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Three machine learning techniques (multilayer perceptron, random forest and Gaussian
process) provide fast surrogate models for lower hybrid current drive (LHCD) simulations.
A single GENRAY/CQL3D simulation without radial diffusion of fast electrons requires
several minutes of wall-clock time to complete, which is acceptable for many purposes,
but too slow for integrated modelling and real-time control applications. The machine
learning models use a database of more than 16 000 GENRAY/CQL3D simulations
for training, validation and testing. Latin hypercube sampling methods ensure that the
database covers the range of nine input parameters (ne0, Te0, Ip, Bt, R0, n‖, Zeff, Vloop and
PLHCD) with sufficient density in all regions of parameter space. The surrogate models
reduce the inference time from minutes to ∼ms with high accuracy across the input
parameter space.

Key words: plasma simulation, plasma waves, plasma heating

1. Introduction

The ‘advanced tokamak’ (AT) concept (Kikuchi 1993; Goldston 1996) is a leading
candidate for many steady-state fusion power plant designs (Galambos et al. 1995; Sips
et al. 2005; Najmabadi et al. 2006). An AT makes use of the pressure-gradient-driven
bootstrap current to sustain a majority of the required plasma current, augmented by
non-inductive current drive actuators (Houlberg & Attenberger 1994). These auxiliary
actuators may consist of neutral beams and/or radio frequency (RF) systems such as lower
hybrid current drive (LHCD) and high harmonic fast wave (HHFW). RF actuators are well
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2 G.M. Wallace and others

suited for use in fusion power plants. They do not require line-of-sight access through the
breeding blanket and neutron shield surrounding the fusion plasma, and the technology
readiness level (TRL) of the RF sources and power delivery systems is high. Control of
AT operating scenarios requires detailed information on the RF heating and current drive
profiles to maintain magnetohydrodynamic (MHD) stable overall current and pressure
profiles (Moreau & Voitsekhovitch 1999; Luce 2011). Moreover, additional current drive is
often required at specific radial locations (on axis, off axis, rational q surfaces) to augment
the bootstrap current where it is insufficient, or to suppress instabilities such as tearing
modes or kink modes.

Consequently, predicting RF wave heating and current drive is critical for present-day
fusion experiments and to design and construct a fusion power plant. In fact, the
commercialisation of fusion power requires an accurate accounting of plant energy in
order to minimise the auxiliary system power usage and to optimise the plant operation
cost, which requires advancement in high-fidelity modelling of RF actuators. In addition,
accurate predictions of the current drive and heating profiles are needed in integrated
modelling to assess the performance and stability of the plasma operating scenario.

An AT plasma is a complex integrated physics system with bi-directional coupling
between heat/particle transport, temperature/density profiles, current profile, MHD
stability, heat/particle exhaust and fusion reaction rate (Hayashi 2010; Moreau et al. 2013;
Meneghini et al. 2015; Poli 2018). Few of these quantities are directly controllable through
external actuators. Control of the RF heating and current drive profiles, by varying the
launched power and wavenumber of the system, is one of the few direct control knobs
available on a tokamak. Having the capability to determine where the RF system is
depositing power/current at the present moment (and how that may change with other
plasma conditions) is crucial for the reliable operation of an AT. Although RF simulation
tools are sophisticated and accurate, the computational resources required are considerable
for high-fidelity simulations.

In this work, we propose using machine learning (ML) models to accurately predict
RF power absorption and current density profiles and accelerate the time required for
simulations, which will enable widespread use in parametric scenario scoping studies,
time-dependent modelling and real-time control. We show that our models are able to
quickly and accurately reproduce the results of GENRAY/CQL3D (Harvey & McCoy
1992; Smirnov & Harvey 1995), with inference times on the order of milliseconds as
compared with minutes for the ground-truth simulations.

The remainder of this paper is structured as follows. Section 2 reviews the state of
surrogate models in fusion research and the physics we reproduce with our surrogate
models. Section 3 covers the design and methods used in our research. Section 4 presents
the results of our surrogate models and § 5 covers the paper conclusions and future work.

2. Background and previous work

In this section we review the relevant theoretical background on ray tracing
Fokker–Plack (FP) modelling of heating and current drive, which is the basis for the input
data of our designed ML models. We also review relevant works in the literature that use
ML to accelerate computations and we provide a landscape of ML methods in the areas of
plasma physics and fusion.

2.1. Ray tracing/FP modelling of heating and current drive
Several approaches are possible to simulate the RF current drive profile in tokamak
plasmas. Analytical and reduced numerical (e.g. adjoint method) models provide a
reasonable estimate of the total driven current but lack key physics necessary to
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Predictions of RF power deposition and current profile 3

determine the current profile shape that can only be realised by solving the FP equation.
Moving upward in complexity to ray tracing/FP modelling includes the necessary
wave propagation and quasi-linear Landau damping physics for accurate current profile
prediction in several frequency ranges (lower hybrid, electron cyclotron). Ray tracing
makes use of the simplifications of geometrical optics and reduces the problem from
solving Maxwell’s equations in toroidal geometry (the ‘fullwave’ method) to the following
set of ray equations:

dx
dτ

= ∂D0

∂k
, (2.1a)

dω

dτ
= ∂D0

∂t
, (2.1b)

dk
dτ

= −∂D0

∂x
, (2.1c)

dt
dτ

= −∂D0

∂ω
, (2.1d)

where D0 is the wave dispersion relation, ω is the wave frequency, k is the wavenumber,
τ is the ray step parameter, t is the time coordinate and x is the spatial coordinate.
Equation (2.1b) is trivial under the condition that the time variation of D0 is small on the
timescale of the operating frequency f0, which is well satisfied for waves in the gigahertz
range.

