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ABSTRACT OF THE THESIS

Frequency and Phase Estimation for Application in Non–Optical

Position Tracking of Maglev Vehicles

by

Alicia Powers

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2009

Professor Miroslav Krstić, Chair

This thesis considers how the position of a magnetic levitation train can be found

non-optically using signal processing techniques. An overview of magnetic levitation

trains is given, including an explanation of the necessity for non-optical position

sensing. A least-squares with forgetting factor algorithm is derived, showing its

convergence and stability. The input signal is manipulated so that the least-squares

algorithm can be applied. Extremum seeking is introduced and utilized for phase

estimation of the high frequency signal. When adding noise to the incoming signal,

the frequency estimates remain accurate if the forgetting factor is allowed to vary

proportional to the slope of the estimate. Additive noise has little effect on the

extremum seeking phase estimate. The frequency and phase estimation is combined

to reconstruct an estimate of the carrier signal to demodulate the signal and extract

the position of the train.
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Introduction

Magnetic levitation (maglev) trains as an advancing technology for providing a

new means of transportation have steadily gaining interest in the United States over

the past several years. Although maglev trains, first conceived of in the mid–sixties,

have been in testing and operation for the past two decades, there still remain many

areas for improvement. There is still debate and discussion on what technologies

should be utilized in the three main areas necessary for maglev operation: levitation

support, propulsion, and guidance.

Linear Synchronous Motors (LSMs) are one of the more common methods for

providing the propulsion component to the maglev system. The ability to accurately

track the train’s position as it moves along the track provides essential information

for the LSM controller. If the position information is inaccurate, the LSM will not

synchronize properly, putting the magnetic field out of alignment with the applied

current, which results in zero thrust. The various methods proposed to track the

train’s position include: optical encoders, magnetic encoders, and signal processing.

The component chosen to determine the train’s horizontal position must be accurate

for signals with variation in amplitude and large levels of noise, in addition to having

a knowledge of absolute position. General Atomics currently uses an optical sensor

to follow the train’s position. The optical encoder flags crossings between black

and white stripes alongside the track as seen in figure 1.1 from [14]. The width of

the black and white stripes is constant and has a length corresponding to a known

horizontal displacement of the train. One difficulty with using an optical encoder is

the likelihood of failure should dust, dirt, snow, or any substance interfere with the

encoder’s ability to distinguish between the stripes. In this case the encoder will

not count properly and the position of the train will be inaccurate. In addition, the

1
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Figure 1.1: Optical Encoder Method of Position Tracking

optical encoder does not give absolute position but requires synchronization. Al-

though a magnetic encoder does not have a problem of inaccuracy due to substances

on the track, the presence of large magnetic fields for lift could cause difficulty in de-

tecting the correct magnetic flux and the issue of absolute position is not resolved.

Hence, a more robust method is needed to track the train’s position. Currently,

MagneMotion uses LSMs for many types of applications, including maglev trains

but also for elevators and conveyors. Their position tracking of the moving com-

ponent is determined through non-optical means. Using signal processing methods,

the three coil windings, which create the basis for the LSM, can also be used for

position tracking. The coils operate at the same frequency but with phase offsets

of 120◦ between each, plus an addition phase offset corresponding to the position of

the train. The pattern of three coils with phase offsets is repeated over the length

of the track. By transmitting a high frequency, ten kilohertz range, carrier signal

from the train to the LSM coils on the track, the low frequency sinusoid of the coils

receives the high frequency carrier, creating a modulated signal. This modulated

signal can be used to find the position of the train, by demodulating the signal so

that only the low frequency LSM signal remains. Non-optically detecting the posi-

tion has several benefits: effectively operating in various weather conditions, high

signal to noise ratio, absolute position measurements, and low power levels required

to generate the carrier signal. The objective of this thesis is to develop a robust
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method for estimating the position of the train using more novel signal processing

techniques. This work will help to further the transfer of General Atomics’ position

estimation from optical to non-optical.

1.1 How Magnetic Levitation Trains Work

Figure 1.2: The Three Components of a Maglev System from [17]

Maglev trains operate using three main components: levitation support, guid-

ance, and propulsion, as shown in figure 1.2 from [17]. There are many ways to

design these components depending on the speed of the train, building costs, oper-

ating costs, and many other factors. The operating speed of a train is broken into

two categories, high-speed intercity and urban. Germany’s Transrapid operating in

Shanghai China and Japan’s HSST and JR–maglev are the most well known high

speed trains. Japan Railways Group holds the highest speed reached by a train, op-

erating at 581km/hr (361mi/hr). Several projects in the United States are currently

investigating lower speed urban trains but none are currently used for commercial

or public transport.
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1.1.1 Levitation

The main methods used for levitation include: Electro-Magnetic Suspension

(EMS), Electro-Dynamic Suspension (EDS), and Stabilized Permanent Magnet Sus-

pension (SPM). The EMS uses electromagnets on the train to repel away from the

track, which is made of iron or some other magnetic material. The gap size between

the train and track is around 15 millimeters. This requires a highly tuned control

system to monitor and adjust the electrical current sent to the electromagnets on

the train so that the gap between the train and the track remains constant. The

necessity of maintaining this minimal gap is an area of concern since the system is

inherently unstable and vibrations from the train or track add variation to the gap

size, which causes greater difficulties for the controller. A positive benefit to using

EMS is the minimal magnetic field that surrounds the train, limiting the magnetic

exposure of the passengers. In addition, EMS has proved reliable and can maintain

stability at high speeds while requiring no additional landing wheels at low speeds.

The EDS method uses repelling magnetic forces between the train and track, which

are created through various combinations of permanent magnets and electromag-

netic coils. The magnetic flux created between the track and the train is not strong

enough at zero speed to lift the train, thus secondary landing gear is needed when

the train stops at stations. Once the train reaches a certain speed, the magnets can

lift the train off the track. The benefit of the EDS is the large air gap between the

train and track which remains stable and allows for large load capacity. The use of

high temperature superconducting magnets on the train, cooled by liquid nitrogen,

makes it possible to levitate the train without the need for a large electrical power

supply on the train itself. The main drawback of EDS is the large magnetic field

that bleeds into the passenger cabin, requiring magnetic shielding inside the train,

otherwise all magnetic devices (computers, credit cards) will become demagnetized.

SPM uses permanent magnets arranged in a Halbach array for both the train and

track. Therefore, no electricity is required for levitation, making the train more

cost efficient and minimizing electromagnetic drag. Although it still requires wheels

to support the train at zero speed, it is able to maintain levitation at slow speeds,

increasing the amount of levitation time over the EDS design. The main benefit of

using SPM is that the magnetic field does not extend beyond the region between the

train and track, resulting in no magnetic exposure of the passengers. Also, there is

no energy consumption used in the levitation component of the train, reducing the
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operating cost substantially.

1.1.2 Guidance

The electromagnets used to create levitation in EMS and EDS systems also

provide guidance since the electromagnets wish to be centered over the track’s mag-

netic field. Therefore, no additional guidance is needed for these two designs. The

SPM design requires additional guidance to keep the train centered over the track.

Electromagnetic coils placed on the bottom of the permanent magnets on the train

provide guidance through sending a small amount of current through the coils. This

current only needs to be sent when the train is drifting away from the center of the

track or going around a curve and since the coils do not have to produce any upward

lift force, the energy consumption is very small.

The guideway incurs a large portion of the building costs for maglev systems,

since many of the electronics and controls are housed in the guideway. The guideway

must be designed to withstand vibrations from the train as it moves along the track

and ensure minimal deflection, since any large deflections in the guideway cause

additional noise in the sensor readings. In addition, the guideway must require

minimal maintenance and have a life time of 80 – 100 years [17].

