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ABSTRACT OF THE DISSERTATION

Part I Uniform estimates for operators involving polynomial curves.

Part II: Decoupling estimates for fractal and product sets.

by

Jaume de Dios Pont
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2023
Professor Terence Chi-Shen Tao, Chair

The first part of the thesis focuses on the uniformity of harmonic analysis estimates on
curves. We first show a decomposition theorem for polynomial curves on local fields as
a bounded number of perturbations of monomial curves. Using this theorem, we extend
uniform restriction estimates for real curves to the endpoint case, show uniform decoupling
for those curves, and show novel uniform restriction estimates for curves over C, and Q,.
We then show uniform estimates for the discrete analog to this problem in a restricted range

of exponent.

The second part focuses on decoupling estimates for sets with a product or self-similar
structure. A recurring phenomenon for those sets is that functions with constant Fourier
transform on their support are far from extremizers. As applications we will show a de-
coupling estimate for fractal subsets of the parabola, and study subsets of cubes with high

additive energy compared to their cardinality.
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CHAPTER 1

Introduction

This thesis explores questions in the harmonic analysis of curves, focusing on the derivation
of novel estimates for polynomial curves. The thesis extends and builds upon existing results
in two different directions. The first research direction aims to understand the dependency
of estimates on the specific geometry of a curve, with the primary objective being to identify
large natural classes of curves where uniform estimates can be obtained. The second direction
seeks to extend these findings from real curves, defined as the images of smooth maps from
R — R? to curves in C and the p—adic numbers Q,. This extension is motivated by the
desire to understand estimates for two-dimensional objects, particularly over C, or in the
case of Q,, due to its applications to number theory and discrete harmonic analysis[42], or

the simplification of specific proof techniques [34].

A crucial geometric input for obtaining uniform estimates in current results on polynomial
curves is the Dendrinos-Wright decomposition [24], which provides a lower bound to certain
differential forms. A substantial portion of this work is dedicated to discovering improved
versions of this decomposition and generalizing it to local fields. The original proof heavily
relies on the ordering of the reals, rendering it inapplicable to higher dimensions or other
fields. Transitioning to the local field setup forces the usage of proofs based on compactness,
which offer a more refined geometric description. This refined geometric description has
applications in the real case, both by simplifying existing proofs and by establishing new

uniform estimates without necessitating additional analytic insight.

This part of the thesis is structured as follows:



e In Chapter [2, we establish a decomposition theorem for polynomial curves into a
controlled number of pieces. Intuitively, this allows for the decomposition ofDy known
only for RY and C? — as well as uniform decoupling and endpoint restricted uniform

restriction for curves in R%.

e In Chapter [] we shift our focus to the discrete analogues of the aforementioned prob-
lems, wherein K is replaced with Z¢, integrals with sums, and Fourier transforms with
Fourier series. We establish uniform estimates for the same operators, albeit within a

considerably more constrained (and non-optimal) range.

1.0.1 The operators

The operators that will concern us in this work are three: the restriction of a function’s
Fourier transform to a curve, the averaging of a function along a curve, and the decoupling
of a function with Fourier support in the neighborhood of a curve. Each of these problems
can be understood by determining the bounds of an associated operator, with the ultimate
objective being to identify classes of curves for which these operators are bounded from L”

to L9. The model example is the case of the moment curve, denoted as u(t) = (¢,¢2,...,t%).

We will consider not only curves as maps R — R? but polynomial curves mapping a
local field K of characteristic zero (that is, R, C or a finite extension of Q,) to K% In the

case where K = R, these definitions revert to the standard, well-known definitions.

The restriction operator

Definition 1.0.1 (Restriction operator). Given a curve v : K — K9, we define the restric-

tion operator R, 4 : CO(K?) — C°(K) as

(Ryaf)(t) == f(y(1)). (1.1)



Here the sub-index (v, dt) refers to the fact that we consider K, the domain of v, as a measure

space with the Haar (Lebesgue) measure, and will in general refer to a measure in K.

The model result for the restriction operator (when 7 is the moment curve and K = R?)
was originally established by Drury [26] in the full range using an iterative method of offpsring
curves (see Section [3.1)), and states

Theorem 1.0.2 (Drury [26], LP — L% bounds, Bak-Oberlin-Seeger[3|, endpoint.). Let yu :
R — R d > 2, be the moment curve u(t) := (t,¢*,...,t%). Let R, 4. be the Fourier

restriction operator defined in m Then, for any pair (p,q) satisfying

, d(d+1) > +d+2

_ 1.2
p 5 9> —m (1.2)

it holds that HR%dxHOp( Bad
< Cy holds.

LP(K9)—L9(vidAy) )

the restricted endpoint estimate HR’Y»dxHOp(LPvl(]Rd)—)LP(W'd)W))

This result, moreover, is sharp, in the Lorentz range as shown in [1] by studying the
decay of the Fourier transform of the measure v,(dx). In d = 2, there is no endpoint

restricted-weak-type estimate due to a Kakeya type construction [6].

When establishing estimates about the restriction operator it is useful to consider its

formal adjoint, the extension operator.

Definition 1.0.3 (Extension operator). Given a curve v : K — K¢, we define the restriction

operator E. 4 : CO(K) — CY(K?) as

(B f) () = / 27O f(1)dt = F (. (fdb)} (1.3)

The sub-index (v, dt) refers to the fact that we integrate with respect to the Haar (Lebesgue)
dt measure, and 7. (fdt) refers to the pushforward of the fdt measure by ~.

