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Abstract

For the last 80 years, the Stroop task has been used to
test theories of attention and cognitive control and it
has been applied in many clinical settings. Most theo-
ries posit that the overwhelming power of written words
overcomes strict instructions to focus on print color and
ignore the word. Recent evidence suggests that trials in
the Stroop task could in fact be a mixture of reading
trials and non-reading trials. Here we conduct a critical
test of this mixture hypothesis, where a mixture of pro-
cesses should satisfy the fixed-point property (Falmagne,
1968).

Keywords: Stroop Effect; Mixture Model; Fixed-Point
Analysis

The Stroop effect is one of the most replicated exper-
imental effects in cognitive psychology (see MacLeod,
1991, for a review). The effect has been used to investi-
gate cognitive control, and has also been applied in many
clinical settings (Strauss, Sherman, & Spreen, 2006, p.
477). The task involves naming the print color of a word,
where the word itself is typically the name of a color (e.g.,
the word GREEN printed in red print requires a response
of ’red’; Stroop, 1935). People are faster at naming the
print color when it matches the word (congruent stim-
uli, e.g., RED in red) compared to when the word and
print color do not match (incongruent stimuli, GREEN
in red).

A common measure of the Stroop effect is the differ-
ence in mean response time (RT) between congruent and
incongruent trials. In the Stroop task, participants are
instructed to name the color and ignore the word, yet it
seems people cannot help but read the word (e.g., Cohen,
Dunbar, & McClelland, 1990; Melara & Algom, 2003),
which gives rise to faster responses on congruent trials
than incongruent trials on average. Although reading
must happen on some trials for an effect to be observed,
it is not clear whether reading occurs on every trial, or
to the same extent across trials.

Eidels, Ryan, Williams, and Algom (2014) compared
the Stroop effect obtained from a standard Stroop task
to the effect obtained from a novel forced-reading task.
In the standard task, participants were asked to classify

the print color of color-words irrespective of the con-
tent of the word. In the forced-reading task participants
were asked to classify the print color of color-words (e.g.,
RED, GREEN), but withhold their response when pre-
sented with non-color-words (BED, GREED). To con-
form with the instructions, participants were forced to
read every word presented. Consequently, the forced-
reading Stroop task yielded a Stroop effect derived from
fully processed words on every trial. The researchers
found that the magnitude of the Stroop effect in the
forced-reading task was larger than in the standard task,
suggesting that the standard Stroop effect results from
reading on only a portion of trials (see also Tillman, Ei-
dels, & Finkbeiner, 2016).

One possible account for these results is that on any
particular trial of the standard task a participant might
only be processing the word to a limited extent, or not
processing the word at all. A simple, formal way of ex-
plaining how different processes are mixed to yield some
observed distribution of RTs is a probability-mixture
model (Eidels et al., 2014; Tillman et al., 2016). Un-
der this model, the empirical RT distributions observed
in either the congruent or incongruent conditions of the
standard task are a binary mixture of two unobserved
distributions: one distribution of reading trials and one
distribution of non-reading trials. A given trial is a sam-
ple drawn from the reading distribution (with probabil-
ity p) or the non-reading distribution (with probability
1-p). The forced-reading task increases the probability
of reading to (p=1).

This mixture-of-reading-processes hypothesis can be
tested in a number of ways. One method assumes that a
mixture of two different RT distributions should result in
a bimodal observed distribution, and applies Hartigan’s
dip test to assess the bimodality. The test assumes the
null hypothesis of unimodality over the alternative hy-
pothesis of multimodality. If the dip statistic is greater
than the 95th percentile of the reference distribution,
then the null hypothesis is rejected and the observed dis-
tribution is considered bimodal (Hartigan & Hartigan,
1985). Another method is to fit both a one-component
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and a two-component Gaussian mixture model to the
observed data and compare both models using model
selection techniques, such as AIC (Akaike, 1974).

In simulation studies, researchers have found that the
Hartigan’s dip test correctly identifies bi-model distri-
butions only 65% of the time and the AIC model se-
lection method falsely identifies bimodality 80% of the
time (Freeman & Dale, 2013). In general, bimodality
is difficult to detect in empirical data and requires the
underlying distributions to be well separated and vari-
ability to be low (Williams, Eidels, & Townsend, 2014).
However, recent software and computational advances
may facilitate a more robust approach to this problem.
In this paper, we test the hypothesis that the standard
Stroop effect results from a mixture of reading processes
by using a mathematical property of probability-mixture
distributions, the fixed-point property (Falmagne, 1968).

