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Debunking the Basic Level

Frédéric Gosselin (GOSSELIF@PSY.GLA.AC.UK)
Philippe G. Schyns (PHILIPPE@PSY.GLA.AC.UK)
Department of Psychology, University of Glasgow
56 Hillhead St., Glasgow G12 8QB UK

Abstract

The goal of this paper is to introduce a new measure of
basic-level performance that we will call the "category
attentional shp." The 1dea behind it is very simple: The
attentional mechanisms of an ideally rational categorizer
are made to "shp” once in a while. We provide a
formalization of attentional shp that specifies what an
"ideally rational categorizer” is and how its attention
“ships." We then compare its predictive capabilities with
those of two established basic-level measures: category
feature-possession (Jones, 1983) and category utility
(Corter & Gluck, 1992). The empirical data used for the
comparisons are drawn from eight classical experiments
from Murphy and Smith (1982), Murphy (1991), and
Tanaka and Taylor (1991).

Real-world "things" may have a number of different
names. For example, Scully from the X-files television
series, is a medical doctor, an FBI agent, a redhead, a female,
the partner of agent Mulder, a physician, a creation of Chris
Carter, a character portrayed by Gillian Anderson, and so
forth. All these names refer to different categories which can
share a subset of their members, and so Scully is not the
only redheaded FBI agent, and not all FBI agents have red
hair (e.g., agent Mulder has brown hair). In this paper, we
will not be concerned with all possible categorizations of a
single object. Instead, we will concentrate on the idea that
categories can be hierarchically organized, so that Scully is a
doctor and a human being. Embedded categories are said to
denote different levels of categorization.

In a seminal paper, Rosch, Mervis, Gray, Johnson, and
Boyes-Braem (1976) distinguished three of these levels: the
subordinate (sparrow, BMW), the basic (bird, car) and the
superordinate (animal, vehicle). They showed that of these
levels, the basic was superior in many respects: People tend
to designate an object with its basic-level category name;
throughout development, basic level names are learned
before those of other categorization levels; basic names tend
to be shorter and used more frequently than those of other
categories; people tend to many more features at the basic
level than at the superordinate level, with only a slight
increase at the subordinate level; people decide more rapidly
that an object belongs to a basic category than to all the
other categories of a hierarchy (see also Murphy, 1991;
Murphy & Smith, 1982; Tanaka & Taylor, 1991).

Experiments on the basic level have typically probed three
embedded categorization levels, using only one or two
measures of performance (e.g., response times and feature
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listings). Obviously, people can often use many more than
three levels in their interactions with objects. Berlioz, for
instance, was an artist, a human, a mammal, a living
organism, a bunch of atoms, and so forth. However, basic-
level performance can only exist with respect to the other
categorization levels that are probed. Hence, we believe it is
more appropriate to speak of the basic-levelness (which is a
measure of performance) of a level of categorization than to
consider the basic level as an absolute level of a
categorization hierarchy (Murphy, 1991; Schyns, 1996).

Even though the basic level is important in current
theories of object categorization (Murphy, 1991; Murphy &
Smith, 1982; Rosch et al., 1976; Tanaka & Taylor, 1991)
and recognition (Biederman, 1987), no model of basic-level
performance can account for all existing evidence of the
basic-level effect. It is the purpose of this research to
propose a new and better model of basic-levelness that we
call "category attentional slip." The fundamental ideas
behind the attentional slip measure are quite simple. We
begin with an "ideal" categorizer that performs series of tests
on features to decide whether an object belongs to a
category. Then, we add noise to the attentional mechanism
of this ideal categorizer so that it "slips" once in a while.

We compare the category attentional slip's ability to
account for empirical data with the predictions of two
established models: category feature-possession (Jones,
1983) and category utility (Corter & Gluck, 1992).

Measures of Basic-Levelness

In this section, we first present a very simple category
structure (see Figure 1). We then use this structure to
explain category feature possession, category utility, and
category attentional slip, respectively.
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Figure 1; The category structure used to explain category
attentional slip, category feature possession, and category
utility.

