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Abstract

Objective: Developing accurate phenotype definitions is critical in obtaining reliable and reproducible background rates in safety research. This
study aims to illustrate the differences in background incidence rates by comparing definitions for a given outcome.

Materials and Methods: \We used 16 data sources to systematically generate and evaluate outcomes for 13 adverse events and their overall
background rates. We examined the effect of different modifications (inpatient setting, standardization of code set, and code set changes) to
the computable phenotype on background incidence rates.

Results: Rate ratios (RRs) of the incidence rates from each computable phenotype definition varied across outcomes, with inpatient restriction
showing the highest variation from 1 to 11.93. Standardization of code set RRs ranges from 1 to 1.64, and code set changes range from 1 to 2.52.

Discussion: The modification that has the highest impact is requiring inpatient place of service, leading to at least a 2-fold higher incidence rate
in the base definition. Standardization showed almost no change when using source code variations. The strength of the effect in the inpatient
restriction is highly dependent on the outcome. Changing definitions from broad to narrow showed the most variability by age/gender/database
across phenotypes and less than a 2-fold increase in rate compared to the base definition.

Conclusion: Characterization of outcomes across a network of databases yields insights into sensitivity and specificity trade-offs when
definitions are altered. Outcomes should be thoroughly evaluated prior to use for background rates for their plausibility for use across a global
network.

Lay Summary

Computable phenotypes, or definitions of disease in databases, have been studied widely in observational research. These phenotype
definitions represent the basis of many aspects of epidemiological research, making them critical for obtaining reliable and reproducible results.
In this work, we evaluate the impact of 3 phenotype modifications on incidence rates. The modifications are place of service, standardization of
codes, and changing the codes used on 13 disease phenotype definitions across a global network of 16 data sources. The modification that has
the highest impact is requiring inpatient place of service, leading to at least a 2-fold higher incidence rate in the base definition. Standardization
showed almost no change when using source code variations. Changing definitions via code sets from broad to narrow showed the most
variability by age/gender/database across phenotype definitions. Our results suggest that certain types of phenotype modifications can lead to
significant changes in incidence rate estimates. This highlights the importance of determining accurate phenotype definitions in safety and
observational research.

Key words: phenotype; electronic health record; algorithms; incidence study.

Received: February 6, 2023; Revised: July 25, 2023; Editorial Decision: October 24, 2023; Accepted: October 31, 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


https://orcid.org/0000-0002-0847-6682
https://orcid.org/0000-0002-0651-0613
https://orcid.org/0000-0002-8274-0357
https://orcid.org/0000-0001-9612-7791
https://orcid.org/0000-0003-0892-5668
https://orcid.org/0000-0002-2123-7993
https://orcid.org/0000-0001-8630-5347
https://orcid.org/0000-0001-9818-479X

Objective

The objective of this study is to evaluate the impact of pheno-
type modification (outcome definition) on the incidence rate
of 13 adverse events of special interest (AESI) for coronavirus
disease 2019 (COVID-19) vaccine monitoring, estimated
from real-world data. The modifications include restricting
to events that occur in an inpatient setting, change in the
code set used to capture the events, and use of standardized
vocabulary to derive the code set. The 13 AESIs for COVID-
19 vaccine monitoring are outcomes that are considered
important to monitor as known potential risks related to
COVID-19 vaccines or vaccination in general.

Background and significance

COVID-19 vaccines were authorized for emergency use in
late 2020. Researchers and regulators have prepared safety
surveillance approaches that involve real-world data to study
AESIs of the vaccines. AESIs need to be monitored because
not all possible adverse events are expected to occur during
the pre-approval clinical studies; these vaccines were also
approved under emergency use and approved in unstudied
populations such as children and pregnant women."? The
United States Food and Drug Administration (US FDA), Cen-
ters for Disease Control and Prevention (CDC), and the vAC-
Cine covid-19 monitoring readinESS (ACCESS) project
funded by the European Medicines Agency (EMA) have pro-
vided protocols to monitor the safety of COVID-19 vac-
cines.>* All such protocols have listed a number of AESIs
and each provided a computable specific definition that can
be implemented against real-world data to capture these
events. As such, the AESIs represent a collection of outcomes
or disease states that can be defined in data sources and then
applied across data sources to represent the outcome to be
used in safety surveillance studies for those receiving the
vaccine.’

