
Lawrence Berkeley National Laboratory
LBL Publications

Title
GRAPE for fast and scalable graph processing and random-walk-based embedding.

Permalink
https://escholarship.org/uc/item/6kk0317f

Journal
Nature Computational Science, 3(6)

Authors
Cappelletti, Luca
Fontana, Tommaso
Casiraghi, Elena
et al.

Publication Date
2023-06-01

DOI
10.1038/s43588-023-00465-8

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6kk0317f
https://escholarship.org/uc/item/6kk0317f#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Nature Computational Science | Volume 3 | June 2023 | 552–568 552

nature computational science

Resource https://doi.org/10.1038/s43588-023-00465-8

GRAPE for fast and scalable graph processing
and random-walk-based embedding

Luca Cappelletti   1, Tommaso Fontana   1, Elena Casiraghi1,2,3,
Vida Ravanmehr4,5, Tiffany J. Callahan   6, Carlos Cano7, Marcin P. Joachimiak3,
Christopher J. Mungall3, Peter N. Robinson   4, Justin Reese3 &
Giorgio Valentini   1,2,8,9

Graph representation learning methods opened new avenues for addressing
complex, real-world problems represented by graphs. However, many
graphs used in these applications comprise millions of nodes and billions
of edges and are beyond the capabilities of current methods and software
implementations. We present GRAPE (Graph Representation Learning,
Prediction and Evaluation), a software resource for graph processing and
embedding that is able to scale with big graphs by using specialized and
smart data structures, algorithms, and a fast parallel implementation of
random-walk-based methods. Compared with state-of-the-art software
resources, GRAPE shows an improvement of orders of magnitude in
empirical space and time complexity, as well as competitive edge- and
node-label prediction performance. GRAPE comprises approximately
1.7 million well-documented lines of Python and Rust code and provides 69
node-embedding methods, 25 inference models, a collection of efficient
graph-processing utilities, and over 80,000 graphs from the literature and
other sources. Standardized interfaces allow a seamless integration of third-
party libraries, while ready-to-use and modular pipelines permit an easy-to-
use evaluation of graph-representation-learning methods, therefore also
positioning GRAPE as a software resource that performs a fair comparison
between methods and libraries for graph processing and embedding.

In various fields such as biology, medicine, and data and network sci-
ence, graphs can naturally model available knowledge as interrelated
concepts, represented by a network of nodes connected by edges.
The wide range of graph applications has motivated the develop-
ment of a rich literature on graph representation learning (GRL) and
inference models1.

GRL models compute embeddings, that is, vector representations
of the graph and its constituent elements, capturing their topological,
structural, and semantic relationships. Graph inference models can use
such embeddings and available additional features for several tasks, for
example, visualization, clustering, and prediction of node labels, edges
and edge labels1. State-of-the-art GRL algorithms, including, among

Received: 13 October 2021

Accepted: 12 May 2023

Published online: 26 June 2023

 Check for updates

1AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy. 2National Laboratory in Artificial Intelligence and Intelligent
Systems, Consorzio Interuniversitario Nazionale per l’Informatica, Rome, Italy. 3Division of Environmental Genomics and Systems Biology, Lawrence
Berkeley National Laboratory, Berkeley, CA, USA. 4The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. 5Department of Lymphoma and
Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. 6Department of Biomedical Informatics, Columbia University Irving
Medical Center, New York, NY, USA. 7Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain. 8European
Laboratory for Learning and Intelligent Systems, Tübingen, Germany. 9Data Science Research Center, Università degli Studi di Milano, Milan, Italy.

 e-mail: valentini@di.unimi.it

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-023-00465-8
http://orcid.org/0000-0002-1269-2038
http://orcid.org/0000-0002-9806-3493
http://orcid.org/0000-0002-8169-9049
http://orcid.org/0000-0002-0736-9199
http://orcid.org/0000-0002-5694-3919
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-023-00465-8&domain=pdf
mailto:valentini@di.unimi.it

Nature Computational Science | Volume 3 | June 2023 | 552–568 553

Resource https://doi.org/10.1038/s43588-023-00465-8

Designed to leverage succinct data structures18, GRAPE requires
only a fraction of the memory required by other libraries and guaran-
tees average constant-time rank-and select operations19. This makes it
possible to execute many graph-processing tasks, for example, access-
ing node neighbors and running first- and second-order RWs, with
memory usage close to the theoretical minimum.

