback from a low-cost and widely-available service has an enormous capacity to change

modes of student instruction. In this review, we discuss the current state of research into the

applications of LLMs for science and mathematics classroom education, calling particular

attention to concerns surrounding overreliance and equity, as well as suggesting specific

directions for future study. We conclude by considering the CourseKata interactive textbook

as an illustration of how AI tools may begin to reshape traditional methods of content

delivery.
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CHAPTER 1

Introduction

Large language models (LLMs) such as ChatGPT and BERT [9] have grown dramatically

in popularity for both academic and personal use. ChatGPT in particular is estimated to

be the fastest-growing consumer application in history [21]. Developments in transformer

architectures and self-attention mechanisms [43] have enabled these models to better handle

long-range dependencies in text and produce coherent and useful conversational responses.

Pre-trained on an extensive corpus, these models demonstrates state-of-the-art performance

at a remarkable variety of tasks ranging from essay-writing to generating quiz questions on

desired topics.

As organizations in many sectors, including schools, have already begun to implement

regulations and occasionally outright bans surrounding the use of ChatGPT in academic

work, a deeper discussion on the applicability of artificial intelligence (AI) tools in education

is inevitable. Systems like ChatGPT undoubtedly hold enormous appeal as teaching tools.

Their potential to enhance student interactivity, provide tailored feedback, and create per-

sonalized learning materials make LLMs a viable means of addressing an array of classroom

needs.

Moreover, as increasing class sizes in United States public schools continues to receive

substantial focus [32], the democratization of high-quality and personalized math tutorial

holds great potential to close gaps in access to resources along socioeconomic lines. The

recent growth in the popularity of private tutoring among disproportionately wealthy pri-

vate school students suggests that such services are both in high demand and also highly
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unevenly distributed among students at varying levels of wealth, with some tutors and agen-

cies providing personalized academic guidance charging rates upwards of $400 per hour [2].

Providing a similar quality of widely-available supplementary individual instruction at low

or no cost holds enormous appeal given this inequity.

However, as AI systems begin to work their way into a wider range of economic sectors it

is increasingly important that the actual capabilities of generative AI systems be accurately

represented. As we will discuss, this is especially true in the context of science, technology,

engineering, and mathematics (STEM) education. An accurate account of the capabilities,

weaknesses, and biases of LLMs is a prerequisite for developing effective AI implementations

for student use that exploit its strengths without exacerbating existing current issues in

STEM classrooms.

The primary objective of this paper is to outline the present body of research on appli-

cations of large language models and generative AI systems in general for both K-12 and

postsecondary classroom use, with a particular focus on mathematics education. We spot-

light uses of generative AI in creating assessments for student use and consider the potential

for open interaction between learners and automated systems. We further seek to high-

light their specific virtues and shortcomings that should inform their role in the classroom.

While the primary focus will be on science and mathematics education, many issues raised

are broadly relevant across disciplines. We conclude by discussing the CourseKata interac-

tive textbook developed through the UCLA Teaching and Learning Lab as a case study for

understanding these concerns in a concrete context.
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CHAPTER 2

Literature Review

2.1 Uses Generative of AI in Education

The idea of utilizing AI systems for educational tasks is not a recent one. Discussions of

algorithmically generated learning materials date back to the 1970s [11]. However, the rapid

growth of generative AI in the fields of natural language processing (NLP) and computer

vision have opened a wide array of uses both as a tool for in-class and supplementary in-

struction, accelerating the discourse in the recent years.

An emerging body of research has investigated the effectiveness of such tools in the class-

room and demonstrate their enormous potential for automatic question generation and direct

interaction with LLMs. Prior reviews primarily focused on outlining potential applications

of LLMs in education and highlighting the need for additional literacy among both students

and educators to better understand the technology, such as Kasneki et al (2023) [25]. The

authors highlight future concerns such as the potential for student over-reliance on models to

erode critical-thinking and problem-solving skills. These are important considerations should

indeed guide specific implementations of LLMs and algorithmically-generated content into

learning materials.

However, less attention has been paid to the ways in which such tools may fit within

present student-teacher dynamics, and the degree to which algorithmically-generated course

content is likely to reshape the role of educators and teaching content. Moreover, while crit-

ical issues like encoded biases in NLP systems have been well-documented [5], less attention
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has been paid to how AI shifting the role of instructors interacts with present inequities

in STEM and how this brings general trust in AI systems to bear. While much of this

research is still in relative infancy with limited empirical study [22], we give a brief outline

of work done to date on applying AI and NLP systems in education, as well as directions of

continuing research.