Background incidence rates play an integral part in vaccine
safety surveillance, as these rates are commonly compared to
incidence rates of adverse events following vaccination to
determine whether adverse event reporting rates are higher
than expected. Studies often report wide variability of these
rates across data sources and populations. Li et al.® found
that incidence rates had a high level of population-level heter-
ogeneity across databases after standardizing the definition
and stratifying on age and sex. Ostropolets et al.” examined
the factors that influence variability in incidence rates, includ-
ing demographics of the population, such as age and sex dis-
tributions, along with choices around time-at-risk and
anchoring of rates (anchoring on healthcare provider visits or
random dates). They concluded that population-level charac-
teristics have the greatest influence on rates, and rates are
highly influenced by time-at-risk start dates. These 2 studies
document the variability in incidence rates related to
population-level adjustment and parameters used to calculate
the rates. The influence of phenotype choices on incidence
rates remains unknown.

Computable phenotypes, or definitions of a disease in data-
bases, have been studied widely in observational research.
These definitions can be developed from literature, prior
research or clinical information, or use of systematic vocabu-
laries and ontologies.
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Regulatory bodies such as US FDA or EMA commonly use
country-specific vocabularies, including the International
Classification of Diseases, Tenth Revision, Clinical Modifica-
tion (ICD-10-CM) in the United States, to define clinical
events. However, large-scale studies across a network using
data from multiple countries and terminologies require the
use of standardization. The Observational Health Data Scien-
ces and Informatics (OHDSI) provides the Observational
Medical Outcomes Partnership (OMOP) Common Data
Model (CDM) with a set of vocabularies to harmonize and
standardize source terminologies.

While regulatory bodies define computable phenotypes for
these outcomes, the specific impact and relevance of these
definitions to clinical populations remain unclear. The defini-
tional logic is often under-reported in scientific journals, and
definitions are often created utilizing various evaluation
methods and designs without using global data.*® COVID-
19 vaccines are being administered all over the world, and
understanding how to identify adverse events in global data
is critical for the safety of the patients that receive these vac-
cines. Understanding the distinctive differences among alter-
native definitions (sensitive and specific) and how best to
implement them in each data source are imperative to cor-
rectly apply an outcome for safety monitoring. The impact of
changing outcome definitions in a network of global data-
bases remains unknown.

As provided in different regulatory protocols, outcome
phenotypes mainly varied in 3 different ways: first, restricting
events that only occurred in an inpatient setting or including
events regardless of the setting of service; second, including a
different set of event codes (eg, disease diagnosis codes) to
capture an event of interest; and finally, the use of different
vocabulary/ontology systems to code for clinical events.? For
example, Guillain-Barre syndrome (GBS) can be defined
using inpatient restrictions or any place of service while defi-
nitions for hemorrhagic stroke could include a broad range
of codes for lacunar infarctions or choosing not to include
them.

In this study, we sought to assess the impact of 3 types of
phenotype modification. While changes to phenotypes can be
innumerable and extend beyond what is presented here
(including baseline characteristics, code set changes, sites
etc.) our focus is on selected factors that could influence base-
line incidence rates. Specifically, we estimated the difference
in incidence rates of outcomes using: (1) definitions that
restricted to an inpatient setting compared to any care setting
for the same event of interest; (2) definitions that included a
different set of codes to capture the same event of interest;
and (3) definitions that used country-specific (which we have
termed “source”) vocabularies compared to using a common
vocabulary that provides semantic standardization.”