Solving the FP equation is required for both fullwave and ray-tracing approaches to
determine power absorption and current drive. The FP equation

df
dt

= RF + C, (2.2)

describes the time evolution of the distribution function, f , in the presence of RF damping,
RF, and collisions, C. The RF term

RF = ∂

∂v
DQL(v)

∂

∂v
fe0, (2.3)

depends on the distribution function and the quasi-linear diffusion operator, DQL. The wave
solvers provide DQL as an input to the FP solver, as shown in figure 1. The FP solver then
feeds information on power absorption back to the wave equation solver and the process
iterates until convergence. In the ray-tracing approach, the ray trajectories need not be
recalculated at each time step of the FP solver, only the power absorption along the ray.
A schematic of the workflow between wave equation solvers and FP solvers is shown in
figure 1. In this study we use the GENRAY (Smirnov & Harvey 1995) ray-tracing code
coupled to CQL3D (Harvey & McCoy 1992; Petrov & Harvey 2016) for solving the FP
equation, although the approach may be expanded to include other RF simulation tools
such as TORIC (Brambilla 1996) for fullwave simulations.

Both GENRAY and CQL3D require information about the plasma density, temperature
and ion composition, as well as the magnetic equilibrium as inputs. In addition, CQL3D
requires the toroidal DC electric field, whereas GENRAY requires the wave parameters
(power, n‖ spectrum, antenna position) as initial conditions. The outputs of GENRAY,
namely the ray trajectories and quasi-linear diffusion operator, are of indirect rather than
direct interest from the perspective of plasma control and integrated modelling. The
outputs of CQL3D (wave power deposition and current profiles) are of direct interest and
will be the prediction targets of our ML models.

https://doi.org/10.1017/S0022377822000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000708


4 G.M. Wallace and others

FIGURE 1. Wave equation solvers (TORIC+Petra-M or GENRAY) couple to FP equation
solvers (CQL3D) through the quasi-linear diffusion operator, DQL. The FP solver perturbs the
distribution function and couples information on quasi-linear RF power absorption, Pabs, back
to the wave solver. This process iterates until the solutions converge. Rough per-iteration wall
clock runtimes for each code are indicated in the figure. TORIC+Petra-M and GENRAY figures
reproduced from Shiraiwa et al. (2017) and Wallace et al. (2010), respectively.

2.2. Using ML to accelerate computations
Modern computational resources have advanced numerical simulation of physical
systems to an increasing range of spatial and temporal scales. However, even with
high-performance computing techniques, it is a challenge for real-time demand response
in feedback control. Emerging data-driven methods have revolutionised how researchers
model, predict and eventually control these complex systems in a diverse range of fields,
including but not limited to automation, climate, combustion, fluids, high-energy physics,
plasma science and plasmonics (Malkiel et al. 2018; Duraisamy, Iaccarino & Xiao 2019;
Wilkes et al. 2020; Yellapantula et al. 2020; Abbate, Conlin & Kolemen 2021; Bai & Peng
2021; Hatfield et al. 2021; Maschler & Weyrich 2021; Brunton & Kutz 2022). A variety of
ML techniques have been used such as deep neural networks (DNNs) to fit simulation data.
The resulting surrogate models have been used in larger frameworks. For example, global
climate models use ML models to represent kernels drawn from observations (Reichstein
et al. 2019). A common thread is the use of numerical models and codes to generate
training data to produce surrogate models with a low mean squared error (MSE). This is
the approach of this paper.

2.3. The landscape of ML in plasma physics and fusion
The application of ML techniques to fusion energy and plasma physics dates to the late
20th century, with initial applications of neural networks to the topics of tokamak plasma
control (Bishop et al. 1992, 1995a; Wróblewski 1997), disruption prediction (Hernandez
et al. 1996; Wroblewski, Jahns & Leuer 1997), energy confinement prediction (Allen
& Bishop 1992) and data analysis (Lister & Schnurrenberger 1991; Bishop et al. 1993;
Morabito & Versaci 1997), among other topics. These early applications showed the
promise of ML techniques in fusion research. Considerable advances in both computing
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hardware and ML techniques after the turn of the century resulted in renewed interest in
ML applications for fusion in recent years.

ML continues to be an extremely effective tool in some of the early adopted topics,
particularly disruption prediction (Rea & Granetz 2018; Rea et al. 2020; Churchill, Tobias
& Zhu 2020a; Churchill et al. 2020b). A more recent application of ML to fusion research
is in the area of accelerating computationally intensive simulation models. Researchers
developed fast surrogate models for plasma transport (Meneghini et al. 2020; van de
Plassche et al. 2020) and neutral beam heating/current drive (Boyer, Kaye & Erickson
2019; Morosohk, Boyer & Schuster 2021), used surrogate model frameworks for validation
of plasma transport codes (Rodriguez-Fernandez et al. 2018) and also employed ML
techniques to reduce computation time for codes such as XGC (Miller et al. 2021). The
work of Boyer and Morosohk, in which they create a fast neural-network=based surrogate
model for NUBEAM, is particularly relevant to the work presented in this paper. The
work presented here represents the first efforts to create a ML-based surrogate model for
RF heating and current drive.

