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Gene expression
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Abstract

Motivation: Current bioinformatics methods to detect changes in gene isoform usage in distinct

phenotypes compare the relative expected isoform usage in phenotypes. These statistics model

differences in isoform usage in normal tissues, which have stable regulation of gene splicing.

Pathological conditions, such as cancer, can have broken regulation of splicing that increases the

heterogeneity of the expression of splice variants. Inferring events with such differential heteroge-

neity in gene isoform usage requires new statistical approaches.

Results: We introduce Splice Expression Variability Analysis (SEVA) to model increased heteroge-

neity of splice variant usage between conditions (e.g. tumor and normal samples). SEVA uses a

rank-based multivariate statistic that compares the variability of junction expression profiles within

one condition to the variability within another. Simulated data show that SEVA is unique in model-

ing heterogeneity of gene isoform usage, and benchmark SEVA’s performance against EBSeq,

DiffSplice and rMATS that model differential isoform usage instead of heterogeneity. We confirm

the accuracy of SEVA in identifying known splice variants in head and neck cancer and perform

cross-study validation of novel splice variants. A novel comparison of splice variant heterogeneity

between subtypes of head and neck cancer demonstrated unanticipated similarity between the het-

erogeneity of gene isoform usage in HPV-positive and HPV-negative subtypes and anticipated

increased heterogeneity among HPV-negative samples with mutations in genes that regulate the

splice variant machinery. These results show that SEVA accurately models differential heterogene-

ity of gene isoform usage from RNA-seq data.
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Availability and implementation: SEVA is implemented in the R/Bioconductor package GSReg.
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Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative splicing events (ASE) are biological mechanisms that

enable expression of a variable repertoire of protein products from a

single protein coding gene (Lim et al., 2011). Differences between

the resulting protein products associated with cell types identity, cel-

lular functions and phenotypes. In alternative splicing, distinct sets

of RNA fragments (exons and even introns) within a single gene are

included into mature mRNA. Each unique set of exons and introns

is called a gene isoform, and need not contain canonical adjacent

exons within a mRNA molecule (reviewed in Keren et al., 2010).

Cells contain a splicing machinery complex to regulate which gene

isoforms are produced, and cause the expression of specific gene iso-

forms to be under tight control within healthy cells, accounting for

both their identity and environmental context. Numerous bioinfor-

matics algorithms have been developed for analysis of alternative

splice variation from RNA-seq data. Reads in RNA-seq data may

span multiple exons and introns, thereby providing evidence for

expression of specific gene isoforms. Bioinformatics analysis of

RNA-seq data can identify the expression of gene isoforms in a sin-

gle sample (Canzar et al., 2016; Guttman et al., 2010; Li et al.,

2011; Pertea et al., 2015; Song et al., 2016; Wang et al., 2010). The

resulting isoform expression profiles from different samples can be

further aggregated to quantify gene isoform usage. These data are

input to methods for differential ASE analysis that compare relative

changes of expected expression of isoforms between phenotypes to

define the differences in the landscape of gene isoform usage

between phenotypes (Anders et al., 2012; Hu et al., 2013; Leng

et al., 2013; Li et al., 2011; Shen et al., 2012, 2014). These methods

model isoform usage that is consistent between samples from the

same phenotype and differs consistently with isoform usage in sam-

ples from another phenotype. Thus, their underlying algorithms

assume that the splicing machinery works properly in both pheno-

types. They also assume that mixture of cell types and, thus, the rep-

ertoire of gene isoforms, is similar within samples from the same

phenotype.

Changes to splicing events are pervasive in cancer and can be

used as biomarkers (Sebestyen et al., 2015). In contrast to normal

samples, the splice variant machinery is frequently altered or broken

in tumors (Ebert and Bernard, 2011). In addition, tumors are com-

prised of a heterogeneous mixture of cell types, each of which has a

distinct milieu of expressed gene isoforms. Both of these factors

result in more variable gene isoform usage within tumor samples rel-

ative than in normal samples (Guo et al., 2017; Li et al., 2014).

Notably, differential ASE methods are not designed to model these

differences in heterogeneity. Instead, they model differences in the

expected relative expression levels instead of their relative heteroge-

neity. Detection of alternative splicing in tumors modeling differen-

tial heterogeneity of gene isoform usage in tumors requires a new

bioinformatics algorithm.

In this paper, we develop a novel algorithm called Splice

Expression Variability Analysis (SEVA) for differential heterogene-

ity of gene isoform usage between samples from two phenotypes.

This algorithm uses a multivariate, non-parametric statistic of the

heterogeneity of expression profiles for gene isoforms in tumor rela-

tive to normal samples. The measure of heterogeneity is adapted

from the Kendall-tau dissimilarity measure and is applied to com-

pare the junction expression profiles between all pairs of samples of

each phenotype for each gene. Junction expression quantifies the

number of reads that span a pair of exons or an exon to an intron,

thereby providing direct evidence for the gene isoform expression

(Fig. 1). Thus, SEVA can provide both a measure of heterogeneity of

alternative splicing events in each phenotype and a statistic for the

significance of the difference of these measures in two phenotypes.