The Fixed-Point Property

A set of mixture distributions, which are all based on
the combination of two base distributions, will all inter-
sect at a common coordinate – the fixed-point property
(Falmagne, 1968, see Figure 1). Although this math-
ematical property could be a powerful means of iden-
tifying mixture models, researchers in the past have
not commonly employed the fixed-point property test
for two reasons (van Maanen, de Jong, & van Rijn,
2014). Firstly, estimating the probability density func-
tion (PDF) of the observed RT distribution from noisy
data is not trivial. Secondly, it has been difficult to pro-
vide statistical evidence for the presence of the fixed-
point property, which requires providing evidence for the
null hypothesis.

We address the first issue by using the Epanechnikov
kernel density function (Epanechnikov, 1969), which has
been shown to approximate the PDF of RT distributions
well (Silverman, 1986; Turner & Sederberg, 2014). To se-
lect a bandwidth for the kernel we use Silverman’s “rule
of thumb” (Silverman, 1986, p. 48, eq (3.31)). The de-
fault software libraries in R (R Development Core Team,
2016) allow for easy use of both the Epanechnikov kernel
and Silverman’s “rule of thumb”. We address the second
issue by using Bayesian methods to assess the degree to
which there is no difference between a particular crossing
point in all mixture distributions. Bayesian hypothesis
testing, or Bayes factors, quantify evidence in favor of
either the null hypothesis or the alternative hypothesis
as a ratio. For example, when BF 10 = 5 the observed
data are 5 times more likely under the alternative hy-
pothesis than under the null hypothesis. When BF 10 =
.2 the observed data are 5 times more likely under the
null hypothesis than under the alternative hypothesis.

There is some precedent for using a fixed-point analy-
sis to test mixture models in RT data (Brown, Lehmann,
& Poboka, 2006; van Maanen et al., 2014; van Maanen,
2016). For RT distributions, when the observed RTs are
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Figure 1: Illustration of the fixed-point property in
Stroop distributions. The ’No Reading’ distribution con-
sists of 0% reading trials and the Forced distribution con-
sists of 100% reading trials. The Standard distribution
is a mixture of trials from both distributions. All three
distributions will intersect at a common point, which is
labeled ”Fixed-point property” in the figure.

made up of a mixture of unobserved distributions, there
will be one RT for which the probability of providing a
response at that particular time is equal for all mixtures
(see Figure 1 again).

Here we test whether RT distributions in the Stroop
task satisfy this fixed-point property. In the Stroop task
participants are requested to classify the print color of
color words and ignore the words’ meaning. The ubiqui-
tous Stroop effect implies they fail to exclusively focus on
color and succumb to the overwhelming (perhaps auto-
matic) attraction of reading. Previous evidence suggests
that participants may not always process word meaning
to the same extent (Eidels et al., 2014; Tillman et al.,
2016). They may process words on some trials and not
on others, in a way commensurate with a binary mixture
model.

To test the mixture model we presented participants
with three experimental conditions, each intended to in-
duce a different level of reading (gauged by the probabil-
ity p): a color naming task involving rectangles (prob-
ability of reading, p = 0), forced reading Stroop task
in which each word must be read to its full extent, on
each and every trial (p = 1), and a standard Stroop task,
where participants may involuntarily read the words on
some proportion of the trials (0 < p < 1). A probability-
mixture account of reading in the Stroop task predicts
that RT distributions of the three conditions will cross
each other at a common point (the ’fixed-point prop-
erty’).
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Method

Participants

Twenty two students (19 females and 3 males) from the
University of Newcastle (mean age = 22.41 and SD age =
4.74) participated in the study. Participants had a pro-
ficiency in English and normal or corrected to normal
vision with intact color vision. Each participant com-
pleted the standard, forced, and color naming Stroop
tasks and participants were reimbursed $15 per session.

Apparatus

Each task was carried out on Dell computers running
Windows XP with 17” Diamond View color monitors.
Contrast and brightness were set to 80 and 50, respec-
tively. We used the Tektronix J17 Lumacolor digital
photometer and J1800 series sensor heads to calibrate
color clarity across all testing stations. The software
‘Presentation’ was used to run the experiment and record
data. Participants responded using a Cedrus response
pad, model RB-830. The response keys on the response
pad were marked with color stickers corresponding to the
red, green or blue response.

Stimuli

For the color naming task, the stimuli were color filled
rectangles in the center of the screen. For the standard
and forced task, the stimuli were were 12 words that were
printed in either the color red, green, or blue. The 12
words were RED, GREEN, and BLUE and three variants
for each of these words. The variants differed from the
color words by one letter and if substituting one letter
resulted in a non-word, two letters were changed instead.
The variants were GREED, GRAIN, QUEEN, RENT,
ROD, BED, BASE, BLUR, and GLUE.