3. Design and methods

To reduce the computational cost of ray tracing/FP modelling of heating and current
drive, we implement and study three ML models to tackle the regression problem to predict
both current profiles and wave power deposition. In the following, we first describe the
details of the source data and input/output parameters used to design the ML models.
Next, we describe the three ML models we implement in this study, multilayer perceptron
(MLP), Gaussian processes and random forest, along with information about their design
and hyperparameter optimisation.

3.1. Source data
Training ML models requires a database of simulations to draw training, validation and
testing data. In the ML context, ‘validation’ refers to the process of using a holdout set
of data to provide an unbiased evaluation of the model while tuning the hyperparameters.
To this end, the πScope (Shiraiwa et al. 2018) workflow engine generates a set of 16 384
GENRAY (Smirnov & Harvey 1995)/CQL3D (Harvey & McCoy 1992) input files and
submits five of these simulations at a time to run in parallel on the MIT Engaging
cluster at the Massachusetts Green High Performance Computing Center. The wall-clock
time required to generate the entire database was approximately two weeks. As each
GENRAY/CQL3D simulation completes, πScope incorporates the relevant input and
output quantities into a NETCDF database. Because a single NETCDF file containing
all simulation data would be too large for efficient data read/write, πScope chunks the
NETCDF files with 100 simulations per file.

The GENRAY/CQL3D input files contain hundreds of parameters covering both the
plasma and the numerical methods used in the simulation. The vast majority of these
parameters do not vary in the simulation database, with nine zero-dimensional parameters
describing the plasma and lower hybrid system varying across the ranges listed in table 1.
The simulation database consists of LHCD simulations for the EAST tokamak (Wu et al.
2007). The LHCD wave frequency is 4.6 GHz, and the antenna size/location match that of
the LHCD antenna on EAST (Liu et al. 2015). The kinetic profiles are analytic and defined
by a central electron temperature/density (ne0, Te0) and edge density/temperature (neb, Teb)
according to the equations

ne = (ne0 − neb) × (1 − ρ2) + neb (3.1)
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Parameter Symbol Range Units

Magnetic field on axis B0 2.5–3.5 T
Plasma current Ip 0.4–1.2 MA
Parallel refractive index n‖ 1.7–2.5
Central electron density ne0 1–5 × 1019 m−3

Central electron temperature Te0 1–5 keV
Plasma effective charge Zeff 1.5–2.5
Plasma major radius R0 1.8–1.9 m
Toroidal DC electric field EDC −0.0001–0.001 V cm−1

Lower hybrid wave power PLH 0.1–3 MW

TABLE 1. Parameters varied in the GENRAY/CQL3D database.

and
Te = (Te0 − Teb) × (1 − ρ2) + Teb, (3.2)

where ρ is the normalised minor radius. In the GENRAY/CQL3D database ne0 and Te0
vary whereas neb and Teb remain constant at 7.5 × 1018 m−3 and 0.1 keV, respectively.

The magnetic equilibrium is an analytic model based on the work described in
(Guazzotto & Freidberg 2021). The major radius of the plasma, plasma current and
toroidal magnetic field vary over typical ranges for the EAST tokamak in this database.
However, other equilibrium parameters such as inverse aspect ratio (0.24), triangularity
(0.5), elongation (1.8) and magnetic configuration (double null) remain constant for all
simulations in the database.

For sampling the parameter space, we chose to use Latin hypercube sampling (LHS)
(McKay, Conover & Whiteman 1976). LHS covers a large dimension parameter space with
far fewer sample points than a uniform grid and guarantees better uniformity across all
columns/rows of the multi-dimensional parameter space than random sampling methods.
Given the utility of this sampling method, πScope now incorporates LHS functionality in
parametric scans of input variables.

The parameter ranges in table 1 cover or exceed typical values for each parameter
seen on the EAST tokamak, however not all combinations of parameters are relevant. In
particular, a significant number of the simulations occur in the ‘slide-away’ regime where
the collisional drag on fast electrons is insufficient to counteract the accelerating potential
of the toroidal DC electric field:

mevνcoll(v) < qEcrit, (3.3)

where me is the electron mass, v is the fast electron velocity, νcoll(v) is the fast election
collision frequency, q is the electron charge and Ecrit is the critical toroidal DC electric
field. Using

νcoll(v) = q4ne(ln Λ)

4πε0m2
ev

3
, (3.4)

results in

Ecrit = q3ne(ln Λ)

4πε0mev2
(3.5)

which is the familiar expression for the Dreicer field (Dreicer 1959). Taking v = c/n‖ as
the upper limit of the quasi-linear plateau for slide-away electrons (as opposed to v = c
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for true runaway electrons (Connor & Hastie 1975)) yields

Ecrit = 7.9 × 10−22nen2
‖ (3.6)

with Ecrit measured in V m−1. The slide-away regime can be modelled accurately with
CQL3D by increasing the resolution and range of the electron energy grid, however this
requires additional computational resources and the slide-away regime is generally avoided
in LHCD experiments. A threshold of EDC/Ecrit > 0.9 delineates the slide-away regime to
be filtered from the dataset, resulting in the final dataset used to design the ML models as
described in the following.

3.2. ML models
This section describes the three different ML models designed to predict current profiles
and power deposition. Each of these ML models carry different characteristics which
may affect prediction performance in different ways. Our goal is to evaluate multiple ML
models as surrogates for the traditional more expensive type of computation described in
the previous section.