By duality, finding L” — L? estimates for the restriction operator is equivalent to finding

L7 — L7 estimates for the extension operator.
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The averaging operator

Definition 1.0.4 (Averaging operator). Given a curve v : K — K%, we define the averaging

operator T, 4 : CO(K) — C°(K?) as

(Tyaf)(z /f x— = . (dt) % f (1.4)

The sub-index (v, dt) refers to the fact that we integrate with respect to the Haar (Lebesgue)
dt measure, and 7. (fdt) refers to the pushforward of the fdt measure by ~.

In this case, the sharp bounds were proven in [67], and state:

Theorem 1.0.5 (Stovall |[67] (d > 4, endpoints), Christ [16] (d > 4, non-endpoints), Oberlin
[57] (d = 3), Littman [53] (d = 2) ). Let p : R — R? be the moment curve p(t) :=

(t,t%,...,t%). Let T, 4. be the averaging operator defined in . Let pg = % and qq ;=

d+1

+= 2. Then, for any pair (p,q) satisfying

(P, @) = Mpa, qa) + (1 = N)(gg, py) A € [0,1] (1.5)

Zt hOldS that HT’Y,dx’|Op<LP(K‘i)—>L‘Z(Kd)) < prq,d,K.
Moreover, T, maps the Lorentz space Lpd’“(Kd) boundedly into LQd’”(Kd) and L (Kd)

mto Lp:i’“/(Kd) whenever u < qq, v > pg, and u < v.

This result is sharp up to Lorentz-space endpints [67]. Since the adjoint of T, 4 is T+ 4
and L? bounds for both 7 4 and 1", 4 should be the same, T, 4 maps L? to L? if and only
if T, 4 maps L7 to L¥'. This is reflected in , which is invariant under exchanging (p, q)
with (¢, p).

In this work we will not focus on extending results for this operator, but rather a certain
discrete analogue of it. One would expect, however, that the results and proof strategies in
this section would allow one to construct uniform analogues to this operator as well. For
particular forms of curves over C, using a weaker version of the main decomposition theorem

of this thesis, this has been achieved by Meade [54].
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Decoupling estimates
Definition 1.0.6. Let U = {Uy,...U,} be a family of open sets C K¢ We define the
decoupling constant Decprqa (U) as the best constant so that the inequality

m 1/p
< Decprq (U) (Z Hfj||§> (1.6)

m

ij

J=1

L1(R4)

holds for all functions f; so that supp fz CcU.

The U are, in practice, chosen to be neighbourhoods of geometric objects of interest. In

our case we will consider

Definition 1.0.7. Given a smooth curve v : R — R?* we define N;(7); = {U, (=, 0) }oecoznio

where each U; is the parallelepiped

U,(z,9) = {v(x) + Z &y (ay), for all |og| < 1,k =1. ..d}

j=1,..d

These parallelepipeds are adapted neighborhoods to the moment curve (cf [35, Section
1]). Up to a scaling factor (depending on the curve), they are equivalent to the convex hull
of y([x — 0,z + 0]). The celebrated theorem of Bourgain-Demeter-Guth is an almost-sharp

(up to the e—loss) bound for the decoupling constant for a moment curve.

Theorem 1.0.8 ([12], see [35] for this formulation). Let yu: R — R? be the moment curve
u(t) == (t,t2,...,t%). Let Decgrs (Ns(p)) be the decoupling constant defined in for
Ns(p) defined in[1.0.7. Then, for any p € [2,00] and any € > 0 it holds that

Decizrr (N5(11)) < Coad™ (1 G d)) (1.7)

While we are describing the decoupling estimates as estimates, they have an associated

operator, which can be used to interpolate between them:



Definition 1.0.9. Let U = {U,...U,} be a family of open sets C K%, and M :=
{My,... My} be a family of functions with M|y, = 1. We define the decoupling opera-
tor Dy @ IP([m])LY(R?) — LY(RY) as

m

Dp((fr--- fm)) = D F (M, fy) (1.8)

k=1

If each f; has support on Uj, then .7-"_1(Mjfj) = f;. In particular one has the bound
Decpra (U) < ||Dpmlloprra—rey- If the multiplier operators have norm LP — LP bounded by
< 1, one can use interpolation theory for the decoupling operator to interpolate decoupling
estimates. This cannot be done in general. If, for example, the projection operators are
unbounded, or have very large norms, the decoupling operator will give no useful information
about the decoupling estimate. Indeed, decoupling estimates for general open sets may not

satisfy interpolation inequalities at all.

Multipliers for parallelepipeds are uniformly bounded (with bounds depending only on
the dimension). In particular, one can deduce Theorem from the p = d(d+ 1) and the

trivial cases p = 2 (Plancherel) and p = oo (Holder).

The operators described in this section can be extended, and have been extensively
studied in the case when one substitutes the curve 7 for a general manifold (see e.g. [20]),
or other geometric objects, such as fractals. The uniformity question has been studied for
much more restricted classes in the higher-dimensional cases as well, where the geometry

becomes much more subtle [56, 50, |49]

1.0.2 Discrete analogues to the operators

The Restriction and Averaging operators have natural analogues for curves (or general sub-
sets) of Z4, where integrals are exchanged for sums, and the R — R Fourier transform is

exchanged for the R — Z Fourier series. In the Fourier setting, for example, one can define

Definition 1.0.10 (Discrete analogues). For A C Z% define the discrete extension operator

7



Ea: (Y(A) — C°(TY) by

DEA(f)(x) := > exp(2miz - n) f(n) (1.9)

neA

which has as an adjoint the discrete restriction operator

DE4(f)(n) := ILA(n)/ exp(—2mix - n) f(x)dx. (1.10)
Td
Similarly, one defines the averaging operator as
DTA(f)(n) = 7 3 =) (111)
keA

As a consequence of Theorem , by letting each ﬁ converge to a Dirac delta at a

point and performing a suitable rescaling, one obtains a discrete restriction estimate.