The growing body of work in this field has found generally positive results in the ability

of LLMs to produce useful learning materials and serve as fruitful conversational agents with

learners [37] [23]. A significant virtue of incorporating instruction via interaction is that such

tools better incorporate elements of personalized interaction to otherwise remote learning

activities. This allows for striking what Vie et al (2017) describe as “a better balance between

giving learners what they need to learn (i.e. adaptivity) and giving them what they want

to learn (i.e. adaptability).” [57] In short, NLP tools like GPT-3 and its relatives help to

alleviate the top-down nature of traditional approaches to remote student work.

Incorporating open-ended conversations and responses to prompts generated by chatbots

is one such application toward this end that has received substantial study. Steuer et al

(2021) found automatically generated questions to be relevant to their intended topics, free

of language errors, and to contain natural and easily-comprehensible language in a variety

of domains using their autoregressive language model [52]. Additionally, their generated

questions successfully addressed central concepts of their training texts and topics, which

the authors describe as pedagogical “coreness”. This suggests that the produced tasks were

indeed pedagogically useful within their subjects and contexts.

While this is an encouraging result, the notion of pedagogical coreness is difficult to

pin down and is highly subject- and instructor-dependent. For instance, one middle school

astronomy curriculum might emphasize storytelling from limited data as a recurring theme,

while another might focus on spatial reasoning in three dimensions. Of note is that Steuer et

al limited their study to automatic question generation from individual textbooks, relying on

expert judgement to assess the degree to which the questions produced aligned with central

4



information from the text.

Though useful questions are essential, assessing how students respond to and interact with

them is also needed. Abdelghani et al (2023) compared question-asking behavior among pri-

mary school students after utilizing the prompt-based learning of GPT-3 to directly automate

elements of course content [1]. This was a particularly encouraging result, since it featured a

more open-ended interaction structure and a greater focus on student responses than Steuer

er al (2021), giving some indication of how prior results might generalize to LLMs applied

to an even wider range of possible tasks. Overall, their results suggest that such automated

prompts generally elicited positive responses from students and show potential for increasing

curiosity and feelings of agency in their learning.

Additionally, Wu et al (2020) found that interaction with a chatbot in E-learning environ-

ments alleviates feelings of isolation and detachment that often accompany the use of such

platforms [60]. As more learning content has shifted online in the wake of the COVID-19

pandemic [4], being able to provide access to high-quality instruction regardless of time and

place is relevant both for present and future impact on pedagogy.

While these results present highly encouraging paths forward, it is important to consider

the limited scope of much of the research conducted to date. Though the studies discussed

above involved some degree of open-ended interaction, they were largely limited to provid-

ing prompts or keywords within a narrow task framework. Fully open-ended chatbot-style

conversations for pedagogical uses has yet to receive specific attention.

A natural question in this setting is the degree to which information and reasoning

provided by AI agents is reliable. Jiang et al (2021) investigated the calibration of LLMs on

trivia-style question-answering tasks across a number of disciplines [23]. They found that

while the models tested (GPT-2, T5, BART) performed well, they were generally poorly

calibrated, tending to be over-confident in their predictions. The authors show that model

fine-tuning procedures substantially improve this issue. While less critical than fields like

medical diagnosis where safety and proper confidence calibration are essential, properly

5



calibrated degrees of confidence are highly relevant for student feedback and interactions.

Future work should build upon the degree to which domain- and class-specific fine-tuning can

improve LLM reliability at question-answering tasks within a student-AI interaction setting.

In addition to creating course content and engaging students in discussions, developments

in generalized adversarial network (GAN) architectures [18] and AI-generated media allow

for systems that produce synthetic interfaces with which students can interact. Pataranuta-

porn et al (2021) discuss potential use cases of AI-generated animated characters utilizing

GAN architectures for interaction in learning environments [45]. Prior research demonstrates

that learning materials incorporating interaction with fictional characters positively impacts

student experiences, improving motivation and attitudes [30].

This work suggests a strong potential for generative AI to enhance both the instructional

content being delivery, but also the mode of delivery itself in ways the promote motivated

and curious engagement from students across age and ability spectra. This is a particularly

intriguing area of research, since these early results align well with the findings of We et al

(2020) of AI-interaction reducing some of the prominent downsides of loneliness in online

learning environments for students. Future work should seek to combine LLM interactions

with GAN-created animations, allowing interactive learning content to be enjoyable and

highly interactive for younger students as well.

2.2 Unique Challenges Associated with STEM Education

The application of language models to STEM education presents a uniquely challenging

use case for LLMs in a variety of ways. Quality mathematics instruction requires a wide

array of skills such as acute social awareness, deep understanding of course material, a clear

sense of the long-term skills required for later work in the field, a sense of aesthetics and

student interest, as well as an understanding of precisely why some topics are challenging or

counterintuitive. Some these skills are well-suited to collaboration with AI systems, while
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others have proven to be more challenging. In this section, we focus on the aspects of STEM

education that make applications of NLP uniquely difficult and highlight where they might

offer significant value.