1.1.3 Propulsion

The two main propulsion techniques, Linear Induction Motors (LIMs) and Linear

Synchronous Motors (LSMs), are both used in the currently operating trains. Japan

HSST uses a LIM for propulsion while Germany’s transrapid uses a LSM. In EDS

trains, the magnets on the train and electromagnets on the track can provide both

lift and thrust, using a LSM. For EMS and SPM trains, thrust is not correlated

with lift, thus additional methods using LIM, LSM, or non–magnetic propulsion

must be added. A LIM takes a conventional linear inductor machine and unrolls it

to create horizontal displacement rather than angular displacement. In a single sided

topology, in order to have continuous action, the stator and the secondary must be

different lengths and most applications choose the linear stator to be short and the

linear secondary to be long. This is best incorporated into the EMS design, since the

coils on the train create a magnetic field, which induces a current in the passive metal

plates on the track. The advantages of using a single sided linear induction motor is
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the ability to provide greater thrust independent of friction, smaller turn radius, and

propulsion up steep slopes [21]. One disadvantage of LIMs is the increased weight of

the train, putting a limit on the maximum achievable speed and reducing the overall

operating efficiency. Since the secondary component is passive, the amount of power

required to create propulsion is much larger than for LSMs and the gap between

the stator and the secondary must be small [11]. In addition, the reactor plate

which receives the current can become overheated reducing its structural integrity.

An alternate method uses a double sided topology with the stator extending the

length of the track and the secondary attached to the carriage as a simple plate

[5]. The benefit of this method is the passivity of the train, requiring no high

voltage components on board the train. A concern with this design is the increased

constraint on the veritcal movement of the train, since the train has to stay within

the small slot between the two stator plates. The alternative magnetic propulsion

option, LSM, has higher building cost but greater overall efficiency and less long term

costs. The LSM uses electromagnetic forces through electrical coil windings on the

track to propel the train. Since the moving magnetic field is located on the track,

the onboard power is reduced and the vehicle is lighter. In addition, because the coil

windings do not have to induce a current in the secondary component the amount of

power consumption required is less than for LIMs [11]. A variable reluctance LSM

uses the difference in the reluctance of the d and q-axis and the moving magnetic field

to generate propulsion. The speed of the train is proportional to the synchronous

speed of the current flow through the coils, controlled by varying a low frequency

sinusoid or Pulse Width Modulator (PWM). The necessity of knowing the position

of the train is the main drawback to using LSMs. Position feedback information

is used to precisely synchronize the coil current with the moving magnetic field on

the train [6]. Without proper synchronization with the traveling magnetic field, no

propulsion occurs; therefore, knowing the position of the vehicle is essential.

1.2 Current Signal Processing Techniques

For this application, the input signal contains two modulated sinusoids; one of

which is a high frequency signal from the train and the other a low frequency signal

from the coils, which contains the position of the train as the phase offset. Using

demodulation, the undesired carrier signal is removed and the sinusoid containing
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the position information is isolated. However, the frequency and phase of the carrier

signal must be known before the signal can be demodulated. Since initially only the

order of magnitude for the frequency is known, both frequency and phase must be

estimated more accurately. The use of demodulation to separate two sinusoids is a

commonly used technique in communication systems. In a typical radio application,

the transmitted signal frequency is known and the phase of the signal must be

estimated in order to accurately demodulate the signal. Phase locked loops are one

of the more common methods for finding the phase and are widely used in all types

of communication applications [1]. [13] compares the robustness, convergence rate,

and accuracy of various controllers in the phase locked loop. Adaptive filters used

for phase estimation is examined in [10]. In this thesis an alternate method for

phase identification will be examined using the nonlinear property of the sinusoidal

signal.

Frequency estimation is commonly used for sonar application. For post process-

ing the data, [15] uses periodograms as a basis for finding the frequency of sinusoids

close to zero or two sinusoid close to each other in frequency. In other types of

application such as vibration control, disk drives, and magnetic bearings [9], the

frequency of a signal needs to be identified in real time. The various techniques for

online estimation of frequencies include notch filters [16], frequency locked loops,

adaptive filters, and Extended Kalman Filters [18]. The work done by [2, 8, 12, 20],

identifies the frequency of single sinusoidal and additive sinusoidal signals using ob-

servers. In this research, frequency estimation will be extended to the multiplicative

sinusoid case using a least-squares technique.

1.3 Contributions and Contents of Thesis

Demodulation is a well known and highly established method, which can be

utilized to separate the two sinusoids and will in this application lead to position

tracking of the train. Prior to demodulation, the frequency and phase of the unde-

sired sinusoid must be estimated given limited knowledge of the frequency and no

knowledge of the phase. This thesis provides an overview on how to estimate the

frequency and phase of modulated sinusoids, cos(ω1t + φ1) · cos(ω2t + φ2).

First, the signal processing method used to create the modulated signal is de-

scribed. An overview of the current non-optical method for locating the train is
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examined to provide an understanding of which variables are desired and how the

signal can be manipulated. Then the new method examined in this thesis will be

introduced.

The initial step in the demodulation process is estimating the frequency, which

will be done through parameter estimation. First the derivation for parameter esti-

mation is examined, using a least squares cost function. An exponential multiplier

is introduced into the least-squares cost function, denoted as the forgetting factor,

to focus the cost function on the most recent data, thereby increasing the conver-

gence rate from polynomial to exponential. The proof of stability and convergence

is reviewed, using the persistence of excitation condition. A comparison between the

continuous-time recursive least–squares algorithm with forgetting factor and the con-

tinuous time Kalman filter will be examined and concluded that the least–squares

algorithm is superior for this application.

In order to utilize the least squares algorithm to estimate the frequencies of the

modulated sinusoids, the frequencies must be put in a parametric relationship with

the input. Applying a trigonometric identity transforms the multiplicative sinusoids

into an additive sinusoidal relationship and using the derivatives of the sinusoids,

the least–squares algorithm is applied. Simulation results confirm the stability and

convergence of the parameters. In order to handle the addition of noise to the signal,

the forgetting factor is changed from a constant to a variable that is adjusted online.

This allows for quick convergence and reduces the noise effects of the zero gradient

regions.

The phase estimation is done using extremum seeking. Using the local maximum

of cosine at zero degrees, the error between the actual and estimated phase of the

high frequency signal is minimized. A proof of extremum seeking will be examined

to ensure stability of the phase estimate. Simulation results confirm the stability

both without noise and in the presence of additive noise.
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Theory of Signal Processing

The Linear Synchronous Machine with vector control produces the thrust com-

ponent of the maglev system and operates similarly to a DC motor. A magnetic

field propagates from the magnetic Halbach array on the chassis of the train. By

applying a current in the coil windings on the track, a second moving magnetic field

is generated. Since opposite poles attract, the magnetic field on the train is drawn

toward the opposite magnetic field created by the coils. Hence the train is pulled

along as the coils continue to move the magnetic field down the track. As shown in

figure 2.1, the current from the coils creates a magnetic field and the magnetic field

from the train is drawn down the track, which propels the train forward. As long

Figure 2.1: Diagram of Magnetic Flux and Current in the d and q axis, Creating
Propulsion

the magnetic field from the train remains perpendicular to the q-axis, the current

applied in the q-axis direction produces optimal thrust efficiency. Knowing the po-

9
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sition of the train allows synchronization of the current sent to the coils and propels

the train forward.

In order to detect the position of the train, signal processing methods are utilized.

A coil drive mounted on the vehicle transmits a high frequency signal, denoted as

the carrier signal, to the three-phase windings of the LSM. The resonant circuitry

mounted across the windings is tuned to the frequency of the signal sent from the

train. Figure 2.2 shows the basic concept of the signal transmission from the train to

the coils. The term three-phase windings of the coils denotes the three alternating

phase shifts of the coils’ sinusoidal signal. These offsets in phase create an orthogonal

basis for the position signal. The magnetic flux created by the high frequency signal

penetrates the LSM windings and the resulting voltage from each of the three-phase

coils is proportional to a modulated signal, in phase with the respective coil sinusoid.

Figure 2.2: Signal Transmission from Train Drive Coil to Three-Phase LSM
Windings

2.1 Current Non-Optical Position Detection

The following analysis reviews the method for position detection currently under

testing, as laid out by [3]. The train moves at a speed v which relates to an angular

frequency of ωp = 2π v
λ
t. The high frequency signal produced by the drive coil on
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the train creates a magnetic flux proportional to a voltage,

vc ∝ sin(ωct + φc).