Theorem 1.0.11 ([12], discrete restriction version). Let y: R — R? be the moment curve
u(t) == (t,12, ..., t%), and let u([N]) be the image of {1,... N} by p. Then, for any p € [2, 0]
and any € > 0 it holds that

c 1 1,@
| By lopezu(yyy—ro(ray) < CealV (N + N0 )) (1.12)

This estimate was later used in [38] (together with an e-removal argument for the case

when f = 1, shown in |12, Section 5]) to provide an averaging estimate for the moment curve

_ d * L 2
Corollary 1.0.12 (|38, Theorem 1.14]). Let u(t) = (¢,t2,...t%), d > 2. Let p* := 2 — o
Then, for any p* < p < 2 it holds that
_d%+d 1_ 1y
I DTy lopger—sery Sa N~ 2 2777 (1.13)

The proof is a direct application Theorem [1.0.11] using the product-convolution law for

the Fourier transform by bounding

17 Ll = 1 Tuampllzoeeay < Ml oy 1 | 22 iy < I vy Ll 225

8



and then applying Theorem|1.0.11|(with an e—removal) to estimate the m = E, vy (Luqay)
term. For p < p* < 2 this estimate is sharp, as seen by taking f = 1|_y n]x[-N2,N2]x...x [~ N¢,N4] -
Outside of this range, the results obtained by interpolating with elementary (Holder-type)

estimates do not coincide with the lower bounds arising from f = 1{_n n)x[-N2,N2]x- x|~ N4, N4]-

A significant difference between the continuous statements and their discrete counterparts
arises when one considers other polynomial curves different than the moment curve. In the
continuous case, near every non-degenerate point, every curve behaves like a moment curve
after an affine transformation. This, plus a dilation-invariance argument (Section ,
shows that one cannot expect better estimates for a generic curve than for the moment
curve. This does not hold in the discrete case, where one can obtain better estimates for

curves with higher degrees [21} 44].

1.1 Uniform estimates

The theorems shown in the previous section considered multiple operators that could be
studied for general curves, in the particular case of the moment curve. Considerable work
since then has been devoted to generalizing these results for larger families of curves. A

first, natural class is that of curves defined on an interval [a, b] that are quantitatively close

(in, say, the C'*° topology). Theorems|1.0.2 [1.0.5] [1.2.5[ extend to these classes with a slight

modification of the original proofs. In fact, considering such a larger family of curves can be

a necessary part of the proof, such as in proofs of the decoupling theorem |12} 35].

The situation is markedly different for curves with vanishing torsion (such as the curve
(t,t3) near t = 0). The torsion for the moment curve is constant, and these curves cannot be
studied as perturbations of the moment curve. Not only that, but the naive generalization
of the theorems for the moment curve does not hold. There is a family of counterexamples,
known as Knapp-type examples (studied in its greater generality in [58]), that impose lower

bounds to the curvature of the curve.



1.1.1 Curvature and Knapp examples

Let v : R — R? be a C¢ monomial curve of the form ~(¢) := (t*,...,t%), with a;1, > q
integers. By a Taylor expansion, 7(t) is, after an affine transformation, the leading order
approximation to any curve analytic at any point is of this form. The torsion of this curve
is

d24d

d P—
7(t) = det(7'(?), - - A (t) = Cal,._.ﬂdtzl':l“' 2

which vanishes at the origin. Consider, for § > 0, the set
K5 :=[—0,0]" x -+ x [—0,8]".

This set is the parallelepiped most adapted to ~v([—9,d]), in the sense that every paral-

lelepiped, or convex set, containing ([—d, d]) will have volume 2 that of Kj.

If f(z) = 1k:, the characteristic function of the dual (polar) set of K10, then, for any
w € K, the integrand of fRd 1 ng_“”dx will have no cancellation, and in particular, if
[t] < 6, v(t) € K5 and,

T~ [

]1K§dcc G
Rd

Let 11, be a measure supported on v. One gets two inequalities:
- 5 1/q .
Tzl ([ 1T ltdi (@) 2a (=585 S

and

1 d
p R O T

|1k

If one wants to find a measure p, so that the restriction estimate || Ry g, Hop( Lo (k) L (s

holds, this imposes the constraint

u([=6,8]) < 67 e (1.14)

The restriction theorem of Drury (Theorem D holds in the regime z% = ﬁ, and is

sharp, essentially by the example just shown, for a nondegenerate curve. If one wants such a

10



theorem to hold in a degenerate case, when S°%  a; > dz%’, that forces p([—d,0]) go to zero
faster than |0]. This motivates the definition of weights w,(t) so that the measure w.(t)dt
satisfies ([1.14]). A particular choice of weights that makes (|1.14]) hold, and in fact with an

approximate equality, is that of the affine arclength measure.

1.1.2 The affine arclength measure

In order to prove uniform boundedness for operators and overcome the Knapp condition,
one must endow the curves with a measure that is related to the curvature (or torsion in
higher dimensions), with a degree of vanishing at degenerate points preventing the Knapp
family of counter-examples. A natural choice is the affine arclength measure. This work will
rely on the natural generalization of the concept to characteristic zero local fields, inspired

by the definition for the real numbers.

