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Abstract

In this paper, a dynamic model of human time percep-
tion is presented which treats time as phase, relative to
the period of an oscillator that adapts its oscillation rate
in response to an input rhythm. The adaptive oscillator
mechanism 1s characterized by four fundamental proper-
ties: (1) a preferred oscillation rate which captures the
notion of a preferred tempo, (2) a fast-acting synchro-
nization procedure which models our ability to percep-
tually lock onto salient aspects of a thythm, (3) a decay
process to oppose synchronization, and (4) a drift pro-
cess which causes the preferred rate to gradually drift
towards the adapted rate, thereby modeling the context
effects of long-term pattern exposure. By assuming that
sensitivity to duration is a function of oscillator entrain-
ment to the contextual rhythm, the model provides a
qualitative match to data on tempo discrimination, and
predicts the types of errors subjects would make on such
tasks. These predictions are in agreement with data
showing that subjects overestimate short intervals and
underestimate long intervals.

Introduction

The perception of rhythm is a dynamic process. It
embodies our sensation of movement in time, creates
expectations, provides us with a sense of strong and
weak “beats”, and characterizes an emergent entrain-
ment between the nervous system and the environment.
In essence, rhythm plays the role of imposing temporal
structure on cognition (Jones, 1976). In spite of the fact
that rhythm is so central to cognition, relatively few com-
putational models in cognitive science focus on rhythm.
This is nowhere more evident than in work on speech
recognition. To a lesser degree this is true for work in
computational modeling of music cognition which is gen-
erally biased towards melody.

Central to an adequate account of rhythm perception
is an explanation for how the brain measures time, as it
is the temporal pattern of event onsets which primarily
determines rhythmic organization (Handel, 1993). How-
ever, most computational approaches to rhythm fail even
to take into account how time is perceived. Temporal in-
tervals between acoustic-event onsets are typically rep-
resented with respect to a reference clock, for example
in seconds. However, clock-time is distinct from the way
we actually perceive time, as is evident from a review of
the relevant time perception literature.

Fairly recently, a number of oscillator models have
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been proposed as a way to store temporal intervals (Mi-
all, 1989) or more generally as a way to capture the hi-
erarchical structure of rhythms (Torras, 1985; McAuley,
1994; Large & Kolen, 1994). In particular, the adaptive
oscillator model proposed by McAuley (1994) implicitly
measures time as phase, relative to the period of an oscil-
lator that is able to adapt its oscillation rate in response
to an input rhythm. Sensitivity to interval duration is
a function of how well the oscillator is entrained to the
contextual rhythm. This paper further investigates the
adaptive oscillator model by showing that it captures im-
portant dynamic properties of human time perception.
A brief overview of these aspects of time perception is
presented in the next section.

Time Perception

How is clock-time related to perceived-time? Many psy-
choacoustic experiments have probed this question us-
ing series of equally spaced “isochronous” tones. For
rhythm-like patterns, the interval between tone onsets
(IOI) ranges roughly between 0.1 sec and 3.0 sec. In
a single-interval experiment, the subject typically com-
pares two stimuli and indicates which is longer. In a
multiple-interval experiment, the subject might be asked
to detect an interval change that is embedded within an
otherwise isochronous sequence. In a tempo discrimina-
tion task, the subject has to decide which pattern sounds
faster.

For many of the single and multiple interval exper-
iments (Woodrow, 1951; Fraisse, 1963; Allan, 1979;
Hirsh, Monahan, Grant, & Singh, 1990), the minimum
just-noticeable difference (JND) is 2% — 10%, and usu-
ally occurs at a preferred IOI value that lies somewhere
between 100 and 1000 msec. Worse sensitivity is found
for intervals longer and shorter than this preferred 101
value. In tempo discrimination experiments, optimal
tempo sensitivity has been found at around 100 msec by
Michon (1964) and between 300 and 800 msec by Fraisse
(1963) and Drake & Botte (1993). The minimum rela-
tive JND in these studies ranged from 2% — 6%. In the
Drake and Botte experiments, increasing the number of
isochronous intervals was found to improve thresholds,
and did so in roughly uniform way across IOI’s. Thresh-
olds were raised by adding variability to the tone onsets,
thus making the patterns less regular. They conclude it
is the regularity of the sequences that improves discrim-
ination thresholds.