SEVA is implemented as a new function in the R/Bioconductor pack-

age GSReg (Afsari et al., 2014b). SEVA is a natural extension of this

package, which is devoted to differential variation of gene regulation

in cancer and previously implemented algorithms for pathway dys-

regulation (Afsari et al., 2014b; Eddy et al., 2010).

2 Materials and methods

2.1 HNSCC RNA-seq datasets
We use RNA-seq data for 46 HPVþHNSCC and 25 independent nor-

mal samples from uvulopalatopharyngoplasty previously described in

Guo et al. (2016) and 44 HPVþHNSCC, 235 HPV� HNSCC and 16

matched normal tissues from the freeze set for TCGA HNSCC

(Cancer Genome Atlas Network, 2015).

2.2 In silico data
We base our simulated data on the isoform expression from RNA-seq

data for normal samples from Guo et al. (2016). To reduce the size of

the simulations, we limit the analysis to 600 preselected genes in chro-

mosome 1. We require these genes to have mean log2 expression gene

counts from the TCGA RSEM v2 pipeline Cancer Genome Atlas

Network (2015) between four and nine and to have at least two iso-

forms. This filtering criterion ensures that genes have differential gene

isoform usage because they are both expressed and have alternative

splice variants. We generate a simulated dataset of 25 tumor and 25

normal samples as follows. To simulate normal samples, we calculate

the average isoform expression for these genes in real normal samples

and input these values to Polyester with default parameters (Frazee

et al., 2015b) to generate simulated RNA-seq reads.

We then simulate alternative splicing and differential expression

events in tumor samples for a pre-selected subset of the 600 genes,

with 150 differentially spliced, 150 differentially expressed, 150 both

and 150 neither. The expected isoform expression of a gene with

alternative splicing in a tumor sample is obtained by randomly per-

muting the expected expression of all isoforms for that gene in the

normal samples (Supplementary Fig. S1). Such random distribution of

expected isoform expression is similar to previous simulation studies

which randomly distributing expression values among the set of all

isoforms of a gene (Alamancos et al., 2015; Liu et al., 2014). A gene

is simulated to have differential expression by either doubling the

values of all its isoforms relative to the values in normal samples

or halving the expression of all its isoforms, where doubling (over-

expressed) or halving (under-expressed) was selected at random.

The simulation models tumor heterogeneity of gene isoform usage

by varying the number of tumor samples with alternative splice var-

iant usage and differential expression. One subset of tumor samples,
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called normal-like tumors, follows the same distribution of isoform

expression as normal samples. The other subset follows the distribu-

tion of isoform expression for tumor samples (Supplementary Fig.

S2). The resulting values for expected isoform distribution in each

subtype are input to Polyester (Frazee et al., 2015b) to generate simu-

lated RNA-seq reads for tumor samples. In total, four simulated data-

sets are created by varying this parameter. Each set had 25 simulated

normal and 25 simulated tumor samples. We create an MDS plot of

one of the differentially spliced genes (identified by SEVA in a cohort

with 10 normal-like tumor samples) and note the similarity of

this MDS plot to similar plots in real data described in the results

(Section 4.3).

Simulated reads for both normal and tumor samples are normal-

ized as described in the data normalization subsection below.

2.3 RNA-sequencing data normalization

and mutation calls
All in silico and real RNA-seq data are normalized with the RNA-

seq v2 pipeline from TCGA (Cancer Genome Atlas Network, 2015).

(a)

(b)

(c)

(d)

         Pairs of Normals
Junction pairs Ni     Nj       DNij

J1,2 > J1,3          False = False  Concordant

J2,3 > J1,3          False = False  Concordant

         DNij = 0

         Pairs of Tumors
Junction pairs Ty     Tw        DTyw

J1,2 > J1,3          False ≠ True  Disconcordant

J2,3 > J1,3          False ≠ True  Disconcordant

         DTyw = 2

DN = average DNij over
all normal pairs

DT = average DTyw over
all tumor pairs

U-Statistics theory
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Isoforms

J1,2 > J1,3

J2,3 > J1,3

J2,3 > J2,C

J2,C > J3,4

Junction pairs

Example of extension for dissimilarity to more complex gene isofoms 

SEVA compares expected dissimilarity of gene isoform usage in all pairs of tumor and normal samples 

Gene isoform usage in a population of normal (    ,    ) and tumor (    ,     ) samples  NjNi Tw