Underneath the category names (e.g., som, pim, zim), the
letters correspond to the features that define a level of
categorization. For example, a defines the superior level



hob, ac defines the middle level bot, and ace define the lower
level com (the points correspond (o the features inherited
from the related level[s] above the considered categorization
level). Objects are evenly distributed among categories
located at a given level of categorization, It is worth
mentioning at this stage that the category organization of
Figure 1 was chosen for its simplicity, but also to illustrate
a general aspect of category organizations that will become
particularly important in attentional slip.

Category feature-possession

Jones (1983) proposed that the basic level is the level of
categorization where the average category feature-possession
is maximal. The category feature-possession of a category ¢
(B;) is defined--for a given set of objects composed of n
features and for m categories--as the sum of all the by, i.e. B,
= 2bij over the n featres, If Kj; = max(K;Kpjvee..Kmj), bjjis
equal to w; (w;= 1, usually); else by; is equal to zero. And
K. the collocation of a category ¢; and of a feature fj,
corresponds to K;;= P(cif)P(fjlc,). Finally, P(c/lf}) and P(flc))
are the probability that the object belongs to ¢; given that it
possesses f;, and the probability that the object possesses
feature f; given that it belongs to ¢;, respectively.

Category feature possession is a four-step process.
Consider the category organization of Figure | to illustrate
the computations. First, we must compute P(f]lc;) and P(c/lf)
for i,j€{a,b,c.d,e.f}. For example, both P(dlhob) and
P(hobld) are equal to .5. Second, we calculate all the
collocations. The collocation of category hob and feature d,
for instance, is equal to P(dlhob)P(hobld), that is .25 (see
Table 1 for a listing of all collocations). Third, we locate the
largest collocation for every feature in the columns of Table
1. For example, the largest collocations for feature d, are
equal to .5 (see the underlined figures in Table 1). Finally, a
count of the number of underlined figures provide the
category feature-possession measure (see the rightmost
column of Table 1). For the category organization of Figure
1. feature-possession predicts that reaction times (RT)
should be fastest at the higher level of categorization, and
that they should be equally slow at the middle and lower
levels.

Table 1: Key computations for the numerical simulation of
the category feature-possession (Jones, 1983) with the
category organization of Figure 1.

Feature

Catepory a b c d ¢ J b3
hob 1 0 e 43 e i} 3
som 0 1 25 .25 23 25 3
hat § 0 5 0 125 125 1
rel 5 0 o =y 125 125 1
pim 0 3 -1 0 135 123 1
nop 0 ] 0 1 125 125 I
com .25 0 .25 0 25 0 |
vad 25 0 .25 i} 0 25 1
lar .25 0 0 28 ad 0 1
zim 25 0 0 25 0 Ay |
wam 0 .25 .25 0 s 0 |
us 0 .25 .25 0 0 23 l
mul 0 .25 0 25 23 0 1
fac 0 25 0 .25 0 AT 1

Category utility

Corter and Gluck's (1992) category utility measure has a
solid logic of construction, For these authors, a category is
useful to the extent that it improves the capacity to correctly
predict the features of a member of this category. Suppose m
features (f,) describe exemplars. Knowing only P(fy) (the
probability that an object possesses feature fi) a raw,
uninformed probability-matching strategy enables to guess
that a given object possesses f; with a probability P(f). The
probability that this guess is correct is P(f;)*. However, the
prediction might be significantly enhanced if one knew that
the object belonged to category ¢. Category utility measures
this gain between an informed and an uninformed prediction
of object features. We have already seen what the uninformed
guess was, let us now tum to the informed guessing.

Formally, the P(filc) is the prior probability that an object
possesses feature f; given that it belongs to category ¢. The
probability that this guess is correct is P(filc)2. Another
prior information, P(c) is the probability that the considered
object effectively belongs to ¢. Thus, the expected increase
in predictive power that the object possesses feature f from
the knowledge that the input belongs to ¢ is given by
P(O)P(file)*-P(f)?]. The sum of this expected increase over
the m features describing the input object is the category
utility of ¢

P(:r)él[f’( fle) - P(fi )2].

The average of the category utilities should be maximal at
the basic level.

Category utility is also a four-step computation.
Consider, again, the category organization of Figure 1 to
illustrate the computations. We start with a computation of
all P(c)s. P(fi)s, and P(filc)s. The P(c)s are respectively equal
10 .5, .25, and .125 for the higher, middle, and lower levels
of categorization. The P(f;)s are all equal to .5. The P(flc)s
are easy to compute. For example, P(alhob) is 1, P(blhob) is
0, and P(clhob) is .5. Next, we subtract the squares of the
P(filc)s from the squares of the P(fy)s. [P(alkob)*-P(a)?), for
instance, is equal to .75 (Table 2 summarizes all these
differences).