The three-phase windings on the track have a density with sinusoidal distribution,

at a frequency corresponding to the train’s velocity. The phase offsets of the three

coils are located at, 0, −2π
3

, and 2π
3

radians in order to be equally spaced over the 2π

radians of a circle. An additional phase shift present in the sinusoid, φp, corresponds

to the horizontal position of the train,

nx ∝ sin(ωpt + φp + φx), x = a, b, c φx =























−2π
3

x = a

0 x = b

2π
3

x = c

. (2.1)

When the signal from the train is received by the coils on the track, the resulting

voltage at the coils is proportional to a modulated sinusoid between the carrier signal

and winding densities,

vx ∝ sin(ωct + φc) sin(ωpt + φp + φx), x = a, b, c φx =























−2π
3

x = a

0 x = b

2π
3

x = c

. (2.2)

The amplitude of the signal is not constant as the distance between the transmitter

and coils changes due to vibrations. This variation in amplitude must be included

in the modulated signal. Common mode noise is also present in the transmission,

thus a more realistic equation for the modulated signal becomes,

vx ∝ A(t) sin(ωct + φc) sin(ωpt + φp + φx) + Ncm, x = a, b, c. (2.3)

The three windings on the track create the orthogonal basis of the modulated signal,

which allows for the common mode noise to be removed. Removing the common

mode noise and using a trigonometric identity, equation (2.3) is rewritten,

vx ∝ A(t)[cos((ωc − ωp)t + φc − φp − φx) − cos((ωc + ωp)t + φc + φp + φx)]

In order to make the vector control uncorrelated between the d and q axis, the

voltages must be transformed from a, b, c to the d-q frame. A receiver signal with

arbitrary phase multiplied with the voltages of the three coils transforms the signals
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into the d-q frame.

vd ∝
∑

x=a,b,c

A(t) sin(ωrt + φr + φx)·

[cos((ωc − ωp)t + φc − φp − φx) − cos((ωc + ωp)t + φc + φp + φx)]

vq ∝
∑

x=a,b,c

A(t) cos(ωrt + φr + φx)·

[cos((ωc − ωp)t + φc − φp − φx) − cos((ωc + ωp)t + φc + φp + φx)]. (2.4)

Through expansion of (2.4) using trigonometric identities, the sinusoids with com-

mon modes from the phase offsets can be removed. The magnitude of the voltage

in the d and q directions reduce to

vd ∝A(t)[sin((ωc + ωr − ωp)t + φc + φr − φp)

+ sin((ωc − ωr + ωp)t + φc − φr + φp)]

vq ∝A(t)[cos((ωc + ωr − ωp)t + φc + φr − φp)

− cos((ωc − ωr + ωp)t + φc − φr + φp)]

A low pass filter removes the high frequency signal to reduce the voltage equations

even more, but the filter also adds a phase shift,

vd ∝ A(t) sin((ωc − ωr + ωp)t + φc − φr + φp + φfF )

vq ∝ −A(t) cos((ωc − ωr + ωp)t + φc − φr + φp + φfF ) (2.5)

Looking at (2.5), taking the ratio −vd

vq
allows the voltages in the d and q directions to

be combined into a single tangent function. The forward angle is defined by removing

the trigonometric function, retaining only the frequency and phase components,

φF = arctan

(

−vd

vq

)

= (ωc − ωr)t + ωpt + φc − φr + φp + φfF (2.6)

In addition to analyzing the forward angle by taking the positive component of

the receiver frequency, the negative frequency values can also be evaluated. The

same procedure starting from equation (2.4) is followed, except ωr and φr are re-

placed by −ωr and −φr. As a result of the change in signs, the magnitude of the

voltages in the d and q directions become,

vd ∝ A(t) sin((ωc − ωr − ωp)t + φc − φr − φp − φfB)

vq ∝ A(t) cos((ωc − ωr − ωp)t + φc − φr − φp − φfB).
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These two trigonometric functions can be combined to define the backward angle,

φB = arctan

(

−vd

vq

)

= −(ωc − ωr)t + ωpt − φc + φr + φp + φfB. (2.7)

By adding (2.6) and (2.7) the frequency and phase of the carrier and receiver signals

are eliminated. In addition, if the phase offsets from the filters are known, they can

also be subtracted from the forward and backward angles, leaving only the frequency

and phase corresponding to the train,

φF + φB − φfF − φfB = 2(ωpt + φp) (2.8)

2.2 Position Detection Using Demodulation

An alternative method to determining the position is to eliminate the high fre-

quency signal from the modulated input. This is done through demodulation, which

multiplies the input with the high frequency carrier signal and applies a low pass

filter to output only the low frequency sinusoid. In order to demodulate the signal

the frequency and phase of the carrier must be determined. Hence the objective

of this research is to estimate the frequency and phase of the carrier signal, given

the modulated input and the order of magnitude of the carrier frequency. Once the

sinusoid from the coils is separated from the carrier, the phase can be extrapolated.

The benefit of demodulation over the d-q transformation approach is the increase

in signal to noise ratio. In addition, only one of the coil sinusoids is needed, rather

than all three.



3

Parameter Estimation

In this chapter the continuous-time recursive least–squares algorithm with for-

getting factor is derived. First, the system is placed in a parametric form. The

cost function uses the parametric form to derive the equations forF updating the

parameter estimates. The conditions of persistence of excitation are placed upon

the system. Then the stability proof and convergence of the algorithm is reviewed.

Lastly, the least-squares algorithm is compared to the continuous time Kalman filter.

3.1 Parametric Model Form

The parametric model of an input output system is given by

Y = ΦT θ. (3.1)

This is derived from a polynomial relationship between the input u and the output

y,

b0 + b1
dy

dt
+ · · · +

dny

dtn
= a0 + a1

du

dt
+ · · · + an−1

dn−1u

dtn−1
. (3.2)

The parameters b and a are the values that need to be estimate with the output y

as the only known value in the polynomial relationship. The unknown parameters,

ak, bk, where 0 ≤ k ≤ n, are grouped together on the right hand side, while

any values independent of the parameters are moved to the left hand side. The

unknown parameters are arranged in a column vector, θ, and the inputs/outputs

which correspond to the unknown parameters are arranged in a second vector, Φ.

θ = [a0, a1, · · · , an−1, b0, · · · , bn−1]
T (3.3)

14
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φ =

[

u,
du

dt
, · · · ,

dn−1u

dtn−1
,−y, · · · ,−

dn−1y

dtn−1

]T

. (3.4)

The known portion of the equation on the left hand side, dny

dtn
, is independent of

any parameters and therefore equation (3.2) is rewritten as,

dny

dtn
= φT θ. (3.5)

In general, one does not have information about the nth derivative of y, only y itself

and having to take derivatives of a function is undesirable. By transforming the

system into the Laplace domain, the need to know the derivative of y is removed by

multiplying an nth order filter Λ = sn + λn−1s
n−1 + · · · + λ0 to both sides of (3.5).

Equation (3.5) in the Laplace domain with the filter becomes

sn

Λ
[y] =

1

Λ
φT θ. (3.6)

By defining Y = sn

Λ
[y] and Φ = 1

Λ
φ, the parametric model of equation (3.1) is

obtained.

3.2 Least Squares form of Adaptive Filter

Although there are multiple methods for parameter estimation, the least squares

method was chosen for this application to allow for real time adjustment of the gain,

including an exponential term to focus the gain on the most recent data. Although

a pure least squares without the exponential term can be used, the convergence rate

can be slow. Based on the least squares with forgetting factor approach found in [7]

and Section 4.3.6 of [10], an overview of the derivation is reviewed.

