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Abstract

Genome-scale metabolic models comprehensively describe an organism’s metabolism and can be 

tailored using omics data to model condition-specific physiology. The quality of context-specific 

models is impacted by (i) choice of algorithm and parameters and (ii) alternate context-specific 

models that equally explain the -omics data. Here we quantify the influence of alternate optima 

on microbial and mammalian model extraction using GIMME, iMAT, MBA, and mCADRE. We 

find that metabolic tasks defining an organism’s phenotype must be explicitly and quantitatively 

protected. The scope of alternate models is strongly influenced by algorithm choice and 

the topological properties of the parent genome-scale model with fatty acid metabolism and 

intracellular metabolite transport contributing much to alternate solutions in all models. mCADRE 

extracted the most reproducible context-specific models and models generated using MBA had 

the most alternate solutions. There were fewer qualitatively different solutions generated by 

GIMME in E. coli, but these increased substantially in the mammalian models. Screening 

ensembles using a receiver operating characteristic plot identified the best-performing models. 

A comprehensive evaluation of models extracted using combinations of extraction methods and 

expression thresholds revealed that GIMME generated the best-performing models in E. coli, 
whereas mCADRE is better suited for complex mammalian models. These findings suggest 

guidelines for benchmarking -omics integration algorithms and motivate the development of 

a systematic workflow to enumerate alternate models and extract biologically relevant context-

specific models.
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1. INTRODUCTION

The physiological state of a cell is mediated by an intricate network of signaling pathways, 

gene regulatory networks and metabolic reactions. Gene expression data provide functional 

insights into the modulation of cellular phenotype (Manzoni et al., 2018), biological features 

of disease states (Borrageiro et al., 2018; Dickson, 2021; Kori and Yalcin Arga, 2018; 

Pedrotty et al., 2012), cellular differentiation and tissue-specific functions (Burke et al., 

2020; Uhlen et al., 2016; Watcham et al., 2019), and cellular responses to environmental 

perturbations (Kochanowski et al., 2017). Although many tools improve the coverage of 

gene expression data analysis, to gain more functional insights into the modulation of cell 

state (Nguyen et al., 2019), quantitative assessments using genome-scale models (GEMs) 

can provide rich mechanistic insights.

GEMs are a comprehensive repository of biochemical reactions encoded within the genome 

of an organism (Gu et al., 2019) that reflect its metabolic capabilities. The sheer size 

(e.g., number of reactions) of eukaryotic genome-scale models introduces computational 

and data availability bottlenecks to parameterize quantitative integration techniques such as 

whole-cell modeling (Macklin et al., 2020), ME-Models (O’Brien et al., 2013), or kinetic 

models (Gopalakrishnan et al., 2020; Khodayari and Maranas, 2016). The integration of 

transcriptomics with GEMs has been invaluable to the scientific community for nearly two 

decades (Blazier and Papin, 2012; Robaina Estevez and Nikoloski, 2014). For example, 

transcriptomics data can be integrated with eukaryotic models through binarization of 

enzyme abundance levels to “ON” or “OFF” states after thresholding associated gene 

expression levels and evaluating gene-protein-reaction (GPR) relationships to yield context-

specific models that represent the condition-specific metabolism of the organism. However, 

inactivating reactions based on thresholding alone leads to fragmented metabolic networks 

that are incapable of predicting any meaningful flux distributions (hereafter known as flux 

inconsistent networks) (Åkesson et al., 2004). Flux consistency must be restored using gap-

filling algorithms, which seek to preserve the validity of the model. Several algorithms have 

been developed over the past decade, each with its own unique approach for extracting flux-

consistent sub-networks. Context-specific models generated using various model extraction 

methods have been previously applied to study human tissue-specific metabolism (Jerby et 

al., 2010), identify biomarkers in NAFLD (Mardinoglu et al., 2014), cancer (Zielinski et al., 

2017), and diabetes (Bordbar et al., 2011; Kumar et al., 2014), propose potential anti-cancer 

drug targets (Pacheco et al., 2019), and optimize bioprocessing for drug manufacturing 

(Fouladiha et al., 2020; Schinn et al., 2021a).

Model extraction methods are broadly classified into optimization-based and pruning-based 

methods. Optimization-based methods are broadly classified into the GIMME-like family 

of methods (Becker and Palsson, 2008) and the iMAT-like family of methods (including 
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iMAT (Zur et al., 2010), INIT (Agren et al., 2012), and tINIT (Agren et al., 2014)) and 

rely on solving a linear or mixed-integer programming problem to extract context-specific 

models. The objective varies based on the method and generally maximizes removal of 

poorly expressed genes (as in the GIMME-like methods) or inclusion of highly expressed 

genes (as in iMAT and INIT) and may enforce minimum flux through certain required 

phenotype-defining pathways (also known as required metabolic functions (RMFs)) as 

implemented in tINIT. On the other hand, pruning-based methods like MBA (Jerby et al., 

2010), FASTCORE (Vlassis et al., 2014), mCADRE (Wang et al., 2012), and CORDA 

(Schultz and Qutub, 2016) extract context-specific models by first identifying a candidate 

list of reactions to be removed and then pruning the genome-scale models one reaction 

at a time, until no more reactions can be removed without losing information about the 

cell’s phenotype. While optimization-based methods are faster and better at protecting flux 

through known metabolic functions, pruning-based methods allow evidence-based retention 

of reactions, thereby generating models that are more representative of the physiological 

state being investigated (Robaina Estevez and Nikoloski, 2014).

The content and quality of an extracted model depends on the choice of model extraction 

method, the threshold applied to gene expression data to identify active and inactive 

reactions, and the coverage of data. Previous studies (Opdam et al., 2017; Richelle et al., 

2019b) revealed the choice of method and the threshold strongly influencing model content. 