Teacher-student relationships have been shown to have significant impacts on students’

perceptions and feelings toward STEM fields [39] [7]. Similarly, Skinner and Belmont (1993)

find that teacher involvement is central to positive classroom experiences for young students

[50]. However, they also highlight a feedback effect of student motivation on teacher behavior;

students demonstrating disengaging behavior were more likely to receive responses from

instructors that further undermined their motivation. Considering how LLM tools fit into

this setting, a highly desirable feature its insulation from perceptions of student motivation.

Here we see both the potential and pitfalls of a näıve implementation of AI systems in

the classroom. While such tools are able to ameliorate instructional challenges caused by

time constrains or implicit bias toward perceived student motivation, they also run the risk

of displacing the desirable outcomes from a productive student-teacher relationship. Many

of these issues are even more pronounced in mathematics classrooms. LLMs rely on the

assumption that the choice of words used accurately reflects the desired concepts. In other

words, that the embeddings resulting from the pre-training of the model are properly specified

for an individual’s use of language in the prompt. Bender and Koller (2020) emphasize this,

stressing the need for the distinction between linguistic form (any observable realization

of language: words, symbols, etc), and meaning (the relation of the form to some concept

external to language) when discussing the capabilities of LLMs [6]. Fundamentally, language

models are trained on respond to linguistic form with limited understanding of the degree

to which they capture meaning.

The application of LLMs to a teaching context brings this issue to the forefront. A major

focus of teaching in an introductory course is developing the alignment between mathe-

matical “form” and mathematical “meaning.” Indeed, vocabulary acquisition and usage in

math learning is notably unreliable among students [40]. A central task of math educa-
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tors is identifying and correcting these misconceptions to enable students to hold productive

mathematical conversations. This development of fluency in the language of mathematics

is a critical step that enables deep growth in the field. However, the nature of LLM train-

ing makes these models uniquely ill-suited to these tasks, where diagnosing misalignment

between intent of the speaker the specific language that they use is paramount.

One approach to addressing this issue is directly investigating LLMs’ robustness to lan-

guage mis-specification. While the robustness of ChatGPT has been extensively studied

[59], this has typically been done through a lens of AI safety. Less work has emphasized the

specific types of mis-statements or vocabulary errors common in mathematics classrooms.

Such insight is needed to inform the specific teaching tasks that LLMs are best equipped for,

and what types of interventions and clarifications are better-suited to human instruction.

While prior reviews such as Kasneki et al (2023) rightly emphasize the potential for

both student and instructor over-reliance on interactive LLM instruction, it is worth further

articulating this point in the specific context of math instruction. Teaching math effectively

requires a delicate balance between over- and under-explanation, relying on a variety of cues

of when to intervene, and when to allow students to struggle and create on their own [29].

A useful illustration of this can be found in Paul Lockhart’s A Mathematician’s Lament

[38]. Lockhart heavily criticizes American mathematics education, focusing on the rote,

shallow, and joyless nature of math problems found in many textbooks and math courses.

Over the course of A Mathematician’s Lament (and his subsequent Measurement), Lockhart

outlines how the conception of the math problem can be re-thought to better encourage

students to deeply engage in mathematics as a practice, rather than merely learning mostly-

rote mathematical facts as trivia. He describes the following geometry problem assigned to

his middle school math class as an illustration of this idea.

The problem is to explain the surprising property that any triangle placed in a semicircle

as shown below forms a right angle, regardless of where we place the tip of the triangle.

This is a simple yet surprisingly deep investigation that exercises an aspiring mathemati-
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Figure 2.1: Student sketches: triangle in a semicircle

cian’s ingenuity. The student produced the following argument (rephrased by Lockhart for

publication):

“Take the triangle and rotate it around so it makes a four-sided box inside the circle.

Since the sides of the box must be parallel, so it makes a parallelogram. But it can’t be a

slanted box because both of its diagonals are diameters of the circle, so they’re equal, which

means it must be an actual rectangle. That’s why the corner is always a right angle.”

This student can carry a number of deep mathematical lessons from the experience of

working on this problem:

• The ability to tinker and play when tackling a novel, challenging problem

• The usefulness of symmetry

• Understanding of the role that mathematical drawing plays in developing the feel and

intuition of a problem

• The appeal of parsimony, beauty, and aesthetics of mathematical argument—this is a

much more elegant proof than the one found in many geometry textbooks!

• Seeing a novel argument emerge from a series of failures

9



Figure 2.2: Student solution: flip it and reverse it

These are high-level, long-term objectives for mathematical learning. Identifying mo-

ments in which students’ questions, comments, or points of confusion present opportunities

to gradually build these high-level and abstract skills requires a keen awareness of not only

the core material of a chapter or even an entire course, but also of the broader landscape of

the subject of math. Crucially, the instructor must recognize habits in students’ thinking can

be readjusted and developed further to build both long-term successes, but also long-term

enjoyment of the subject.