The least–squares with forgetting factor algorithm uses the parametric form (3.1)

to determine the error between the actual system and the estimated system, defining

the estimated system as Ŷ = ΦT θ̂. The following cost function is minimized and

used to update the parameter estimates,

J(θ̂) =
1

2

∫ t

0
e−β(t−τ)[Y (τ) − ΦT (τ)θ̂(t)]2 dτ +

1

2
e−βt(θ̂ − θ̂0)

T Q0(θ̂ − θ̂0). (3.7)

Defining Q0 = QT
0 > 0, β > 0 and θ̂(0) = θ̂0, this is the generic form of the

least squares with forgetting factor cost function. Note that β is exponentially

related to the error, which causes the cost to focus only on the most recent data and
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removes the weight of the previous errors exponentially. The additive term penalizes

the initial error and is also exponentially decaying at the rate βt. By defining Y ,

Φ ∈ L∞, J(θ̂) becomes a convex function of θ̂ in Rn at each time t. Therefore

the local minimization of Y − ΦT θ̂ is also a global minimum and consequently,

∇J(θ̂) = 0. Setting the gradient of (3.7) to zero,

∇J(θ̂) = −
∫ t

0
e−β(t−τ)Φ(τ)[Y (τ) − ΦT (τ)θ̂(t)] dτ + e−βtQ0(θ̂ − θ̂0) = 0. (3.8)

Solving (3.8) for θ̂ reveals the nonrecursive least-squares algorithm,

θ̂ = Γ[e−βtQ0θ̂0 +
∫ t

0
e−β(t−τ)Φ(τ)Y (τ) dτ ], (3.9)

where

Γ = [e−βtQ0 +
∫ t

0
e−β(t−τ)Φ(τ)ΦT (τ) dτ ]−1 (3.10)

and Q0 = QT
0 > 0 and ΦΦT ≥ 0. Based on these conditions, Γ(t) exists at each time

t. Taking the inverse of the function is undesirable; thus, an alternate method for

finding Γ is used. Starting with the identity,

d

dt
(ΓΓ−1) = Γ̇Γ−1 + Γ

d

dt
Γ−1 = 0

and rearranging to derive the differential equation form,

Γ̇ = −Γ
d

dt
Γ−1Γ = −Γ(−βe−βtQ0 − β

∫ t

0
e−β(t−τ)Φ(τ)ΦT (τ) dτ + ΦΦT )Γ

= −Γ(−βΓ−1 + ΦΦT )Γ

Γ̇ = βΓ − ΓΦΦT Γ. (3.11)

Now Γ can be calculated by taking the integral of (3.11) and Γ−1 no longer needs

to be calculated.

Putting θ̂ in a differential form creates a continuous time update algorithm. By

taking the derivative of equation (3.9) with respect to time,

˙̂
θ = Γ̇Γ−1θ̂(t) + Γ[−β(e−βtQ0θ̂0 +

∫ t

0
e−β(t−τ)Φ(τ)Y (τ) dτ) + ΦY ]

= [βΓ − ΓΦΦT Γ]Γ−1θ̂(t) + Γ(−βΓ−1θ̂(t) + ΦY )

= βθ̂ − ΓΦΦT θ̂ − βθ̂ + ΓΦY

˙̂
θ = ΓΦ(Y − ΦT θ̂) (3.12)

Using equations (3.11) and (3.12), known as the continuous-time recursive least–

squares algorithm with forgetting factor, the estimate θ̂ converges to θ and the gain

is updated by Γ. Figure 3.1 shows the block diagram for the algorithm, with online

tuning of Γ.
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Figure 3.1: Block Diagram of Least–Squares Adaptive Filter

3.3 Stability Proof for Least–Squares

[7] goes into great detail about the proof of convergence and stability for the

continuous-time recursive least–squares algorithm with forgetting factor. Since the

pure least–squares with β = 0 is not used for this application, the proof of this

algorithm will not be reviewed here. The least–squares with forgetting factor β > 0

will be summarized based on [7] and [10].

In order for θ̂ to converge to θ, Φ must satisfy the conditions of persistence of

excitation and Φ(t) ∈ L∞. Persistence of Excitation is defined as:

Definition 3.1 Persistence of Excitation (PE): A piecewise continuous signal

vector Φ : R+ → Rn is PE in Rn with a level of excitation α0 > 0 if there exist

constants α1, T0 > 0 such that

α1I ≥
1

T0

∫ t+T0

t
Φ(τ)ΦT (τ) dτ ≥ α0I, ∀t > 0. (3.13)

The definition requires that Φ(t) vary over time so that the integral of Φ(τ)ΦT (τ)

is uniformly positive definite over any time interval [t, t + T0].

Assuming that Φ satisfies the PE condition and knowing that

d

dt
Γ−1 = −Γ−1Γ̇Γ−1,
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the steady state value of Γ can be determined. Since Γ̇ is known, d
dt

Γ−1 is written

as
d

dt
Γ−1 = −βΓ−1 + ΦΦT . (3.14)

This ODE is solved,

Γ−1 = e−βtΓ−1
0 +

∫ t

0
e−β(t−τ)ΦΦT dτ (3.15)

and the integral on the right hand side is similar to that seen in the PE condition,

equation (3.13). For t > T and since e−βtΓ−1
0 ≥ 0 ∀t, (3.15) is rewritten as an

inequality,

Γ−1 ≥
∫ t

0
e−β(t−τ)ΦΦT dτ

≥
∫ t−T0

0
e−β(t−τ)ΦΦT dτ +

∫ t

t−T0

e−β(t−τ)ΦΦT dτ

≥ e−βT0α0T0I.

If t < T0,

Γ−1 ≥ e−βtΓ−1
0 ≥ e−βT0Γ−1

0

≥
1

λmax(Γ0)
e−βT0I. (3.16)

Defining

γ1 = min

{

α0T0,
1

λmax(Γ0)

}

e−βT0 , (3.17)

substitute (3.17) back into (3.16),

Γ(t)−1 ≥ γ1I. (3.18)

The upper bound for Γ−1 can be determined starting with (3.15) and using the

upper bound of Φ from the PE condition.

Γ−1 ≤ Γ−1
0 +

∫ t

0
e−β(t−τ)Φ(t)ΦT (t) dτ

≤ Γ−1
0 +

1

β
α1T0I −

1

β
e−βtα1T0I

≤ Γ−1
0 +

1

β
α1T0I

Defining

γ2 =
1

λmin(Γ0)
+

α1T0

β
, (3.19)
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the upper bound for Γ−1 is defined as,

Γ(t)−1 ≤ γ2I. (3.20)

Now Γ−1 is bounded on both sides from equations (3.18) and (3.20),

γ1I ≤ Γ(t)−1 ≤ γ2I (3.21)

and taking the inverse,

γ−1
2 I ≤ Γ(t) ≤ γ−1

1 I (3.22)

Since Γ has both upper and lower bounds, it satisfies the condition Γ ∈ L∞.

θ̃ is defined as the error between the parameters and the estimates,

θ̃ = θ − θ̂ (3.23)

and the derivative
˙̃θ =

˙̂
θ (3.24)

since the actual parameters are constant.

Now looking at the Lyapunov function

V = θ̃Γ−1θ̃, (3.25)

and taking the time derivative,

V̇ = ˙̃θT Γ−1θ̃ + θ̃T Γ̇−1θ̃ + θ̃T Γ−1 ˙̃θ

= 2θ̃T Γ−1(−ΓΦΦT θ̃) + θ̃T (−βΓ−1 + ΦΦT )θ̃

= −θ̃T ΦΦT θ̃ − βθ̃T Γ−1θ̃.

Given that θ̃T ΦΦT θ̃ ≥ 0, V̇ ≤ 0 and the above equation can be reduced to the form,

V̇ ≤ −βθ̃Γ−1θ̃

≤ −βV (3.26)

or alternatively,

V (t) ≤ V0e
−βt, ∀t ≥ 0. (3.27)

Thus the exponential stability of the system is proved. To show that θ̃ converges to

zero, use (3.22) and (3.25) to bound θ̃ by,

|θ̃|2γ1I ≤ V ≤ |θ̃|2γ2I. (3.28)
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Looking at the upper bound of θ̃ and rearranging (3.28),

|θ̃|2 ≤
1

γ1

V

and in addition, from (3.27) using the upper bound on V ,

|θ̃|2 ≤
1

γ1

V0e
−βt.

The upper bound for V0 as shown in (3.28) gives the final inequality for θ̃,

|θ̃|2 ≤
γ2

γ1

|θ̃0|
2e−βt. (3.29)

Therefore limt→∞ θ̃(t) → 0 due to the negative exponential term, which means that

θ̂ → θ exponentially.