However, the performance of RW-based embedding methods is
often affected by the high computational costs required by the RW
generators that often rely on a limited number of RW samples that
cannot accurately represent the topology of the underlying graph.
This leads to uninformative graph embeddings that affect the perfor-
mance of the subsequent graph-prediction models. To overcome these
limitations, GRAPE focuses on smart and efficient implementations
of RW-based embedding methods since its main objective is to scale
with large graphs (see Methods for details), while other effective but
more complex models based, for example, on GNNs3 available from
other libraries20 are not yet implemented in the library because of their
well-known scaling limitations3,21.

Among the many high-performance algorithms implemented in
GRAPE, we propose an algorithm, sorted unique sub-sampling (SUSS),
that allows approximated RWs to be computed to enable the process-
ing of graphs that contain very-high-degree nodes (degree > 106),
unmanageable for the corresponding exact analogous algorithms.
Approximated RWs can achieve edge prediction performance com-
parable to those obtained by the corresponding exact algorithm with
a speed-up from two to three orders of magnitude.

Ensmallen also provides many other methods and utilities, such
as refined multiple holdout techniques to avoid biased performance
evaluations; Bader and Kruskal algorithms for computing random
and minimum spanning arborescence and connected components;
stress and betweenness centrality22; node and edge filtering methods;
and algebraic set operations on graphs. Ensmallen allows graphs to be
loaded from a wide variety of node and edge list formats. In addition,
users can automatically load data from an ever-increasing list of over
80,000 graphs from the literature and elsewhere (Fig. 1b).

Embiggen provides efficient implementations of GRL and infer-
ence models, including an exhaustive set of node-embedding meth-
ods, for example, spectral and matrix factorization models such
as High-Order Proximity preserved Embedding (HOPE)23, Network
Embedding as Matrix Factorization (NetMF)24, and their variations
(Geometric Laplacian Eigenmap Embedding - GLEE)25, SocioDim26).
Moreover, it offers from-scratch implementations of Continuous
Bag of Words (CBOW), SkipGram, and GloVe embedding methods27,28,
which substantially outperform the Keras-based ones, as Tensor-
Flow Application Programming Interfaces (APIs) are too coarse and
high level for such fine-grained optimizations. GRAPE implements
RW-based methods such as DeepWalk, Node2Vec, and Walklets29,30;
triple-sampling methods such as Large-scale Information Network
Embedding (LINE)31 and corrupted-triple-sampling methods such as
Translating Embeddings (TransE)32; and, more generally, a wide range
of inference methods.

GRAPE provides three modular pipelines to compare and evalu-
ate node-label, edge-label, and edge prediction performance under
different experimental settings (Fig. 1b), as well as utilities for graph
visualization (Fig. 1c). These pipelines allow non-expert users to tailor
their desired experimental set-up and quickly obtain actionable and
reproducible results (Fig. 1b). Furthermore, GRAPE provides interfaces
to integrate third-party models and libraries (for example, Karate Club33
and PyKeen10 libraries). This way, the evaluation pipelines can compare
models implemented or integrated into GRAPE.

The possibility of integrating external models and the availability
of graphs for testing them on the same datasets allow the answering of
a still open and crucial issue in literature, which is regarding the FAIR,
objective, reproducible, and efficient comparison of graph-based
methods and software implementations.

others, methods based on matrix factorization, random walks (RWs),
graph kernels2, triple sampling, and (deep) graph neural networks
(GNNs)1,3, have shown their effectiveness in analyzing networks from
sociology, biology, medicine, and many other disciplines. Although a
great deal of research has been devoted to the development of software
resources for graph processing and analysis (for example, iGraph4,
GraphLab5, NetworkX6, GraphX7, and SNAP8) or for GRL (for example,
PecanPy9, PyKeen10, DGL11, Pytorch Geometric12, and Spektral13), real-
world networks often include millions of nodes and billions of edges, thus
raising the problem of the scalability of existing software resources14.
In particular, the scalability of GNNs represents an open issue3, despite
recent efforts to design GNNs that can scale with large graphs15.

In this context, for scalability issues, RW-based GRL models are
often preferred. However, their performance is often affected by the
high computational costs required by the RW generators. Indeed,
current state-of-the-art RW-based graph-embedding libraries display
a limited ability to efficiently generate enough RW data samples to
accurately represent the topology of the underlying graph. This limits
the performance of node- and edge-label prediction methods, which
strongly depends on the informativeness of the underlying embedded
graph representation. The efficient generation of billions of sampled
RWs could lead to more accurate embedded representations of graphs
and could boost the performance of machine learning methods that
learn from the embedded vector representation of nodes and edges.