However, an overlooked factor influencing model content is whether model extraction 

methods yield a unique context-specific model. Alternate optimal solutions arise when there 

are multiple combinations of reactions associated with poorly expressed genes that can 

be retained to restore flux consistency of the metabolic network but cannot be effectively 

resolved using the available gene expression data. Typically, these include isozymes utilizing 

different cofactors (e.g., NAD vs NADP) and alternate biosynthetic routes. The scope and 

disparity of alternate optimal solutions is a measure of reproducibility of each model 

extraction algorithm and sufficiency of data. To account for alternate optimal solutions, 

the algorithm EXAMO first identifies all fluxes that are active in all alternate solutions 

generated by iMAT and uses this set of reactions as high-confidence reactions in MBA 

(Rossell et al., 2013). Robaina-Estevez and Nikoloski (2017) developed a framework to 

quantify alternate optima in flux-centric extraction methods such as RegrEx and CORDA 

and revealed that the variability in extracted model topology stemmed from different 

combinations of 58% of the reactions that were flagged for removal. Therefore, it is 

necessary to identify and quantify the variability in extracted context-specific models 

and screen potential alternate solutions using appropriate data (gene knockout data, 

fluxomics, endo-metabolomics, etc.) so that extracted models are sufficiently accurate to 

identify meaningful intervention strategies for therapeutic design or metabolic engineering 

applications of interest. In addition, a framework to enumerate and screen the space of 

alternate solutions will provide insights into the reproducibility of existing model extraction 

algorithms and establish a platform to benchmark future omics-integration algorithms.

This study comprehensively assesses the importance of quantitatively protecting flux 

through RMF reactions (the biomass production reaction, in this case) and the effect of 

choice of threshold and extraction method on the scope of alternate optimal solutions during 

transcriptomics-based model extraction in E. coli, CHO-S, and a renal cancer cell line 
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(786O). Ensembles of 100 context-specific models were extracted using combinations of 

parameters selected from five thresholding approaches (global 80th percentile, global 75th 

percentile, global 60th percentile, StanDep, and local T2), four model extraction methods 

(GIMME, iMAT, MBA, and mCADRE), and quantitative protection of metabolic functions 

(i.e., growth rate). First, we define a method to generate the ensemble of alternate solutions 

for each case. Next, we evaluate the growth rate predicted by all extracted context-specific 

models and determine that qualitatively protecting the biomass reaction (as previously 

suggested (Richelle et al., 2019a)) is not sufficient to accurately predict the experimentally 

measured growth rate. Following this, we quantify the variability in content of context-

specific models in each ensemble in terms of conserved and variable pathways to assess the 

reproducibility of each method. Across all organisms and expression thresholds evaluated 

in this study, mCADRE generated the most reproducible models, whereas models generated 

by MBA showed the largest variance in reaction content. We also find that the size and 

content of models extracted using GIMME were the least sensitive to the applied expression 

threshold in all organisms evaluated in this study. We then demonstrate the utility of the 

receiver-operating-characteristic (ROC) plot in visualizing the performance of extracted 

context-specific models and propose a metric to select the model which best represents 

the biological system in the context of the application, using gene knockout data reserved 

from the model extraction dataset. Using a Euclidean distance metric, we quantified the 

proximity of the extracted models to the ideal model and found that GIMME generated 

the best-performing models for fast growing prokaryotes such as E. coli, whereas models 

extracted using mCADRE fared better in mammalian systems such as 786O. Finally, we 

establish a set of guidelines that an extracted model should satisfy for reliable hypothesis 

generation in biomedical and metabolic engineering applications.

2. RESULTS

2.1. Flux through required metabolic functions must be explicitly protected during model 
extraction

Model extraction methods aim to generate models that predict biologically relevant 

fluxes and accurately capture the sensitivity of the fluxome to genetic and environmental 

perturbations. Therefore, biologically relevant models must accurately recapitulate 

experimentally measured metabolite uptake and secretion rates and fluxes through required 

metabolic function (RMF) reactions. In this study, we consider the biomass formation 

reaction as an RMF reaction. Because the biomass reaction may not necessarily be retained 

in the extracted models, it should be protected as a core reaction to ensure retention 

(Richelle et al., 2019a). This was sufficient in optimization-based methods (GIMME and 

iMAT), in which fluxes were protected using lower and upper bounds in the metabolic 

model. However, protecting the biomass reaction was insufficient to ensure a biologically 

relevant growth rate in models extracted using MBA and mCADRE (Figure 1). Only 34 

MBA models for E. coli generated using the 80th percentile expression threshold predicted 

a growth rate greater than 90% of the experimentally measured growth rate (Supplementary 

Figure S1A). For 786O, only 36 of 500 models generated using MBA supported a growth 

rate within 10% of the maximum rate predicted by Recon2.2 (Supplementary Figure S1B). 

For CHO-S, only 9 of 500 generated MBA models predicted a growth rate within 10% 
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of the maximum growth rate predicted by iCHO1766 (Supplementary Figure S1C). No 

model extracted using mCADRE for any organism correctly predicted biologically relevant 

growth rates despite protecting the biomass formation reaction itself as a core reaction. 

Core reactions in MBA and mCADRE are considered active if they can carry a flux of at 

least 10−4 mmol/gDW-h for E. coli or 10−4 mmol/gDW-day for 786O and CHO-S, which is 

several orders of magnitude less than the experimentally measured growth rate of all three 

organisms.