3.4 Kalman Filtering

The Kalman Filter is well known for its stability and robustness and is widely

applied in the areas of tracking and estimation. Given a state space representation

of the input output relationship, the various vectors and matrices are easily inserted

into the continuous Kalman Filter. The continuous time Kalman filter is laid out

in section 8.2 of [19]. Starting with the state space representation,

ẋ = Ax + Bu + w

y = Cx + v,

the Kalman filter estimates the values of x according to the following equations,

x̂(0) = E[x(0)]

P (0) = E[(x(0) − x̂(0))(x(0) − x̂(0))T ]

K = PCT R−1
c

˙̂x = Ax̂ + Bu + K(y − Cx̂)

Ṗ = −PCT R−1
c CP + AP + PAT + Qc, (3.30)

where Rc and Qc are the variance of the Gaussian white noise signals w and v.

When comparing (3.30) to that the least–squares algorithm (3.11) and (3.12), it is

seen that if β = 0, the two have a compatible form by setting A = 0, B = 0, Qc = 0,
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R−1
c = I, y = Y , x = θ, P = Γ, and CT = Φ. The Kalman filter can be rewritten

using the variables of the least-squares algorithm as

θ̂(0) = E[θ(0)]

Γ(0) = E[(θ(0) − θ̂(0))(θ(0) − θ̂(0))T ]

K = ΓΦ

˙̂
θ = K(Y − ΦT θ̂)

Γ̇ = −ΓΦΦT Γ. (3.31)

It is interesting to note, that the differential equation for ẋ from the input output

equations is zero, which means that x is a constant. This is consistent with the

derivation of the least–squares algorithm in which θ is the vector of parameters ak

and bk which are defined as constants. Although the Kalman filter could be used

instead of the adaptive filter, the lack of forgetting factor in the system causes a

slower rate of convergence than using the least–squares with forgetting factor form

of the adaptive filter. By analyzing the Kalman filter, the gain, K, is explicitly

calculated and Γ is more apparent as representing the covariance matrix. In the

Kalman filter, limt→∞ Γ(t) = 0 is necessary in order for the estimate to converge to

the correct value since there is no forgetting factor present.
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Parameter Estimation for

Frequency

For estimating the frequency of a sinusoid, the main difficulty is that the desired

parameter, frequency, is a function of the sinusoid rather than a multiplicative re-

lationship. Based on the work done by [12, 8, 20, 2] through the use of derivatives,

the frequencies are taken outside the sinusoids. However, in the above papers, the

estimated frequencies are from additive sinusoidal inputs rather than the multiplica-

tive input of this application. Thus, direct implementation of the current techniques

cannot be used, but the basic theory of using the derivatives to put the parameters

into a multiplicative relationship with the input signal can be applied. To put the

multiplicative sinusoids into a parametric form, a trigonometric identity is applied

to rearrange the signal into an additive sinusoidal form. Upon completion of this

transformation, derivatives of the signal are used to take the frequencies outside

the sinusoid and put them in a multiplicative relationship with the input signal.

The signal is then placed in the parametric form and the least-squares algorithm is

applied. Simulation results confirm the convergence and stability of the method.

4.1 Putting Modulated Signal in Additive Form

The input signal consists of two multiplicative sinusoids,

y = cos(ωct + φc) · cos(ωpt + φp). (4.1)

For this application, the modulated signal is the result of the LSM coils receiver

modulating with the high frequency signal sent from the coil drive on the train. ωc

22
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is defined as the frequency of the carrier signal and ωp is the frequency of the LSM

coil windings which corresponds to the velocity of the train. One can find both ωc

and ωp according to the following procedure.

The input of (4.1) is in a multiplicative form; however, the signal is more easily

manipulated if the sinusoids are additive. By applying a trigonometric identity, y

can be rewritten in an additive sinusoidal form, although the frequency values are

now combined rather than being separate as they were in the multiplicative form,

y = cos(ωct+φc) cos(ωpt+φp) =
1

2
[cos((ωc−ωp)t+φc−φp)+cos((ωc+ωp)t+φc+φp)]

(4.2)

4.2 Putting the Signal in the Parametric Form

The next step toward creating the least–squares algorithm is to put the system in

a parametric model, which involves moving the desired values for estimation outside

of the sinusoid. This is done by using the well known relationship between even

multiple derivatives for sinusoids,

y(2) =
1

2
[−(ωc−ωp)

2 cos((ωc−ωp)t+φc−φp)−(ωc+ωp)
2 cos((ωc+ωp)t+φc+φp)] (4.3)

y(4) =
1

2
[(ωc−ωp)

4·cos((ωc−ωp)t+φc−φp)+(ωc+ωp)
4·cos((ωc+ωp)t+φc+φp)]. (4.4)

Through observing that the cosines are the same in both the derivatives, y(4) is

written in terms of the lower even derivatives (4.3) and (4.2),

y(4) + [(ωc − ωp)
2 + (ωc + ωp)

2]y(2) + [(ωc − ωp)
2 · (ωc + ωp)

2]y = 0.

To simplify notation and put the equation in a more recognizable form, let θ1 =

(ωc − ωp)
2 + (ωc + ωp)

2 and θ2 = (ωc − ωp)
2 · (ωc + ωp)

2.

The input signal y is the known value in the equation and θ1 and θ2 are the

parameters to be estimated. Rearranging the equation with the known input on the

left hand side and the unknown parameters on the right hand side,

y(4) = −θ1y
(2) − θ2y.

The equation is transformed into the s-domain and a fourth order filter is inserted
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to remove the need to know the derivatives of y.

s4

(s + λ)4
[y] = −θ1 ·

s2

(s + λ)4
[y] − θ2 ·

1

(s + λ)4
[y]

y −
4λs3 + 6λ2s2 + 4λ3s + λ4

(s + λ)4
[y] = −θ1

s2

(s + λ)4
[y] − θ2

1

(s + λ)4
[y]. (4.5)

Now the equation is in a recognizable form, similar to that of equation (3.6) if the

right hand side were put in vector form. Defining

θ =





θ1

θ2



 ,

Φ =







−s2

(s+λ)4
[y]

−1
(s+λ)4

[y]





 ,

Y = y −
4λs3 + 6λ2s2 + 4λ3s + λ4

(s + λ)4
[y],

the equation is now in the parametric form of equation (3.1).

Now the vectors are simply placed into the appropriate places in the least–squares

adaptive filter, as derived in (3.12),






˙̂
θ1

˙̂
θ2





 = Γ







−s2

(s+λ)4
[y]

−1
(s+λ)4

[y]





×

{

y −
4λs3 + 6λ2s2 + 4λ3s + λ4

(s + λ)4
[y] + θ̂1

s2

(s + λ)4
[y] + θ̂2

1

(s + λ)4
[y]

}

(4.6)

The update equation for Γ from equation (3.11) with the given Φ vector becomes

Γ̇ = βΓ − Γ







−s2

(s+λ)4
[y]

−1
(s+λ)4

[y]







(

−s2

(s + λ)4
[y]

−1

(s + λ)4
[y]

)

Γ. (4.7)

Setting β > 0, the forgetting factor component is included to increase the speed of

convergence. The ability for Γ to adjust and update allows ω̂c and ω̂p to change

by orders of magnitude since the covariance can compensate quickly and bring the

system to steady state.

Therefore the continuous-time recursive least–squares algorithm with forgetting

factor using equations (4.6) and (4.7) is created to estimate θ1 and θ2. However θ is

a combination of the desired frequency values, thus the frequencies are extrapolated

from θ̂

ω̂c =

√

θ̂1 + 2
√

θ̂2

2
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ω̂p =

√

θ̂1 − 2
√

θ̂2

2

4.3 Proof of Conditions for Φ

In order for the algorithm to be stable and converge to the correct values, Φ

must satisfy PE and Φ ∈ L∞.