Table 2: Key computations for the numerical simulation of
the category utility measure (Corter & Gluck, 1992) with
the category organization of Figure 1.

Feature
(Category a b c d € Fi b3
hah ) -4 [¢] [ [8] 4] 0.3
som -.23 75 0 0 0 0 0.5
bot 75 -.25 15 -25 ] 0 1
rel .75 -.25 -.25 .75 0 0 |
pim -.25 5 15 -.23 0 0 |
nop =25 .15 =25 .75 ] 0 I
com .75 -.25 .75 -.25 75 -.25 1.5
vad 75 -5 .75 -25  -.25 .15 1.5
lar 75 =25 =25 .15 a3 -.23 1.5
zim & -.25 -.25 75 -.25 .75 1.5
wam -25 75 15 -.25 T3 25 1.5
s -25 75 .75 -25 225 5 1.5
mul -.25 .75 =25 .75 .75 -.25 1.5
fac -.25 75 -.25 .75 -.25 i 1.5

Then, we sum all these differences across categories (i.e., the
rows in Table 2). These sums appear in the rightmost
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column of Table 2. Finally, we obtain the category utilities
by weighting each sum by the appropriate P(c). For the
higher and the middle level categories, category utility 18
equal to 0.25; for the lower level categories, it is equal to
about 0.188. Thus, category utility predicts that the highest
and middle categorization levels are the most basic in the
considered organization.

Category attentional slip

To explain what we believe to be the first determinant of
basic-levelness (cardinaliry), consider the typical category
organization that has elicited a basic-level advantage (see
Figure 2 from Murphy & Smith, 1982, Experiment 1). To
place the featural description of an unknown object X in a
category of the hierarchy, people need to test whether the
features defining the category characterize the input. For
example, in Figure 2, "does X possess a?", is a test to check
that the object X is a hob, and "does X possess ¢?", "does X
possess d?", and "does X possess e?" all test that the input is
a bot. It is important to note, however, that in Figure 2,
testing either ¢, d, or e is sufficient to determine the category
membership of the object, the other tests are redundant.
More generally, for a given categorization level, two tests
are redundant iff one test can substitute for the other in every
possible identification tasks. In Figure 2, the category
structure is such that three redundant tests define each
middle-level category while a single test defines each higher-
level and lower-level categories. Henceforth, we will call s
the set of all redundant tests associated with a categorization.
For example, s, = {"does X possess a?"}, 55 = {"does X
possess ¢?," "does X possess d?," "does X possess e?"}, and
s3={"does X possess 07"} are three sets of redundant tests
associated with hob, bot and com, respectively. The
cardinaliry of each of these sets is the number of redundant
tests it contains (e.g., the cardinality of s, is 3).

hob som
a b
bot rel pim nop
«cde Jeh gk dmn
com vad lar zim  wam ns mul  fac
a P .q r 5 i i RY

Figure 2: Murphy & Smith's (1982, Experiment 1)
categorical structure.

We believe that the second and last determinant of basic-
level performance is the length of the optimul strategy
required to reach a categorical decision. This has so far been
completly neglected in experiments on the basic level, To
illustrate, consider the strategy (S) one could adopt to decide
that the input is a boz for the category structure of Figure 2.
One strategy could be: § = {5, = {"does X possess a?"} and
§; = {"does X possess ¢?," "does X possess d?," "does X
possess e?"} ), where each s; is a complete set of redundant
tests as defined earlier, and where the s;s are performed in a
specific order. However, this strategy is far from being
optimal: a strategy including s, alone suffices to determine
that the input is a bot. Thus, the added features of only one
level of the hierarchy could be checked to decide whether the

object belongs to this level--in fact, this applies to all three
levels of Figure 2. When only the added features of one level
of a category structure need to be checked to determine a
categorization, the strategies are of length 1.