In E. coli, reactions from the electron transport chain (complexes I, II and III) and succinate 

dehydrogenase from the TCA cycle were necessary for ATP production but were inactivated 

because the associated transcript abundances were below the cutoff threshold. The resulting 

models therefore relied on the lower-yield substrate-level phosphorylation reactions for ATP 

generation and yielded lower growth rates compared to iJO1366. In 786O and CHO-S, 

reactions supporting cysteine and lysine uptake were removed based on transcriptomic 

evidence. Thus, the resulting models relied on de novo cysteine biosynthesis pathways 

and biocytin catabolism to meet the biosynthetic cysteine and lysine demands. The low 

abundance of biocytin in cell culture media limited lysine availability for protein synthesis, 

resulting in a considerably lower growth rate prediction compared to the respective parent 

genome-scale models. Ranking of non-core reactions based on expression scores prior to 

model pruning in mCADRE ensured that reactions required to sustain an experimentally 

measured growth rate were always removed due to low or missing gene expression 

values. However, very few MBA models fortuitously retained these reactions because MBA 

randomizes the removal order for reactions with low expression scores. Upon enforcing 

a mandatory minimum flux of 90% of the maximum growth rate predicted by the parent 

genome-scale model as a pruning criterion, all models generated by MBA and mCADRE 

predicted a biologically relevant growth rate for each of E. coli, 786O, and CHO-S (Figure 

1). These findings suggest that even the most lenient threshold approaches such as StanDep 

and the Local T2 threshold can filter out reactions necessary to support key phenotypes and 

therefore, flux through RMF reactions must be explicitly protected during model extraction.

2.2. Choice of extraction method determines the scope of alternate solutions

Analysis of model sizes in each ensemble provided insights into the reproducibility and 

internal variability of model extraction methods. The ensemble generated using mCADRE 

showed the least dispersion in model sizes (average range = 2 for E. coli, 10 for 786O, 

and 14 for CHO-S), while models generated using MBA showed the largest dispersion in 

model sizes for E. coli (average range = 37) and CHO-S (average range = 280) (Figure 

2, Supplementary Tables ST4, ST5, and ST6). For 786O, models generated using iMAT 

showed the largest size dispersion (average range = 128). Upon increasing the global 

expression threshold from the 60th percentile to the 80th percentile, the dispersion of model 

sizes from iMAT and MBA increased by up to 50%. However, ensembles generated using 

iMAT and MBA with StanDep or local T2 thresholding had lower size dispersion compared 

to models using global thresholding. The size dispersion correlated with the size of the 

core reaction set. For larger core reaction sets, model extraction methods choose pathways 

from a smaller set of non-core reactions for gap-filling, resulting in ensembles with smaller 

dispersions for thresholds with more core reactions. Interestingly, model size dispersion in 
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ensembles generated using GIMME remained relatively unchanged in response to changes 

in threshold. On the other hand, rank-ordering of non-core reactions by mCADRE limits 

variability in removal order, and therefore, generated ensembles with the smallest size 

dispersion.

Because a low size dispersion within an ensemble does not necessarily imply fewer alternate 

solutions, conserved and variable reactions in the ensemble must be identified and analyzed. 

During model extraction, we classified all reactions in the parent genome-scale models 

into one of four classes: conserved reactions (always retained in the ensemble), inactivated 

reactions (always removed in all models), variable reactions (retained in some models when 

certain criteria are met), and no data reaction (reactions lacking data in favor of retention or 

removal). The Jaccard index highlights the prevalence of each of these reaction classes and 

therefore quantifies the diversity of models within an ensemble.

The average Jaccard index for ensembles from mCADRE were 0.99, 0.99, and 0.98, in 

E. coli, 786O, and CHO-S, respectively. Over 98% of reactions in the extracted models 

were conserved reactions (Figure 3A). Upon varying the applied threshold, the number of 

conserved reactions in E. coli ranged from 872 to 1,426 reactions. The corresponding ranges 

were 1,722 to 3,199 reactions in 786O, and 1,161 to 2,249 reactions in CHO-S. Reactions 

were conserved in an ensemble because they were either core reactions, stoichiometrically 

coupled to core reactions, or stoichiometrically coupled to the biomass formation reaction. 

434, 286, and 332 growth-coupled reactions were conserved in E. coli, 786O, and CHO-S, 

respectively. While only 315 reactions in E. coli were retained to activate blocked core 

reactions, this number increased up to 541 reactions in CHO-S and 1,019 reactions in 786O. 

This suggests that reaction retention in E. coli was primarily driven by biomass coupling, 

whereas gene expression data were the primary cause of reaction retention in the eukaryotic 

models. 27 reactions in E. coli, 303 reactions in 786O, and 259 reactions in CHO-S 

constituted alternate solutions (Figure 3B). In E. coli, these 27 reactions (21 reactions 

from glycerophospholipid metabolism, 3 metabolite transport reactions, and 3 reactions 

from lipopolysaccharide biosynthesis) were included to ensure flux consistency of seven 

core reactions (five transport reactions, and one reaction each from lipopolysaccharide and 

glycerophospholipid biosynthesis). In 786O, alternate solutions resulted from variability in 

203 transport reactions, 34 glycosylation reactions, 22 reactions from fatty acid metabolism, 

and 8 reactions from nucleotide metabolism, 10 reactions from amino acid metabolism, 

and 23 reactions from central metabolism. These reactions were retained in the extracted 

models to activate 195 core reactions, primarily from fatty acid metabolism, all of which 

have four alternate pathways on average activating them. In CHO-S, 187 transport reactions, 

25 reactions from fatty acid metabolism, 15 glycosylation reactions, 11 reactions from 

nucleotide metabolism, and 21 reactions from central and amino acid metabolism make 

up all identified alternate solutions. Similar to 786O, the core reactions activated by these 

non-conserved reactions are predominantly from fatty acid metabolism. Since mCADRE 

attempts to remove all non-core reactions, none of the reactions in the model were classified 

as no data reactions.