Since the input y is given, the complete Laplace form of Φ becomes

Φ =







−s3(s2+ω2
c+ω2

p)

(s+λ)4(s2+(ωc+ωp)2)(s2+(ωc−ωp)2)
−s(s2+ω2

c+ω2
p)

(s+λ)4(s2+(ωc+ωp)2)(s2+(ωc−ωp)2)





 . (4.8)

The definition of PE given in equation (3.13) is in the time domain, so (4.8) must first

be transformed into the time domain. Taking the inverse Laplace transformation,

Φ is rewritten in the time domain as

Φ =







α sin((ωc+ωp)t)+β sin((ωc−ωp)t)+κ cos((ωc+ωp)t)+ρ cos((ωc−ωp)t)+(at3+bt2+ct+d)e−λt

(λ2+(ωc+ωp)2)4·(λ2+(ωc−ωp)2)4

σ sin((ωc+ωp)t)+µ sin((ωc−ωp)t)+η cos((ωc+ωp)t)+ν cos((ωc−ωp)t)+(ft3+gt2+ht+k)e−λt

(λ2+(ωc+ωp)2)4·(λ2+(ωc−ωp)2)4





 ,

(4.9)

where α, β, κ, ρ, σ, µ, η, ν, a, b, c, d, f, g, h, k are real constants dependent on ωc, ωp,

and λ. Now Φ is multiplied by its transpose to create a four by four matrix,

ΦΦT =





φ2
1 φ1φ2

φ2φ1 φ2
2



 .

Since the actual calculation of the matrix is rather complex, some observations will

be made by examining the vector given in equation (4.9). In the matrix, the diago-

nal terms are the squared values of φ1 and φ2. Hence the diagonals are a summation

of squared sines and cosines, multiplicative sines and cosines, and exponential func-

tions. Setting T0 = π in the integral of equation (3.13), Φ is PE if the integral

of ΦΦT is bounded and always greater than or equal to zero. Using the integral

identities for sine and cosine1 the sinusoidal squared and product terms are evalu-

ated. The constants in front of all the sine and cosine products are positive and the

1The integral identities used in the calculation are:

1

π

∫ t+π

t

sin(Aτ) sin(Bτ) dτ =
sin((A − B)(t + π))

2(A − B)π
−

sin((A + B)(t + π))

2(A + B)π
,

+
sin((A + B)t)

2(A + B)π
−

sin((A − B)t)

2(A − B)π

1

π

∫ t+π

t

cos(Aτ) cos(Bτ) dτ =
sin((A − B)(t + π))

2(A − B)π
+

sin((A + B)(t + π))

2(A + B)π
,
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summation of the sine and cosine products results in a positive net value. The rest

of the terms are multiplied by the exponential, e−λt and since λ is a very large value,

the exponential decays rapidly and can be ignored in calculating the value of the

diagonals. Therefore, the values of φ2
1 and φ2

2 oscillate and are uniformly positive

for all time intervals [t, t + T0]. Figures 4.1 and 4.2 provide a graphical verification

that the diagonal terms are bounded. The effect of the exponential decaying term

is seen as the oscillations decrease and integrals settle to constant values. Since the

integral is taken at each time step, the upper bound of the integral changes so that

T0 = tn, where tn is the last time value, while the lower bound remains constant

at t = 0. Thus the condition of persistence of excitation for the given Φ is proved

analytically and graphically confirmed through simulation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−17
∫
0
T φ

1
2

time (sec)

M
ag

ni
tu

de

Figure 4.1: Integral of φ2
1 to Confirm PE Condition

−
sin((A + B)t)

2(A + B)π
−

sin((A − B)t)

2(A − B)π

1

π

∫ t+π

t

sin(Aτ) cos(Aτ) dτ = −
cos2(A(π + t)))

2πA
+

cos2(At)

2πA

1

π

∫ t+π

t

sin(Bτ) cos(Aτ) dτ =
cos((A − B)(π + t))

2π(A − B)
−

cos((A + B)(π + t)))

2π(A + B)

+
cos((A + B)t)

2π(A + B)
−

cos((A − B)t)

2π(A − B)
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Figure 4.2: Integral of φ2
2 to Confirm PE Condition

Starting from equation (4.9) the maximum absolute value needs to be less than

infinity. Since Φ consists of exponential decaying terms and sinusoids, the maximum

value is bounded. Thus, Φ < ∞,∀t and the condition of L-infinity is satisfied.

Since both conditions on Φ have been verified to hold true, the adaptive filter

given in equations (4.6) and (4.7) is ensured to be stable and converge to the correct

values.

4.4 Simulation of Estimating the Frequencies

The values of λ, β, and Γ0 should be chosen based on the order of magnitude

of the carrier frequency. Since λ acts as a filter, it should be of the same order

of magnitude and as close in value to ωc as possible. β is the main value that

affects the rate of convergence and can be larger for higher frequency values than

lower frequencies since higher frequency signals means faster oscillations. If β is

too large then not enough data is taken into account. The value of Γ0 is the initial

error between the estimated parameter values and the actual values. Since the

initial value of the estimate θ̂ is zero, the error is very large and the greater the

order of magnitude of ωc, the greater Γ0. The following simulation illustrates the



28

identification of two frequencies, ωc = 2π · 100× 103 rad/sec and ωp = 2π2 rad/sec.

Using λ = 2π · 100 × 103, and β = 10500, figure 4.3 shows the estimate of ωc and

figure 4.4 shows the estimate of ωp.
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Figure 4.3: Plot of ω̂c for ωc = 2π100e3 ≈ 6.2832e5 rad/sec
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4.5 Simulations with Noise

In the previous section, the frequencies were estimated with no noise input.

Now the effect of additive white noise on the incoming signal is analyzed, y =

cos((ωc + ωp)t + φc + φp) + cos((ωc − ωp)t + φc − φp) + n, where n is noise. The

noise will have the greatest affect on the signal at the zero crossings, when the

amplitude of the signal is small and the signal to noise ratio is large. Since the

gradient method is used to minimize the cost function, the max/min values of the

signal are also an area of concern since the gradient goes to zero at these points. The

noise has such a large effect on the parameter estimates due to the large forgetting

factor, which focuses only on the most recent data. This results in large estimation

errors in the minimal gradient regions since the noise corrupts the data. Thus it

is important in these regions to have a small forgetting factor so that the data

further from the zero crossings and zero gradient areas are incorporated into the

cost. Smaller frequencies are more affected by noise since the signal remains near

the zero crossing and max/min values for a longer period of time. Figures 4.5 and

4.6 visually demonstrate how the noise effect is proportional to the frequency and

causes greater divergence in lower frequency signals when the forgetting factor is too

large. The simulations use actual white noise data from the track with a variation

between ±2× 10−3, ωc = 2π · 1× 103, λ = 2π · 1× 103, and β = 2050. Two different

low frequency values were used; first the frequency was set to ωp = 2π · 1× 102 and

then the frequency was lowered to ωp = 2π2.

By reducing the forgetting factor, the effects of the noise can be reduced; however,

the convergence of the estimate becomes too slow for practical implementation of

a small constant forgetting factor. In order to allow for both quick convergence

initially and incorporate a larger set of data points once the estimate has converged,

the forgetting factor must adjust online. Since the forgetting factor should not

decrease until the system has reached convergence, the value of the forgetting factor

should be proportional to the change in frequency between each time step. By taking

the absolute value of the derivative of the frequency estimate, the forgetting factor

can be tuned to allow for quick convergence and minimal noise effect at the zero

crossings and zero gradient regions. Figure 4.7 shows the improvement in estimation

using a varying forgetting factor and figure 4.8 shows the values of β.
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4.6 Varying Frequency

The previous sections dealt with constant frequencies and additive noise. Due

to the train moving, the low frequency signal will not always be constant but can
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vary from 0 − 40Hz. The maximum acceleration of the train is 4m/s2, meaning

that the maximum change in velocity is ∆v = 4∆t. When the low frequency signal

changes, the estimate of the high frequency signal should remain unaffected. The
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low frequency signal is a function of the velocity of the train according to ωc = 2π v
λ
t,

where λ ≈ 0.452m is the wavelength of the LSM coils. Therefore, the maximum

change in frequency becomes ∆ωp = 2π 4
0.452

∆t. The following simulations keep ωc

constant at 2π ·1×103 while ωp increases with a constant slope from 2π ·2 to 2π ·4 at

a rate ∆ωp = 25∆t. Figure 4.9 shows the estimate of the high frequency remaining

unaffected by the changing lower frequency. Figure 4.10 shows the estimate of the

low frequency tracking the ramp change and converging once the frequency settles

to a constant. The estimate takes longer to converge once the frequency stops

changing due to the forgetting factor being small, whereas initially the forgetting

factor is much greater. The convergence of the frequency estimate can be increased

by putting a lower bound on the forgetting factor. However, the bound cannot be

too high otherwise the spikes due to noise at the zero gradient of the signal will

return. Figure 4.11 shows the estimate of ωp when there is a lower bound of 20 on

the forgetting factor. The convergence of the estimate once the frequency has settled

is must faster than when there is no limit on the forgetting factor. However, during

the ramping portion, the estimate diverges much further away from the actual value.