Linked with the notion of a preferred IOl or tempo is
what has been called the indifference inierval. Intervals
shorter than this interval tend to be overestimated and
intervals longer than this interval tend to be underesti-
mated. At the preferred tempo, listeners show no such
bias, that is, they show indifference (Woodrow, 1951;
Allen, 1975; Halpern & Darwin, 1982). In broad terms,
listeners attempt to equalise duration estimates with re-
spect to a central value.

The results described in the preceeding paragraphs
have been the subject of much debate, as it has been
impossible to obtain a consensus among researchers as
to the nature of the psychophysical law for time. Pre-
ferred tempo is far from invariant. Significant differences
within and between individuals exist in preferred tempo
and in the shape of threshold curves. Many contextual
factors, such as the length of training, order of pattern
presentation, and the general mental state of the sub-
ject, play an important role in performance. To account
for some of this variability, it has often been proposed
that subjects show a central tendency in their judgments
of time (Hollingworth, 1910; Turchioe, 1948; Woodrow,
1951). This means that a subject’s preferred IOI will
gravitate towards the mean IOI of the stimulus set. As
a test of this hypothesis, Woodrow (1951) evaluated lis-
teners’ tendency to over- and underestimate temporal
intervals by using a single 1.0 sec 101 standard stimulus
in a “which is longer?” task. In support of the central
tendency hypothesis, he found that the subjects’ indif-
ference interval moved from near 0.8 sec, measured after
the first 60 trials to near 0.96 sec, after the second sixty
trials. Since then, there has been both support and crit-
icism of the central tendency effect.

Adaptive Oscillator Model

In recent work, McAuley (1994) described a general
class of adaplive oscillator mechanisms which synchro-
nize their oscillations with input rhythms. Four specific
models were investigated, each of which was character-
ized by the shape of the oscillator’s activation function.
This paper focuses on a refinement to one of these mecha-
nisms, the adaptive harmonic oscillator, and explores its
viability as a model of human time perception. The re-
search presented here emphasizes the processing of tem-
poral patierns, rather than event identification. Each
event is simply represented as an onset-in-time and an
intensity value which can vary between [0, 1] (see Fig-
ure 1A).

Unlike descriptive psychological models, the proposed
dynamic model can be evaluated by simulating specific
behavioral experiments from start to finish. This enables
the model to predict how many of the contextual aspects
of time perception, ranging from length of training to
the order of pattern presentation should effect human
performance in analogous experiments.

Four fundamental properties characterize the adaptive
oscillator model. (1) The adaptive oscillator has a pre-
ferred oscillation period which models the listener’s pre-
ferred IOI (or tempo). (2) A fast-acting synchronization
procedure models the listener’s ability to perceptually
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lock onto salient aspects of a rhythm. Gradient-descent
on the synchronization error updates the oscillator’s pre-
ferred period so that it becomes entrained to periodic
components of the input. (3) A decay process opposes
the synchronization process by forcing the adapted os-
cillator back to its preferred rate. As a result, it is easy
for the model to adapt to tempos that are around the
preferred rate, but difficult for it to adapt to tempos
that are significantly slower or faster. (4) In order to
model the context effects of long-term pattern exposure,
the preferred period is allowed to drift slowly towards
the current adapted period.

Preferred Period For the adaptive harmonic oscilla-
tor, the preferred period is embodied within a sinusoidal
“activation” function:

B(t) = (1+ cos(%nxz.

The period of this oscillator Q(n) is initialized to its pre-
ferred period: Q(0) = p (see Figure 1B). On each time-
step, the current input i(t) and the current value of the
sinusoid ¢(t) sum together to provide a measure of total
activity: a(t) = @(t) + i(t) The oscillator generates an
output “spike” o(n) = ¢(t) each time the total activity
a(t) reaches or exceeds a threshold value # = 1.0, after
which the activation function is immediately phase-reset
to t = 0 (see Figure 1C).