Compared to mCADRE, MBA ensembles had greater size dispersion and lower Jaccard 

index values (averaging 0.95 in E. coli, 0.86 in 786O, and 0.82 in CHO-S). Although MBA 
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used more core reactions than mCADRE, an average 10% reduction in conserved reactions 

was observed in all three organisms. Unlike mCADRE, MBA permits removing core 

reactions if at least twice as many non-core reactions are removed. In addition, conserved 

reactions accounted for only 91%, 84%, and 83% of the extracted models for E. coli, 786O, 

and CHO-S, respectively. This contrasted with mCADRE, in which >99% of the reactions in 

all extracted models were conserved. The variable fraction of the models was considerably 

higher in MBA models compared to mCADRE models (Figure 4A), accounting for 247 

reactions in E. coli, 1,436 reactions in 786O, and 1,579 in CHO-S, of which, 23 reactions in 

E. coli, 49 reactions in 786O, and 91 reactions in CHO-S were rendered growth-coupled by 

mCADRE. The variable reactions in extracted models were predominantly from fatty acid 

metabolism in E. coli and from metabolite transport pathways in 786O and CHO-S (Figure 

3B). Of these variable reactions, 171 reactions in E. coli, 1,114 reactions in 786O, and 1,222 

reactions in CHO-S were always removed in ensembles generated using mCADRE. This 

is because MBA randomizes the removal order of non-core reactions whereas mCADRE 

sorts non-core reactions based on expression and connectivity evidence prior to removal. 

Thus, certain non-core reactions are always eliminated by mCADRE because their low 

gene expression increases their removal priority, while MBA may retain them if competing 

non-core reactions are removed earlier. This implementation difference contributed to the 

larger variation in size and content in models extracted using MBA compared to other 

methods.

Compared to MBA, iMAT models had fewer reactions, lower dispersion, and lower 

variability in model content with a Jaccard index of 0.96, 0.86, and 0.8 in E. coli, 786O, and 

CHO-S, respectively. Ensembles generated using iMAT for E. coli had the smallest fraction 

of conserved reactions (88%). For 786O and CHO-S, this fraction was 74% and 55%, 

respectively, considerably lower than mCADRE despite having the same number of core 

reactions. Unlike mCADRE, iMAT does not remove all reactions below the high expression 

threshold but attempts to inactivate only those reactions whose expression score is below 

the specified lower threshold. Moreover, iMAT permits removing core reactions if an equal 

number of low expression reactions were inactivated. Reactions from transport pathways and 

fatty acid metabolism accounted for 65% of all variable reactions in the E. coli ensembles 

(Figure 4B). Meanwhile, reactions from fatty acid metabolism, cofactor biosynthesis, and 

transport pathways accounted for 88% of the variable reactions in 786O, whereas reactions 

from metabolite transport pathways alone accounted for 70% of the variable reactions in 

CHO-S.

Although the GIMME ensembles had low size dispersions relative to iMAT and MBA, a 

pairwise comparison of models based on reaction content revealed that the scope of alternate 

solutions varied based on the topological features of the parent GSM model. Ensembles 

extracted using GIMME for E. coli had an average Jaccard index of 0.99 with 426 conserved 

reactions across the ensemble, 1,815 reactions always removed in all models, and 342 

reactions contributing to alternate solutions. Of the 426 conserved reactions, 375 reactions 

were growth-coupled in iJO1366, 43 reactions were growth-coupled in the extracted models 

but not in iJO1366, one reaction (ATP maintenance) was retained based on pre-specified 

flux bounds, and six reactions from central metabolism were retained as alternatives to 

low-expression reactions. Of the 342 variable reactions, 224 reactions from metabolite 
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transport, fatty acid metabolism, tryptophan biosynthesis and nucleotide phosphorylation 

pathways were growth-coupled when retained in the extracted models. Ensembles for both 

eukaryotic models had more diverse alternate solutions with an average Jaccard index of 

0.72 for CHO-S and 0.64 for 786O. The number of conserved reactions was also reduced to 

170 reactions in CHO-S and 83 reactions in 786O with only 127 and 44 reactions coupled to 

biomass formation in iCHO1766 and Recon2.2, respectively. 4,757 reactions in CHO-S and 

5,861 reactions in 786O were inactivated in every extracted model. However, the number of 

variable reactions in each case increased to 1,736 reactions in CHO-S and 1,841 reactions 

in 786O, which is much greater than E. coli, despite similarities in model sizes in all three 

ensembles. 70% of these variable reactions were inter-compartment metabolite transport 

reactions, 10% from amino acid metabolism, 6% from fatty acid metabolism, and the 

remaining from cofactor biosynthesis and nucleotide biosynthesis and salvage. The primary 

objective of GIMME is to inactivate reactions with genes expressed below the threshold 

while ensuring that RMF reactions are retained and fully operational. Thus, we classify 

reactions as: (i) growth-coupled, (ii) low-expression, and (iii) maybe-on. All growth-coupled 

reactions are always retained in every extracted model. Low-expression reactions are always 

removed unless coupled to the RMF reaction. The inactivation of low-expression reactions 

forces flux through alternate pathways, when available, to meet the demands of the RMF 

reaction. Pathways that are the sole alternatives to low-expression reactions are retained in 

every extracted model. However, when alternate pathways exist, variable reactions can be 

retained, resulting in alternate solutions. Reactions with no available data have no reason 

for retention or removal and therefore contribute to alternate pathways. As such, alternate 

solutions from GIMME are determined predominantly by the topological features of the 

parent GSM. In E. coli, a much larger fraction of metabolism is growth-coupled leading to 

less diverse alternate solutions. However, models relying on more complex media, such as 

786O and CHO-S have a more diverse set of alternate solutions.