The specific words that instructors choose to use are based both on knowledge of the

core subject matter, which research suggest that AI-generated feedback mimics reasonably

well, but also how to actively curate moments that build these high-level skills. Instructors

make decisions such as when to intervene, when to probe, and crucially, when to simply say

nothing and allow the student to explore on their own. It is our position that these choices

require an understanding of the feelings of frustration and writer’s block that accompany

such work in addition to a clear grasp of mathematical content. The instructor is facilitating
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and guiding a student through the experience of doing math as much as delivering definitions

and content, and perhaps moreso.

An overreliance from both the student and instructor on algorithmically-generated advice

risks displacing these essential experiences in learning mathematics. While prior research

affirmed the relevance and quality of automatically generated questions with respect to

course material, less attention was paid to the degree of relevance with respect to building

the type of general mathematical skill outlined above. The degree to which NLP systems are

able to capture these elements, and the optimal way to make full use of their utility while

enabling human instructors to fill in these gaps are critical questions that deserve further

investigation.

Moreover, no consideration of the importance of selectively withholding guidance as part

of the learning process in the AI-for-education literature was found in this review. However,

this is an essential design consideration to avoid the student-level overreliance discussed to

date. Research into the use of LLMs to build student question-asking and build student

curiosity are useful jumping-off points for continuing this line of research.

Equally important is that instructors not over-rely on algorithmically generated questions

that, while they may be well-formed and relevant to core course material, lack unity with

respect to core mathematical thinking skills and variety or aesthetic appeal with regards

to their reflection of those. This role of mathematics instruction as facilitating experiences

that reflect what it means to “do” math should inform how AI systems are incorporated

into its teaching. Though this specific issue has received limited study, some parallels can be

drawn from prior work surrounding the experiences of students in computer-based instruction

in general. Krupa et al (2014) found that while students in computer-based Intermediate

Algebra outperformed those in a parallel face-to-face section, they showed more limited

ability to interpret equations and relate them to concrete situations [33].

With these issues in mind, balancing face-to-face instruction and curriculum design with

AI augmentation should seek to use LLMs as a more engaging platform for developing
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necessary rote mathematical and technical skills through more valuable and personalized

practice, setting up human teachers to dedicate more class time to emphasizing applicability

and holistic understanding of progression through the field. Evidence suggests that well-

implemented LLMs are highly capable of delivering well-phrased mathematics content and

developing student curiosity for the subjects, which teachers can then capitalize on.

2.3 Trust, Perceptions of Fairness, and Algorithmic Awareness

Trust in educators and developing mentorship relationships are critical for students’ long-

term success in STEM fields [31]. As teaching tasks are shifted from human instructors to

LLMs, perceptions and trust in those algorithms is an important consideration when thinking

about how those relationships will respond to such a transition. This is a particular concern

for user trust in the output of LLMs, the decisions of which are typically a black box for

both users and implementers.

Literature about general trust in AI and perceived fairness of algorithmic decision-

making provide a useful starting point for understanding how reliance automated systems

might map onto STEM classroom settings. Extensive research has examined perceptions

of algorithmically-generated decisions in contexts ranging from Facebook news feed cura-

tion to medical diagnosis [36] [27]. Eslami et al (2015) examined how providing users ex-

plicit information about the presence and functionality of decision-making algorithms affects

the user experience [14]. They measured the effects of revealing the difference between

algorithmically-curated and unadulterated Facebook News Feed content to users, finding

that awareness generally increased the level of satisfaction with the platform. This suggests

that awareness of the presence and functionality of recommender algorithms is a meaningful

consideration for the user experience.

However, in an NLP-for-education context, there is no equivalent of an unadulterated

feed as in Eslami et al (2015). The more important comparison in a teaching setting is
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between decisions made by an algorithm and ones made by humans rather than some neutral

baseline. Lee (2018) did just this, more directly comparing attitudes toward decisions in a

managerial scenario made by human with those made by AI system [35]. They found that for

tasks involving primarily mechanical skills, algorithmically- and human-made decisions were

perceived as equally fair. The authors adopt a definition of fairness as ”treating everyone

equally or equitably based on people’s performance or needs,” emphasizing perceived fairness

rather than algorithmic fairness in their work. Crucially, for decisions requiring human

skills such as hiring or work evaluation, algorithmic decisions were rated as less fair by this

criterion.

Kizilcec (2016) further investigated the relationship between different levels of algorithmic

transparency in the user interface and perceived fairness in the context of work evaluation

[28]. They found that users whose expectations matched the algorithm’s feedback trusted

those decisions regardless of the level of transparency provided. However, trust levels of

the users who received a lower rating than expected depended on the level of transparency

provided. While some degree of explanation improved attitudes, too much transparency

again eroded perceived trust.