Example model of distribution of isoform expression from a single gene 

Fig. 1. Overview of SEVA. (a) Relative junction expression quantifies the distribution of isoform usage of a gene. For simplicity of this example, we show a gene

with three exons. The model is shown for two samples of gene isoform usage: one with higher relative expression of an isoform with all three exons (left) and

another with higher relative expression of an isoform that skips the middle exon (right). The relative strength of junction expression in overlapping pairs (e.g. J1, 2

with J1, 3 or J2, 3 with J1, 3) corresponds to the relative proportion of isoform usage. (b) Example of gene model from (a) in multiple normal (N, left) and tumor (T,

right) samples. Note that the normal samples have lower heterogeneity of gene isoform usage than the tumor samples. (c) To quantify isoform expression, SEVA

compares the expression of all pairs of overlapping junctions (see a and d). A dissimilarity measure is obtained from the concordance of the comparisons of pairs

of overlapping junctions in each pair of samples. This measure is applied to all pairs of samples from the same phenotype (see b) and then U-statistics theory is

applied to these measures to compare the variation of gene isoform usage between the phenotypes. (d) Extension of (a) for a more complex gene splicing model
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Junction expression is obtained directly from the MapSplice (UNIX

multi thread version 2.0.1.9) (Wang et al., 2010) output for each

sample, setting expression values to zero for junctions that are not

detected from MapSplice in a given sample. Simulated data is also

aligned with TopHat2 version 2.1.0 (Kim et al., 2013). Gene and

isoform expression data from TCGA are obtained from the level 3

normalized data, but junction expression is obtained by rerunning

MapSplice to perform de novo junction identification to compare

with the training RNA-seq data from Guo et al. (2016).

Comparisons between HPV-positive and HPV-negative HNSCC are

made for level 3 junction data for previously annotated junctions for

TCGA samples available on FireBrowse. TCGA samples with muta-

tions or copy number alterations any of the SF3B1, SF1, SF3A1,

SRSF2, U2AF1, U2AF2, ZRSR2 or PRPF40B genes in cBioPortal

(Gao et al., 2013) are said to have altered RNA splice machinery

based upon annotations in Ebert and Bernard (2011).

2.4 Implementation and software
SEVA is implemented in the R/Bioconductor package GSReg (ver-

sion 1.9.2) (Afsari et al., 2014a). Junctions are assigned to a gene

using the UCSC gene annotations in the R/Bioconductor package

TxDb.Hsapiens.UCSC.hg19.knownGene.db (version 3.2.2). The

analyses presented in this study remove genes with only one junction

from analysis. Additional filtering criteria are described in the

vignette, but not used. The SEVA analysis of junction expression is

computationally efficient. All of the SEVA computations for simu-

lated data completed in less than an hour for simulated data, less

than an hour for the 46 tumors and 25 normals in the

HPVþHNSCC cohort from Guo et al. (2016), and less than two

hours for the 279 HNSCC tumors in TCGA (Cancer Genome Atlas

Network, 2015) on a MacBook Pro with Core (TM) i7-3720QM

Intel CPU @2.6 GHz. Genes with Benjamini-Hochberg adjusted

P-values below 1% are statistically significant. All code for the

SEVA analyses is available from https://github.com/FertigLab/

SEVA. In the Supplementary Methods, we show that the computa-

tions for SEVA grows as the cube of the sample numbers and line-

arly with the number of genes, with a dependence upon the number

of overlapping junctions per gene.

EBSeq is performed with the R/Bioconductor package EBSeq ver-

sion 3.3 (Leng et al., 2013). Isoform expression for all genes is the

input in the EBSeq analysis. Isoforms with posterior probability

above 99% are called significantly differentially spliced. EBSeq is

also applied to gene expression values, and genes with a posterior

probability above 99% are significantly differentially expressed.

DiffSplice 0.1.2 beta version (Hu et al., 2013) is run directly on

aligned RNA-seq data obtained from the MapSplice alignment.

Default parameters are used, with a false discovery rate of 0.01.

Because DiffSplice requires equal numbers of samples in each group,

we select a random subset of 14 HPVþHNSCC and 14 normal sam-

ples from the dataset in Guo et al. (2016). rMATS version 3.2.5

(Shen et al., 2014) is run on TopHat2 (Kim et al., 2013) aligned

simulated data. To produce read counts to use as reference annota-

tion for rMATS, we constructed a merged gene annotation set by

running cuffmerge v2.2.1 on the transcript predictions from the

individual samples, produced with CLASS2 v.2.1.6 (Song et al.,

2016) and the hg19 gene annotations used in the TCGA RSEM v2

pipeline (Cancer Genome Atlas Network, 2015). Read counts are

generated with Ballgown tablemaker v.2.1.1 (Frazee et al., 2015a).

We perform cross study validation by comparing whether statis-

tics in one cohort are significantly enriched in the other using the

function wilcoxGST in LIMMA version 3.24.15 (Ritchie et al.,

2015).