The findable, accessible, interoperable, and reusable (FAIR) com-
parison of different graph-based methods under different experimen-
tal set-ups is a relevant open issue, only very recently considered in
literature in the context of the Open Graph Benchmark Large-Scale
Challenge (OGB-LSC). This initiative enables a FAIR comparative evalua-
tion of different models on three specific large-scale graphs16. However,
further efforts are required to provide standard interfaces to easily
integrate methods from different libraries and public experimental
pipelines, and to allow a FAIR comparison of different methods and
libraries for the analysis of any graph-based data.

GRAPE provides a modular and flexible solution to the above
problems by offering (1) a scalable and fast software library that effi-
ciently implements RW-based embedding methods, graph-processing
algorithms, and inference models that can run on both general-purpose
desktop and laptop computers, as well as on high-performance com-
puting clusters; (2) an extensive set of efficient and effective built-in
GRL algorithms that any user can continuously update by implement-
ing easy-to-use standardized interfaces; and (3) ready-to-use evalua-
tion pipelines to provide a fair and reproducible evaluation of any GRL
algorithm (implemented or integrated into GRAPE) using the ~80,000
graphs retrievable through the library and also other graphs provided
by the user. Therefore, GRAPE can also be viewed as an efficient collec-
tor of GRL methods that can perform a FAIR comparison on a large set
of available graphs.

Results
Embiggen and Ensmallen
GRAPE consists of approximately 1.5 million lines of Python code and
approximately 200,000 lines of Rust code (results computed with the
Tokei tool, https://docs.rs/tokei/latest/tokei), implementing efficient
data structures and parallel computing techniques to enable scalable
graph processing and embedding.

The library’s high-level structure, overall functionalities, and two
core modules, Ensmallen (Enabler of Small Computational Resources
for Large Networks) and Embiggen (Embedding Generator), are
depicted in Fig. 1a.

Ensmallen efficiently loads big graphs and executes graph-pro-
cessing operations, owing to its Rust17 implementation and to the
usage of map-reduce thread-based parallelism and branch-less single-
instruction multiple data (SIMD) parallelism. It also provides Python
bindings for ease of use.

http://www.nature.com/natcomputsci
https://docs.rs/tokei/latest/tokei

Nature Computational Science | Volume 3 | June 2023 | 552–568 554

Resource https://doi.org/10.1038/s43588-023-00465-8

We used the evaluation pipelines to compare the edge- and node-
label prediction performance of 16 embedding models. Moreover,
we compared GRAPE with state-of-the-art graph-processing libraries

across several types of graphs having different sizes and character-
istics, including big real-world graphs such as Wikipedia, the Com-
parative Taxonomic Database (CTD)34, and biomedical knowledge

Visualize embedding, graph properties and predictions

GRAPE

Graph construction Graph quality control

Fit the best model and obtain new predictionsCompose and run reproducible automatic evaluation pipeline

SingletonsStars

Chains

Isomorphism

Circles

Cliques

Multiple evaluation schemes

Integrated third-party
methods for

embedding, classier
and decomposition

High-performance
classier methods

SOTA high-performance
embedding methods

 Automatic pipelines

Edge prediction

Edge-label prediction

Node-label prediction

Ensmallen

Automated retrieval of >80,000
graphs from the literature

Embiggen

Massive random walks and
triple sampling for mini-batch

CBOW, SkipGram, and
GloVe, TransE, ...

Loads graphs into quasi-
succinct data structures

High-performance graph
metrics and algorithms

Node/edge-label & edge
prediction Scikit models

TensorFlow-based node
embedding and GCN models

Interfaces to integrate libraries in
standard evaluation pipelines

Graph properties, embedding, and
prediction visualization

High-performance edge
prediction models APIs to apply trained models

Embedding and decomposition
models from third-party libraries

a

b

c

Publication
Chemical substance
Ontology class
Drug

Protein
Disease
Biological process

Mentions
Interacts with
Subclass of
Has attribute

Related to
Part of
Has gene product
Other 42 edge types Non-existent ExistentOther 13 node types

Node types Edge types Edge prediction

Extend graph automatic retrieval to make your dataset FAIR

Fig. 1 | Schematic of GRAPE, Ensmallen and Embiggen. a, High-level structure
of the GRAPE software resource. b, Pipelines for an easy, fair, and reproducible
comparison of graph-embedding techniques, graph-processing methods, and
libraries. c, Visualization of the KGCOVID19 graph53, obtained by displaying
the first two components of the t-distributed stochastic neighbor embedding

computed by using a Node2Vec SkipGram model that ignores the node and
edge type during the computation. The clusters’ colors indicate the Biolink
category for each node (left), the Biolink category for each edge (center), and the
predicted edge existence (right).