This suggests that the way in which AI systems are presented to students and the amount

and type of background information they are provided about their functionality are likely

to affect their experience and level of trust, particularly when applied to a high-stakes or

highly-personal application like academic feedback. NLP algorithms are not yet able to

accommodate social values such as fairness, nuance, or context [34], making these structural

choices and transparency vital. Care should be given as to the degree to which students are

made aware of the underlying model, explaining its functionality, and coached on how to use

and interpret their outputs and instructions. This warrants specific exploration in classroom

applications to explore the degree to which these sentiments translate across settings and

context. See Dodge et al (2019) for further discussion of how algorithmic explanation impacts

perceived fairness [12].
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Another significant concern moving forward with implementations of AI and LLMs as

teaching tools is that trust in algorithmic decisions is not constant across demographic groups

[41]. This is potentially highly impactful for deploying AI systems in STEM, a field which

already faces substantial issues of udnerrepresentation. Strong emphasis should be placed on

more closely understanding how these effects interact with each other in education settings

specifically. Literature on algorithmic trust from related fields suggests that specific details

in how these tools are presented and incorporated in materials can have a strong effect on

levels of trust, potentially mitigate some of these undesirable effects. Moreover, the presence

of a human instructor may temper this distrust to a degree. Kricorian et al (2020) emphasize

the crucial role that human mentorship plays in bridging underrepresentation gaps [31]. One

objective in AI implementation ought to be freeing up additional time for instructors to

spend on the types of mentorship-style activities associated with higher engagement from

students in underrepresented groups in STEM.

2.4 Equity in STEM

A major concern in implementing NLP systems in STEM education is the current state

of underrepresentation along gender, racial, and socioeconomic lines in the many sectors

of the field [24] [15]. Given the challenges associated with identifying the causes of that

underrepresentation in select STEM fields, it is critical that researchers and implementers of

AI systems strongly consider the potential effects of AI trust interacting with these existing

inequities in STEM fields and education. We provide a brief overview here to highlight

potential points of concern moving forward.

LLMs do bring some unique assets from an equity standpoint, such as their insulation

from negatively responding to perceived student motivation as previously discussed. How-

ever, these systems also carry the potential for carrying their own biases reflected from their

training corpus, with little possible recourse by due to the black box nature of their decision-
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making. Though these are certainly relevant to student-facing AI interfaces, the discussion

ought to be expanded to address the extent to which a transition to algorithmically-generated

instruction exacerbates existing issues associated with equity in STEM.

One drawback of replacing traditionally human-driven teaching tasks with AI interac-

tion is the loss of the positive impacts that the relationship-building stemming from those

conversations has on students. Kricorian et al (2020) suggest that students’ decisions to

pursue further STEM education and career tracks is highly driven by positive mentorship

experiences from someone sharing their gender or ethnic identity [31]. Implementations of

AI systems that seek to fully replace face-to-face, tutorial-style interactions run the risk of

removing this driver of students from underrepresented groups in STEM into the field. On

the other hand, an AI system that is implemented in a way that redistributes the role of the

teacher in classrooms relying heavily on lecture in order to increase time spent in small-group

or individual instruction has the potential to facilitate more of these mentorship-building

student-instructor interactions.

AI use also presents a number of opportunities to specifically address strategies for clos-

ing underrepresentation gaps. Wang and Degol (2017) recommend a focus on developing

interest in STEM subjects in addition to developing aptitude in order to close gender gaps

in STEM among young students [58]. Additionally, digital storytelling strategies develop

engagement and interest in the field [48] [26]. These approaches lend themselves well to the

GAN-produced animations and previously-discussed methods that promote engagement and

student-guided interaction.

2.5 Lessons from Adversarial Policy Literature

A frequent concern in media discourse surrounding applications of AI in industry is the

extent to which these tools reshape or replace human labor in those positions [17] [56]. As

research continues in the viability of LLMs for educational tasks, it feels inevitable that these
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conversations will shift to consider the possibility of AI displacing human educators entirely.

The position of this paper is that such an arrangement would be sub-optimal and would

lead to numerous undesirable consequences. However, given the seeming inevitability of

such proposals, it is worth highlighting several high-level conceptual shortcomings of current

state-of-the-art AI across multiple fields to gain some sense of how this conversation may

evolve moving forward.