3.2.1. MLP
MLP (Bishop et al. 1995b) is a feed-forward artificial neural network composed of

multiple layers of neurons (perceptrons) with activation functions. It typically consists
of three types of layers of nodes, an input layer, one or more hidden layers and an output
layer. Each node (with exception of the input layer) is a neuron that utilises a nonlinear
activation function to learn the right representation of the data mathematically. MLP
provides global approximations by mapping a set of input features to output features
through a training process using the back-propagation algorithm (Rumelhart, Hinton &
Williams 1986). During this process, the parameters consisting of weights and biases are
iteratively adjusted and optimised. MLP model has been broadly applied in classification
and regression tasks in science (Gardill et al. 2018; Yüksel, Soydaner & Bahtiyar 2021).
MLP is a supervised learning algorithm that relies on the existence of training data and is
suitable for use in both classification and regression problems.

The hyperparameters of the neural network include the batch size, learning rate, the
L2 normalisation factor, the number of hidden layers and the number of neurons in
each hidden layer. Considering the large search space of the hyperparameters in MLP,
we employ the random search method by placing a reasonable set of range of the
hyperparameters. We constrain the MLP to having four hidden layers, where the number
of nodes in each layer is searched in the range [20, 1000], the learning rate in [10−5, 10−2,
the L2 normalisation factor in [1, 10] and the batch size in [16, 128]. We find the best
hyperparameters separately for each prediction problem as reported in § 4.

3.2.2. Random forest
Random forest (Breiman 2001) is a supervised learning algorithm that uses ensemble

methods of bootstrap aggregation to solve classification or regression problems. It
constructs multiple decision trees during training and then outputs the mean predictions
of the individual tree models for testing. It leverages both the bagging method and feature
randomness (Breiman 2001) to create an uncorrelated forest of decision trees. At each
training step, the model creates a random subset of features and builds simplified trees
using these subsets, and while splitting a node, the algorithm searches for the best features
among the specific subset. A generalised result then combines the results of numerous
uncorrelated models to output the prediction. Because the averaging of uncorrelated tress
lowers the overall variance, the random forest model has a lower risk of overfitting and has
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been broadly applied to science and engineering domains (Jaiswal & Samikannu 2017;
Resende & Drummond 2018).

The hyperparameters of the random forest model include the number of estimators,
maximum of tree depth and minimum number of leaves required to split an internal node.
To explore the best combinations of settings of the hyperparameters, we use GridSearchCV
(Pedregosa et al. 2011) with the ranges of [100, 10 000], [100, 2000] and [2, 4] for each of
the above hyperparameters, respectively. In the following sections, we refer to the random
forest regression model as RFR. We present detailed results for this process in § 4.

3.2.3. Gaussian processes regression
The Gaussian processes regression (GPR) model is a probabilistic supervised ML

framework that has been widely used for regression and classification tasks. This model
can make predictions incorporating prior knowledge and provides uncertainty measures
over predictions (Murphy 2013). Similar to other ML models, GPR is classified as a
non-parametric model (Liu et al. 2020), i.e. when conducting regressions using GPR, the
complexity or flexibility of the model is not limited by the number of parameters. More
specifically, the model does not assume a specific form for the function that maps the input
to the output data, which would be the case for a linear regression model for example.

Formally, a Gaussian process mode is a probability distribution over possible functions
that fit a set of points. The regression function modelled by a multivariate Gaussian is
given as

P( f |X ) = N ( f |µ, K), (3.7)

where X = [x1, . . . , xn], f = [ f (x1), . . . , f (xn)], µ = [m(x1), . . . , m(xn)] and Kij =
k(xi, xj). Here X are the observed data points, m represents the mean function and k
represents a positive-definite kernel function. With no observation, the mean function
is default to be m(X ) = 0 given that the data are often normalised to a zero mean. The
Gaussian processes model is a distribution over functions whose shape is defined by K .
If points xi and xj are considered to be similar by the kernel, function outputs of the two
points, f (xi) and f (xj), are expected to be similar. In the regression process, given the
observed data and a mean function f estimated by these observed points, predictions can
be made at new points X ∗ as f (X ∗). Based on the definitions, one can directly derive
the joint distribution of f and f ∗ based on K and, more importantly, the conditional
distribution P( f ∗| f , X , X ∗) over f ∗, which is needed for the regression process. These
derivations are explained in detail in earlier work (Rasmussen & Williams 2005).

The hyperparameters of the GPR model consist of the kernel and its lengthscale and
variance. In this work, we explore six different kernels: Exponential, Matern12, Matern32,
Matern52, SquaredExponential and Rational Quadratic. Each of these kernels is added
together with a Linear kernel. Generally speaking, the lengthscale controls the smoothness
of the learnt functions and the variance controls the scale of values of the learnt functions.
Given that the input dimension for our problem is nine, the dimension of the lengthscale is
also nine. To optimise these hyperparameters, we perform a grid search using the interval
[0.25, 2.1] for each lengthscale value for each input dimension, and the interval [0.1, 2.2]
for the variance of the kernels. This search is performed for all six different kernels. We
present the final results for this optimisation process in § 4.