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 555

Resource https://doi.org/10.1038/s43588-023-00465-8

graphs generated through PheKnowLator35, showing that GRAPE
achieves state-of-the-art results in processing big real-world graphs
both in terms of empirical time and space complexity and prediction
performance.

Fast error-resilient graph loading
GRAPE has been carefully designed to efficiently perform in space
and time. In this section, we carried out a comparative study of per-
formance with state-of-the-art graph-processing libraries (including

NetworkX36, iGraph4, CSRGraph, PecanPy9) in terms of empirical space
and time used for loading 44 different real-world graphs (Fig. 2a,b).
Results show that GRAPE is faster and requires less memory than the
state-of-the-art libraries. For instance, GRAPE loads the ClueWeb09
graph (1.7 billion nodes and 8 billion undirected edges) in less than
10 min and requires approximately 60 GB of memory, whereas the
other libraries were not able to load this graph. In addition, GRAPE
can process many graph formats and check for common format errors
simultaneously. All graphs and libraries used in these experiments are

Load graph
a b

c d

e f

2.78 h 100.0 GB

10.0 GB

1.0 GB

100.0 MB

10.0 MB

16.67 min

1.67 min

10.00 s

Ti
m

e
(lo

g
sc

al
e)

M
em

or
y

(lo
g

sc
al

e)

10.0 GB

1.0 GB

100.0 MB

10.0 MB

M
em

or
y

(lo
g

sc
al

e)

10.0 GB

1.0 GB

100.0 MB

10.0 MB

M
em

or
y

(lo
g

sc
al

e)

1.00 s

GRAPE
NetworkX
CSRGraph
iGraph
PecanPy

GRAPE
NetworkX
CSRGraph
iGraph
PecanPy

100.00 ms

10.00 ms

104 106

Number of edges (log scale)

First-orde walk

108 104 106

Number of edges (log scale)

First-orde walk

108

103 104 105 106

Number of nodes (log scale)

Second-order walk

107 108

103 104 105 106

Number of nodes (log scale)
107 108

2.78 h

16.67 min

1.67 min

10.00 s

Ti
m

e
(lo

g
sc

al
e)

1.00 s

100.00 ms

10.00 ms

2.78 h

16.67 min

1.67 min

10.00 s

Ti
m

e
(lo

g
sc

al
e)

1.00 s

100.00 ms

10.00 ms

103 106104 105

Number of nodes (log scale)

Second-order walk

107 108

103 106104 105

Number of nodes (log scale)
107 108

Load graph

GRAPE
CSRGraph
iGraph
PecanPy
Node2Vec
GraphEmbedding

GRAPE
CSRGraph
PecanPy
Node2Vec
GraphEmbedding

GRAPE
CSRGraph
iGraph
PecanPy
Node2Vec
GraphEmbedding

GRAPE
CSRGraph
PecanPy
Node2Vec
GraphEmbedding

Fig. 2 | Experimental comparison of GRAPE with state-of-the-art graph-
processing libraries across 44 graphs. a,b, Graph loading. a, Empirical
execution time. b, Peak memory usage; the horizontal axis shows the number of
edges, and the vertical axis shows peak memory usage. c,d, First-order RW.
c Empirical execution time. d, Peak memory usage. e,f, Second-order RW.

e, Empirical execution time. f, Peak memory usage. The multiplication symbols
represent when a library crashes, exceeds 200 GB of memory, or takes more than
4 h to execute the task. Each line corresponds to a graph resource/library, and
points on the lines refer to the 44 graphs used in the experimental comparison.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 556

Resource https://doi.org/10.1038/s43588-023-00465-8

directly available from GRAPE. Detailed results are available in the
Supplementary Sections 1 and 2.