This is due to the modulated signal appearing to oscillate faster than it actually is

since the low frequency signal is varying. This compression of the signal is seen in

figure 4.12.
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Extremum Seeking for Phase

Estimation

In the previous chapter, only the frequency of the sinusoids were estimated since

the phases are not time dependent. An additional algorithm, extremum seeking,

will now be introduced to estimate the phase of the high frequency signal. Unlike

the least–squares algorithm, extremum seeking only estimates one of the phases and

due to the large difference in frequency between the two sinusoids, it is not realistic

to estimate both phases using the same extremum seeking loop. In order to estimate

the phase, the maximum or minimum of a nonlinear function is utilized to minimize

the error between the actual value and the estimate. This chapter will first introduce

a nonlinear mapping to minimize the error at the local maximum of cosine at zero

degrees. A proof of convergence and stability for the extremum seeking loop will be

shown to ensure the phase estimate reaches the actual value, given the output of

the nonlinear map. Simulation results will be shown to confirm the analysis.

5.1 Signal Map

From the given input signal, cos(ωct + φc) cos(ωpt + φp), the goal is to estimate

the phase of the carrier sinusoid, φc. In order to minimize the error between the

phase estimate and the actual value, the nonlinear mapping needs creates a cosine

which is only a function of this error. First, the input signal is multiplied with an

estimate of the carrier signal

cos(ω̂ct + φ̂c) · cos(ωct + φc) · cos(ωpt + φp). (5.1)

35



36

Figure 5.1: Block Diagram of Extremum Seeking Loop

The trig identity puts the cosines in an additive form,

cos(ω̂ct + φ̂) cos(ωct + φ) cos(ωpt + φp) =

1

2
cos(ωpt + φp)

{

cos
(

(ω̂c + ωc)t + φ̂c + φc

)

+ cos
(

(ω̂c − ωc)t + φ̂c − φc

)}

.

A low pass filter at ωc is applied to remove the double frequency and the absolute

value of the remaining signals is taken so that the value of the cosines is always

positive. Using the estimated frequency value of the carrier from the least–squares

algorithm, the cosine becomes only a function of the phase error, with a multi-

plicative term from the position sinusoid. Assuming ω̂c ≈ ωc, the nonlinear map

becomes

1

2

∣

∣

∣

∣

cos(ωpt + φp) cos
(

(ω̂c − ωc)t + φ̂c − φc

)∣

∣

∣

∣

≈
1

2
| cos(ωpt + φp) cos(φ̂c − φc)|. (5.2)

5.2 Extremum Seeking Loop

Figure 5.1 shows the block diagram for the extremum seeking loop. Equation

(5.2) is the output of the nonlinear map into the extremum seeking loop,

J = q| cos(ωpt + φp) cos(φ − φ∗)|, (5.3)
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with φ∗ being the actual phase and φ being the input into the map as the estimate

from the extremum seeking loop. Comparing (5.3) with (5.2), q = 1/2; however,

a gain could be applied to change the value to any positive constant. Using the

averaging method, the following analysis will prove the stability of the system,

following a similar line of reasoning to that seen in [22] and [4]. Define e = h
s+h

[J ]

so that the output after the washout filter can be written as

ξ =
s

s + h
[J ] = J − e. (5.4)

Completing the rest of the extremum seeking loop, the differential equation for φ

can be defined as

φ̇ = αωes cos(ωest) + k sin(ωest)ξ. (5.5)

Applying a change of coordinates

φ̃ = φ − φ∗ − α sin(ωest) (5.6)

takes into account the sinusoidal excitation that enters the non-linear map. Replac-

ing τ = ωest to simplify the calculations, ξ is written in terms of the new coordinates

ξ = q
∣

∣

∣

∣

cos
(

ωp

ωes

τ + φp

)

cos(φ̃ + α sin(τ))
∣

∣

∣

∣

− e. (5.7)

φ̃ should also be written as a differential equation, using equation (5.5),

dφ̃

dτ
=

dφ

dτ
−

dφ∗

dτ
−

d

dτ
α sin(τ)

=
1

ωes

(αωes cos(τ) + k sin(τ)ξ) − α cos(τ)

dφ̃

dτ
=

1

ωes

k sin(τ)ξ. (5.8)

Similarly, e can also be written as a differential equation

de

dτ
=

h

ωes

ξ. (5.9)

Now the averaging method is applied to determine the equilibrium point. The

system is periodic in intervals of 2π, making the average system the integral of

equations (5.8) and (5.9) between 0 and 2π,

dφ̃avg

dτ
=

k

ωes

1

2π

∫ 2π

0
sin(τ)(q| cos(

ωp

ωes

τ + φp) cos(φ̃avg + α sin(τ))| − e) dτ

=
k

ωes

1

2π

[

q
∫ 2π

0
sin(τ)

∣

∣

∣

∣

cos
(

ωp

ωes

τ + φp

)∣

∣

∣

∣

cos(φavg)e
jα sin(τ) dτ

−
∫ 2π

0
sin(τ)eavg dτ

]

, (5.10)
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deavg

dτ
=

h

ωes

1

2π

∫ 2π

0
(q| cos

(

ωp

ωes

τ + φp

)

cos(φ̃avg + α sin(τ))| − eavg) dτ

=
h

ωes

1

2π

[

q
∫ 2π

0

∣

∣

∣

∣

cos
(

ωp

ωes

τ + φp

)∣

∣

∣

∣

cos(φavg)e
jα sin(τ) dτ −

∫ 2π

0
eavg dτ

]

.

(5.11)

Since the integral of sine from 0 to 2π is zero, e in (5.10) is multiplied by zero

and is eliminated from the average of φ. The integral in (5.10) and (5.11) is similar

to that of a Bessel integral, except for the additional cosine term. Fortunately in

this case ωes ≫ ωp; consequently, ωp/ωes ≈ 0 and cos( ωp

ωes
τ + φp) ≈ cos(φp) = C,

where C is a constant. This allows the integral to be written in the form of Bessel’s

first integral1. Using this simplification, the average systems become

dφ̃avg

dτ
=

k

ωes

qCJ1(α) cos(φ̃avg), (5.12)

deavg

dτ
=

h

ωes

(qCJ0(α) cos(φ̃avg) − eavg). (5.13)

Setting the left hand side to zero, the equilibrium points can be found at, φ̃avg =

±π/2 and eavg = 0. The Jacobian of (5.12) – (5.13) evaluated at (π/2, 0) is

Javg = −
1

ωes





kqCJ1(α) 0

hqCJ0(α) h



 . (5.14)

Choosing k, α, h > 0, since the equilibrium point is a maximum, q > 0, and since

the absolute value is taken in the nonlinear map, C ≥ 0, it can be concluded that

Javg is Hurwitz and the equilibrium for the average system is exponentially stable.

Note that the estimated phase, φ̂, also depends on ωp since the cosine is coupled

with the phase estimate. Since the phase estimate is also excited by the extremum

seeking signal, cos(ωest), the oscillation due to the extremum seeking is modulated

with cos(ωpt). By adding a low pass filter to the output of the phase estimate and

tuning the cutoff frequency, the variation at steady state can be reduced.