AI systems applied to logic games present a useful setting in which to consider their

shortcomings. As environments with clearly defined goals, discretely defined piece positions,

and complete deterministic control over piece movement, these games present an extremely

friendly learning environment for AI reinforcement learning algorithms such as AlphaGo

[49]. Nonetheless, evidence from the literature on adversarial attacks and policies suggest

several overarching weaknesses in backpropagation-trained learning networks. Wang et al

(2023) describe and test a conceptually-simple adversarial policy for the board game Go,

beating the KataGo reinforcement learning algorithm sufficiently trained to superhuman

performance levels in over 70% of attempts [59]. Their approach employs a highly suboptimal

and conceptually-simple scheme that KataGo nevertheless struggles to counter.

It is important to note here that the concern stemming from these results is not merely

that algorithms relying on pre-trained, deep learning architectures are fallible. The more

meaningful observation is that these examples show a surprising inability to detect simple,

high-level logical connections that are quite trivial for human reasoning. This is reflected

in Richardson, Heck (2023) as well, finding that despite their remarkable capabilities, state-

of-the-art NLP systems still struggle with even common-sense reasoning that humans find

trivial. Niven, Kao (2019) also highlight that many situations in which LLMs appear to

perform abstract reasoning can be reduced to the models leveraging statistical artifacts,

which leave them vulnerable to adversarial attacks that reduce their performance to random

guessing [42]. Talmor et al (2019) perform deeper analysis on the degree to which pre-training

captures logical reasoning in a zero-shot setting [55]. They again highlight significantly
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varying performance across different models, with some models failing entirely on particular

tasks. Recent work by Bubeck et al (2023) has suggested high-level reasoning capatilities of

GPT-4, the successor to GPT-3 and ChatGPT [10]. However, GPT-4 still struggles to hold

and follow conceptual mathematics discussions, despite its improved aptitudes for question-

answering and problem-solving.

Teaching effectively requires precisely this type of lateral, high-level strategic thought.

Go presents a kind environment for reinforcement learning performance, and in many ways is

something close to a best-case-scenario for the applicability of learning algorithms to recreate

abstract reasoning skills humans traditionally rely on to succeed. Educational instruction

at a high level presents a much more wicked learning environment that requires selecting

the task that needs to be performed (Socratic instruction, didactic explanation, or simply

not intervening at), the mode in which content should be delivered (pictorially, verbally, in

writing, or acted out) in addition to selecting the particular words or symbols to deliver to

the student.

While this discussion provides only a loose analogue to the NLP-for-education setting,

there are general parallels that can be drawn to inform areas for caution as teaching tasks

become shifted toward automated systems pre-trained by backpropagation. Given the in-

ability of AI systems across several fields to perform higher-level, abstract reasoning about

concepts, we should expect that an optimal division of labor between human and AI in-

structors maintains some role for human instructors given the current technology. Moreover,

this emphasizes the social value that instructors provide in developing deep interest for their

subjects, and that a high-quality implementation from AI should seek to complement and

highlight those roles.
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CHAPTER 3

CourseKata Case Study

The CourseKata [51] online textbook presents a useful case-study of an interactive learn-

ing tool ripe for applications of AI, NLP and LLM tools. Statistics education sits at a

unique nexus of theory and application. Traditional advanced high school and introductory

undergraduate-level statistics courses (such as Advanced Placement Statistics) cover a large

and seemingly disconnected body of content, spanning elementary probability theory, data

visualization, classic summary statistics, linear modeling, and statistical testing.

The CourseKata project aims to address these challenges within traditional introductory

statistic curriculum, emphasizing development of a more robust and unified understanding

of statistical thinking. The curriculum emerges from what the authors refer to as the prac-

ticing connections framework [16], which suggests that effective instruction should facilitate

connections between a domain’s core concepts, key representations, and contexts and prac-

tices of the world. The project focuses on a view of learning that shifts emphasis away

from “bits” of knowledge—independents facts and procedures—toward a more coherent and

flexible connectedness of concepts that better represents expert fluency in the domain. The

book is aimed at upper high school and undergraduate introductory statistics students and

is available in multiple versions tailored to different course levels.

The CourseKata textbook poses questions to students in three primary ways. Items are

embedded within chapter readings to develop understanding of course material, as well as at

the end of sections within each chapter to reinforce topics. Lastly, summative assessments of

approximately 15-20 questions are given at the end of each chapter to measure cumulative

18



grasp of core chapter and course goals. These include multiple choice, multiple-select, and

open-response items.

Frequent interactivity in the form of short coding tasks, multiple choice questions, and

free-response questions within the text addresses the shortcomings of passive textbook read-

ing as a learning tool, facilitating deeper understanding and more robust mental represen-

tations that generalize effectively to new tasks and related concepts. This is consistent with

the extensive literature that posing questions about reading facilitates higher-quality and

transferrable learning [47] [3].