GRAPE outperforms state-of-the-art libraries on RW
generation
Through extensive use of thread and SIMD parallelism and specialized
quasi-succinct data structures, GRAPE outperforms state-of-the-art
libraries by one to four orders of magnitude in the computation of
RWs, both in terms of empirical computational time and space require-
ments (Fig. 2c–f). The method used to measure execution time and peak
memory usage properly is presented in Supplementary Section 6.3.

Further speed up of second-order RW computation is obtained by
dispatching one of the eight optimized implementations of Node2Vec
sampling29. The dispatching is based on the values of the return and
in–out parameters and the type of the graph (weighted or unweighted).
GRAPE automatically provides the version best suited to the requested
task, with minimal code redundancy. The time performance difference
between the least and the most computationally expensive implemen-
tations is around two orders of magnitude (Supplementary Section 7.2
and Supplementary Tables 50 and 51).

Experimental comparison of graph-processing libraries. We com-
pared GRAPE with a set of state-of-the-art libraries, including GraphEm-
bedding, Node2Vec, CSRGraph, and PecanPy9, on a large set of first- and
second-order RW tasks. The RW procedures in the GraphEmbedding and
Node2Vec libraries use the alias method (Supplementary Section 7.2.3).
The PecanPy library also employs the alias method for small-graph-use
cases (less than 10,000 nodes). Contrastingly, CSRGraph computes

the RWs lazily using Numba37. Similarly, PecanPy leverages the Numba
lazy generation for graphs having more than 10,000 nodes. All librar-
ies are further detailed in Supplementary Section 1. Figure 2 shows the
experimental results of a complete iteration of 100-step RWs on all the
nodes across 44 graphs with edges ranging from thousands to several
billion. GRAPE greatly outperforms all the compared graph libraries on
both first- and second-order RWs in terms of space and time complexity.
Note that GRAPE scales well with the biggest graphs considered in the
experiments, whereas the other libraries either crash when exceeding
200 GB of memory or take more than 4 h to execute the task (Fig. 2c–f).

Approximated RWs to process graphs with high-degree nodes.
RWs on graphs containing high-degree nodes are challenging since
multiple paths from the same node must be processed. To overcome
this computational burden, GRAPE provides an approximated imple-
mentation of weighted RWs that undersamples the neighbors to scale
with graphs containing nodes with high degree, for example, with mil-
lions of neighbors (Fig. 3a–c). To guarantee scalability, the sampling
process is performed by an algorithm (SUSS) that we developed as an
alternative to the classic and computationally demanding alias algo-
rithm (Supplementary Section 7.2.3). SUSS is a sampling algorithm that
divides a discrete range into k uniformly spaced buckets and randomly
samples a value from each bucket to achieve an efficient neighborhood
sub-sampling for nodes with a degree d ≫ k. The obtained values are
inherently sorted and unique.

We compared exact and approximated RW samples for the
Node2Vec-based SkipGram for the edge prediction problem on the
(unfiltered) Protein-Protein Interaction (PPI) Homo sapiens graph

src src

src

SUSS sampling
dT = 5 destinations

SUSS sampling
dT = 5 destinations

d e

a b c

Exact RW
Approx. RWTr

ai
n

Te
st Exact RW

Approx. RW

0.90 0.92 0.94

Accuracy
0.96 0.98 1.00

Exact RW
Approx. RWTr

ai
n

Te
st Exact RW

Approx. RW

0.90 0.92 0.94

F1 score
0.96 0.98 1.00

Exact RW
Approx. RWTr

ai
n

Te
st Exact RW

Approx. RW

Exact. RW

Approx. RWEn
ab

le
d

Exact. RW

Approx. RW

1 10 100

Time (ms)
1,000

D
is

ab
le

d

0.90 0.92 0.94

AUPRC
0.96 0.98 1.00

Exact RW
Approx. RWTr

ai
n

Te
st Exact RW

Approx. RW

0.90 0.92 0.94

AUROC
0.96 0.98 1.00

Fig. 3 | Approximated RW. a, The RW starts at the source node src; its 15
neighborhood nodes are highlighted in cyan. b, We sampled dT = 5 destination
nodes (dT, degree threshold) from the available 15 destinations, using our SUSS
algorithm, and performed a random step (edge highlighted with an arrow).
c, A further step was then performed on the successor node (that then became
the novel source node src), and the same process was repeated until the end of
the walk. d, Edge prediction performance comparison (accuracy, AUPRC, F1
score, and AUROC computed over n = 10 holdouts—data are presented as mean

values ± s.d.) using SkipGram-based embeddings and RW samples obtained
with exact and approximated RWs for both the training and the test sets with
the STRING–PPI dataset. Bar plots are zoomed in at 0.9 to 1.0, with error bars
representing the s.d., computed over 30 holdouts. e, Empirical time comparison
of the approximated and exact second-order RW algorithm on the graph
sk-2005 (ref. 54): 100-step RWs are run on 100 randomly selected nodes. Error
bars represent the s.d. across n = 10 repetitions. Data are presented as mean
values ± s.d.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 557