The variants made up the neutral stimuli for the stan-
dard and forced-reading task. The neutral stimuli were
matched to the color stimuli on length, neighborhood
frequency, and phonetics using the software N-Watch
(Davis, 2005) and based on the CELEX word frequency
database. All words were written in uppercase bold Ar-
ial font, with no words exceeding 2.55cm, or 4 visual
degrees when the participant was seated 60cm from the
screen.

Red, green and blue print colors of the words and rect-
angles had RGB values of R= 220, G=0, B=0 for red,
R=0, G=0, B=240 for blue, and R=0, G=170, B=0 for
green. The stimuli made up three conditions in the stan-
dard and forced-reading task. The congruent condition
consisted of stimuli that had the print color and word
match (RED in red, GREEN in green). The incongru-
ent condition consisted of stimuli that had the print color
and word mismatch (RED in green, GREEN in red). All
non-color words were classified as neutral trials.

Procedure

Each participant completed three sessions on separate
days. Each session involved the standard, forced-
reading, or color naming task. The former two took
about an hour to complete and consisted of 10 experi-
mental blocks with 1 minute breaks between each. The
color task took 20mins and consisted of one experimen-
tal block. The order of task presentation and position of
the response buttons was counterbalanced across partic-
ipants.

Each task was completed in a dark room with a desk
lamp as the light source. At the beginning of each
session, participants were shown 9 example trials that
demonstrated the correct response. They also completed
two practice blocks that consisted of 24 trials, with feed-
back for correct and incorrect responses in the first block.

In the color naming task, participants were instructed
to respond to the print color of the rectangles by press-
ing the corresponding button on the response pad. In the
standard task, participants were instructed to ignore the
word and respond to the print color of the word. In the
forced-reading task, participants were instructed to re-
spond to the print color of words, but withhold responses
to neutral words (e.g., BED, GREED, RENT).

On each trial, a fixation cross appeared in the center
of the screen for 500ms, followed by a blank screen for
500ms. Following this, either a rectangle printed in color
(color naming task) or a word printed in color was pre-
sented for 500ms in a random position within 40 pixels
distance from the center. The spatial uncertainty pre-
vented participants from using spatial cues to respond.
Participants were required to respond within 2500ms af-
ter stimulus presentation before the trial timed out.

The color naming task involved 50 trials of blue, red,
and green rectangle presentations, making for 150 trials
in total per participant. For the standard and forced
task, each of the ten experimental blocks consisted of
18 congruent trials, 36 incongruent trials, and 54 neu-
tral trials. In the forced task, this allowed for half the
trials to contain no response, which controls for partici-
pants predicting a non-response trial. Each combination
of congruent and incongruent stimuli were presented 6
times per block. The order of stimulus presentation was
randomized within each block. The RT was recorded in
milliseconds.

Results

The probability mixture account makes two testable pre-
dictions. First the fixed cross point, where all three
Stroop distributions will have a single RT with equal
probability of providing a response at that time – we test
this in the following section. The mixture account also
predicts that the observed (mixture) distribution will be
bound between the faster non-reading distribution and
the slower forced-reading distribution. This is exactly
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what we observed in our data. The color naming task
had a mean RT of 436ms (SD = 132ms). In the con-
gruent condition, the standard and forced-reading tasks
had mean RTs of 470ms (SD = 150ms) and 700ms (SD
= 208ms), respectively. While in the incongruent condi-
tion, these tasks had mean RTs of 495ms (SD = 172ms)
and 832ms (SD = 233ms), respectively.

We also used Bayesian paired samples t-tests to eval-
uate the evidence for differences between the color nam-
ing, standard, and forced-reading mean RTs in the con-
gruent and incongruent conditions. In the congruent
condition, participants were slower in the standard task
than the color naming task (BF 10 = 8.8 × 10660) and
were slower in the forced-reading compared to the stan-
dard task (BF 10 = 5× 10559). In the incongruent condi-
tion, participants were slower in the standard task than
the color naming task (BF 10 = 1.2 × 101295) and were
slower in the forced-reading task compared to the stan-
dard (BF 10 = 6.9 × 102770).

Fixed-Point Analysis

The analysis was carried out using the ‘fp’ package
(van Maanen et al., 2014) in R (R Development Core
Team, 2016) – but we used the Epanechnikov kernel in-
stead of the default Gaussian kernel as recommended by
Silverman (1986, p. 43).

The analysis involved calculating the probability den-
sity of each RT distribution in each task. For exam-
ple, focusing only on the congruent condition (and later
similarly focusing on the incongruent condition) we es-
timated the RT distribution for the color naming task,
the standard task, and the forced reading task, which
by design have a mixture proportion of p = 0, 0 < p <
1, and p = 1, respectively. We then found the crossing
point of each pair of distributions (i.e., forced-standard,
forced-color naming, standard-color naming). The fixed-
point property holds if all pairs cross at the same point
along the x and y axis (see Figure 1).