3 Algorithm

3.1 Splice Expression Variation Analysis (SEVA)
A gene can have multiple isoforms. RNA-seq data provide direct evi-

dence for the expression of a specific gene isoform based upon cov-

erage of the junctions in that isoform (Fig. 1a, d). Such junction

expression can also indicate the simultaneous expression of multiple

isoforms in a sample (Fig. 1a, b). If the distribution of isoform

expression changes between samples, then so too does the distribu-

tion of the expression for the set of all junctions in the gene. Thus,

the multivariate distribution (i.e. the joint distribution) of the set of

junction expressions can quantify gene-level changes in isoform

usage between sample groups. In this study, we hypothesize that the

expression of ASE variants is more heterogeneous than the expres-

sion in normal samples (Fig. 1c). We develop a new method called

Splice Expression Variability Analysis (SEVA) that compares the

variability of the multivariate distribution of junction expression

profiles between phenotypes to test the hypothesis of differential

heterogeneity of gene isoform usage.

The key observation that underlies SEVA is that junctions which

correspond to distinct isoforms are overlapping, and therefore mutu-

ally exclusive. Changes in the relative expression of gene isoforms

between a pair of samples result in a corresponding switch in the rel-

ative expression of specific junctions. Namely, the switching occurs

in the overlapping junctions. An example of this switch is shown for

a simple exon skipping event in Figure 1a. In this case, the expres-

sion of the junction between the first and third exon corresponds to

the switches with the expression of both the junctions in the isoform

without the skipping event (between the first and second exon and

between the second and third exon). This concept extends to more

complex gene models (Fig. 1d).

Based on the observation described above, SEVA defines a ‘splice

dissimilarity’ measure by computing the frequency of switching

between all pairs of mutually exclusive junctions (Fig. 1c). A switch

occurs when the rank comparison between two overlapping junc-

tions differs between samples. We note that Kendall-tau dissimilar-

ity measure quantifying such discordance between the ranks of pairs

of observations. Whereas Kendall-tau quantifies the rank discordan-

ces between all pairs of observations, SEVA limits this comparison

to the mutually exclusive junction coverage. Such comparisons are

made between all pairs of samples in the same phenotype to estimate

the heterogeneity of gene isoform usage in that phenotype. Then, the

algorithm tests for a significant difference in heterogeneity between

the two phenotypes using an approximation from U-Statistics theory

(Vaart, 1998) (Fig. 1c, Supplementary Methods).

4 Results

4.1 SEVA accurately detects differential heterogeneity

in ASE usage
We generate in silico RNA-seq data to benchmark the performance

of SEVA relative to EBSeq (Leng et al., 2013), DiffSplice (Hu et al.,

2013) and rMATS (Shen et al., 2014) in detecting genes with known

differential heterogeneity of isoform usage in populations of simu-

lated tumor and normal samples (described in methods). The simu-

lated dataset contains 25 normal and 25 tumor samples. The

simulation generates four cohorts of tumor samples, which have 10,

15, 20 or 25 samples with differential gene isoform usage events.
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The remaining samples follow the distribution of gene isoform usage

in normal samples (see Materials and methods section,

Supplementary Figs S1 and S2). The simulation with 25 samples

with differential gene isoform usage in tumor samples has the great-

est mean difference relative to normal samples and the least hetero-

geneity of gene isoform usage within the tumor cohort. The

simulations with 10 and 15 samples with differential gene isoform

usage have the greatest heterogeneity. We compare the results of all

algorithms to the true events in the four simulations to estimate pre-

cision (positive predictive value) and recall (sensitivity) (Fig. 2).

SEVA’s precision remains around 95% while that of DiffSplice

fluctuates around 90% and the range of EBSeq’s precision is 60–

80%. The precision for rMATS is around 90% for differentially

spliced genes that are not differentially expressed and ranges from

75 to 90% for differentially spliced genes that are also differentially

expressed. These results are independent of the number of cancer

samples containing the alternative gene isoform expression (Fig. 2a).

The precision of both SEVA and DiffSplice is independent of

whether the gene is differentially expressed in addition to differen-

tially spliced. EBSeq has lower precision for detecting differential

splice status among differentially expressed genes compared to the

precision in genes that are both differentially expressed and differen-

tially spliced.

SEVA has the highest recall in the simulated dataset with greatest

heterogeneity in gene isoform usage (fewer than 20 of the tumor sam-

ples), but drops sharply in the more homogeneous population of 25

tumor samples all containing the same gene isoform usage (Fig. 2b).

SEVA’s inability to detect alternative splicing events in homogeneous

populations is consistent with the design of the algorithm. The recall

for EBSeq remains consistently higher among genes that are both dif-

ferentially expressed and differentially spliced than among genes that

are only differentially spliced. Its recall increases with the number of

tumor samples containing the alternative isoform usage for both types

of genes. The recall for rMATS remains independent of the sample

size and differential expression status of the genes. Both DiffSplice

and rMATS have modest recall independent of tumor heterogeneity

in the simulations. The precision of SEVA is independent of the num-

ber of isoforms in each gene, whereas recall is lowest for genes with

only two isoforms and insensitive thereafter (Supplementary Fig. S3).