Resource https://doi.org/10.1038/s43588-023-00465-8

from the Search Tool for Recurring Instances of Neighbouring Genes
(STRING) database38, achieving a statistically equivalent performance
(two-sided Wilcoxon rank–sum P > 0.2; Fig. 3d), by running 30 hold-
outs and setting a (deliberately low) degree threshold equal to 10 for

the approximated RW, while the maximum degree in the training set
ranged between 3,325 and 4,184 across the holdouts. These results
show no relevant performance decay, even when using a relatively
stringent degree threshold.

GLEE

GLEE

GLEE GLEE

a

b

c

d

NMFADMM

NMFADMM

NMFADMM
NMFADMM

Node2Vec CBOW

Node2Vec CBOW

Node2Vec CBOW Node2Vec CBOW

HOPE

HOPE

HOPE

DeepWalk CBOW

DeepWalk CBOW
DeepWalk CBOW

DeepWalk CBOW

RandNE

RandNE

RandNE
RandNE

GraRep

GraRep
GraRep

GraRep

Node2Vec SkipGram

Node2Vec SkipGram

Node2Vec SkipGram

Pe
rc

ep
tr

on
D

ec
is

io
n

tr
ee

Ra
nd

om
 fo

re
st

D
ec

is
io

n
tr

ee

DeepWalk SkipGram

DeepWalk SkipGram

DeepWalk SkipGram

First-order LINE

First-order LINE

First-order LINE

Second-order LINE

Second-order LINE

Second-order LINE

Walklets SkipGram

Walklets SkipGram

Walklets SkipGram

Walklets SkipGram

NetMF

NetMF

NetMF

HOPE
First-order LINE

Second-order LINE
NetMF

Role2Vec

Role2Vec Role2Vec

Node2Vec SkipGram
DeepWalk SkipGram

Role2Vec

Node2Vec GloVe

Node2Vec GloVe

Node2Vec GloVe Node2Vec GloVe

DeepWalk GloVe

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

DeepWalk GloVe

GLEE

GLEE
GLEE

GLEE

GLEE
GLEE

NMFADMM

NMFADMM
NMFADMM NMFADMM

Node2Vec CBOW

Node2Vec CBOW

Node2Vec CBOW

HOPE

HOPE
HOPE HOPE

HOPE

HOPE

DeepWalk GloVe

Node2Vec CBOW Node2Vec CBOW
Node2Vec CBOW

DeepWalk CBOW DeepWalk CBOW
DeepWalk CBOW

DeepWalk GloVe DeepWalk GloVe

DeepWalk GloVe

DeepWalk GloVe DeepWalk GloVe

RandNE

RandNE
RandNE

RandNE

RandNE RandNE

GraRep

GraRep

GraRep

GraRep

GraRep
GraRep

Node2Vec SkipGram

Node2Vec SkipGram
Node2Vec SkipGram

Node2Vec SkipGram

Node2Vec SkipGram
DeepWalk SkipGram

DeepWalk SkipGram DeepWalk SkipGram
DeepWalk SkipGram

DeepWalk SkipGram Node2Vec SkipGram
DeepWalk SkipGram

First-order LINE

First-order LINE

First-order LINE First-order LINE

First-order LINE First-order LINE

Second-order LINE

Second-order LINE
Second-order LINE

Second-order LINE

NMFADMM NMFADMM
Second-order LINE

Second-order LINE

Walklets SkipGram

Walklets SkipGram Walklets SkipGram

Walklets SkipGram

Walklets SkipGram

Walklets SkipGram

NetMF

NetMF
NetMF NetMF

NetMF NetMF

Role2Vec

Role2Vec
Role2Vec

Role2Vec

Role2Vec

Role2Vec

Node2Vec GloVe

Node2Vec GloVe

Node2Vec GloVe
Node2Vec GloVe

Node2Vec GloVe
Node2Vec GloVe

DeepWalk CBOW

DeepWalk CBOW

DeepWalk CBOW

DeepWalk GloVe DeepWalk GloVe

GLEE GLEE
Node2Vec GloVe Node2Vec GloVe

DeepWalk GloVe
DeepWalk GloVeNMFADMM

NMFADMM

DeepWalk SkipGram DeepWalk SkipGram
Node2Vec SkipGram Node2Vec SkipGram

HOPE HOPE
Node2Vec CBOW

Node2Vec CBOWDeepWalk CBOW
DeepWalk CBOWGraRep

GraRepNetMF

NetMF

Role2Vec Role2Vec
RandNE RandNE

Second-order LINE
Walklets SkipGram

First-order LINE

Second-order LINE
Walklets SkipGram

First-order LINE

Fig. 4 | Comparison of embedding methods through the GRAPE pipelines
on edge- and node-label prediction. Results represent the mean balanced
accuracy computed across n = 10 holdouts ± s.d. (results using other evaluation