Materials and methods

We conducted an international network study using routinely
collected primary care and hospital patient records from across
the United States, Australia, Japan, and Europe. To be included
in the study, each data source needed to have data for the speci-
fied study calendar time from January 1 to December 31 for each
qualifying year in 2017-2019 to be included in the study, see
Appendix Figure S1 for the study design of the entry criteria.
Each data source mapped their data to the OMOP CDM.'%!!
This approach allows contributing data sites to execute an
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analytical package in R to calculate background rates and
descriptive characteristics in a federated fashion.'” The analytical
code to characterize these phenotype definitions can be found
here: https://github.com/ohdsi-studies/Covid19VaccineAesiDiag-
nostics.'> The package to estimate background rates can be
found here: https:/github.com/ohdsi-studies/Covid19VaccineAesi
IncidenceRate.

Data sources

We included 16 data sources from 10 countries, of which §
data sources were claims and the remaining were electronic
health records (EHRs).

The claims-based data sources were (1) JMDC (JMDC_JA-
PAN)' and 4 US administrative claims data sources: (2) IBM
MarketScan Commercial Claims and Encounters Database
(CCAE_US); (3) IBM MarketScan Medicare Supplemental
Database (MDCR_US); (4) IBM MarketScan Multi-State
Medicaid Database (MDCD_US); and (5) Optum De-
Identified Clinformatics Extended Data Mart Database—
Date of death (OPTUM_DOD_US).

The EHR data sources were: (1) IQVIA Australia Longitu-
dinal Patient Data (LPD) (IQVIA_AUSTRALIA), data col-
lected from Australian general practitioner (GP) offices; (2)
Integrated Primary Care Information (IPCI_NETHER-
LANDS), a primary care records data source from the Neth-
erlands'’; (3) IQVIA Disease Analyzer (DA) Germany
(IQVIA_GERMANY), data collected from physician practi-
ces and medical centers; (4) Clinical Practice Research Data-
link (CPRD), which consists of data collected from United
Kingdom primary care for all ages (CPRD_UK); (5) Colum-
bia University Irving Medical Center (CUMC_US), which
covers the New York-Presbyterian Hospital/Columbia Uni-
versity Irving Medical Center in the United States; (6) Optum
de-identified Electronic Health Record Dataset (OPTU-
M_EHR_US), which covers more than 103 million patients
and over 7000 hospitals and clinics across the United States;
(7) Health Data Warehouse of Assistance Publique—Hopi-
taux de Marseille in France (APHM_FRANCE), a public uni-
versity hospital system with 4 hospitals, 3400 beds, and more
than 12 000 healthcare professionals; (8) Information System
of Parc Salut Mar Barcelona (PSMAR_SPAIN), hospital
based EHR that includes 2 general hospitals and 2 clinics in
Barcelona, Spain; (9) University Clinical Center of Serbia
(CC_SERBIA), a hospital based EHR data from Serbia; (10)
Health Informatics Centre from University of Dundee
(HIC_SCOTLAND), a hospital based EHR dataset from
Scotland; and (11) UK Biobank (BIOBANK_UK), a large lon-
gitudinal biobank study from the United Kingdom with link-
ages to primary care and hospitalization EHR.'®

A detailed description of the data sources can be found in
Appendix Table S1. The data underlying this article were
provided by [third party] under license/by permission.

Study population

The study population consisted of individuals present in a
data source as of January 1, 2017, 2018, or 2019 and is
defined as the index date. Individuals were required to have a
minimum of 1 year of history available in the data source
prior to the index date. A minimum of 1 year of history is
defined as having at least 1 year observation time prior to
index date. Observation start time is defined either through
enrollment files or visit encounters depending on the data
source.

Outcomes

Tables 1-3 illustrates the full set of outcomes used in the study
and the type of modification each represents. For each outcome,
a base definition was developed. All base definitions were based
on a specific code set of standard SNOMED-CT, each
SNOMED-CT is mapped to source codes in various source
codes such as ICD10-CM, Read codes etc., and these events at
any place of service. Place of service varies from inpatient stays,
emergency room, outpatient encounters, and a combined visit
(IP/ER) which is used when emergency room and inpatient stays
cannot be separated into individual encounters. For hemorrha-
gic and non-hemorrhagic strokes, the base definition restricted
to inpatient setting as diagnosis and treatments occur in a hospi-
talized setting for new events. To assess the impact of restricting
on a place of service, additional cohorts for inpatient-only were
considered for the following outcomes: acute myocardial infarc-
tion (MI), anaphylaxis, appendicitis, deep vein thrombosis
(DVT), disseminated intravascular coagulation (DIC), encepha-
lomyelitis, GBS, and transverse myelitis as these events can
occur any setting. For example, GBS is defined with the same
codes and definition and is compared to a subset of GBS
patients that had an encounter of inpatient.