1.1.2.1 Real affine arclength measure

For a real C¢ curve v : [0,1] — R? we define the real affine measure of y(t) as a weighted

pushworward of the dt measure:

1 ! " %
Ay = 2y (1detly (0,9 (1), ..,y ()]t (1.15)

Equivalently by duality, for a function ¢ in Cy(R%; R),

[ o@in) = [ a6l @50, O] = ()

The potentially suitability of this measure (which vanishes at all the points where the
torsion det[y'(2),7"(2),...,7?(2)] vanishes) to control the potential singularities of a re-

striction estimate was considered as early as in [27], and this is the measure used in, e.g. the

11



main theorem of [68]. There are several properties of this measure that make it particularly

suitable:

1. It is parametrization invariant: if ¢ : [0,1] — [0, 1] is a diffeomorphism, then A\, =
Ayog. This follows from an application of the chain rule, and the fact that for a

reparametrization ¢ : R — R,

q2

[det[(y 0 8)' (1), -, (o )P (@)] = ¢/ ()] =" | detly (6(1)), .., ¥ ((1))].

2

This is the motivation for the choice of the Trd

exponent

2. It is translation covariant: Let 7, : R — R be the translation 7,(x) = x + z, then

Aroy = (Tz)*AT

3. It is SU(n)-covariant: If A is an element of SU(N), then Ago, = A\, If A is not an
element of SU(N), a power of | det A|*(@+is gained.

4. The measure A, (or more precisely its Radon derivative % with respect to the ar-
clength dvy) vanishes at all the points where the torsion vanishes. As we have seen,
this is particularly relevant because restriction and convolution theorems in the full
range fail if one uses the Hausdorff measure at the neighborhood of a point where the
torsion of v vanishes. The degree of vanishing, moreover, makes an approximate

equality.

Weighting with the affine arclength measure, however, is not a sufficient condition, as
shown by Sjolin’s example, (t,sin(t™!)exp(—t~1), for t € (0,1) [64]. This rules out, for
example, potential candidate families for uniform estimates, such as the class of all polyno-
mial curves: If one had a degree-independent restriction estimate for polynomial curves, by
an approximation argument, one would be able to show a restriction estimate for Drury’s

counterexample

12



1.1.2.2 Complex affine arclength measure

The affine measure has a natural complex analogue, which has previously been defined in
the literature, and used e.g. by Ham-Bak in [2] to prove non-uniform (local) restriction
estimates for certain complex polynomial curves, and later by Ham and Chung [18] to prove

uniform estimates for the same class of curves.

Inspired by the real affine arclength measure, the affine arclength measure associated with

a d—dimensional complex analytic curve 7 defined on an open set D C C (i.e y(z) : D — C%)

is defined as the push-forward of the Lebesgue measure weighed by a power ( d;i -) of the

torsion of the curve:
1 , y (d) N2
Ay = = (detly (2),7"(2), ... 7 D (2)] 7| d2] ) (1.17)

The properties that were outlined in the real set-up extend to the complex case with the

following minor modifications:

1. The measure ), is covariant both under local re-parametrization of z (i.e., if ¢ : D" — D

4

Tra in the definition

is a conformal map, A\, = A,c4).The factor 4 in the exponent
(1.17) (in comparison with the factor of 2 in (|1.15))) must be introduced to ensure

reparametrization still holds.

2. The measure ), is covariant under unitary maps applied on C? (i.e. if L € SU(C;d),
then dA o, = L.dA\,).

Bak and Ham [2] show that this measure is optimal for the Fourier restriction problem,
in the sense that any measure supported on the image of + for which Theorem below

holds in its full range of exponents must be absolutely continuous with respect to dA,.

13



1.1.2.3 Affine arclength measure associated to a local field

The definition for a general local field is analogous to that of the real and complex case,
generalizing the factor of 2 (when K = R) or 4 (when K = C) to twice the doubling
exponent of the field. Let K be a local field, and let mx be the Haar measure associated
with (K, +). Define the doubling exponent of a measure on a metric space as

dk := lim —log(mK(Br))
r—0 log(r)

’

where B,.(0) denotes a ball of radius r (by translation invariance of the Haar measure, all
balls are equivalent), whenever the limit exists. The doubling exponent of the real numbers
is equal to one, the one of the complex to two, the one of any p—adic field is equal to 1 as
well, and the one of any p—adic finite degree extension is equal to the degree of the extension.
With this definition in hand, our definition of the affine-invariant measure for a C%(K) curve

1s:

1 2dg
dhy =~ (deth), Y(2),. . 7D ()] 7 |de’) (1.18)

This definition is compatible with the definitions over R, K that we have already given,
and, again, the dg factor ensures the (local) reparametrization invariance. The other prop-
erties described above (SU(n) and translation covariance, and vanishing when there is no

curvature) transfer as well to the general field case.

1.2 Contributions and comparison to previous work

The key contribution of this part is a geometric decomposition theorem for polynomials,
which will be shown in Section Informally, when reduced to the case K = R it states
that

Theorem 1.2.1 (Simplified version of Theorem [2.1.13| for K = R). Let J C R? be a finite

interval, and € > 0, let v be a polynomial curve of degree < N. Then there exists

14



1. A partition J =1, U---U I, (withm < M(N,e)) of J into nonoverlapping intervals.
2. A family of nondegenerate monomial curves iy, ..., jiy of degree < N.