metrics are available in Supplementary Section 5). We sorted the embedding
models by performance for each task; methods directly implemented in GRAPE
are in purple, while integrated methods are in cyan. a,b, Edge prediction results

obtained through a perceptron (a) and a decision tree (b). Bar plots from left to
right show the balanced accuracy results obtained with the Human Phenotype
Ontology (left), STRING H. sapiens (center), and STRING Mus musculus (right).
c,d, Node-label prediction results obtained through a random forest (c) and a
decision tree (d). Bar plots from left to right show the balanced accuracy achieved
with CiteSeer (left), Cora (center), and PubMed Diabetes (right) datasets.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 558

Resource https://doi.org/10.1038/s43588-023-00465-8

We used the sk-2005 graph that includes approximately 50 mil-
lion nodes and 1.8 billion edges and some nodes with degrees over
8 million to better show that approximated RW can be several orders
of magnitude faster than the ‘vanilla’ exact RW algorithm. Indeed, by
extrapolating the results reported in Fig. 3e to the entire graph, the
exact algorithm requires approximately 23 days, while the approximate
one requires approximately 11 min, both running on a PC with two AMD
EPYC 7662 64-core processors, 256 CPU threads, and 1 TB RAM.

GRAPE enables a fair comparison of graph-based methods
GRAPE provides both a large set of ready-to-use graphs that can be
used in the experiments and standardized pipelines to fairly compare
different models and graph libraries, ensuring reproducibility of the
results (Fig. 1b). Graph embedding is efficiently implemented in Rust
from scratch (with a Python interface) or is integrated from other librar-
ies by implementing the interface methods of an abstract GRAPE class.
GRAPE users can compare different embedding methods and predic-
tion models and add their own methods to the standardized pipelines.
Our experiments show how to use the standardized pipelines to fairly
compare a large set of methods and different implementations using
only a few lines of Python code.

Experimental comparison of node- and edge-embedding methods.
We selected 16 among the 69 node-embedding methods available in
GRAPE, and we used the edge prediction and node-label standardized
prediction pipelines to compare the prediction results obtained by the
perceptron, decision tree, and random forest classifiers (Fig. 4). We
used the Hadamard product for the edge prediction tasks to construct
edge embeddings from node embeddings, that is, the element-wise
product of the source and destination nodes to obtain the embedding
of the corresponding edge. We applied a connected Monte Carlo evalu-
ation schema for edge prediction and a stratified Monte Carlo evalua-
tion schema for node-label prediction (Supplementary Section 10.2).

The models were tested on three graphs for edge prediction
(Fig. 4a,b) and three graphs for node-label prediction (Fig. 4c,d). The
graph reports, describing the characteristics of the analyzed graphs,
automatically generated with GRAPE, are available in Supplemen-
tary Sections 3.2 and 3.3. Since they are homogeneous graphs (that
is, graphs with only one type of node and edge), we considered only
homogeneous node-embedding methods. Moreover, we discarded
non-scalable models, for example, models based on the factorization
of dense adjacency matrices.