To assess the impact of using source codes in capturing
events, source code-based definitions (derived by using
ICD10-CM codes as per the BEST [Biologics Effectiveness
and Safety System] protocol®) were considered for the follow-
ing outcomes: anaphylaxis, appendicitis, DVT, DIC, ence-
phalomyelitis, GBS, and transverse myelitis as these
outcomes had definitions that mapped to additional ICD10-
CM codes including those listed in the BEST protocol. For
example, 2 different definitions were derived for DVT, one
using a standard approach that includes additional codes not
defined specifically in the BEST protocol and another defini-
tion with only those specified in protocol. The objective of
the BEST protocol was to actively monitor the rates of AESIs
following vaccination in large administrative databases. The
protocol defines each outcome for use in databases that is
used for active surveillance.

To assess the impact of using a different code set, defini-
tions that included extra (expanded) standard SNOMED-CT
codes was considered for ML, encephalomyelitis, hemorrhagic
stroke, immune thrombocytopenia, myocarditis/pericarditis,
and non-hemorrhagic stroke. The use of standardized
vocabulary showed additional codes that may be relevant to
each outcome such as sequela codes, or the outcome due to a
cause as described by the code (ie, myocarditis due to toxo-
plasms). The exact codes added for each outcome are
included in Table 3. A detailed description of the phenotype
definitions utilized in the study can be found in Appendix
Table S2. All definitions were developed in the OHDSI tool
ATLAS using the appropriate vocabularies to define a con-
cept set.'” The choice of what alternative definitions to con-
sider for each outcome was based on proposed definitions by
regulatory agencies, prior literature, or utilizing SNOMED-
CT hierarchical structure.

Phenotype definitions were implemented and assessed in each
data source using an R shiny application within the Cohort-
Diagnostics package.'*'® CohortDiagnostics is a tool that com-
putes and illustrates descriptive statistics about the patients in a
database that meet the phenotype definition. The full cohort
diagnostics results are located here: https://data.ohdsi.org/Cov-
id19VaccineAesiDiagnostics/. The tool allows for exploring and
contextualizing differences in patients’ compositions and
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characteristics that result from using different phenotype
definitions.'>-!7-1#

Background incidence rates

We defined the time at risk as a 365-day period after the
index date. Each person in the study population contributed
time at risk from January 1 to December 31 for each qualify-
ing year in 2017 to 2019. Participants contributed time at
risk until the earliest following occurs: an event occurred dur-
ing that event’s clean window (exclusion time prior to event
to ensure a new event which varied by outcome), at death (if
available in the data source), or at the end of their observa-
tion period in the data source. Appendix Table S3 provides
the characteristics of the patient population by database.® A
participant could contribute more than one event in each out-
come. A person could have multiple events within the time at
risk if they satisfy the washout requirement within each phe-
notype. Incidence rates were estimated as the total number of
events divided by the person time at risk per 100 000 person
years for each phenotype definition. Incidence rates were
reported by data source as a point estimate overall and strati-
fied by age and gender for each outcome definition.

Rate ratio across definitions

To assess the effect of phenotype modification on incidence
rate, we calculated the rate ratio (RR), by dividing the inci-
dence rate using the base definition by the incidence rate
using the modified definition (inpatient, source code, extra
code set). RRs were calculated for overall rates and stratified
by age and gender.