3. A family of affine maps Ay, ..., Am, A; : R — R and affine bijections b; : [6;,1] — I,

with 0 < 6; < 3
so that for point in the interval interval [0;/2,2] it holds that

[(Aj oy oby)r— (el < el()l- (1.19)

where for a curve 7, (+)g represents the k—th coordinate.

In the statement of the theorem, J is only finite for simplicity of the proof, as it avoids
dealing with unbounded intervals (see Theorem . The implied bounds do not de-
pend on J. This is enough for most applications after a limiting argument. The estimate
(1.19)) implies estimates that one could expect, such as |y?| being comparable to | ,ul(d)|, but
also gives bounds in the spirit of for multilinear forms with a significant amount of
cancellation, such as det(v'(x1),...7/(z,)). This will be the content of Theorem [2.4.5

Theorem 1.2.2 (Simplified version of Theorem for K=R). Let € > 0, let N,d > 1.
There is ep = ep(N,d) > 0 so that the following holds. Let v : R — R"™ be a polynomial

curve of degree N, and ji a monomial curve so that in the interval [6;,2], the inequality

|[(7) = ()l < enl(p)xl (1.20)

holds for all k =1,...,d. Then, for 1 <k <d, and ty,...t; € [0;,2], it holds that
1V () A Ay () = 1 () A AR ) S el () A AR ()] (1.21)

As a particular application of Theorem [2.4.5] when K = R one can extend an inequal-
ity and decomposition of Dendrinos-Wright [24] to local fields, by proving it explicitly for
monomial curves, and using Eq. (1.21)).
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Lemma 1.2.3 (Dendrinos-Wright, proven in [24], see Proposition [2.4.7). Let v be a polyno-
mial curve of degree N, then, and assume that A9 [y](z) := det(y/(t),7"(t),...,7D(t)) Z 0.

Then one can decompose R as a disjoint union of intervals

My .q

R= ]
j=1
so that fort € I;
V(O] ~na Ajlt = 051", Ly ()] ~wa Ayt — by
and for ti,... tq € I,

[ det(y/(t1), ... Y (ta)| Znva [ L2V ] It =t

o<i<d 0<y<i

The Dendrinos-Wright decomposition has been a key geometric input to most of the the-

ory for uniform estimates for general polynomial curves (see e.g [23}, 68, [54]). Theorem[2.1.13]

Theorems [2.1.13| and [2.4.5{ not only generalize it to complex and p—adic numbers, but give

much finer control in the decomposition. In particular, it has consequences even for the
K = R case. In Section we will use it to prove a uniform restricted endpoint estimate for
polynomial curves. The proof is essentially a consequence of the geometric decomposition

and follow from estimates shown for proof for monomial curves in [5].

The original proof of the Dendrions-Wright inequality relies strongly on the fact that R
is an ordered field, and is proven by induction using a series of iterated integrals that allow
one to compute det(v'(¢1),...,7(ts)) as a series of integrals of functions of the torsion. The
decomposition is then chosen so that all those integrals have constant signs. This makes it
particularly hard to extend that approach to a higher dimensional case, or a case with other

fields, where one does not have access to a sign.

1.2.1 Proof strategy of the geometric decomposition theorem

The geometric decomposition theorem will be proven in three steps:

16



Reduction to a one dimensional problem:

Let 7 be the torsion map, mapping polynomial curves of degree up to N, up to affine

transformations, to polynomials of degree up to (N — d)?, up to a multiplicative constant:

7 Af(KY) \(K[I]SN)d — K\K[x]sw—d)d (1.22)

Where both quotients act on the left by multiplication. A careful analysis shows that the
domain and the target of 7 have the same dimension. The key insight of the dimensional
reduction is that for polynomial curves for which 7y # 0 (i.e. nondegenerate curves), the
map 7 is almost injective: The for a fixed polynomial p(x), the number of polynomial curves
~ that satisfy to 7(7y) = p, is finite. In Section we will show a stable version of this result:
If 7(y) is very close to a monomial on a large set, v must be, after an affine transformation,
very close to a monomial curve on a slightly smaller set. This reduces the problem of finding
decomposition for vy to that of finding a decomposition for 7(), which is a one dimensional

curve.

This phenomeon is unique to polynomial curves: for smooth curves, one can generate

infinitely many curves with the same torsion, which behave quite differently.
Factorizing the torsion to find the one-dimensional decomposition

The next step is to find a partition for one dimensional polynomials into subsets where,
after a possible translation and rescaling, they behave as monomials (in the sense that there
is a power n so that |p(z) — 2"| < ex™). We do that by lifting to a splitting field of p(x),
and using the factorization of p(z). We do that by showing there is constant C' = C'(¢) such
that, if all the zeros of p(z) have norm less than C~'7 or more than C'R, then p(z) behaves
like a monomial in the set of points r < |z| < R. Applying this argument around clusters

of zeros of p(x) shows the result.

Transferring Jacobian inequalities from monomial curves to their perturba-

tions

17



The motivation of the geometric decomposition is to translate the original proofs of
boundedness from monomials to general polynomials uniformly, by reducing to the case of
perturbations of monomial proofs. In those proofs, one makes extensive use of quantities
with a significant amount of cancellation, such as det(y'(t1),...,7'(tq)). Sections to
[2.6] are devoted to showing the transferring theorem. The theorem will be proven again by
compactness: The set of curves that are similar to a given curve on an interval are a compact
set. The main new ingredient will be a series of no-cancellation properties arising from the

explicit form of wedge products for monomial curves. For monomial curves, the polynomials

mdet(/l'(tl)a o 1 (t) (1.23)

are Schur polynomials, which are sums of monomials with nonnegative integer coefficients.