Most basic-level experiments had categories that requiered
only length 1 strategies (see, e.g., Murphy & Smith, 1982;
Murphy, 1991; Tanaka & Taylor, 1991). Note, however,
that length 1 strategies are too constraining for many real
world categorizations, Features do tend to overlap between
categories. For example, consider the following cars: a blue
Tercel, a blue 911, and an orange Tercel. To identify a blue
Tercel, one needs to perform two tests: § = {s; = ("is the
input a Tercel?") and s, = {"is the input blue?"}}. The
hierarchy of Figure 1 illustrates such situation of feature
overlap. Although a strategy of length 1 was sufficient to
determine that the input was a bor in Figure 2, a bot
categorization needs to test added features of two levels in
Figure 1: § = {5, = {"does X possess a?"} and 5, = {"does X
possess ¢?"}}, in a specific order. However, in Figure I, a
strategy of length | is still sufficient for the higher level
categories (e.g., S = {s = [“does X possess a?”] ) to decide
that the input is a hob), but a strategy examining the added
features of all three levels (length 3) is required to decide that
the input is a com: § = {5, = ["does X possess a?"}, 55 =
{"does X possess ¢?"), and 53 = {"does X possess e?"} }.

We now turn to an implementation, category attentional
slip, that integrates these two determinants of basic-
levelness. Suppose an ideal categorizer: a formal model
which systematically uses an optimal strategy to decide
whether the input belongs to a category. The structure of
categories drives its behavior so that it excecutes the
smallest series of n sets of redundant tests to arrive at a
given categorization. Within each set of the series, only one
of the redundant features is tested. Suppose that response
time is proportional to the length of the optimal strategy.
Suppose further that the ideal categorizer has a perfectible
attention that “slips" off its rational track with a probability
p: it then selects randomly a feature and tests whether the
input possesses this feature. This slippage introduces noise
that should in principle affect the number of tests required to
reach a category decision. Note, however, that the slip does
not affect equally all categories. Everything being equal, low
cardinality categories (those with low feature redundancies
such as the low- and high-levels in Figure 2) have fewer
chances that attention randomly slips to a relevant feature
than high cardinality categories (such as the mid-level of
Figure 2).

To be more specific, let us first consider cardinality in the
simple case of an optimal strategy of length 1, as is needed
to decide whether an object is a bot in Figure 2. Category
attentional slip is related to the number of trials (¢) required
to complete the strategy. Because the model is stochastic,
the measure is (_mean, the average number of trials needed
to complete the strategy. So we must derive the probability
distribution of ¢, and compute its mean. To obtain the
probability distribution we must address the question: "What
is the probability that one test of a single s is performed
after ¢ trials?" Recall that p is the probability that attention
slips randomly to one feature. When attention slips, it can
slip to a relevant feature and perform a relevant test with
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probability pg. where g is the probability that one relevant
test is performed by chance alone--it is the cardinality of the
complete set of redundant tests divided by the total number
of features of the category organization (for bot in Figure 2,
e.g.. ¢ = 3/22). Hence, (p-pq) is the probability that an
irrelevant test is performed. The probability that a relevant
test is performed is simply 1 minus the probability that an
irrelevant test is performed. Thus, (p-pg)[1-(p-pq)] is the
probability that attention slips to an irrelevant feature on the
first trial and then performs a relevant test on the second
trial, in a length 1 strategy. Generalizing the probability to
trials is now straightforward. We combine the probability
that a relevant test has not been performed during the first -
1 trials with the probability that it occurs on trial 2 (p-pg)"
I[1-(p-pq)). This defines independent probabilities because
two tests are never performed simultaneously, Moreover,
between ¢ =1 and t = +e we find all the possible
realizations of our critical tests. Thus, we can conceive this
formula as the frequency distribution of the trials ¢. This
implies that t_mean is equal to

4o =
2:(p-pa) " [1-(p- pa)]
2(p- pa) ' [1-(p- pq)]
(Note the factor ¢ at the onset of the numerator.) However,
Z(p-pa) " [t-(p-pa)]=1.
Therefore t_mean is equal to
ke =1
Si(p-pa) [1-(p- pg)]-

Let us apply this equation to the higher level category hob
in Figure 1. From now on, we abitrarly set p = .5. g is equal
to 1/6, the cardinality 1 of the s required to achieve a
decision divided by the total number of features, that is 6.
Thus, (p-pq) is equal to about 417, and applying the
equation with these parameters yields a r_mean of about
1.714 (e, [1 * 4179 * (1 - 417)] + [2 * 417" * (1 -
417)] + 3 * 417 * (1 417)] + ... = 1.714). This
signifies that the average number of trials needed to decide
that a stimulus is a hob is 1.714--in fact, this is true of all
higher level categories because they share the same gq.