3.3. Design and implementation
To implement the three proposed surrogate models we use Python and its supporting
libraries. The MLP model is implemented using the Pytorch deep learning framework.
We use the Adam solver (Kingma & Ba 2014), an extension of stochastic gradient descent

https://doi.org/10.1017/S0022377822000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000708


Predictions of RF power deposition and current profile 9

in the implementation of optimising the weights of the MLP, which is computationally
efficient and requires less tuning for hyperparameters.

As for the random forest model, we use scikit-learn (Pedregosa et al. 2011), more
specifically sklearn.ensemble.RandomForestRegressor, which provides the functions fit
and predict for training and prediction, respectively.

Finally, to implement the GPR model, we use an existing Python library called GPflow
(Matthews et al. 2017), which is based on GPy (Sheffield Machine Learning Software
2012). Although these two libraries are very similar to each other, GPflow leverages
TensorFlow for faster computation and gradient calculation, and focuses on variational
inference and Markov Chain Monte Carlo methods. One special advantage about this
library pertinent to our work is its recent extension to inter-domain approximations
and multi-output priors (van der Wilk et al. 2020), which is the case of our dataset.
As mentioned previously, one essential component of a GPR model is the kernel
function. GPflow provides implementations for the most well-known kernels used in the
literature, including Exponential, Linear, Matern family, and others. The kernel selection is
included in the hyperparameter optimisation process explained in § 3. For the optimisation
process, we use the model gpflow.models.GPR also implemented in GPflow, along with
gpflow.optimizers.Scipy for function minimisation.

4. Results and evaluation

Based on the designing process and hyperparameter optimisation explained in the
previous section, we obtain the best three final ML models to be used as surrogates for the
forward modelling problem, predicting current profiles and power deposition. This section
presents the details of the final ML models along with their computational performance
and prediction accuracy.

4.1. Computational environment and methodology
To create the database of simulations for training and testing the ML surrogate models, we
used GENRAY version 10.10_170301 and CQL3D version cswim_170101.1 with the Intel
FORTRAN compiler version 19.1.3.304 built and run on the MIT Engaging computing
cluster at the Massachusetts Green High Performance Computing Center. The MIT PSFC
partition of Engaging consists of 136 nodes, with 2 × 16 Intel Xeon 2.1 GHz cores 128 GB
RAM per node. The source code for GENRAY and CQL3D are available at https://github.
com/compxco.

Our ML experiments were performed on Cori, a multi-core platform maintained by
the National Energy Research Scientific Computing Center (NERSC). All tests were
run using Jupyter (https://docs.nersc.gov/services/jupyter/) on a shared CPU node, which
consists of a large memory node running an AMD EPYC 7302 3.0 GHz with 32 physical
cores, 2 threads per core, 2 sockets per node and has 2 TB of memory (https://docs.nersc.
gov/systems/cori/). Appendix A presents more details specifically related to the Python
environment used for reproducibility purposes.

The results reported in this section are based on the dataset filtered with the slide-away
regime threshold as described in § 3.1. We randomly divide this database of simulations
into two subsets: the training set and the test set. The training set is the largest and contains
80 % of the overall dataset (10 677 samples), whereas the test set contains 20 % (2670
samples). The training set is used for both hyperparameter optimisation and to build the
final regression model used to predict samples in the test data as described in the next
section. For all the models we report execution time for both training and testing, and
prediction accuracy based on the MSE.
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Problem H1 H2 H3 H4 LR L2 BATCHSIZE

Curtor 539 254 255 570 3.265 4.051 22
Power 344 601 826 944 2.850 4.873 95

TABLE 2. Best hyperparameters obtained for the MLP model.

4.2. Results of ML model performance and prediction accuracy
4.2.1. Hyperparameters

The first step in the design of the ML models is to optimise their hyperparameters,
which is necessary for the selection of the best model for final predictions. In order to find
the best hyperparameter set for each model, as described in § 3, the training set is used
in a 5-fold cross-validation process using the MSE metric. For each fold, 8541 and 2136
samples are used for train and validation, respectively, and the same 5 folds are used across
all 3 models. A separate set of hyperparameters is obtained for each prediction problem
(wave power deposition and current profiles).

After the random search approach using the parameters’ ranges described in § 3, we find
the best set of hyperparameters for the MLP model as presented in table 2. Owing to an
existing bigger variation in the power profiles, we observe a denser network is selected
with a smaller learning rate and larger batch size in the mini-batch gradient descent for
convergence through training.

In figure 2, we report the hyperparameter selection of the random forest model for each
prediction problem. The grid search results show that with an increase in the number of
estimators, the cross-validated average MSE decreases. The cross-validated accuracy is
not sensitive to the max depth of trees trained, for both the current and power profiles.
Figure 2(d) presents a minuscule reduction of 5-fold validated accuracy when increasing
the minimum sample split in a node. Therefore, we choose 2000 estimators, max depth of
100 and minimum samples split of 2 to balance the computational time and accuracy.

Based on the grid search process using the different hyperparameters (with their
respective ranges) related to the GPR model, we obtain a general overview of the
cross-validated MSE values across all the 1200 different sets of hyperparameters as
shown in figure 3. Based on these results the GPR model presented a low cross-validated
MSE variance throughout the hyperparameter optimisation process. For the problem of
predicting current profiles, the best model used the Matern32 kernel with 0.75 length
scale value for all input dimensions, and variance 0.1. The associated Linear kernel
used variance value of 0.6. In the case of predicting power deposition, the best model
used the Exponential kernel with 1.25 length scale value for all input dimensions and
variance 2.1. The associated Linear kernel used variance value of 1.6. In the following,
we present the prediction results using the three ML models obtained based on the best set
of hyperparameters.