This will prevent quotients of the form “0/0” from arising when studying terms of the form

det(7/(t1), ..., 7 (tx))
det(u/(t1), ..., 1 (t))

unless some of the t; go to zero. The case when some of the t; go to zero can be treated by

(1.24)

induction using a transversality condition that will show that if ¢;,...,¢; are much closer to

zero than ¢;4q,...,%; then

[det(u'(t1), - W] M)A AP DI ) A= A ()
|U(t1,...td)| |U(t1,...tj>| |U(tj+1,...tk)|

(1.25)

1.2.2 Applications of the geometric decomposition theorem

Once the decomposition result in Theorem [2.1.13] is proven, the general proof strategy of
uniform boundedness for an operator T, (restriction, convolution, decoupling... ) is as

follows:

1. Using Theorem [2.1.13| decompose v = | | ics Vi, where 7; is the restriction of v to a
subset A;, where it is similar to an affine translation of monomial curve. Since, by

Theorem [2.1.13 |.J| < My, x. We can decompose the operator 7', as

18



Z T,

JjeJ

||| psra = < Mgnx max | T, || p—a-

LrP—L4

We will refer to the uniform bounds to ||T},||zr—srs, Where ; is similar to a monomial
curve as perturbative estimates near a monomial curve. In some situations such as in
averaging [66] or endpoint Fourier restriction [5], one is able to show these estimates

directly. If that is not the case, one can perform further reductions:

2. After an affine transformation, assume that «; is e—similar to a monomial curve. One
can decompose v; = J,cx Vjk Dy restricting into dyadic scales. Using an (operator-

specific) Littlewood—Paley type estimate, one shows that

1T o sra < Cang max ||, [| o ra.

Such an estimate requires some sort of global transversality conditions to hold for ~;,

which are deduced from the decomposition theorem.

3. A monomial curve on a dyadic interval can be split into finitely many pieces that
are e—similar to a monomial curve (up to an affine transformation). This fact can
be uniformly transferred (in Lemma to curves that are e—similar to a moment
curve. That means, one can split ;; into a union of 7;; on smaller intervals, each of
which is e—similar to a standard moment curve. After affine rescaling, this reduces the

bounds of || T ||Lr— 4 to uniform bounds to

Tl L

which are uniform over all perturbations (ji) of the standard moment curve the unit

ball.

The decomposition result of Theorem [2.1.13], combined with the strategy above will allow
us to deduce the following global uniform estimates from their perturbative analogues for

monomial curves.
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Restriction estimates

Theorem 1.2.4. Let v : K — K? be a polynomial of degree at most N in K¢. Let R, be the

Fourier restriction operator defined in m Then, for any pair (p,q) satisfying

d(d+1) d>+d+2
/ B - = . 1.2

it holds that || R, | o, < Cpgnk- Moreover if K =R and d > 3, the estimate

(LP(KH)—La(y;d\,))

HR'YvdIHOp(Lpd’l(Kd)—)Lpd(’y;dA-y)) < Cd’N hOldS

The range of (p,q) is known to be the best attainable, at least when K = R, and when
K =C [74].

The first uniform LP — L7 restriction estimate for curves can be traced back to Sjolin,
who showed an estimate of the form of Theorem [1.2.4] for C? convex curves in R?. The
first results in higher dimensions were due to Prestini [60], and Christ [17], who showed the
first results in the case of degenerate curves. The full range of exponents was shown by
Drury [26] with a proof that extends to curves that are sufficiently close to a moment curve
in the C%*! topology. Sjolin’s result implies Definition in the case p = 2. In higher
dimensions, partial progress was made in [4}, [3, 5, 24] for restricted classes of functions. Using
the geometric lemma proven by Dendrinos-Wright, Stovall extended this result in the case

K = R to the whole non-endpoint range.

In the case for local fields, for K = C, Bak and Ham [2] considered the moment curve, as
well as curves of the form (z,2% ¢(z)). The general (non-endpoint) three-dimensional case
was settled by Meade [54]. The situation for general local fields, in the case of the moment
curve, was studied by Hickman [42] (see also [41]). The proof of Theorem follows the
strategy of the original proof by Stoall, which only needs a local version of the theorem as

an input, essentially proven in [42], once one has the right polynomial decomposition.

The endpoint estimate was shown by Bak-Oberlin-Seeger [3], who then generalized it [5]

to certain simple cases of monomial curves, such as curves of the form (¢,#2,...,t471 p(t)),
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or general monomial curves. The result in [5], in fact, together with the geometric decom-
position theorem, essentially implies the endpoint part of Theorem [1.2.4] using ideas from

7.

Decoupling estimates

Theorem 1.2.5. Let v : R — R? be a polynomial of degree at most N in R?. Let N5(v)
be a union of d-parallelepipeds adapted to v([0,1]) (in the sense of Definition [1.0.7). Let
Dec2rp (Uy) be the decoupling constant associated with U, (9).

Then, for any € > 0,p € [2,00] it holds that
DeCpr (U,y) S C€7p,d,N|U7|
where |U,| denotes the number of elements (parallelepipeds) in U.,.