Synchronization and Decay An input pulse that ar-
rives out-of-phase with respect to the zero-phase spon-
taneous firing pattern of the oscillator may, depending
on the input intensity, force the oscillator to spike at a
phase that is negative (early) or positive (late) in rela-
tion to the spontaneous spiking behavior. This phase in-
formation can be used to define a spike-driven gradient-
descent procedure which synchronizes the oscillator with
rhythmic aspects of the input pattern (see Figure 1D).
Synchronization error is defined as the squared “tem-
poral distance” between input-forced spikes and sponta-
neous spikes, which is the squared difference between the
threshold @ and the activation ¢(t):

B(n) = 5i(t)(6 - 4(t))*

To minimize the synchronization error at each output
spike o(n) (input-forced or spontaneous), the oscillator’s
period €2(n) is adapted by a fraction a that is (nega-
tively) proportional to the partial derivative of the syn-
chronization error E(n) with respect to {(n):

§E(n)
6Q(n)”
To include a decay process as part of the update rule,

one assumes that the adapted period Q(n) is normally

distributed about a mean 2 equal to the preferred pe-
riod. By taking the log of this distribution, one obtains
a decay term

Qn+1)=0(n)-a

D(n) = ~ 5 (1~ i(8))(n) ~ O)?



(A) Simple Rhythm (400 msec 101)
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Figure 1: (A) Discrete construction of a simple input rhythm, with each onset occuring every 400. (B) Three periods
of a 2.0 Hz harmonic oscillator. (C) Input pulses are added to the harmonic oscillator every 400 msec. Each input
pulse causes the oscillator to spike and to be reset to zero phase. Output values, equal to the activation which it
spikes, are marked by a square at each such phase-reset. (D) Fast-acting synchronization is applied to the oscillator.
Notice that the output values at each phase-reset continue to increase, providing an entrainment measure. The
output is approaching a value of 1.0 for which synchronization error is 0.0.

which amounts to a penalty for large differences between
the adapted period and the preferred period. Gradient-
descent on the decay term pushes the adapted period
of the oscillator back towards its preferred period. The
standard deviation o determines how important the de-
cay constraint is. If o is small, the decay term will be
heavily weighted. If it is large, the decay is negligible.
The modified update procedure, which incorporates both
decay and synchronization is

§E(n)
60 (n)

6D(n)
6Q(n)’

Qn+1) =0(n) -« +p

The adaptation rates for synchronization and period de-
cay are o and 3 respectively.

Drift To model the context-effects of long-term pat-
tern presentation, the preferred period 2 is allowed to
“drift” towards the adapted period Q(n), although only
at a small fraction 7 of the synchronization speed:

6E(n) §D(n)

B(n +1) =0(n) ~Mogacy ~ Ponm)

).

B
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Evaluating the Model

To evaluate the performance of the adaptive oscilla-
tor model, it is assumed that human discrimination of
rhythm and time is based on entrainment to the stim-
ulus. According to this interpretation, a forced-choice
tempo discrimination task requires a listener to synchro-
nize with the standard before having to make a judgment
about the comparison.

In the model, each output spike o(t) provides a simple
entrainment measure [0.0,1.0]. An output of 0.0 indi-
cates that the current input is 180 degrees out-of-phase
with the model’s oscillations, much as syncopated notes
have the tendency to be felt as out-of-sync with the beat
of music. On the other hand, an output of 1.0 corre-
sponds to perfect synchronization between the oscilla-
tor’s spontaneous firing and the input pulse. We can
view the phase response to each input as creating an
atteniional phase window that is symmetric about the
zero-phase point, as shown in Figure 2. Successive in-
puts that fall within this attentional focus will produce
larger outputs. For an output of 0.0, we can think of at-
tentional focus as maximally broad, that is, covering the
entire range, [—m, 7). As an adaptive oscillator entrains
to its input, the attentional focus narrows, so that when



it is finally fixed only on the sero-phase point, the model
is perfectly synchronized with its input.

0.65

0.0

@ spontaneous pulse
O input pulse
@ attentional focus

Figure 2: (A) Phase representation of time. Spontaneous
pulses of the oscillator always occur at the zero-phase
point, as indicated by the solid black circle. Each input
pulse perturbs the oscillator at a particular phase, indi-
cated by the open circle, thus providing an estimate of
time in relation to the present period of the oscillator.
In this example, an isochronous rhythm with a 400 msec
101 has forced a 2Hz oscillator to fire at phase angle of
-72 degrees. Panel (B) depicts the corresponding output
values which provide a measure of synchronization.