4.2.2. Prediction results
Once the best hyperparameters are obtained, the models (based on these parameters) are

retrained using the whole training data. Then, the final predictions are applied to the test
set, which we will refer to as the ‘holdout’ set, as it includes samples from the simulation
database never ‘seen’ by the models during either hyperparameter optimisation or training.
The loss function used in all cases is the MSE, which is used to evaluate and compare our
methods.
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(a) (b)

(c) (d )

FIGURE 2. Hyperparameter tuning of the random forest regression model for the both current
and power profiles: (a,c) cross-validated MSE versus the number of estimators using the
maximum tree depth of 100, 1000 and 2000; (b,d) cross-validated MSE versus number of
estimators using the minimum samples split of 2, 3 and 4.

(b)(a)

FIGURE 3. Results from the hyperparameter optimisation for the GPR models for both current
profile and power deposition. For the current profile the Matern 32 kernel obtained superior
results. In the case of power deposition the Exponential kernel performed the best, although the
results are very similar among the different set of parameters and kernels.
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(e)

(b)(a) (c)

(h)(g) (i)

( f )(d )

FIGURE 4. Prediction results for current profiles: (a,d,g) MLP, (b,e,h) RFR and (c, f,i) GPR.
(a–c) Good fits, (d–f ) average fitsand (g–i) poor fits representations for the same test data using
the three ML models.

We start by presenting in figure 4 the results for predicting current profiles using the
three ML models. Each column represents the ML model used and each row presents
typical prediction cases for good fits, average fits, and poor fits. Our methodology for
deciding which solution numbers to use for typical good, average, and poor fits is as
follows. First, we ordered all prediction results for all methods by MSE. Then, from each
set of results ordered by MSE, we considered a relatively small window size of solutions
(N = 30) with the lowest MSE and located the solution number common across this set. A
similar methodology applies to those with the highest MSE. For the typical average MSE
case, due to a high degree of variance in the middle of the MSE distribution, we used a
larger window size (N = 160) and display the solution number from the set of mid-range
MSE values.

This set of results shows that all three ML methods give an accurate quantitative
prediction for the CQL3D current profile in cases with ‘good’ MSE <0.005. In the case
of ‘average’ MSE of ∼0.1, the overall magnitude and peak structure of the ML inferences
are in excellent agreement with the CQL3D ground truth. The differences between the ML
model and the ground truth are within the level of experimental uncertainty in measuring
the current profile, and also smaller than typical discrepancy between modelling and
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(e)

(b)(a) (c)

(h)(g) (i)

( f )(d )

FIGURE 5. Prediction results for power deposition: (a,d,g) MLP, (b,e,h) RFR and (c, f,i) GPR.
(a–c) Good fits, (d–f ) average fits and (g–i) poor fits representations for the same test data using
the three ML models.

experiment. Only in the cases of worst disagreement between the ML model and the
ground truth CQL3D model are qualitative differences observable between the two.

Similarly, Figure 5 presents the results for predicting wave power deposition. In the case
of the power deposition profile, quantitative agreement is excellent for both the ‘good’
and ‘average’ cases, while the ‘poor’ case infers the correct location for the peak but with
a magnitude that is too low by a factor of two. As with the current profiles, the level
of agreement between the ML model and the ground truth is well within experimental
uncertainty for the average case.

Figures 4 and 5 only show representative prediction examples of ‘good’, ‘average’ and
‘poor’ cases for each ML model. However, in order to show the overall distribution of
MSE values for the entire ‘holdout’ set containing 2670 samples, we present in figure 6 the
histograms of MSE values for the three ML models for each prediction problem. Based on
these histograms, it is clear that the vast majority of predictions leads to small MSE values,
around 10−1 for the current profiles and 10−2 for the power deposition. Indeed, for the low
error regime only MLP has MSE <10−3 for the current profiles, and only MLP and RFR
have MSE < 5 × 10−4 for the power deposition. MLP has a relative smaller distribution
in the high-error regime and outperforms RFR and GPR in both cases. It is interesting
to note that even though RFR has a larger distribution of MSE toward the very low-error
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(a) (b)

FIGURE 6. Histograms of the MSE in MLP, RFR and GPR ML models for (a) current and (b)
power deposition.

(a) (b) (c)

FIGURE 7. Pairwise comparisons of the entire MSE of current prediction among the MLP, RFR
and GPR ML models for the inference records. The three representative good, average and poor
test instances as in figure 4 are highlighted.

regime compared with the other two models, it also shows a larger MSE at the high-error
regimes for the power deposition prediction. For the current profile prediction, GPR in
general has more predictions in the lower-error regime indicating a better performance in
current profile prediction than RFR.

Figures 7 and 8 compare the MSE of the current profile and power deposition using
the three ML models for all the test examples. The highlighted spots correspond to
the representative examples in figure 4 and 5. In general, the predictions of the three
methods show a strong linear correlation. From a statistical perspective, MLP tends to
have a smaller MSE than RFR and GPR in both the low- and high-error regimes for
both the prediction cases. GPR shows a very comparable performance as MLP in the
low-error regime of the current prediction. For the power prediction, RFR shows a cluster
of relatively better performance in the low-error regime, which matches what we observed
in the histogram plot of figure 6.