The uniformity theory for decoupling estimates is significantly less developed. A result
to highlight is that of Yang [75], which establishes a variation of Theorem under a
slightly different partition. The proof of Theorem [1.2.5| is very robust, as characteristic of

Decoupling estimates, and in particular, recovers the main result of [75] (see Section [3.3).

1.2.3 Discrete analogues

We will show, for a restricted range, uniform estimates for discrete analogues to two of the

problems considered in the previous section, namely

Theorem 1.2.6. Let DE, vy be the discrete extension operator associated to a curve y(t) €

Zlz|™ of degrees d = (di,...d,) (with diy1 > d;, and d, > 2) (cf Definition [1.0.1(). Let
po = d% +d,,. Then, for any py < p < oo it holds that:

Ol

N

| DE, (v llopz@zay— ey < Cape N

where |d| = Y"1, d;. Moreover, this resull is sharp for py < p < 0.
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Theorem 1.2.7. If DT,y is the discrete averaging operator associated to a curve vy € Z[x]?

of degrees d = (dy, . ..d,) (with d; < d;11, and d,, > 2), let py := 2 Then, for any

2
dZ+dn+1°

po < p < 2 it holds that:

—|d l,%
H DT'Y(H) ||Op(lP_)lp’) S Cd,pN | |(p » )

where |d| =" d;.

The main ingredient for both results will be the discrete restriction for the moment curve
arising from the Decoupling theorem of Bourgain, Demeter and Guth (Theorem [1.0.11]). We
will project down this theorem to lower dimensions to prove discrete analogues to both the

averaging and Fourier restriction questions.

This is not a new technique, even for the theorems at hand. Theorem [1.0.11| was used in
[48] to prove a discrete restriction estimate for monomial curves (essentially Theorem
restricted to monomial curves), and in [38] to prove certain [P-improving averages (essentially
Theorem [1.2.7] restricted to 1—dimensional polynomials, with a constant depending on the
polynomial). The use of (variations of) this technique in number theory is well known, and
dates as back as [43]. The interest of the results above lies in the fact that the results are
uniform over the polynomials of a given degree. In the averaging case, whether the results

held uniformly was posed in [3§].

The main drawback of this technique of projection to lower dimensions is that one does
not expect to obtain sharp ranges for p from it, even after interpolation. In other words, while
the power loss in N is sharp for the p in the given range, the range of p in the Theorem [1.2.6
not sharp but arises from the limitation of the proof. In the averaging case, for example,
estimates that cannot be deduced from Theorem can be found in [22], and in [44] for

a particular case of the restriction statement, the case (t,¢?).
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CHAPTER 2

A geometric decomposition for polynomial curves

2.1 Preliminary definitions and the decomposition theorem

2.1.1 Geometry of the decomposition

In the applications it is necessary to have some control over the shape of the sets forming
the partition of the polynomial curve. This does not pose a significant challenge in the case
K = R, in which all of the sets are intervals. In the general field case, the general sets will

be constructed as the intersection of two base sets: annuli and sectors.

We start with the definition of sectors. Let K, be Ry if K = R,C, and K, := p” if
K > Q,.

Definition 2.1.1. Given a locally compact field K, and K C K the closure of Q in K, we

define the sector ¥X of amplitude € € R centered around 1 as the set
Y ={zeK:d(z,K,) < e|z|}.

Whenever K is clear by the context we will write ¥.. For an element t € K\ {0} we will
denote by t3, the set {tz,x € X} = {z : d(t 'z, K;) < |[t| 7 |x]}. We will call 3. a sector

of amplitude € in the direction of t.

In the case K = C sectors correspond to the common angular sectors (see Figure [2.1)).
This definition is motivated by the fact that within a sector there is an approximate reverse

triangle inequality: The norm of the sum of n elements belonging to the same sector is
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comparable to the sum of the norms (see Appendix for a more precise statement).

Another quantitiy to be controlled is the norm (or distance to a point), both from above

and from below. We will do so by restricting to annuli, defined on a field as follows:

Definition 2.1.2. An annulus with center zg € K and outer and inner radius 0 <r < R <
oo will be denoted by Afp(z0) = {z € K|z — z| € (r,R)}. When K is clear from the

context,the field K will be dropped and the annulus will be denoted by A, r(2o).

We will use the term truncated sector to refer to sets A which are the intersection of a
sector and an annuli, as well as translations of those sets. The amplitude of a truncated

sector will be the amplitude of the associated sector.

2.1.2 Zoom-ins, Canonical Forms, c-similarity

A type of curve playing a key role in the decomposition theorem is that of a monomial curve.

Definition 2.1.3. For n = (nq,...,ng), with 1 > n; < n;_1, we define the monomial curve

n to be the curve of the form uy : (t) = (", ... t").

The relevance of these curves is twofold: On one hand, they are the easiest model case
to study. Most importantly, we will show that any polynomial curve can be uniformly

approximated piecewise by affine transformations of generalized moment curves.