Sensitivity analysis: rate comparison and baseline
characteristics: GBS

The GBS definition had 3 variations to produce the outcome,
the differences being how place of service was being utilized.
Site specific distributions amongst phenotypes can yield dif-
ferences in rates and in phenotypic characteristics among
these populations. To determine the effect of this variability,
GBS was chosen as an example. The crude incidence rates for
the 3 derivations of the phenotype of GBS are presented to
assess the change between baseline, inpatient, and inpatient
in the primary position for the overall incidence rate. The
variation of inpatient primary is included as the definition in
the BEST protocol. The baseline covariates available in the
data occurring up to 365 days prior to index date are com-
pared to each other for each definition pair (base definition
and inpatient and inpatient and inpatient in the primary posi-
tion) by the absolute standardized difference. Covariates are
any SNOMED-CT that occur in any domain in the data (con-
dition, procedure, measurement, demographics). Domain
assignment is based on the data type being mapped, for
example, diagnosis codes are mapped to the condition
domain, LOINC codes to measurements and a full descrip-
tion of domain designation can be found here: https://www.
ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:
domains. The number of covariates with a mean >0 and a
standardized difference >0.1 are summarized to show the dif-
ferences amongst the comparison of the 2 populations being
compared.

Results

The analysis is presented on a total of 13 phenotypes in the 3
types of modifications (narcolepsy and facial nerve palsy are
omitted from the original set of outcomes listed in the BEST
protocol due to lack of appropriate comparisons in this
study). Each database contributes to each subtype analysis
based on availability of the data. The sensitivity analysis is
only conducted on the GBS phenotype in 4 US datasets due
to the availability of all places of services.

The 9 databases that do not use ICD-10-CM vocabulary
(IPCI_NETHERLANDS, JMDC_JAPAN, BIOBANK_UK, IQV
IA_GERMANY, IQVIA_AUSTRIALIA, CPRD_UK, APH
M_FRANCE, CC_SERBIA, and HIC_ SCOTLAND) did not
show counts for any definitions based on ICD10-CM source
code. Additionally, inpatient data were not available in 4 data
sources (CPRD_UK, IQVIA_GERMANY, IQVIA_AUSTRIA-
LIA, and IPCI_NETHERLANDS), resulting in zero counts for
inpatient based definitions.

Inpatient restriction

Figure 1 illustrates the overall RR when comparing incidence
rates (IR) using inpatient-based definition to IR using the
base definition for each outcome by database for the overall
rate not stratified by age and gender. The RR varies by out-
come and by data sources and ranges from 1 to 11.93. The
range of RR varies by outcome with the highest (1-11.93) in
appendicitis, and the lowest in GBS (1.05-3.05). Claims data-
bases show less variance than electronic health records
(EHRs).

Standardization

Figure 2 illustrates the age-gender-specific RRs when com-
paring IRs using source code-based definitions to the base
definitions for each outcome by database. The highest RR
was in pulmonary embolism at 1.64 times higher than the
standard definition in ages 0-5 across all databases and phe-
notypes evaluated. Anaphylaxis had the smallest change in
incidence rates with the highest RR at 1.12 and showed the
lowest variability by age/gender/database. Appendicitis
showed incidence RRs from 1 to 1.41 across all ages and
databases with highest RR in older ages (55+) and the high-
est variability by age/gender/database. Non-hemorrhagic
stroke had low variability with the highest RR at 1.34, but
most RRs were near 1 across age/gender/database.

Code set change

Figure 3 illustrates the age-gender-specific RRs when com-
paring IRs using an expanded code-set definition to the base
definition for each outcome by database. Changing the code
set resulted in additional codes being added to the base defi-
nition. The highest RR was in hemorrhagic stroke at 2.73,
higher in males than females, followed by myocarditis at
2.24. All phenotypes except for anaphylaxis showed large
heterogeneity by age and gender. Ages 35+ across both gen-
ders showed the highest variability for these outcomes.

Sensitivity analysis: rate comparison and baseline
characteristics: GBS

The incidence rates for the 3 modifications (base definition,
inpatient, and inpatient admission in the primary position)
varied both by databases and modification type in Table 4.
The highest variation occurred in MDCR_US with a range of
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Figure 1. Incidence rate ratios for overall incidence rates per 100 000 person-years by phenotype restricted by inpatient versus base definition for claims

and EHR databases.
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Table 4. Incidence rates per 100 000 person years for Guillain-Barré syndrome and baseline characteristics.