4.3. Discussion
Figures 4 and 5 show anecdotally that the accuracy of all three ML models is
anti-correlated with the overall magnitude of the profile. This is potentially problematic
as the model is of most interest in the regime where there is significant driven current
and power absorption. The origin of this behaviour lies in the loss function used in the
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(a) (b) (c)

FIGURE 8. Pairwise comparisons of the entire MSE of power prediction among the MLP, RFR
and GPR ML models for the inference records. The three representative good, average and poor
test instances as in figure 5 are highlighted.

training of the ML models: MSE. The absolute MSE is naturally quite small for signals
of small magnitude, whereas for larger-magnitude signals it is naturally larger. This is
a double-edged sword. A loss function biased against large-magnitude signals actually
improves the accuracy of the ML models in the large-magnitude regime as compared with
a normalised loss function, which would weight the large- and small-magnitude signals
equally in the training process. Training with a physics-based loss function, which is biased
even more strongly against large-magnitude signals, may improve model performance
further in the large-magnitude regime.

The previous section shows that the three ML-based surrogate models accurately
reproduce the results of GENRAY/CQL3D across the range of inputs in the training
database. The ultimate test of the ML-based surrogate models is whether they can produce
inferences that are useful. To this end, we compare the MLP-based surrogate model with
GENRAY/CQL3D simulations that use a full set of experimental inputs rather than the
reduced set of nine zero-dimensional inputs. Figure 9 shows the inferred current density
profile for a set of four well-diagnosed EAST discharges. The profiles in this figure use
the MLP surrogate model, although the RFR and GPR inferences are substantially similar.
The predicted current profiles from the surrogate model reproduce the same qualitative
results shown in figure 11(b) of Garofalo et al. (2017), which used full profiles for the
plasma density and temperature, a polarimeter-constrained equilibrium reconstruction, and
LHCD power from antennas at 2.45 and 4.6 GHz. The ML surrogate model reproduces
the current profile peak location accurately, although the magnitude of the current profile
peak agrees less closely with the stand-alone GENRAY/CQL3D model in the previously
published study. Note that these differences are a result of the reduced number of inputs
(e.g. parabolic ne and Te profiles as compared with the measured profiles, analytic plasma
equilibrium as compared with EFIT reconstruction) to the GENRAY/CQL3D model used
to generate the training database, and not inherent to the MLP-based surrogate model.
Furthermore, the simulations in figure 9(b) include two frequencies of lower hybrid waves
(2.45 and 4.6 GHz), whereas the surrogate model training data is for 4.6 GHz only. Neither
figure 9(a) nor figure 9(b) include the effects of fast electron radial diffusion, which are
known to be important in reproducing the experimental current profile on EAST (see the
differences in figure 11(a–c) in Garofalo et al. 2017).

The obtained prediction results clearly show that it is feasible to use ML methods as
surrogates for the forward modelling problem achieving high prediction accuracy. Table 3
presents the overall accuracy results for the five-fold cross-validation and testing.
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(a) (b)

FIGURE 9. (a) Inferred current density profile using the MLP surrogate model for four
well-diagnosed EAST discharges. (b) Current profiles for the same set of discharges published in
a study by Garofalo. Data in subfigure (b) reproduced from figure 11(b) of Garofalo et al. (2017).
The orange–red–blue–green legend applies to both figures.

5-Fold CV Test (hold-out data)

Current Powers Current Powers

Method μ(MSE) σ (MSE) μ(MSE) σ (MSE) μ(MSE) μ(MSE)

Multilayer Perceptron 0.223 0.015 0.009 0.0007 0.227 0.008
Random Forest 0.559 0.045 0.016 0.0007 0.528 0.015
Gaussian Process Regression 0.310 0.019 0.012 0.0006 0.306 0.012

TABLE 3. Evaluation of our three ML models using MSE. For the five-fold cross-validation
(CV) process we present the mean (μ) and standard deviation (σ ) of the MSE across all folds.
The second column presents the prediction results of each final model trained using the full
training data.

Based on these results we can conclude that the three models are very stable throughout
the cross-validation process, presenting very low standard deviation values for all cases.
Moreover, all the three models are accurate in predicting current profiles and power
deposition, with MLP and GPR presenting slightly better results compared with random
forest.

An additional important point of consideration is the computational cost to achieve
such results. Ideally, we would like to use these ML models to perform inference tasks
in a fraction of the time required via traditional methods. We report the computational
costs required for all the three ML models for both training and inference in table 4. The
GPR model requires the highest amount of time to perform the five-fold cross-validation,
taking 627.5 and 771.1 min for current and power profiles, respectively. Random forest
is the cheapest model, requiring only 3.2 and 1.6 min for each five-fold cross-validation
task. Similar computational costs are obtained to train the final models based on the best
set of hyperparameters. Most interestingly, all the three models present incredibly low
inference times, just under 1 ms for MLP and random forest, and just above 2 ms for GPR,
if compared with the 10 min required by the traditional method. This low computational
costs easily allow for the applicability of these ML models in real experimental scenarios.
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5-Fold CV Final model

Training time (min) Training time (min) Inference time (ms)

Method Current Powers Current Powers Current Powers

GENRAY/CQL3D — — — — 10 (min)
Multilayer perceptron 71.7 119.7 14.4 23.1 0.80 1.69
Random forest 3.2 1.6 9.1 3.9 0.93 0.75
Gaussian process regression 627.5 771.1 508.8 353.9 2.10 2.36

TABLE 4. Timing requirements. The first column reports the total execution time needed to run
the entire five-fold cross-validation (CV). The second column reports the time necessary to train
each final model along with per sample inference time.