2.3. ROC plots help evaluate the quality of extracted models

Diverse ensembles of context-specific models can be generated, but it is often unclear which 

models are most biologically relevant. To validate extracted models, gene dispensability 

data, flux redirections, and fluxomics datasets can be used (Opdam et al., 2017). Here 

we rely on gene knockout data to evaluate the quality of alternate optimal models. The 

ideal model would correctly identify all essential and non-essential genes. Integrating 

transcriptomics data deactivates pathways that are inactive in the context of interest and 

is therefore expected to reconcile false predictions by the genome-scale model. Here we 

evaluate the specificity and sensitivity using receiver operating characteristic (ROC) plots 

(see Methods section for the definition of specificity and sensitivity and Supplementary 

Figure S2 ROC plots for E. coli, 786O, and CHO-S). After computing the specificity 

and sensitivity for each model, the distance from the ideal model was computed and then 

compared with the parent genome-scale model.

All extracted models outperformed their respective parent GEM models in predicting gene 

dispensability. This is because model pruning removes alternate routes that compensate for 

the loss of function of essential reactions, which reconciles false-positive predictions in the 

genome-scale model. We find that GIMME models had the highest specificity for E. coli 
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and CHO-S with an average sensitivity of 0.87 and 0.71, respectively. mCADRE generated 

the highest specificity models for 786O with an average specificity of 0.14. The best models 

generated for E. coli and CHO-S using GIMME showed a 29% and 55% improvement 

in gene essentiality predictions compared to iJO1366 and iCHO1766, respectively. On 

the other hand, the best model for 786O generated using mCADRE only showed a 13% 

improvement compared to Recon2.2.

The essentiality of 203 genes were reconciled in the best performing model generated 

using GIMME for E. coli, including 30 genes from fatty acid biosynthesis, nucleotide 

biosynthesis, and glycolysis. Compared to other models in the ensemble, the best performing 

model failed to reconcile the essentiality of the b1638 gene that encodes the PDX5POi 

reaction involved in pyridoxal phosphate biosynthesis. The PDX5PO2 reactions serves as 

an alternate route to pyridoxal phosphate synthesis when the PDX5POi gene is inactivated. 

Because PDX5PO2 is not associated with any gene, it is not preferentially removed or 

retained in models generated using GIMME and iMAT, due to which, b1638 is always 

reconciled in these ensembles. In contrast, PDX5PO2 is treated as a low confidence reaction 

by MBA and mCADRE, leading to prioritized removal. As a result of this, MBA and 

mCADRE can reconcile the essentiality of b1638.

The essentiality of 62 genes predominantly from fatty acid metabolism and transport 

pathways were reconciled in the best performing model for 786O generated using 

mCADRE. In the best model for CHO-S constructed using GIMME, the essentiality of 

18 genes from fatty acid metabolism and the TCA cycle were reconciled. The best models 

generated for 786O and CHO-S reconciled all essential genes reconciled in their respective 

ensembles.

The difference in gene essentiality reconciliation between the three models is attributable 

to differences in the metabolism of E coli and mammalian cells, which are reflected in 

the topological features of iJO1366, Recon2.2, and iCHO1766. Because E. coli grows 

in minimal media, a large fraction of its metabolism is biosynthetic, leading to a higher 

number of growth-coupled pathways. Protection of flux through the biomass reaction leads 

to removal of only dispensable pathways supported by low gene expression in models 

extracted using GIMME. This gave rise to models with the largest increase in specificity 

compared to the parent genome-scale model in E. coli. On the other hand, because a much 

smaller fraction of Recon2.2 and iCHO1766 is coupled to biomass production, removal 

of reactions without evidence-based prioritization leads to erroneous removal of essential 

reactions. This resulted in models with low specificity in 786O and CHO-S. In contrast, 

mCADRE prioritizes removal of reactions that are poorly expressed and weakly connected 

to highly expressed reactions. This systematic removal protects against the removal of highly 

expressed reactions in potentially essential pathways, thereby generating models with higher 

specificity than those extracted using GIMME for 786O. In comparison, models generated 

by iMAT and MBA did not perform as well as those generated by GIMME as suggested by 

their proximity to the parent genome-scale model (Figure 4 and Supplementary Figure S2). 

Models generated by iMAT were much closer to the parent genome-scale model for E. coli 
and 786O, but performed considerably better in CHO-S.
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3. DISCUSSION

This study evaluates key parameters influencing the quality of context-specific models 

extracted with various methods using gene expression data. While the choice of model 

extraction method and the threshold for gene expression remain the most important factors 

affecting model size, our analysis reveals that depending on the choice of model extraction 

method, the exploration of alternate solutions can lead to drastically different models. 

These findings suggest the need for a set of guidelines for extracting the most meaningful 

and biologically relevant context-specific models, to supplement guidelines on model 

construction (Thiele and Palsson, 2010), model annotation (Ebrahim et al., 2015), and model 

parameterization (Schinn et al., 2021b). Key guidelines are presented in Table 1, a workflow 

incorporating the proposed guidelines is shown in Figure 5, and the steps to implement 

the workflow are listed in Table 2. Three steps (Figure 5) are involved in the extraction 

of context-specific models from genome-scale models: (i) pre-processing, (ii) ensemble 

generation, and (iii) ensemble screening. The pre-processing step transforms the raw model 

and transcriptomic data into a format compatible with model extraction methods.