The proof of the main geometric result (Theorem [2.1.13)) is based in understanding dif-
ferent regions of the curve v by studying the different affine transformations of v. In order
to do so we will associate to each polynomial curve 7 : K — K% of degree at most N a d x N

matrix M[y] € Maxn(K) defined as:

v (2)i = Z My];;%7. (2.1)



Complex case

p-adic case (Q3)

Figure 2.1: Representation of annuli and sectors over complex, real and 3-adic fields.
3-adic case (Qs3): The triangle ™ corresponds to 293. The triangle B corresponds to

52@3

/o7 (note that 5 in base 10 is 125 in base 3. All the numbers in the 3—adic picture are in

Qs
(3.1

Complex case (C): The triangle << corresponds to Z(f/ ,- The triangle =2 corresponds to

base 3). The set enclosed by “-:* corresponds to A

(1+ i)E‘lc/w. The annulus bounded by (i corresponds to A([Cl e
27

Real case (R): The set ==== represents the sectors XX for any a < 2 (in the real case

all these sectors degenerate to half-lines pointing either to the left or to the right). The set

enclosed by T I corresponds to A%

271]‘
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In other words, M|[v];; is the coefficient of degree j of the i-th component of v'(z). Note
that 7 is not degenerate (in the sense that its not contained in a hyperplane, and its torsion
is nonzero at at least one point) if and only if M[y]| has rank d. If A is an affine map, then
M[Ao~] = D(A) - M[y], where we are identifying the differential D(A) of the map A with

the associated matrix in the canonical basis.

Example 2.1.4. We will keep the curve y(t) = (t* — 3 + ¢ + 10,13 — t +5) (or, later on,

affine transformations of it) as a running example. For this curve we have:

-1 0 1 O

note that M[y] does not keep track of the degree zero (translation) terms of 7.

Definition 2.1.5. We will say that «y is in a canonical form of degrees n = (nq,...ng) with
0<ng <---<ng <N if M[y|in, = 0s5. We will say that 7 is a canonical form of v of
degrees n if 4 is in canonical form of degrees n and ¥ = A o~y for some invertible affine

transformation A.

Note that if there is a canonical form of degrees n of v then it is unique, that for a given
multi-index n there may not be a canonical form at all, and that if v is non-degenerate,

there is at least one multi-indiex n for which there is a canonical form.

There are two canonical forms which are particularly relevant, the canonical form at zero,

and the canonical form at infinity.

Definition 2.1.6. The canonical form at zero has degree n'?, identified by the fact that if
(0)

v has a canonical form of degree n' then n;’ < nj. Similarly, the canonical form at infinity

has degree n'™) | and for any other canonical form of v of degree n' it holds that nz(»oo) > n.

The existence of n©) follows by row-reducing M[y] into reduced row echelon form, and the

existence of n> follows analogously.
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Example 2.1.7. Keeping vy as in Example we have that 3y 4 := (t—t3,t*) is a canonical
form of degrees (1,4), and is the canonical form at zero. We have that 34 = (—t + 3, ) is
a canonical form of v of degres (3,4) and is the canonical form at infinity. In this example

there are no other canonical forms.

The degrees of the canonical forms (other than the one at infinity ) are not invariant (or
even covariant) by reparametrization. As an example that will be useful in the following
sections we consider y;(t) = y(t — 1) := (=13 + 3t> — 3t,t* — 63 + 442> — 6t + 1). This curve
is affine-equivalent to 31 (t) = (t — t* + 3t,¢* — 3t*), which is in canonical form at zero with
exponents (1,3).

As we will see in the following sections, for any point s not equal to 0,1, —1, the canonical

form at zero of s := ~y(t — s) has exponents (1,2).

The relevance of the canonical form at zero and at infinity comes from the following fact:
Lemma 2.1.8. Let v : K — K¢ be a polynomial curve with v(0) = 0. Let (\)2, € KX, be
a sequence, with \; — 0. Let A; be a sequence of invertible linear maps in K.

1. If 72 := A; o y(N\iz) converges pointwise to a non-degenerate curve 7, then 7 is affine

equivalent to a generalized moment curve with exponents nP.

2. If 22 = A o'y()\i_lz) converges pointwise to a non-degenerate curve 7, then v is affine

equivalent to a generalized moment curve with exponents n°.

3. The torsion AD[y](0) does not vanish if and only if n'® = (1,2,...,d)

In other words, the canonical form at zero and at infinity (and their associated exponents)

describe the behavior of v near zero and near infinity respectively.

Proof. For polynomials in local fields of characteristic zero, pointwise convergence of a se-

quence of polynomials of bounded degree implies convergence of the coefficients and therefore
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locally uniform convergence. We will show (1) only, as (2) follows exactly from the same

arguments.

Without loss of generality one may assume that v is already in its canonical form at zero.
Let Ly := diag(A\™,...,\%). Let 7; := Ly o y(\; 'z), and A=A, L7 A computation in

the matrix representation shows that

Mly,] = Ly - M) - diag(A~%, ... A™™). (2.2)

Since M|[y] is in reduced row echelon form, M|[y;] is as well, and converges to the gener-
alized moment curve pmo. The matrix M[y;] has full rank, and, for i large enough, so does
M[+?] (because of the hypothesis that 7Y converges to a non-degenerate curve). In partic-
ular, one may recover (in a continuous manner) the linear maps A; from M[v,] and M[yY]

once 7 large enough. Taking a limit of the A; shows the affine equivalence.

If A®)[~](0), the first d derivatives of 7 at zero must be linearly independent, and therefore
the first d columns of M|[v] must form a rank d matrix. This shows (3). O

This motivates the following definition:

Definition 2.1.9 (Zoom-in). Let v be a polynomial curve in canonical form with exponents

n. Then we define the zoom in of v at scale A € K as the curve Z,[y](z) = diag(A™,...\")o
(A7)

The last step will be to quantify the similarity between two polynomials in a certain

region, and between a curve and a generalized moment curve.

Definition 2.1.10. We will say that a polynomial p : K — K, p(z) = Zigdegppizi, is
e—similar to a homogeneous polynomial q(z) = 2* i