The second assumption is that a series of input pulses
resulting in increasing outputs corresponds to a continu-
ation of the same rhythm. On the other hand, a sudden
drop in output-a mental “stumble” if you will-indicates
that the rhythm has changed. What constitutes a sud-
den decrease in output? A decision criterion is set which
measures the spike-to-spike change in output. A drop
in output below this threshold A(n) signals change. In
terms of phase, inputs which preserve the same rhythm
fall within the attentional phase window. Inputs will
fall outside a phase-threshold of this window indicate a
change in rhythm. To simulate a two-alternative “which
is faster?” task, the model guesses when the output
continues to increase through the transition between the
standard and comparison patterns. In these cases, the
model can’t judge which is faster, because both pat-
terns “sound the same”. When the model does detect a
change in rhythm, the sign of the phase difference indi-
cates whether the comparison pattern is faster (negative
relative phase) or slower (positive relative phase).

Tempo Discrimination

Given the above assumptions, one can directly compare
the performance of the adaptive oscillator model to the
Drake & Botte data using an analogous 2AFC adaptive-
tracking training procedure. Simulating the training
procedure, as well as the specific psychophysical task is
advantageous because it provides both a direct measure
of performance in terms of relative JND and permits the
investigation of a number of important performance is-
sues that relate to the training process, such as the types
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of errors made, the order of pattern presentation, the
range of tempos tested, and the size of of inter-stimulus
interval (ISI).

Method In the Drake & Botte experiments, attempts
were made to minimize context effects by counterbal-
ancing stimulus presentation order within and between
sessions. Consequently, for the purpose of modeling the
human subject data, the oscillator’s drift parameter «
was set to 0.0. The other parameter settings for this
simulation were as follows: {2 = 500msec, a = 0.1, and
B =0.1.

The selected input rhythms were 1-5 interval
isochronous patterns having IOl ranging from 300-700
msec in 50 msec intervals, Each input pulse had an in-
tensity of 1.0, On a given trial, the model was presented
a standard pattern A followed by a variable pattern B,
and decided, using the measurement procedure outlined
above, which was faster. The tempo of the variable pat-
tern differed by a + fixed percentage of the standard’s.
The ISI between the standard and the variable equaled
two times the standard’s IOI, so as to maintain the reg-
ularity of the standard’s rhythm.

During a block of trials, the initial AIOI was set to
20%. For two consecutive correct responses, the tempo
difference was decreased by 1%. For an incorrect re-
sponse the tempo difference was increased by 1%. This
2AFC adaptive-tracking procedure is shown to converge
to a d’ = 1.0, corresponding to a 70.7% probability of
correct detection (Levitt, 1971). Twenty 100 trial blocks
were run for each type of pattern (1-5 intervals) and each
tempo. Performance on each block was determined by
averaging over the last 50 trials, which was analogous to
looking at the last 10 reversals. For example, Figure 3A
shows one of the 100 trial tracking histories. Notice that
several up-down reversals occur well before the end of
the first 50 trials. Averaging over the second 50 trials
tended to provide a stable measurement of the relative
JND. In general, every attempt was made to simulate,
as closely as possible, the Drake & Botte study.

Results The relative JND measures from this simula-
tion, averaged over the twenty repetitions of each con-
dition, are shown in Figure 3B. An analysis of variance
was run on this simulation data by the number of inter-
vals, repetitions, and tempo, so as to address the main
questions investigated in the Drake & Botte study. For
comparison with the model data, the subject data is de-
picted in Figure 4A. In the Drake & Botte experiments, a
main effect of interval number is found on threshold. The
subject’s mean relative JNDs are shown to be smaller for
isochronous sequences than for single intervals. Further-
more, these thresholds improve as an increasing function
of the number of intervals. No significant further im-
provement was found beyond four intervals. Similarly,
the model data shows a significant effect of interval on
threshold (p < 0.001). The model’s mean relative JNDs
(averaged across tempi) for single intervals is 19% and
for increasing intervals is 10%, 8.5%, 6.7%, and 6.2%,
respectively.
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Figure 3: Simulations results of single adaptive oscillator tested on a 2AFC tempo task using adaptive tracking.
(A) Tracking history for a model using a 4-tone standard pattern with a 400 msec IOIL. (B) Mean relative JNDs for
standard tempi ranging from 300-700 msec 1Ols for 3-,4-,5-, and 6-tone sequences.
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Figure 4: (A) Tempo discrimination data reproduced from Drake & Botte (1993). Mean relative JNDs are shown
for sequences containing 2, 3, 5, and 7 tones across tempi ranging from 100-1500 msec IOIs. (B) Simulation results
from multiple-adaptive-oscillator model tested on an analogous 2AFC tempo task using adaptive tracking.