Preprocessing of transcriptomics involves applying a threshold to determine which reactions 

are likely active. To this end, transcriptomic data are log-transformed and mapped to 

reactions via gene-protein-reaction (GPR) relationships. A threshold (top 25th percentile, 

top 50th percentile, etc.) is applied to reaction expression scores to extract lists of 

reactions based on the requirements of model extraction methods. Here we investigated 

combinations of five thresholds (global 60th percentile, global 75th percentile, global 80th 

percentile, StanDep, and local T2 threshold) and four model extraction methods (GIMME, 

iMAT, MBA, and mCADRE). GIMME and mCADRE require the lists of reactions with 

expression scores below and above the specified threshold, respectively. iMAT and MBA 

require two thresholds to classify reactions into highly expressed and weakly expressed 

sets. Incorporating media information identifies and eliminates inconsistent core reactions 

which protects the workflow from extraction failures (see Supplementary Results). After 

preprocessing, gap-filling of metabolic networks is performed using model extraction 

methods to ensure flux consistency of the core reaction set.

During model extraction, it is mandatory to retain and protect the flux through known 

metabolic functions in the conditions being investigated. Indeed, required metabolic 

functions are not always retained in extracted models (Opdam et al., 2017) and protecting 

metabolic functions reduces the variability in model content between models extracted 

using different extraction methods (Richelle et al., 2019a). This study, however, finds 

that merely protecting these tasks is insufficient to ensure the required flux through the 

metabolic task. For example, the predicted growth rate in E. coli drops by over 99% in 

models generated using mCADRE when a minimum growth rate is not enforced. This 

suggests that while gene expression data provides insights into pathway activity, it alone is 

insufficient to distinguish between the various metabolic states underpinning the metabolic 

task. Although a comprehensive list of condition-specific metabolic tasks may be obtained 

through a literature search, sets of metabolic known tasks in rat and human tissues have 

been published (Blais et al., 2017; Richelle et al., 2019b; Thiele et al., 2013). Furthermore, 

context-specific metabolic tasks can be predicted from transcriptomic data to inform which 
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of all tasks should be protected when extracting a model for the desired conditions or cell 

type (Masson et al., 2022; Richelle et al., 2019a; Richelle et al., 2021). The inability to 

consistently retain and predict a required flux through essential metabolic functions implies 

that flux constraints on these reactions complement gene expression data and improve the 

biological relevance of extracted models.

The size, content, and predictive capabilities of the model are strongly influenced by the 

choice of model extraction method and the applied threshold for gene expression, as seen 

in previous studies (Opdam et al., 2017; Richelle et al., 2019b). Therefore, the choice of 

the right combination of parameters is crucial for extracting a meaningful model. Here we 

demonstrated that ROC plots can be used to identify the best performing models. While 

models generated using individual gene-specific local thresholds (Uhlen et al., 2015) or 

thresholds derived from hierarchical clustering (Joshi et al., 2020) were generally better, 

these thresholding methods can only be applied when multiple gene expression data samples 

are available. In addition to gene knockout data used for screening in this study, other types 

of biological data such as metabolomics and fluxomics data can be used for validation 

so long as the model’s recapitulation of the validation dataset can be represented using a 

confusion matrix. While metabolomics data reveals which metabolites actively participate 

in the condition being investigated, fluxomics data elucidates pathway utilization to validate 

generated models. Furthermore, the quality of models extracted using different algorithms 

varied based on the biology of the organism in question. Using available gene knockout data, 

we found that GIMME generated the best performing models in fast-growing prokaryotes 

such as E. coli, whereas the corresponding models generated for a function-oriented cell 

such as 786O were sub-par. These differences suggest the need for a careful assessment of 

thresholds and methods while constructing context-specific models for targeted applications.

The impact of alternate solutions must be assessed while extracting and/or and developing 

tools to extract context-specific models. Alternate optima provide meaningful insights 

into the reproducibility of the algorithm and highlight the variable parts of the extracted 

metabolic networks (Rossell et al., 2013). This arises from the insufficiency of available 

gene expression data to resolve pathway usage in those parts of metabolism. Thus, 

any inferences drawn from flux distributions involving those pathways are potentially 

ambiguous and would require additional validation. Furthermore, for algorithms of lower 

reproducibility such as MBA, generation of an ensemble of models increases the likelihood 

of identifying better performing models that may be more relevant to the condition being 

investigated.

An important factor affecting the performance of extracted models is the quality of the 

parent genome-scale model. While curated models such as those for E. coli benefit from 

a wealth of available literature, thereby leading to models with very high specificity and 

sensitivity, less studied and more complex organisms do not enjoy the same luxury. For 

example, the parent genome-scale model for 786O, Recon2.2, has a very low sensitivity 

of 0.02. This indicates a need for developing algorithms that leverage gene knockout data 

in addition to gene expression data for extracting accurate context-specific models. Better 

model extraction algorithms that can accurately capture the biological state of the cell will 

simplify the model reduction step commonly performed before computationally intensive 

Gopalakrishnan et al. Page 11

Metab Eng. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyses such as 13C-MFA (Sacco and Young, 2021), kinetic modeling (Islam et al., 

2021), hybrid models(Khaleghi et al., 2021), and models integrating other cell processes 

with metabolism, such as signaling pathways, protein secretion, and many other processes 

(Elsemman et al., 2022; Gutierrez et al., 2020; Karr et al., 2012). This will expand the 

coverage of biological data that can be integrated with metabolic models to gain novel 

insights into the biology of the organism, study the progression of diseases, identify novel 

therapeutics, and inform metabolic engineering strategies in production hosts.