As explained earlier, many real-world categorizations will
involve optimal strategies of lengths longer than 1. We now
turn to the formal expression of r_mean for optimal
strategies of length 2 (e.g., hob, in Figure 1). We start again
with the question: "What is the probability that a s, test and
a s, test are performed in that order after r trials (with ¢ =
2)?" By definition of a strategy (an ordered series of sets of
redundant tests), one s, test must occur at least once in the
first 7-1 trials if one s, test occurs on trial £. During the
interval between the completion of a critical s, test on trial §
and the critical s, test on trial ¢, no s, test occurs. Thus, the
probability that a length 2 strategy is completed after ¢ trials
1S
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X(p-pa) " [1-(p- rar)]

i=]

(p-ray) " " [1-(p- pa2)]

where ¢; is the probability that one of the tests of s;is
performed by chance alone, in a successfull slip. By the
same reasoning as earlier, we can compute (_mean

4+ =]

S 3(p-pa) " [1-(p-pa)]

1=2 i=l

(p-par) ™" [1-(p- pas)]

Let us apply this equation to the middle level category bot
of the category structure of Figure 1. Again, the g;s are equal
to 1/6. Applying the last equation yields a t_mean of about
3.429, which is also the average of all mid-level categories
in Figure 1.

This previous formula can be generalized to any optimal
strategy of length n, but for the present purpose, we need to
generalize it only to length 3 strategies (which apply to the
lower-level categories of Figure 1):

4o [—i-l1=2

£ )‘.l(p-pql)"_l[l-(P-pq:)]

)Y [1-(p-pas)]
)1 (p- pas)]

1

To illustrate, consider the application of this equation to
the lower level category com of the category structure of
Figure 1. Once more, all the g;s are equal to 1/6. It follows
that 1_mean is equal to about 5.142. Because all the lower
level categories of the category structure of Figure 1 share
the same g the mean (_means for lower level categories is
also equal to 5.142.

In sum, we have presented category attentional slip, a
measure which integrates two computational constraints on
basic-level performance: An object should be categorized
faster in category X than in category Y if (1) the length of
the optimal strategy that identifies the object as X is
smaller--all other things being equal--than the length of the
optimal strategy that identifies the same object as Y, and if
(2) the cardinalities of the sets of redundant tests (or some of
them) is larger--all other things being equal--for category X
than for category Y.

(p-pa,
(p-pas

Comparison of the Basic-Levelness
Measures

We now compare the performance of category attentional
slip, category feature-possession, and category utility using
as benchmarks the results of eight categorization
experiments drawn from Murphy and Smith (1982), Murphy
(1991), and Tanaka and Taylor (1991). The results of these
experiments were gathered on minor variations of Murphy
and Smith’s generic procedure: Subjects were initially taught
the names of objects at three levels of categorization. In a
later testing phase, they were shown a picture of a stimulus
together with a category name. Subjects’ task was to verify

that the stimulus was a member of the named category.
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Murphy & Smith (1982)

In their Experiment 1, Murphy and Smith (1982) used 16
artificial tools. Their tools were either pounders, or cutters
(higher level); they had non-overlapping handles, shafts, and
heads (which defined the middle level); and they had one
more non-overlapping feature like big or small head, and one
or two-parts handle (at the lower level). This category
structure mirrors the one of Figure 2. As shown in Table 3,
mid-level categories were the fastest with the high-level
categories being the slowest.

The category feature-possession and the attentional slip
measures correctly predicted the basic-levelness order of two
out of three levels of categorization. The category utility
measure did slightly worse: it correctly predicted only the
basic level (see underlined figures in Table 3). (Recall that
both the category feature-possession and the category utility
scores should be inversely proportional to the RTs, and that
the attentional slip scores should be directly proportional to
the RTs.)

In their Experiment 3, Murphy and Smith (1982) used
eight of the artificial tools of their Experiment 1, and added
eight new tools to produce a total of sixteen. Their artificial
tools were either large, or small (higher level); they were
either pounders, cutters, scraper, or stirrer (middle level); and
they had non-overlapping handles, shafts, and heads (lower
level). As shown in Table 3, the lower level categories were
the fastest with the middle level categories being the
slowest.