5.3 Simulation of Extremum Seeking

The following simulations illustrate the exponential convergence of φ̂ with various

output filters to show how the effect of the modulation can be reduced. The high

1Bessel’s first integral which can be derived from the Taylor series approximations, J1(a) =
1
2π

∫ 2π

0
eja sin(t) sin(t)dt and J0(a) = 1

2π

∫ 2π

0
eja sin(t)dt, is used in calculating the average system.
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frequency signal and the estimated frequency were set to, ω̂c = ωc = 2π · 1 × 103.

The value of the extremum seeking frequency must be lower than the high frequency

signal, although the faster the oscillations, the quicker the convergence, therefore

ωes = 2π · 1 × 102. The low frequency signal is constant at ωp = 2π · 2. The

washout filter in the extremum seeking loop must be lower than the frequency of

the extremum seeking sinusoid, so it is set to s
s+40

. The phase offset of the carrier

frequency, φ∗ = π/4. The low pass filter in the nonlinear map prior to entering

the extremum seeking loop is 1×103

s+1×103 and the initial guess for the phase estimate,

φ̂0 = 0. Figure 5.2 shows the exponential convergence of φ̂ to φ∗ with the output

filter of the phase estimate at 1×103

s+1×103 , allowing the correlation with ωp. Figure 5.3

shows the convergence with the filter at 40
s+40

, removing some of the correlation with

ωp.
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Figure 5.2: Estimate of Phase Using Extremum Seeking, φ = π/4 with Output
Filter 1×103

s+1×103

The addition of noise to the incoming signal has little effect on the estimate of

the phase. Since the local maximum is used to find the estimate, additional noise on

the input data has less of an effect than other estimation algorithms. In addition,

the filtering reduces the amount of noise that propagates through the loop. White

noise from the track, with limits of ±2 × 10−3, was added to the incoming signal.

Figure 5.4 shows that the noise has such a minimal effect on the estimate, that it
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s+40

is difficult to distinguish any difference from the estimate without noise. Since this

level of noise did not really effect the estimate, a larger noise level of ±2 is added to

show the effects of noise. Figure 5.5 shows that the noise causes a slight divergence

in the steady state value, but the system still appears stable.
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Combining Frequency and Phase

Estimation

Now that both the frequency and phase have been determined, the two algo-

rithms are used in conjunction to produce the actual desired output, cos(ωpt + φp).

The input of the modulated signal is sent to both the frequency and phase estima-

tor. Since the frequency takes time to converge, the phase estimator needs some

other source to use as the frequency input into the nonlinear mapping. The initial

guess of the frequency is used until the estimated frequency converges. Once the

estimated frequency has converged, the extremum seeking nonlinear map switches

over and uses the estimate rather than the initial guess. The estimate of the fre-

quency and phase for the high frequency signal are used to reconstruct the signal,

cos(ω̂ct + φ̂c). This reconstructed estimate signal is multiplied by the modulated

input, to demodulate the signal. When the frequency and phase estimates converge

to the actual values, the high frequency signal is removed, leaving only the position

signal from the coils. Figure 6.1 shows the demodulated signal corresponding to the

low frequency sinusoid, with a slight phase offset from the low pass filter.

The demodulation should also be accurate when the train is accelerating and

decelerating. When the train is stationary, the frequency of the coil’s sinusoid is

zero and the sinusoid remains at a constant value corresponding to the phase offset.

The following simulation shows the frequency decreasing from ωpi
= 2π to 0 at a

rate of −4π. The frequency settles at 0 for half a second and then the frequency

increases with a slope of 4π. The phase offset of the low frequency signal, φp = π
4
,

causes the coil sinusoid to have a constant value of 1√
2

when the frequency is zero.

42
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As seen in figure 6.2, the demodulation is accurate except for a slight error when

the slope transitions to and from zero, but it quickly recovers.
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Conclusion

The objective of this thesis is to estimate the frequency and phase of modulated

sinusoids. The frequency of both signals are estimated using the continuous-time

recursive least–squares algorithm with forgetting factor. Extremum seeking uses the

maximum located at zero degrees to estimate the phase of the high frequency signal.

Both algorithms are stable and converge exponentially, even in the presence of noise.

After reviewing the basic operational components for maglev trains, Chapter

2 provided a more in-depth look at the specific area of propulsion and position

tracking. The importance of knowing the train’s position for LSM propulsion of the

train was explained. The signal processing theory laid out how the high frequency

signal from the drive coil on the train modulates with the sinusoids of the coils on the

track. The mathematical derivation for estimating the position using the d-q frame

was derived. Then the demodulation method used in this thesis was introduced.

The theory of the least–squares algorithm reviewed in Chapter 3 began with

creating the parametric model of a system for use in the cost function. The inclusion

of a forgetting factor focuses the cost function on the most recent data, increasing

the convergence rate. By applying the zero gradient condition of the cost function,

the equations for updating the parameter estimate and gain matrix are derived. A

proof of convergence and stability is reviewed and shows that the parameters will

converge exponentially. The pure least–squares algorithm, without the forgetting

factor, was compared to the Kalman filter, showing the similarities between the

two. However, without a forgetting factor, the algorithm takes too long to converge

and hence, the least–squares with forgetting factor algorithm is superior in this

application.

Chapter 4 used the least-squares algorithm to estimate the frequencies of the
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modulated sinusoids. First the input signal was put in the parametric form. Using

the unique characteristics of sinusoid derivatives, the parameters were placed in

a multiplicative relationship with the input signal. The simulations showed the

exponential convergence of the frequencies. By allowing the forgetting factor to

vary, noise added to the signal removed the instability of the estimates in the zero

gradient regions. Hence the algorithm is able to handle additive noise and still

converge to the correct values.

Chapter 5 estimated the phase of the high frequency signal using extremum seek-

ing. The non-linear map removes the high frequency component from the cosine so

that the estimated phase converges to the actual value when the cosine is maximized

at zero degrees. Completing the extremum seeking loop, the stability of the method

was confirmed, even with the presence of the low frequency signal being modulated

with the phase error. The use of extremum seeking for phase estimation, rather than

phase locked loops or adaptive filtering, is a novel approach that allows the phase

to be estimated, even in the presence of the modulated signal where the cosine of

the lower frequency is correlated with the phase estimate. In addition, extremum

seeking can handle large levels of additive noise, making it a robust method.

In Chapter 6 the frequency and phase algorithms are combined to reconstruct

the carrier signal. With this reconstructed signal, the modulated input is low pass

filtered to obtain the single low frequency sinusoid of the track coils. The ability

to demodulate the signal accurately is confirmed through simulations, not only for

the constant frequency case, but also when the coil frequency varies and is equal to

zero.

7.1 Future Work

In the Least–Squares Algorithm with Forgetting Factor, the addition of noise

was dealt with using a varying forgetting factor to handle the zero gradient regions.

Since there will be three signals from the three phase coils on the track, rather

than using a single data input, all three data inputs can be utilize to estimate the

frequencies. Because all the signals are separated by a 2π
3

phase shift, they will not

have zero gradient instabilities at the same point; hence, ignoring the estimate which

is inaccurate, the other two signals accurately estimate the frequencies, providing

stability for the algorithm. This would provide an alternative method of handling
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noise rather than varying the forgetting factor. A variation on the Kalman filter

from chapter 3 or applying an extended Kalman filter are other techniques which

could be examined and compared to the least–squares algorithm with forgetting

factor. Through comparing the converges rates and robustness to the addition of

noise the best method could be implemented.

For phase estimation, the objective of this research was to investigate the ex-

tremum seeking algorithm’s ability to estimate the phase. Since phase locked loops

(PLL) are the standard for identifying phases, a comparison between these two

methods could be examined. Since extremum seeking displays robustness to small

signal to noise ratio data, if PLL has less robust estimation, this shows the advantage

of applying extremum seeking. The convergence rate and complexity of applying

the method also could determine the best technique to apply for the specific appli-

cation.



Appendix A

Block Diagrams

The simulations done for this thesis were created using simulink. The extremum

seeking block diagram in figure A.1 is for additive noise with output filter of s
s+100

.

The block diagram in figure A.2 for the least-squares simulation contains the noise

and variable β, using constant frequency values.
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Figure A.1: Simulink Block Diagram of Extremum Seeking

Figure A.2: Simulink Block Diagram of Least–Squares Algorithm with Vary β
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