4. Methods

4.1. Models and Data Sources

The metabolic models iJO1366 (Orth et al., 2011), Recon 2.2 (Swainston et al., 2016), and 

iCHO1766 (Hefzi et al., 2016) for E. coli, human metabolism, and Chinese hamster ovary 

(CHO-S) cells were used as parent genome-scale models for extraction of context-specific 

models. Published glucose uptake rate, growth rate, and acetate secretion rate for E. coli 
grown in M9 Minimal Medium were used (Leighty and Antoniewicz, 2013). Glucose uptake 

rate, lactate secretion rate, growth rate, and uptake and secretion rates for amino acids were 

obtained from the NCI-60 database for the 786O renal cancer cell line (Jain et al., 2012; 

Opdam et al., 2017) and from literature for the CHO-S cell line (Hefzi et al., 2016). Gene 

expression data for E. coli grown in M9 minimal medium, 786O, and CHO-S were obtained 

from previously published data by Monk et al. (2016), the NCI-60 database (Klijn et al., 

2015), and previously published data by Hefzi et al. (2016), respectively.

4.2. Model and Data Preprocessing

Gene expression data were converted to reaction expression scores using a gene-protein-

reaction (GPR) relationship. A GPR relationship is a Boolean expression that relates genes 

products to enzymes catalyzing a reaction. An OR relationship indicates that a reaction can 

be catalyzed by multiple isozymes. In this case, the reaction expression score is computed 

as the maximum expression of the genes encoding the different isozymes. Association of 

multiple subunits is modeled using the AND relationship. The reaction expression score 

for an AND relationship is evaluated as the minimum expression of the genes encoding 

the various subunits. Reactions without GPR relationships or with missing gene expression 

data were assigned an expression score of −1. These scores were used to identify global 

thresholding approaches. Expression scores using StanDep were computed as described by 

Joshi et al. (2020) whereas local T2 thresholding was performed as described by Richelle 

et al. (2019b). These approaches enable the better retention of more lowly expressed 

housekeeping genes and reactions (Joshi et al., 2022). Flux variability analysis (Mahadevan 

and Schilling, 2003) was performed to identify and remove inactive reactions so that all 

reactions in the parent models used for transcriptomics-based model extraction are flux 

consistent.

4.3. Model Extraction Methods

GIMME (Becker and Palsson, 2008) requires as inputs one expression threshold and 

assignment of a reaction as the required metabolic function (RMF). Values corresponding 

to the 60th, 75th, and 80th percentile in the reaction expression scores were applied as 
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thresholds to determine which reactions must be removed. For expression scores computed 

using StanDep and the local T2 approach, thresholds of 0 and 5*ln(2), respectively were 

applied. The biomass reaction was selected as the RMF reaction for all three organisms and 

a mandatory minimum of 90% of the maximum growth rate was enforced during model 

extraction. Since GIMME solves a linear programming problem to identify context-specific 

models, alternate solutions were identified by imposing an integer cut that eliminates 

previously identified solutions (Maranas and Zomorrodi, 2016).

iMAT (Zur et al., 2010) requires one threshold for high expression reactions and one for low 

expression reactions. For the global thresholding cases, expression scores corresponding to 

the 60th, 75th, and 80th percentile were used to identify core reactions that must be included 

in the extracted model, whereas scores corresponding to the 20th percentile were considered 

inactive reactions for removal. For StanDep and the local T2 cases, equal upper and lower 

threshold of 1 and 5*ln(2), respectively were applied. Because iMAT does not inherently 

protect flux through the RMF reaction, a lower bound of 90% of the maximum biomass 

flux was enforced in the MILP formulation of the iMAT case. As with GIMME, alternate 

solutions were identified using integer cuts.

MBA (Jerby et al., 2010) requires two sets of reactions be provided as inputs: one set 

corresponding to high confidence reactions that must be included in the extracted model 

and a medium confidence set that is maximally retained. For the global thresholding 

cases, reactions with scores above the 60th, 75th, and 80th percentile were considered high 

confidence reactions whereas those with scores above the 40th percentile but not part of the 

high confidence set were included in the medium confidence set. For StanDep, reactions 

with expression score greater than 110% of that method’s cluster threshold were considered 

high confidence reactions and reactions with expression scores between 90% and 110% 

were considered medium confidence reactions (Joshi et al., 2020). For the local T2 case, 

reactions with scores above the 75th percentile were high confidence reactions and those 

with scores greater than 5*ln(2) and below the 75th percentile were included in the medium 

confidence set. Alternate solutions were generated by permuting the removal order of low 

confidence reactions. In addition to ensuring flux consistency of the high expression reaction 

set, a minimum flux of 90% of the maximum growth rate was enforced as a criterion for 

removing reactions to ensure that all models in the ensemble can predict a biologically 

meaningful growth rate. A separate ensemble was also generated using the conventional 

implementation of MBA in which the biomass formation reaction is added to the set of high 

confidence reactions.

mCADRE (Wang et al., 2012) requires ubiquity scores to be provided as an input. Ubiquity 

scores for the global threshold cases were computed by normalizing reaction expression 

scores by the applied global threshold. Ubiquity scores for StanDep were computed as 

previously described by Joshi et al. For the local T2 case, ubiquity scores were calculated 

by normalizing expression scores to 5*ln(2) after applying appropriate local thresholds. 

Reactions with a ubiquity score greater than 1 were flagged as core reactions to be 

protected during model extraction. Because mCADRE ranks non-core reactions based on 

expression and connectivity evidence, only a subset of non-core reactions of equal rank 

can be permuted. Alternate solutions were identified by permuting the removal order of 
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this subset of reactions. As with MBA, a minimum of 90% of the maximum growth rate 

was enforced as an additional criterion for model pruning. An ensemble was also generated 

using conventional mCADRE with the biomass formation reaction added to the set of core 

reactions.

All algorithms were implemented in the COBRA Toolbox (Heirendt et al., 2019) in 

MATLAB ®.