Databases
Guillain-Barré syndrome
CCAE_US MDCD_US MDCR_US Optum_DOD_US Optum_EHR_US
Incidence rates (per 100 000 person years)
All places of service (base definition) 7.14 7.40 28.14 14.34 7.37
Inpatient only 3.48 4.28 13.99 6.96 2.53
Inpatient in the primary position 1.81 2.57 3.74 3.62 1.12
Baseline characteristics comparisons
All vs IP
Number of features (mean > 0; covariates occurring 18246 16448 14596 34409 21020
in both definitions)
Features with absStDiff > 0.1 () 462 281 320 650 2241
Maximum (absStDiff) 0.54 0.31 0.39 0.65 0.51
IP vs IP primary
Number of features (mean > 0; covariates occurring 15932 10628 8891 25095 14634
in both definitions)
Features with absStDiff > 0.1 () 32 203 135 47 340
Maximum (absStDiff) 0.14 0.27 0.27 0.19 0.20

incidence rates from 3.74 to 28.14 and the lowest in
MDCD_US from 2.57 to 7.40. The maximum standardized
difference ranged from 0.31 to 0.65 when comparing inpa-
tient to overall, while the range for inpatient compared to
inpatient primary was 0.14-0.27. Each restriction added at
least a 2-fold increase in the incidence rate by applied each
subsequent restriction.

Discussion

We utilized real-world data to evaluate the effect of pheno-
type modification on the background rate of 13 outcomes,
with multiple plausible definitions across a large collection of
data sources. We compared the background incidence rates
to examine the impact of place of care, standardization, and
code sets on heterogeneity in estimated incidence. Our results
suggest that some modifications to phenotype definition can
lead to significant changes in incidence rate estimates. This

highlights the importance of determining accurate phenotype
definitions in safety research.

The OHDSI network allows for rapid, transparent, and
reproducible analyses over a large network of data sources.
This study demonstrates how a research network can be used
to empirically evaluate alternative outcome definitions
quickly and in a standard manner, which is achieved using
standard vocabularies. Phenotype definitions should be eval-
uated for the impact of changes that are not readily apparent
within a single database (eg, code sets). Tools such as Cohort-
Diagnostics enable investigators to explore phenotypes that
result from implementing alternative definitions for the same
clinical idea. Evaluating definitions over a network of data
sources can highlight issues, such as the fact that not all data
types are available in all data sources, which can lead to a dif-
ferent composition of patients amongst definitions.

Often, researchers make choices to restrict or not to restrict
to inpatient events in an attempt to reduce measurement
errors, usually by increasing specificity. This study highlights
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the need to thoroughly evaluate the implication of such a
choice. The effect of an inpatient restriction showed the highest
amount of variation among databases and phenotypes, suggest-
ing some level of error. For example, anaphylaxis shows higher
incidence rate in claims databases than EMR databases and
overall, the incidence RRs range from 1.00 to 5.04. This analy-
sis alone cannot determine the total error by restricting to inpa-
tient, but it likely increases specificity and decreases sensitivity,
but we do not know by how much for each. Also, coding errors
and how data get recorded in all databases (ie, claims are gener-
ally processed for payment) also are a form of error for out-
comes represented here. Outcomes that are expected to occur in
an inpatient setting such as appendicitis can show up to a 2-fold
increase in IR when not restricting to events occurring in hospi-
tals that record inpatient data. Outpatient EHRs may record a
presence of a procedure, such as appendectomy but the actual
diagnosis happens prior to the record of procedure, which could
influence the capture of events. Rarer events tended to have the
least amount of variation, as seen by DIC or encephalomyelitis.
This is likely due to diagnostic and data capture; the definitions
of these outcomes are acute and require substantial diagnostic
workup. The variability by country was lower than expected as
databases in this study vary by country likely due to coding
practices and data types. A small number of events in certain
strata can result in high variability of rates as seen with pulmo-
nary embolism in the 0-5 age range. This variability is invisible
unless definitions are exposed to systematic evaluation as shown
in this study.