These results confirm that SEVA specifically identifies genes with high

relative heterogeneity of gene isoform usage between sample pheno-

types, whereas other algorithms identify genes with homogeneous dif-

ferential gene isoform usage.

4.2 SEVA identifies a set of ASEs with variable gene

isoform usage in 46 HPV1 HNSCC tumor samples

relative to 25 normal samples
We use RNA-seq data for 46 HPVþHNSCC and 25 normal samples

from Guo et al. (2016) as a benchmark for empirical analysis of

SEVA in real sequencing data. SEVA identified 985 genes as having

significant alternative gene isoform usage in cancer (compared to

2439 in EBSeq and 2535 in DiffSplice). In addition to identifying the

altered gene isoforms in each class (e.g. tumors or normals), the statis-

tics underlying SEVA enable quantification of relative variation in iso-

form usage for each gene in each of the phenotypes that are compared

in the analysis. We plot these statistics to compare variation of iso-

form usage in all genes and the genes that SEVA calls statistically sig-

nificant to test our central hypothesis that gene isoform usage is more

variable in tumor than normal samples (Fig. 3a). Since the ground

truth is unknown in these real data, we cannot benchmark SEVA’s

performance relative to other algorithms in terms of precision and

recall. Nonetheless, consistent with our hypothesis, the variation in all

genes is shifted towards higher variation in tumor samples. Moreover,

more of these significant genes have more variable gene isoform usage

in tumor samples than in normal samples (Fig. 3).

4.3 SEVA analysis finds greater variation in tumor than

normal samples in previously validated HNSCC-specific

splice variants TP63, LAMA3 and DST
Recent data suggest that the majority of ASE in HNSCC (39%) are

classified as alternative start sites (Guo et al., 2017), which can be

recognized by ASE-detection algorithms as insertion and/or deletion

alternative splicing events. Indeed, alternative start site splice events

in six genes (VEGFC, DST, LAMA3, SDHA, TP63 and RASIP1)

were recently observed as being unique to HNSCC samples from

microarray data (Li et al., 2014). Three of these genes (DST,

LAMA3 and TP63) were also confirmed as differentially spliced in

HNSCC tumors with experimental validation in an independent

cohort of samples, while the other three genes (VEGFC, SDHA and

RASIP1) were not confirmed (Li et al., 2014). SEVA identified all

three validated genes: DST (P-value 3�10–10), LAMA3 (P-value

1�10–10) and TP63 (P-value 6�10–10) genes, as well as RASIP1

(5�10–7) as genes having significant differential heterogeneity of

isoform usage. Splicing of SDHA and VEGFC were found non-

significant in agreement with experiments. Notably, EBSeq only

identifies VEGFC to be differentially spliced (P-value 3�10–6) that

was not validated. DiffSplice did not identify significant alternative

splicing in any of these genes.

Calculation of the splice dissimilarity measure in SEVA makes

this algorithm unique in being able to both quantify and visualize

the relative heterogeneity of gene isoform usage in each phenotype.

In Figure 4, we create multi-dimensional scaling (MDS) plots of the

splice dissimilarity measure of the significant genes in SEVA. The

closer two samples in the MDS plot, the less variable their junction

(a) (b)

Fig. 2. Performance in simulated RNA-Seq data. (a) Precision of different algo-

rithms (in legend) on the simulated dataset. Varying numbers of the total

tumor samples with alteration events (x-axis), with tumor heterogeneity

decreasing along the x-axis. (b) Recall of simulated data, as in (a). Precision

and recall computed separately for all genes (solid) and for the subset of 300

genes that are differentially expressed (dashed)
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expression profiles. As a result, these figures enable us to visually

test the hypothesis that the modified Kendall-s distance enables

SEVA to identify more variable gene isoform usage in tumor than

normal samples. The differentially spliced genes identified with

SEVA (DST, LAMA3, RASIP1 and TP63) confirm that the varia-

tion of gene isoform expression in normal samples is lower than the

variation in tumor samples, as hypothesized, and therefore not sig-

nificant in EBSeq (Fig. 4). On the other hand, VEGFC has consistent

variability in cancer and normal samples and is not detected by

SEVA (Supplementary Fig. S4). Therefore, SEVA is ideally suited to

detect genes with more variable gene isoform usage in tumor relative

to normal samples as hypothesized.

4.4 SEVA candidates in the training set are significantly

enriched in cross-study validation on TCGA data
We also apply SEVA to independent RNA-seq data for 44

HPVþHNSCC and 16 normal samples in TCGA (Cancer Genome

Atlas Network, 2015) to cross-validate the ASE candidates in the

training data from Guo et al. (2016). 46% (352 out of 771 the gene

candidates) of the hits are statistically significant in the SEVA analy-

sis of the TCGA data. 214 of the genes identified on the training set

are not expressed on the TCGA set. To test the significance of

the list of genes and consistency of SEVA across two data sets, we

check whether the ASE candidates from the training set are signifi-

cantly enriched on the TCGA data. To do so, we calculate the SEVA

P-values for all genes on the TCGA test set. A mean-rank gene set

analysis indicates that the candidate genes identified on training are

enriched among all genes with P-value<2�10–16.