The category feature-possession and the attentional slip
measures correctly predicted the speed order of two out of
three levels of categorization. The category utility measure
only predicted the rank of the level of categorization with the
second highest basic-levelness measure of performance,

Table 3: Mean values of category utility, feature-possession,
and attentional slip score measures (with mean “true” trial
identification reaction times) for various categorical

structures.
Level
Source Model Lower  Middle Higher
Murphy & Smuth, Exp. T Observation 123 ms 678 ms 8’5 ms
Feature-possession | 3 1
Category utility 0.453 0.78] 0.688
Attentional slip  1.913  L.7§ 1.913
Murphy ﬂ.;rnith_ Exp. 3,  Observation 574 ms 882 ms 666 ms
ize
Feature-possession 3 | i
Category utility 0.483 (039] 0.561
Attentional slip  LBI8 1.935 1.935
Murphy, Exp. 3 Observation 776 ms 779 ms
Feature-possession 1 k
Category utility 0.453 0.688
Attentional slip 1.913 1.913

4
0.781
L7§
862 ms Bllms 980 ms
3
078]
Li6
34 ms

Murphy, Exp. 4, Simple Observation
Feature-possession 1 1
Category utility 0.453 0.688
Attentional slip 1.913 1.913
Murphy, Exp. 4, Observation 1,132 ms 955 ms
nhanced
Feature-possession I 3 1
Category utility 0.640 [ 156 0.938
Attentional slip 1935 1714  1.935
Murphy, Exp. § Observation 1,072 ms 88l ms 8354 ms
Feature-possession 1 3 4
Category utility 0.641 1.156 1438
Attentional slip  1.93] 1.806 L5
Tanaka & Taylor, Novice Observation 778 ms 678 ms 746 ms

Feature-possession T 12 8

Category utility  2.387  3.898 1934

Attentional ship 1.890 LHI8 1.875

Tanaka & Taylor, Expert  Observation 622 ms 623 ms 729 ms
Feawre-possession |0 10 8

Category utility 2.526 3.803 1870

Attentional slip L1863 L.863 1.889

Murphy (1991)

In Experiment 3, Murphy (1991) used 16 artificial abstract
objects of various colors, textures, types of edge, and sizes,
In fact, Murphy's categorical structure was identical to
Murphy and Smith's (1982, Experiment 1). As shown in
Table 3, the middle level categories were the fastest with the
two other being about equally slow.

The category feature-possession and the attentional slip
measures correctly predicted the whole basic-levelness
sequence. The category utility measure did a bit worse,
predicting two out of three level of categorization basic-
levelness order,

In Experiment 4, Simple Condition, Murphy (1991)
replicated Murphy and Smith (1982, Experiment 1). Again,
the middle level categories were the fastest with the higher
level categories being the slowest (see Table 3). Needless to
say, the respective merits of the three measures were the
same as before.

Murphy's (1991) Experiment 4, Enhanced condition, and
Experiment 5 both used enhanced versions of the 16
artificial tools of Murphy and Smith (1982, Experimem‘p.
In Experiment 4, Enhanced condition, eight non-overlapping
features (i.e., either red dots, yellow circles, green stripes, or
blue solid color) were evenly added to the categories at the
middle level of categorization. The middle level categories
were the fastest with the lower level of categorization being
the slowest (see Table 3). In Experiment 5, 16 non-
overlapping features (colors and texture cues) were evenly
added to categories at the lower level of categorization. The
higher level categories were the fastest with the lower level
categories being the slowest (see Table 3).

In Experiment 4, Enhanced Condition, the category utility
measures scored a perfect three (it is the only case where the
category utility measure does better than the two other
measures). Whereas the category feature-possession and the
attentional slip measures correctly predicted the order of two
of the three levels of categorization basic-levelness. The
three measures correctly predicted the whole sequence of
basic-levelness in Experiment 5.