5. Conclusion and future work

The results of this paper demonstrate the feasibility of ML surrogate models for
predicting the current profiles and power deposition of GENRAY/CQL3D, especially at
the peak locations. The MLP and GPR generate more accurate estimates than RFR in terms
of MSE for high-error regimes. On the other hand, RFR is a much more computationally
efficient model that requires orders of magnitude less training time, even compared with
the cost of one inference in the GENRAY/CQL3D simulation. Still, the computational
resources needed to generate the training dataset far exceed the resources needed to train
any of the ML surrogate models. Areas with large MSE are also near boundaries of
model applicability and where experiments would not typically operate. Future work will
include the study and development of customised loss functions based on the physics of
the problem to replace MSE as a figure of merit. Similarly, we will work on improving the
GPR model to use physics-based kernels aiming for higher prediction accuracy and more
efficient training.

A surrogate model is only as accurate as the training data used to create it. The model
presented here uses only a small subset of the many hundreds of possible input variables in
GENRAY/CQL3D. Increasing the number of input variables will result in more accurate
surrogate models at the cost of additional computational resources needed to create a
larger training dataset. Even with a small set of zero-dimensional input parameters, the
surrogate models reproduce the qualitative results obtained by GENRAY/CQL3D using
full experimental profiles.

As noted in § 4, the effects of fast electron radial diffusion are important to reproducing
the current profile in EAST with GENRAY/CQL3D. Including radial diffusion in CQL3D
increases the computation time by a factor of 50–100. This represents both a challenge and
a great opportunity for the ML surrogate models. On the one hand, generating the training
database for the surrogate model is significantly more expensive when radial diffusion is
included, whereas the time savings as compared with the original full-fidelity model are
enhanced by an even greater factor. We hypothesise that it may be possible to reduce the
size of the training database somewhat because radial diffusion smooths out the current
profiles, which may allow for low MSE with a smaller database of simulations.

Ultimately, ML-based fast surrogate models will be incorporated into larger frameworks
for plasma prediction and control. Control system development frameworks such as
COTSIM (Pajares & Schuster 2019, 2020) and integrated models such as TRANSP (Jardin,
Pomphrey & Delucia 1986; Wehner et al. 2019) or IPS-FASTRAN (Elwasif et al. 2010;

https://doi.org/10.1017/S0022377822000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000708


18 G.M. Wallace and others

Park et al. 2017) will benefit from more rapid estimates of power deposition and current
drive profiles. To facilitate adoption of these surrogate models, we have made the trained
models available online through Dataverse, as described in Appendix A. Rapid iteration
times will allow increased exploration of parameter space to find optimal operating points
using plasma ‘flight simulators’ prior to experiments, or in the design of new fusion
reactors.
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Appendix A. Reproducibility

This appendix provides information about accessing and using source code, trained
models and sample data that will facilitate reproducing the work we have presented
earlier in the paper. Our team is providing four sets of artifacts to facilitate reproducibility
and potential application to additional fusion devices. These consist of the final trained
models for each of the regression methods used (appendix A.1), the data for performing
both training and inference using these methods (appendix A.2), source code to train the
ML models using the same dataset used in this article (appendix A.3) and the source
code for loading the trained models and sample data and then performing the inference
computations (appendix A.4), as described in the following.

A.1. Trained models in ONNX and tensorflow formats
We leverage ONNX as much as possible for sharing our trained ML models. ONNX is a
storage format and set of utilities for storing and loading ML models to/from disk files (Bai
et al. 2019). The ONNX project is a collaboration of numerous partners from industry.

For each the MLP and RFR models we describe earlier (§ 3), we have saved each of these
trained models in ONNX format. Owing to current limitations on the operations supported
by ONNX, we are making the GPR trained model available using the Tensorflow format.
Each trained model reflects the hyperparameter optimisation and training process we
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describe earlier (§ 3). The inference results we obtain (§ 4) come from these three trained
models prior to export to ONNX and Tensorflow formats.1

A.2. Data comprising database of simulations, training dataset and
sample data for inference

We are providing several sets of data via Dataverse (https://doi.org/10.7910/DVN/
5YY6PE). First is the set of NETCDF outputs generated for the full database of
simulations, including additional code outputs (e.g. hard X-ray emission) not used in this
work. Second is the dataset filtered with the slide-away regime threshold consisting of
13 347 samples, which can be used to train the three ML models described in this article
using CSV format. The third is a sample dataset that can be leveraged to perform inference
using the provided trained models in ONNX and Tensorflow using CSV format.

A.3. Python scripts for training ML models
The source code used to train the three ML models presented here are available in
our GitHub repository (https://github.com/FusionRFModelingMachineLearning/genray-
cql3d-ml). These scripts allow for retraining the final models with the dataset containing
13 347 samples using the best parameters found via hyperparameter optimisation. Detailed
information about the required computational environment and instructions to perform this
tasks are available in the repository.

A.4. Python scripts for loading models, data and performing inference workload
In addition to the source code to train the ML models, we also provide Python scripts that
directly load the trained models in ONNX and Tensorflow formats in order to perform
inference with the provided sample data. We provide separate scripts for each one of the
models as described in details in our GitHub repository.
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