We tested whether the fixed-point property holds for
the sample of participants in our study. We calculated
the crossing points per pair of mixture proportion tasks
for each of the participants for both the congruent and
incongruent distributions, but the color naming distri-
bution was the same for both the congruent and incon-
gruent comparison. We then subjected these crossing
points to Bayesian analysis of variance (ANOVA). The
Bayesian analysis was conducted using the Bayes Factor
package (Morey, Rouder, & Jamil, 2014; Rouder, Morey,
Speckman, & Province, 2012) in R. The Bayes factor
from the ANOVA provides evidence for or against the
fixed-point property.

We calculated the Bayes factor as the ratio of the ev-
idence for the null hypothesis over the alternative. The
null hypothesis posits that there is no difference in cross-
ing points between all distributions in question, and thus
suggests that the fixed-point property is satisfied. In line

with Kass and Raftery (1995) we consider a Bayes factor
greater than 3 as positive evidence in favor of the null
(fixed cross point) and against the alternative hypothesis
that there is a difference between crossing points.

The RT distributions for the congruent and incongru-
ent trials are presented in Figure 2. For the congruent
condition, the Bayes factor ANOVA revealed that the
null model was preferred to the alternative model by
a Bayes factor of 1.25. The data provide equivocal evi-
dence in favor of both the null and alternative hypothesis
for the congruent Stroop distributions. For the incongru-
ent condition, the Bayes factor ANOVA revealed that the
null model was preferred to the alternative model by a
Bayes factor of 2.27. The data provides evidence in fa-
vor of the hypothesis that there is no differences between
crossing points, but the evidence is inconclusive.

General Discussion

In the Stroop task, slower responses on incongruent trials
relative to congruent or even neutral trials implies par-
ticipants read the words despite instructions to focus on
color and ignore the words’ meaning. Recent evidence
suggests participants may read on some proportion of
the trials and not on others (Eidels et al., 2014; Tillman
et al., 2016). When the observed RT on a single trial is
sampled from a non-reading distribution, color naming
will not be slowed down by the incongruent word. When
the observed RT on a single trial is sampled from a read-
ing distribution, the speed of color naming will be slowed
down by an incongruent word, therefore, contributing to
a Stroop effect. The magnitude of an observed Stroop
effect reflects the proportion of trials in which the partic-
ipant has read on - the greater the proportion, the larger
the effect. To statistically test for this mixture of read-
ing processes in the Stroop task, we ran a fixed-point
property analysis on Stroop RT distributions with dif-
ferent reading proportions. We found some evidence for
a mixture of distributions in the incongruent condition,
but the results of the analysis were not conclusive.

The fixed-point property analysis is one method for
testing for a mixture of processes, but it requires the
strong assumption that there is a pure mixture of read-
ing and non-reading processes. That is, the approach
assumes that the only difference between the three tasks
is the proportion of reading trials. This assumption may
be compromised by other contaminant processes across
the tasks. For example, the Stroop effect can be ef-
fected by attentional resources (Kahneman & Chajczyk,
1983), practice (MacLeod & Dunbar, 1988), dimensional
discriminability and experimental correlation (Dishon-
Berkovits & Algom, 2000), target set size (La Heij &
Vermeij, 1987), and the number of colored letters in the
stimulus word (Besner, Stolz, & Boutilier, 1997). Fur-
ther, there are differences in stimuli (words vs rectangles)
across tasks. Whilst our results are inconclusive with re-
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Figure 2: Overall RT density for congruent and incongruent Stroop distributions.

gards to identifying a mixture process, they certainly do
not preclude the mixture hypothesis as being a viable
explanation for the Stroop effect.

Our study also reflects the difficulties in distinguishing
between single-process and dual-process mental phenom-
ena, which is an issue that besets cognitive psychology
(e.g., Yap, Balota, Cortese, & Watson, 2006; Wixted,
2007; Freeman & Dale, 2013). Nonetheless, the mixture
model of Stroop has clinical, empirical, and theoretical
implications. If the Stroop effect distribution is derived
from a reading distribution and a non-reading distribu-
tion, and the combination of these distributions makes
up the observed distribution, then clinical applications
of the Stroop task need to consider this mixture of read-
ing processes. For instance, differences in Stroop effect
magnitude may not only reflect differences in attentional
control, but could simply reflect a difference in the pro-
portion of reading across trials. Empirically, future work
could account for the proportion of reading trials by em-
ploying the benchmark forced-reading task along with
the standard task. Finally, theories of Stroop (e.g., Co-
hen et al., 1990; Melara & Algom, 2003) will need to con-
sider what mechanism allows for a Stroop effect to only
arise on some proportion of trials but not others. Given
these implications, we hope to see more robust testing
of the mixture-of-reading-processes hypothesis outlined
here.
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