Tanaka & Taylor (1991)

So far we have used the construction features of objects to
build the category structures. Tanaka and Taylor (1991) used
natural objects in their experiments; no one knows the
"true” construction features of natural objects, but subjects
might very well have used the features they listed for the
categories. There is some empirical evidence for this. In
Experiment 1A, Murphy (1991) asked some subjects to list
features for the artificial objects used in Murphy,
Experiment 3. He found a mean of 1 feature at the higher
level of categorization, a mean of 5.75 features added at the
middle level of categorization, and a mean of 0.87 feature
added at the lower level of categorization (most of them did
not overlap with listed features of contrasting categories) (cf.
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the "true" numbers of added features were 1, 3, and 1, at the
higher, middle, and lower levels of categorization,
respectively). It, thus, seems that we could use such
estimates for our simulations,

Tanaka and Taylor's (1991) subjects were taught the
names of 16 natural animals at three levels of categorization
(e.g.. animal, dog. Beagle). The subjects were either bird
experts and dog novices, or dog experts and bird novices. In
Experiment 1, Tanaka and Taylor found that novices listed
approximately 8, 12, and 7 new features for the higher,
middle, and lower levels of categorization, respectively; and
that experts listed approximately 8, 10, and 10 new features
for the higher, middle, and lower levels of categorization,
respectively (we have rounded these figures). Most of the
listed features did not overlap with listed features of
contrasting categories. As a simplifying assumption, we
take it that no feature was listed in two contrasting
categories. In Experiment 3, Tanaka and Taylor found, for
the Novice condition, that mid-level categories were the
fastest, and that the lower level categories were the slowest,
and, for the Expert condition, that middle and lower level
categories were about equally fast and that the higher level
categories were the slowest (in Table 1 we put the mean
RTs of bird novices and of dog novices, and the mean RTs
of bird experts and of dog experts).

The category feature-possession and the category
attentional slip measures scored a perfect three for both
conditions. Whereas the category utility measure correctly
identified the basic-levelness order of only one categorization
level out of six!

Discussion

This paper presented category attentional slip, a measure
of basic-level performance in which two constraints interact:
(1) the cardinality of the sets of tests that determine category
decision at each categorization level, and (2) the number of
different sets of tests necessary to reach a category decision.
We then compared the performance of category attentional
slip with those of two established models of basic-level
performance: category feature-possession (Jones, 1983) and
category utility (Corter & Gluck, 1992). The empirical data
was drawn from eight classical experiments from Murphy
and Smith (1982). Murphy (1991), and Tanaka and Taylor
(1991).

Category utility appeared as the worst predictor of basic-
levelness with a 12/24 hit rate. In particular, category utility
did not predict human performance very well for the category
structures of Murphy and Smith (1982, Experiment 3) and
of Tanaka and Taylor (1991, Experiment 3). In these
experiments, the most basic categories are those at the
lowest categorization level. We think this reveals a
fundamental problem with category utility: It is strongly
biased against lower levels categories. For example, to
properly model Tanaka and Taylor's results (1991,
Experiment 3, Experts), category utility would require the
addition of no less than 29 non-overlapping features to each
lower level category!

The category feature-possession and the attentional slip
measures are tie with a 20/24 hit rate. In the considered
experiments, the category organizations were all composed

of non-overlapping features which means that a single set of
redundant tests was in each case sufficient to reach a category
decision. Thus, performance was in each experiment
critically dependent on the first determinant of attentional
slip: the redundancy of the sets of tests to detenmine category
membership at all categorization levels. In fact, we can
easily demonstrate that, in this case, the cardinality (or the
level of redundancy) of a class of redundant test is strictly
equal to feature-possession,

However, if we allow category organizations to be
composed of partially overlapping features, optimal
strategies of length greater than 1 will be required (sce
section Category attentional slip). And, the second
determinant of attentional slip could influence category
feature-possession and attentional slip in different ways. The
hierarchy of Figure 1 illustrates such situation of feature
overlap. Preliminary results using computer synthesized 3D
objects indicated that the higher categorization levels of
Figure 1 (which require optimal strategies of length 1) were
the fastest, and lower level categorizations (which requires
optimal strategies of length 3) were the slowest. Category
attentional slip was then the only measure to score a perfect
three with this category structure; both the category feature-
possession and the category utility scored a two (see the
simulations for every measure in section Measures of Basic-
Levelness).

In sum, we believe that attentional slip is a new powerful
experimental and formal platform to study recognition and
categorization at the basic-level.
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