CourseKata presents a useful opportunity to consider how a more standard approach

to textbook question content and presentation might be re-thought with the considerations

from our literature review in mind. LLMs show promise both as useful formative learning

tools and in developing summative tasks for students, so AI implementations accompanying

both measures of student progress within the current textbook versions are viable.
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CHAPTER 4

Data

Anonymized response data is available directly from CourseKata for any registered course

use the textbook. The necessary sample sizes to produce stable item-response parameter

estimates limit our analysis to large class sections. Drasgow (1989) found that sample sizes

of at least 200 produce stable parameter estimates using marginal maximum likelihood esti-

mation for test instruments of at least 5 items [13]. The sample for this analysis was drawn

from a class of 240 students at a large, highly-selective public university. 25 students from

the course opted out of sharing their data, resulting in data available from 215 respondents.

The portion of CorseKata textbook used in our sample is split into chapters as follows:

1. Welcome to Statistics: A Modeling Approach

2. Understanding Data

3. Explaining Variation

4. Examining Distributions

5. A Simple Model

6. Quantifying Error

7. Adding An Explanatory Variable to the Model

8. Models With a Quantitative Explanatory Variable
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Note that at the time of this writing, the most recently completed courses used version

3.0 of the textbook. The complete textbook and assessment questions considered below are

freely available through the CourseKata website.
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CHAPTER 5

Analysis and Discussion

5.1 Model-Fitting

There are several connections to be drawn from our prior review when considering how AI

systems might be implemented in CourseKata. The chapter review assessments are one area

of the textbook that might be rethought in light of the incorporation of AI-assisted learning.

Given the encouraging research surrounding usefulness and quality of AI-generated questions,

an intriguing path forward could be to replace some or all of these hand-written items with

LLM-generated ones. This would allow for students to play a role in actively shaping their

own review materials, allowing them to receive focused practice with content they personally

find to be more challenging.

An important step in considering this change is to better understand the role that the

current hand-written CourseKata assessments are playing in students’ learning. To accom-

plish this, we turn to the item response theory (IRT) framework. Our goal here is to develop

a clearer picture of the level of difficulty of these textbook test items with respect to the

chapter content, and the degree to which they are providing useful and interpretable infor-

mation to instructors about student progress. With the potential for some amount of future

question-generation being ceded to black-box AI systems, tailoring the hand-selected task

to maximize interpretability becomes all the more essential to monitor overall class progress

and identify specific areas in which students may be struggling.

The two-parameter logistic (2PL) IRT model is a useful framework here, providing infor-
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mation both about the item difficulty and the item discrimination to indicate how effectively

test items are locating student ability along the latent dimension. The model is shown below:

P (Xij = 1|θi, αj, δj) =
exp (αj(θi − δj))

1 + exp (αj(θi − δj))

This predicts the probability of student i answering correctly on dichotomous item j,

where δj and αj denotes the item difficulty and item discrimination parameters and θi is the

latent ability parameter for that student.

5.2 Dimensionality Assessment

Note that this is the one-dimensional 2PL model. This can be generalized to higher dimen-

sions depending on the hypothesized underlying latent dimensionality of the item-response

data. While IRT models tend to be somewhat robust to mis-specification of the underly-

ing dimensionality, assessing the dimensional structure of a measurement instrument is a

critical step when applying IRT models. Analysis of the performance of popular methods

for dimensionality assessment in the MIRT context finds that traditional parallel analysis

using principal component analysis and tetrachoric correlation performs best at achieving

the highest proportion of identified underlying dimensions [19]. This held both when the

generated IRT model is unidimensional and multidimensional.

We employ this approach on the Chapter 1 Review responses from our sample. Chapter

1 review consists of 14 total questions, all of which are multiple choice. For simplicity, we

treat test items as dichotomous. Chapter 1 introduces the basics of R programming, with

test items emphasizing utilizing functions and interpreting R syntax. Given this relative

conceptual unity of this content, we hypothesize that a unidimensionality assumption in the

latent space might be reasonable.

The scree plot is shown below of a parallel analysis with 1000 Monte Carlo iterations
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performed on the Chapter 1 item matrix. The results indicating that for only a single latent

factor did the eigenvalue exceed that of the random data. This supports the hypothesis of

unidimensionality, so we proceed under that assumption.

Figure 5.1: Scree plot

5.3 Model Analysis and Discussion

The full table of parameter values for the fitted model is available below. The most obvious

trend here is the generally low values of the item difficulty parameters. These suggest that

the primary value of this test instrument is providing practice at relatively straightforward

skills. The test instrument as a whole provides information at a relatively low ability level

along the single latent dimension, as shown by the full information function plotted below.

Note that this is simply the sum of the individual item information functions.