4.5 SEVA identifies more heterogeneity in splice variant

usage in HPV2HNSCC samples with mutations in splice

machinery genes
HNSCC tumors have two predominant subtypes: HPVþ and

HPV�. HPV� tumors have greater genomic heterogeneity than

HPVþ (Cancer Genome Atlas Network, 2015; Mroz et al., 2015).

Therefore, we apply SEVA to test whether there is higher

inter-tumor heterogeneity in splice variant usage in these tumor sub-

groups. SEVA observes many genes as having alternative gene iso-

form usage between the two HNSCC subtypes, with little difference

in relative heterogeneity (478 genes in HPV� and 338 in HPVþ,

Fig. 5a). This finding occurs although a larger number of samples

HPV� tumors (44 of 243, 18%) have alterations to genes in the

splice variant machinery in contrast to HPVþ (3 of 36 with sequenc-

ing data, 8%). We further apply SEVA to compare inter-tumor het-

erogeneity of gene isoform usage in HPV-tumors with and without

genetic alterations to the splicing machinery. We observe far fewer

significant genes than in this comparison (Fig. 5b). Nonetheless, the

significant genes from this analysis have greater variability in sam-

ples with alterations in the splice variant machinery. These findings

suggest that although the mechanisms of tumorigenesis are vastly

different in HPVþ and HPV-tumors, both have similar heterogeneity

in gene isoform usage. The mechanisms that cause mutations in the

(a) (b)

(c) (d)

Fig. 4. Multidimensional scaling (MDS) plot of splice dissimilarity measures

in real HPVþHNSCC junction expression from RNA-seq for (a) DST, (b)

LAMA3, (c) RASIP1 and (d) TP63. Relative spread of samples in the MDS plots

indicates their relative variability in normal samples (circles) and tumor sam-

ples (triangles)

(a)

(b) (c)

Fig. 3. Comparison of splice variant events identified in different algorithms

in real HPVþHNSCC RNA-seq data. Variability of junction expression profiles

corresponding to gene isoforms. Each point represents a gene, x-axis and

y-axis its variability computed for SEVA in normal versus cancer, respec-

tively. The points color distinguishes differentially spliced (DS) genes identi-

fied with SEVA and genes that were not significantly spliced (non-DS). (b)

Venn diagram comparing differentially spliced genes identified by SEVA and

EBSeq, as well as differential expression status of each gene. (c) Comparison

of SEVA and DiffSplice as described in (b)
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genes that encode for the splice variant machinery further increase

the heterogeneity of splice variant usage in HPV-HNSCC.

5 Discussion

In this study, we develop SEVA to identify changes in the distribu-

tion of isoform expression in tumor samples to quantify heterogene-

ous gene isoform usage than that of normal samples. This SEVA

algorithm has three benefits. First, focusing on the comparison of

expression in overlapping junction pairs is computationally simpler

than formulating a complete splicing graph that delineates all anno-

tated gene isoforms (Hu et al., 2013; Song et al., 2016; Xing et al.,

2006). Second, the rank-based dissimilarity based upon Kendall-s is

blind to such coordinated changes in isoform expression that arise

from differential expression. If the expression of a gene is higher in

one sample than another, all its junctions will have higher expres-

sion, but their ranks will not change. Therefore, SEVA does not

require normalization of isoform expression values based upon total

gene expression that is used in other methods for differential splice

variant analysis (Anders et al., 2012; Guo et al., 2017). Third, SEVA

relies on junction expression and therefore can be applied to RNA-

seq data processed with any alignment and quantification software.

We demonstrate the suitability of SEVA for differential heteroge-

neity of gene isoform usage by applying it to real and simulated

RNA-seq data. Validation is performed against the modeled ASEs in

simulated data. For real data, validation is performed with cross-

study comparison of results from two cohorts of RNA-seq data for

head and neck squamous cell carcinoma (HNSCC) tumors and nor-

mal samples. We also apply SEVA to benchmark its performance for

experimentally validated splice variants of HNSCC from a previous

microarray study (Li et al., 2014). We further apply SEVA to per-

form a novel analysis of differential heterogeneity of gene isoform

usage between the dominant HNSCC subtypes (HPVþ and HPV-)

and between HPV-HNSCC samples with and without mutations to

genes that regulate the splice variant machinery. Together, the

results of these analyses in simulated and real data show that SEVA

is a robust algorithm for inter-tumor heterogeneity in gene isoform

usage in cancer samples relative to samples from a control group.