Secondly, the Drake & Botte experiments do not con-
firm Weber's law, which would predict a flat relative
IJND curve, but instead reveal a U-shaped threshold
curve with optimal sensitivity between (300-800 msec).
In addition, the listeners show similar U-shaped thresh-
old curves across the single and multiple interval con-
ditions. No significant interaction between tempo and
number of intervals is found. Likewise, the model shows
a significant U-shaped effect of tempo on mean relative
IJND (p < 0.001). For the single adaptive oscillator,
optimal tempo inherently corresponds to the preferred
period, with mean relative JND varying from about 2%
at the preferred tempo to 22% and 16% at the fastest
and slowest tempi, respectively.

There are several important differences between the
subject data and the model data. Unlike the Drake &
Botte experiments, the model shows a significant inter-
action between tempo and number of intervals. With a
standard pattern that is at the preferred oscillation rate,
the number of intervals has no effect on performance be-
cause the oscillator is already entrained to it, that is,
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tempo discrimination for patterns at the preferred rate
is always optimal. The second major difference is that a
single adaptive oscillator is unable to capture the same
range and precision with which humans can discriminate
tempo. However, the adaptive oscillator model does ex-
hibit the same general U-shaped threshold curves across
the single and multiple interval conditions using a simple
entrainment principle.

In summary, the model data, generated using a simu-
lated adaptive tracking procedure, provides a gualitative
match to the Drake & Botte tempo discrimination data.
However, capturing the range and precision with which
humans can discriminate tempo requires more than one
adaptive oscillator. In preliminary simulations using
multiple oscillators with preferred periods spanning the
space of tempi, a better fit to the data has been obtained
(see Figure 4B), although it doesn’t adequately capture
precision. In this simulation, each oscillator makes an
independent tempo judgment which is then weighted by
how well that oscillator is entrained to the standard. The
weighted sum of these independent judgments provides



the probabilistic response of the model.

Predicting Errors in Time Estimation

Because interval duration is measured as a phase-angle
that is relative to the adaptive oscillator’s period, the
model’s errors in estimating time are systematic. In
agreement with the time perception literature, short in-
tervals, by virtue of causing the oscillator to fire at a neg-
ative phase-angle, are overestimated, and long intervals,
by virtue of causing the oscillator to fire at a positive
phase-angle, are underestimated.

Armed with the knowledge that the adaptive oscillator
over- and underestimates time with respect to its pre-
ferred period, it should become clear to the reader that
the analogous predictions hold for tempo. In particular,
in a tempo discrimination task, the mean relative JND
should be different for the faster and the slower com-
parison patterns. In a 2AFC “which is faster?” task,
standard pattern tempos that are faster than the pre-
ferred oscillator period will be overestimated, thus mak-
ing it easier for the model to detect a faster compari-
son pattern than a slower comparison pattern. Analo-
gously, standard tempos that are slower than the pre-
ferred tempo will be underestimated, thereby making it
easier for the model to detect a slower comparison pat-
tern than a faster comparison pattern. We can compute
the skewed JND values directly. Let 2* equal the stan-
dard IOI and * equal the decision threshold interpreted
as an IOl For a standard pattern that is faster than the
oscillator (2° < Q(n)), the relative JND for the slower
comparison pattern is

(2Q(n) - °| + |Q° - Q*))/9°,

whereas the relative JND for the faster comparison pat-
tern is

| — *|/a.
For a standard that is slower than the oscillator, the
equations are reversed.

Conclusions

In this paper, a dynamic model of time perception was
presented that provided an explanation for a number
of results on single and multiple-interval discrimination,
including the Drake and Botte tempo data. Time was
measured as phase, relative to the period of an adaptive
oscillator. Sensitivity to duration was thereby a function
of oscillator entrainment. The results captured by this
model included: (1) U-shaped relative JND curves, with
optimal sensitivity at the preferred period, (2) improved
performance as the number of isochronous intervals in-
creased, and (3) over- and underestimation of short and
long intervals relative to the preferred period, which also
implied analogous time estimate errors for tempo.

In broad terms, such a dynamic model should help
paint a more coherent picture of the nature of human
time perception. Results which seem at odds with each
other, may be unifiable if time perception is correctly
interpreted as a dynamic process, thus providing a foun-
dation for a dynamic theory of rhythm. Ongoing work
is directed towards this end.
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