4.4. Analysis of Ensembles

The similarity of two models (modeli and modelj) in any ensemble is quantified using the 

Jaccard Index defined as follows:

Jij = Reactions inmodeli ∩ Reactions inmodelj
Reactions inmodeli ∪ Reactions inmodelj

4.5. Validation of Extracted Models

Gene essentiality data inferred from gene knockout studies were used to screen ensembles 

of context-specific models. In silico gene essentiality was determined by computing the 

reduction in the growth rate upon inactivating one gene at a time in every extracted context-

specific model. Genes were considered in silico essential if the predicted growth rate in the 

knockout model fell below 5% of the growth rate predicted by the original context-specific 

model. The quality of extracted context-specific models was evaluated by comparing model 

predictions of gene essentiality with experimentally determined gene essentiality. Gene 

essentiality data for WT E. coli grown in M9 Minimal medium was obtained from the KEIO 

collection (Baba et al., 2006). For the 786O cell line, gene essentiality was determined 

based on the CERES scores published in the NCI-60 database (Meyers et al., 2017). Genes 

with a CERES score less than zero were considered essential. The list of essential genes 

in CHO was obtained from (Xiong et al., 2021). Genes correctly predicted as non-essential 

were classified as true positive (TP) predictions, incorrectly predicted as essential were 

classified as false negative (FN) predictions, correctly predicted as essential were classified 

as true negative (TN) predictions, whereas those incorrectly predicted as non-essential were 

classified as false positive (FP) predictions. The specificity and sensitivity of the models 

were computed using the following expressions.

specificity  = # of TN genes
# of TN genes +# of FP  genes (1)

sensitivity  = # of TP  genes
# of TP  genes +# of FN genes (2)

All extracted models and gene dispensability predictions are reported in the supplementary 

material.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Phenotype must be protected during model extraction using gene expression 

data.

• Choice of algorithm influences scope of alternate solutions

• ROC plots are effective tools to screen and select best-performing models.

• Proposed workflow guides the extraction of biologically meaningful models.
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Figure 1. 
Retention of required metabolic functions. Box and Whisker plots show the distribution of 

the maximum growth rate predicted by extracted models relative to the maximum growth 

rate predicted by the genome-scale model for E. coli, 786O, and CHO-S using GIMME, 

iMAT, MBA, and mCADRE.
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Figure 2. 
Size distribution of models in the ensemble generated using GIMME, iMAT, MBA, and 

mCADRE for E. coli, 786O and CHO-S with the global 60th percentile threshold, global 

75th percentile threshold, global 80th percentile threshold, StanDep, and the local T2 

threshold.
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Figure 3. 
(A) Fraction of conserved reactions in models extracted using GIMME, iMAT, MBA, and 

mCADRE for E. coli, 786O, and CHO-S with various thresholds.

(B) Fraction of reactions from various pathways (0 representing no variable reactions and 

1 representing all variable reactions) contributing to alternate solutions in models extracted 

using GIMME, iMAT, MBA, and mCADRE for E. coli, 786O, and CHO-S with various 

thresholds
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Figure 4. 
(A) Improvement in quality of models extracted using GIMME, iMAT, MBA, and mCADRE 

for E. coli, 786O, and CHO-S compared to the parent genome-scale models. The ideal 

model correctly classifies all essential and non-essential reactions and therefore, has a 

specificity and sensitivity equal to 1. The distance from the ideal model is calculated as 

(1 −  sensitivity )2 + (1 −  specificity )2.
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(B) Receiver Operating Characteristic (ROC) plot showing the improvement in model 

performance of the best models extracted using GIMME, iMAT, MBA, and mCADRE 

relative to the parent genome-scale model in E. coli, 786O, and CHO-S.
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Figure 5. 
Generalized workflow pipeline for extracting context-specific models using gene-expression 

data
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Table 1:

Guidelines for extracting meaningful metabolic models using transcriptomics data

# Guideline

1 Limit nutrient uptake to media components only

2 Enforce minimum fluxes through known metabolic functions

3 Generate and screen ensembles of alternate solutions using other omics data

4 Draw inferences from conserved reactions only
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Table 2:

Implementation of the workflow depicted in Figure 5.

STEP DESCRIPTION

Model preprocessing

STEP 
1A:

Impose the lower and upper bounds for the uptake and secretion of all measured metabolites as well as the growth rate. For 
metabolites in the growth medium that are not measured, an arbitrary bound limiting their uptake can be imposed. Identify all 

reactions incapable of carrying flux using Flux Variability Analysis and remove them. The resultant pre-processed model should 
be flux consistent.

Data preprocessing

STEP 
1B:

Compute reaction expression scores from gene expression data using defined reaction-specific Gene-Protein-Reaction (GPR) 
rules.

Generate multiple core reaction sets by applying different thresholds to the computed reaction expression scores. Local 
thresholding methods are often preferred due to their ability to retain lowly expressed housekeeping genes.

Identify metabolic tasks that define the cell’s phenotype

STEP 2: Generate a list of metabolic tasks that must be retained in extracted models. Metabolic tasks with available experimental 
measurements must be quantitatively protected. Other identified metabolic tasks should be added to the sets of core reactions.

Generate ensembles of context-specific models

STEP 3: Using the preprocessed model form step 1a, the preprocessed reaction expression scores from step 1b, and the metabolic tasks 
from step 2 as inputs, generate ensembles of at least 50 models using any model extraction method.

Screen and select the best-performing models

STEP 4: For each model in the generated ensemble, compute the specificity and sensitivity using validation data 
(gene knockout, flux prediction, etc.). Compute the distance from the ideal model using the expression: 

(1 −  sensitivity )2 + (1 −  specificity )2. The top performing models have the lowest distance metric.
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