Standardization of data compared to using source data
showed little to no difference in incidence estimates. For exam-
ple, pulmonary embolism rates for both males and females range
from 1.0 to 1.2 across all databases and are the same for ana-
phylaxis. Standardization can help facilitate analysis across a
network of databases. The underlying populations of each data-
base may be different, but the clinical concepts for conditions
like appendicitis and acute myocardial infarction are expected to
be similar around the world. However, analyses stratified by age
and sex suggest that database heterogeneity can go beyond dif-
ferences in underlying populations to produce differences in phe-
notype incidence. Code set variation also had high variability by
outcomes and across databases. The rates for hemorrhagic
stroke showed the highest range from 1.0 to 3.0 across age, sex,
and database. While each outcome has a different underlying
true incidence rate, which may contribute to differences in
degree of heterogeneity across outcomes, variability across out-
comes may also be due to variability in the use of different code
sets for different outcomes across regions or practices.

The sensitivity analysis of GBS showed wide variability across
modifications, with an incidence twice as high when using inpa-
tient primary compared to any inpatient and 4 times as high
when using any place of service compared to inpatient primary
only across all databases. The CDC protocol defined GBS using
inpatient primary, while the BEST protocol used inpatient, and
these 2 variations lead to a notable effect on the background
rates, at least doubling the rate when transitioning from primary
restriction to inpatient only. Characteristics of patients identified
via the different definitions showed substantial differences in
covariate distributions. Differences in characteristics between the
inpatient and inpatient primary were less pronounced and
related mostly to drainage of spinal fluid. However, the trade-off
of including a primary code which is only available in selected
databases in the United States is a challenge and one that should
be considered prior to implementing a phenotype. The overall
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performance of a phenotype definition could show an increase in
sensitivity with this restriction but is a compromise when utiliz-
ing other databases that do not have these specific markers. Uti-
lizing other methods to determine the performance
characteristics such as background covariates of a phenotype
could be beneficial prior to selecting a phenotype definition.
These choices should be evaluated prior to deciding and are
likely influenced by what the outcome definition is.

The strengths of the study include conducting the analysis on
a global network of data sources, and the ability to rapidly assess
a large set of definitions for multiple outcomes in a systematic
manner. The limitations of the study include that standard
vocabularies could change over time and definitions should be
revisited to ensure mappings represent the population they
intend to study. Also, while this study examined changes in out-
come incidence with alternative definitions, we did not examine
the performance characteristics (eg, sensitivity and specificity) of
each phenotype. When possible, such performance characteris-
tics should be used to select an optimal phenotype. The stratifi-
cation of place of service is an aggregation of various types of
care (office visits, specialist visits, diagnostics done in an emer-
gency room) and while this level of granularity would be benefi-
cial to evaluate most of our databases do not contain this level
of information. The study demonstrates the need for researchers
to consider broad changes on a phenotype definition. Variability
by databases, coding choices and standardization can affect the
resulting IR analysis. The 3rd modification choice illustrates
how a given phenotype definition can vary the resulting analysis
such as in the example of inpatient modification which results in
a large variation of IR compared to very little when standardiza-
tion is applied. Further resources should be devoted to exploring
the impact of the definition prior to conducting a study.

Comparing phenotype definitions is critical for understat-
ing the trade-offs researchers make when evaluating an out-
come definition, and the ability to process this information
and understand the strengths and weaknesses of a definition
over a network of data sources is important to be able to
implement the strongest definition in each data source for a
study or use in safety surveillance.

Conclusion

Our study systematically compared incidence rates among
different phenotype definitions. We found variation when
introducing restrictions based on the setting of events for
selected phenotypes. There is considerable database-level het-
erogeneity within a phenotype when changing the concept set
on the incidence rates, providing an additional layer of valid-
ity and comparability across databases prior to conducting
estimation studies.
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20_000211 was approved by the Independent Scientific Advi-
sory Committee. However, the interpretation and conclu-
sions contained in this study are those of the authors alone.
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