Consistent with the formulation of SEVA to detect differential

heterogeneity of gene isoform usage between sample groups, we

observe that SEVA has higher precision than EBSeq (Leng et al.,

2013), DiffSplice (Hu et al., 2013) or rMATS (Shen et al., 2014) in

simulated datasets that model greater heterogeneity among tumor

samples than among normal samples. The precision of SEVA,

DiffSplice and rMATS remain independent of the heterogeneity of

gene isoform usage in the tumor samples, whereas that of EBSeq

decreases with increasing homogeneity in gene isoform usage in the

tumor samples. While SEVA retains a lower false positive rate in the

simulated data, the recall depends on the heterogeneity of gene iso-

form usage. In our simulations, as the ratio of disrupted samples in

the cancer batch increases, the recall of SEVA reduces dramatically

(from 70 to 20%). DiffSplice and rMATS show almost constant

recall (around 40–50% and 50–60%, respectively). While EBSeq

recall increases with the homogeneity in gene isoform usage, SEVA

loses its recall when gene isoform usage is greater than 80%. SEVA

performs relatively best in the case of high heterogeneity of junction

expression in the tumor population. Notably, as the number of can-

cers with an ASE increases the junction expression profiles are more

homogeneous and therefore not accurately detected with SEVA. We

hypothesize that SEVA will have lower recall than techniques based

upon differential isoform expression in populations with homogene-

ous isoform usage. However, cancer samples are more heterogene-

ous and encompass a bigger spectrum of subtypes (Afsari et al.,

2014a; Corrada Bravo et al., 2012; Eddy et al., 2010). In practice,

we hypothesize that differentially spliced genes show multiple pat-

terns of isoform expression in tumors in multiple different cancer

subtypes. Therefore, we anticipate far less than 80% homogeneity

in driver splice events in cancer. Based upon the simulated data and

pervasive genomic heterogeneity in tumors, we hypothesize that

SEVA is uniquely suited to identify clinically relevant gene isoform

usage in tumors and their subtypes. Moreover, it also the only algo-

rithm that can quantify the extent of such heterogeneity of isoform

usage for each gene.

The formulation of SEVA to detect differential heterogeneity of

gene isoform usage between sample groups is unique. Notably,

SEVA seeks genes with different distributions of gene isoform usage

among samples within the same and between distinct phenotypes

than distributions sought by algorithms for differential gene isoform

expression, including EBSeq (Leng et al., 2013), DiffSplice (Hu

et al., 2013) and rMATS (Shen et al., 2014). Care must be taken in

interpreting the comparisons between methods that are presented.

These comparisons do not demonstrate that one method outper-

forms another in accuracy, but rather to benchmark the dependency

of their performance on gene isoform usage. The simulation studies

highlight that SEVA requires differential heterogeneity of gene iso-

form usage to infer candidates, as anticipated in the algorithm’s

design. Similarly, EBSeq is designed to detect differential isoform

abundance and not differential splicing. Therefore, if a gene’s abun-

dance changes across conditions, even if the relative (within-gene)

frequencies of the isoforms of a gene remain the same (no differen-

tial splicing), EBSeq would consider all of the isoforms to have dif-

ferential abundance. Thus, different methods will find distinct

alternative splicing events. Characterizing the events modeled with

all these techniques is essential to characterize transcriptional diver-

sity and the distinct contributions of alternative splicing to biologi-

cal function.

SEVA, EBSeq and DiffSplice could all be applied to RNA-seq

data normalized with MapSplice (Wang et al., 2010) to enable

cross-study validation of the data from (Guo et al., 2016) with the

TCGA normalized data. However, rMATS could not be applied to

MapSplice aligned data. While there are numerous other algorithms

for such differential splice analysis, many rely on data obtained

from distinct alignment and normalization pipelines (Anders et al.,

2012; Guo et al., 2017; Shen et al., 2012; Song et al., 2016). These

preprocessing techniques may introduce additional variables into

the differential splice variant analysis, complicating the direct com-

parisons of gene candidates on in silico and RNA-seq datasets

(a) (b)

Fig. 5. Comparison of differential gene isoform in TCGA HNSCC RNA-seq

data. (a) Variability of junction expression profiles for genes significantly DS

from SEVA in HPVþ versus HPV- HNSCC, respectively and not significantly

DS. (b) As for (a) comparing HPV- samples with and without alterations in

RNA splice machinery genes
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presented in this paper. Notably, SEVA inputs junction expression

to use direct evidence of alternative splice usage, including intron

retention. Therefore, the algorithm can be readily applied to junc-

tion expression obtained from other aligners. It is also directly appli-

cable to estimates of percent spliced (Alamancos et al., 2015) or

transcript-level expression in place of junction expression, which

can be compared in future studies. Therefore, future studies are

needed to compare the performance of such differential splice var-

iant algorithms across normalization pipelines on real biological

datasets with known ground truth of gene isoform usage.