The Wright map for this model provides further insight. The difficulty parameters for the
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α δ α δ

Q1 6.756 -2.726 Q8 2.332 -2.517

Q2 1.840 0.870 Q9 3.308 -2.093

Q3 0.962 -3.607 Q10 2.312 -2.242

Q4 2.293 -3.034 Q11 2.135 -0.737

Q5 2.472 -2.742 Q12 2.623 -2.148

Q6 0.614 -2.508 Q13 1.199 -1.941

Q7 1.777 -1.854 Q14 1.245 -3.519

Table 5.1: Parameter values from fitted 2PL model for Chapter 1 review

Figure 5.2: Chapter 1 Review: Full-test item information function

14 individual questions from the Chapter 1 review are plotted along the horizontal axis, with

the item difficulty parameter δj plotted along the vertical axis. Intuitively, this describes the

latent ability level at which a student would have equal chance of answering correctly and

incorrectly. A benefit of the IRT framework is its representation of the interaction between
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student ability level and item difficulty, so we also obtain estimates for each individual

student’s ability level. A histogram of student ability levels from the fitted model are plotted

along the left-hand side, allowing the discriminability of the items to be compared to the

predicted skill-levels of the students.

Figure 5.3: Wright Map for Chapter 1 review items

Overall, these results suggest a misalignment of the ability level of students and the

difficulty level of the Chapter 1 review questions. Our model suggests that these questions

are quite easy relative to the ability level of the students after reading and completing the

formative activities in Chapter 1. It is important to note that this is not necessarily a bad

thing in a traditional textbook. Such straightforward tasks reinforce the content of the text,

clear up basic questions, and provide simple practice before applying that content in new

settings.

However, the potential integration of LLMs to augment instruction and assessment forces

us to reevaluate this type of rote practice in the light of the strengths, weaknesses, and
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concerns of AI tools discussed previously. A major benefit of AI-integration is the ability to

tailor practice to individual needs, removing the top-down structure of hand-made problems.

This is an element of the CourseKata textbook that is perhaps most suitable for automation.

The evidence of AI-generated questions successfully capturing core material along with the

trend of improved performance of students in computer-based learning environments on

tasks requiring applications of concrete procedures together suggest that LLM tools could

be applied well to personalize and improve engagement at these types of routine exercises.

Moreover, this alleviates some of the difficult task of hand-tailoring a series of test items to

measure across a wide range of ability levels and mathematical content, since students would

be able to partially dictate which areas they receive additional practice.

However, there is likely still value in retaining hand-generated questions in some capacity.

Content generated by LLMs or other automated question generation systems is highly likely

to vary from student to student. So, groups of students who wish to work collaboratively

are unlikely to see common questions. Since collaboration is well-documented to enhance

mathematics learning [53], preserving some amount of hand-generated likely adds value.

Moreover, question-generation resulting from interactions with LLMs carries no information

about why those questions were produced in the first place due to the black box of transformer

architectures, making both individual-level and class-level progress assessment difficult.

This suggests that there is value in augmenting LLM-based learning with hand-generated

items. However, those items should be reworked to provide clearer indications of student

progress. In the setting of our IRT model, this involves aiming for a greater variety of item

difficulty parameters. Additionally, challenging questions have substantial pedagogical value

in math learning [44], so there is likely value in introducing more difficult items even outside

of the context of incorporating AI tools.

These hand-written items also allow for deeper additional analyses and insights into

trends in student responses that would prove useful. Similar multidimensional analyses

are likely worth performing on later chapters review instruments as well. In particular,
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clustering techniques that allow for detection of trends in student responses [20] may can

help to indicate content areas where algorithmic question-generation and student-driven AI

interaction will prove useful. Additionally, replacing or augmenting within-text items in

CourseKata is also likely worth exploring. However, the tradeoffs discussed throughout this

report should be taken into account both in selecting what tasks are well-suited for LLM

interaction, but also how the user interface should be presented and perhaps evolved over

the course of the textbook to suit individual tasks.
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CHAPTER 6

Conclusion

The rapidly increasing capabilities of AI and NLP systems invites seemingly endless uses

across a range of sectors. However, the application to teaching sits at a unique position. A

truly automated teacher would require deep mathematical understanding, clear communi-

cation skills, social awareness, and situational consciousness to know when to simply watch

and listen. Indeed, it is precisely the things that make teaching such a stimulating and

rewarding enterprise for humans that makes it such a unique challenge for AI.

With the dizzying rate of performance improvement at tasks previously reserved for hu-

man reasoning capacities, traditional modes of instruction like university lecture and stan-

dard supplementary resources like textbooks seem bound for upheaval. However, as these

AI systems inevitably work their way into classrooms, textbooks, and online tutorials, the

inescapably social nature of teaching will also inevitably shape the way the relationship be-

tween human and machine cognition continues to evolve. Algorithmic instruction forces us

to revisit the unique value that human instructors offer to their pupils in the first place.

A hopeful future for AI in education is one in which these tools can be leveraged to help

teachers curate more of the moments of tenderness, delight, and love that stay with their

students for lifetimes.
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