Nonetheless, the SEVA algorithm is applicable for differential splice

variant analysis from junction expression from any alignment algo-

rithm and its rank-based statistics make it likely to be independent

of the normalization procedure (Afsari et al., 2014b; Bolstad et al.,

2003).

The P-values for the rank-based SEVA statistics are computed

using the normal approximation to U-statistics described previ-

ously (Afsari et al., 2014a). This approximation yields computa-

tional efficiency, with the analysis of the 279 HNSCC tumor

samples in the TCGA freeze set (Cancer Genome Atlas Network,

2015) completing in under 2 h on a standard laptop processor.

Thus, SEVA is readily applicable to splice variant analysis of large

cohort studies. However, this formulation does introduce two

weaknesses that must be addressed in future work. First, genes that

have multiple overlapping junctions with zero read coverage will

have ties that will introduce inaccuracies to the rank comparisons

used in SEVA (Fig. 1). We note that such ties are a common prob-

lem to all non-parametric algorithm. Such zero values are likely to

be pervasive in lowly expressed genes because reads will have a

low probability of covering all the junctions of a gene in each splice

variant. We note that analysis of lowly expressed genes is challeng-

ing generally for RNA-seq analyses. To avoid this challenge, we

constrained the simulated data in this study to genes with moder-

ate to high expression. We relaxed this constraint in real data, and

nonetheless observed significant cross-study concordance of

inferred splice variants. We note that the software implementing

SEVA contains several filtering parameters which may be selected

by users to optimize performance on individual datasets. Future

work is needed to handle the ties that result from such lowly

expressed genes and to evaluate the filtering criterion to optimize

the performance of SEVA in these cases. A second challenge to

SEVA arises in the large sample-sizes required for analysis.

Theoretical work shows that the normal approximation to

U-statistics that are used in SEVA require a minimum of thirty

samples (total in both phenotypes) for accurate estimation of

P-values (Vaart, 1998). Reducing the number of samples will yield

an incorrect estimate of the covariance matrix used in SEVA,

thereby underestimating the P-values obtained from the algorithm.

Future work adapting empirical Bayes estimates of the covariance

will be essential to extend SEVA to analyze heterogeneity of splice

variant usage in smaller sample cohorts.

In simulations with 25 samples per group, SEVA has uniformly

high precision relative to EBSeq and DiffSplice in detecting ASEs.

Our simulations suggest that SEVA performs better in scenarios in

which cancer samples have a higher degree of heterogeneity com-

pared to normal samples consistent with the unique formulation of

the method. As further validation, genes with alternative splicing

events in HPVþHNSCC from Guo et al. (2016) were significantly

enriched in cross-study validation on RNA-seq data for

HPVþHNSCC samples in TCGA (Cancer Genome Atlas Network,

2015). Moreover, the modified Kendall-s dissimilarity metric used

in SEVA also accurately characterizes the higher heterogeneity of

gene isoform usage in tumors relative to normal in the confirmed

HNSCC-specific ASEs DST, LAMA3, TP63 and RASIP1 identified

in previous microarray analysis (Li et al., 2014). As further justifica-

tion for our simulation, we observed that the MDS visualization of

the heterogeneity of gene isoform for these genes resembles the same

MDS visualization of alternatively spliced genes in the in silico data.

These data show that SEVA is adept at inferring ASEs in tumor sam-

ples with heterogeneous gene isoform usage relative to normal

samples.

SEVA is uniquely designed to quantify which phenotype has

more variable gene isoform usage. The algorithm observes higher

inter-tumor heterogeneity in splice variant usage in HPVþHNSCC

tumors relative to normal samples, consistent with the hypothesis

of inter-tumor heterogeneity that led to the development of the

algorithm. HNSCC is divided into two primary subtypes (HPV-

and HPVþ). Of these, HPV- tumors are established as having more

variable genetic alterations than HPVþ tumors (Cancer Genome

Atlas Network, 2015; Mroz et al., 2015). Nonetheless, SEVA anal-

ysis identifies little difference in the heterogeneity of splice variant

usage between the tumor types (478 genes with differential hetero-

geneity of alternative splicing in HPV- and 338 in HPVþ). This

similarity is observed despite different samples sizes (44 HPVþ and

235 HPV-), suggesting that the SEVA statistics are robust to imbal-

anced study design. In addition, some HPV- samples have genetic

alterations in genes that regulate the splice variant machinery.

SEVA identifies that HPV- HNSCC tumors with alterations in

these genes have greater variation in isoform usage than those that

do not (52 genes with differential heterogeneity of alternative

splicing in samples with broken machinery and 14 genes in samples

without). Together, these analyses suggest that SEVA can distin-

guish differences in heterogeneity in isoform usage that are specific

to cancer subtypes. Moreover, SEVA observes greater variation in

splice variant usage in tumor samples with genetic alterations to

the splice variant machinery within a specific cancer subtype.

Further pan-cancer and pan-genomics are essential to quantify the

heterogeneity of gene isoform usage across cancers and their

subtypes.
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