Among the 16 methods, 11 are implemented in GRAPE (purple in
Fig. 4) and 5 were integrated from the Karate Club library33 (cyan in
Fig. 4). They can be grouped into four broad classes:

 (1) Spectral and matrix factorization methods: geometric Laplacian
eigenmap embedding25, alternating direction method of mul-
tipliers for non-negative matrix factorization (NMFADMM)39,
high-order proximity preserved embedding23, iterative random
projection network embedding (RandNE)40, network matrix fac-
torization24, and graph representations (GraRep)41

 (2) First-order RW methods: DeepWalk-based GloVe, CBOW, and
SkipGram; Walklets SkipGram27,28,30; and Role2Vec with Weisfeil-
er–Lehman Hashing2,33,42

 (3) Second-order RW methods: Node2Vec-based GloVe, CBOW, and
SkipGram27–29

 (4) Triple-sampling methods: first- and second-order LINE31

Results show that no model is consistently better with respect to
the others across the types of tasks and the datasets used in the experi-
ments (Fig. 4). These results are analogous to those obtained43 for the
TransE model family and those obtained44 for GNN models, highlight-
ing the need for objective pipelines to systematically compare a wide
array of possible methods for a desired task. The standardized pipelines
implementing the experiments are available from the online GRAPE
tutorials and allow the full reproducibility of the results summarized

in Fig. 4. Full results using other evaluation metrics are available in
Supplementary Sections 5.1 and 5.2.

Scaling with big real-world graphs
To show that GRAPE can scale and boost edge prediction in big
real-world graphs, we compared its Node2Vec-based models with
state-of-the-art implementations on three big graphs: (1) an English
Wikipedia graph, (2) a graph constructed using the CTD34, and (3) a
biomedical graph generated through PheKnowLator35. Supplementary
Section 6.1 reports details about the construction and the character-
istics of the three graphs.

Experimental set-up. In the experiments, the GRAPE implementations
of Node2Vec with both CBOW and SkipGram were compared with
those available in the following embedding libraries, widely used by
the scientific community: PecanPy9, NodeVectors (https://github.com/
VHRanger/nodevectors), SNAP8, Node2Vec (https://github.com/eliorc/
node2vec), GraphEmbedding (https://github.com/shenweichen/
GraphEmbedding), FastNode2Vec (https://github.com/louisabraham/
fastnode2vec), and PyTorch Geometric (https://github.com/pyg-team/
pytorch_geometric). More details about the above state-of-the-art
libraries are reported in Supplementary Section 6.2.

The embeddings computed by each of the tested models were
used to train a decision tree available from the Embiggen module of
GRAPE for edge prediction. To perform an unbiased evaluation, the
training and tests were performed by ten connected Monte Carlo
holdouts (with a 80:20 train to test ratio; Supplementary Section 10.2)
and performances were evaluated using precision, recall, accuracy,
balanced accuracy, F1, Area Under the Receiver Operating Character-
istic (AUROC), and Area Under the Precision Recall Curve (AUPRC). In
the experimental set-up, we imposed the following memory and time
constraints, using a Google Cloud virtual machine with 64 cores and
N1 CPUs with an Intel Haswell micro-architecture:

•	 A maximum time of 48 h for each holdout to produce the
embedding

•	 A 64 GB maximum memory usage allowed during the embedding
•	 A 256 GB maximum memory usage allowed during the prediction

phase

Results on scaling tests. GRAPE can scale with big graphs when the
other competing libraries fail. Most of the competing libraries could
not complete the embedding and prediction tasks on big real-world
graphs. Indeed, NodeVectors exceeded the time computation limit,
while SNAP, Node2Vec, GraphEmbedding, and PyTorch Geometric
went out of memory in the embedding phase, exceeding the available
RAM memory (64 GB). By contrast, GRAPE only required 54 MB with the
CTD graph. For the first three libraries, this was due to the extremely
high memory complexity required by the alias method they use for pre-
computing the transition probabilities (Supplementary Section 7.2.3);
indeed, the alias method has quadratic complexity with respect to the
number of nodes in the graph, therefore quickly becoming too expen-
sive on big graphs. We also ran PyTorch Geometric on a substantially
smaller graph (the STRING H. sapiens graph, having approximately
20,000 nodes and 12 million edges), and we registered that GRAPE is
approximately 60 times faster than PyTorch Geometric.

Such a comparison is impossible with the three other libraries
employing the alias method, as this smaller graph is still considerably
larger than what is possible for them to handle. FastNode2Vec and PecanPy
went out of time (more than 48 h of computation) on the biggest Wiki-
pedia graph. In practice, only GRAPE was able to successfully terminate
the embedding and prediction tasks with all three big real-world graphs.

GRAPE improves upon the empirical time complexity of state-of-the-
art libraries. Figure 5a–c shows the memory and time requirements of

http://www.nature.com/natcomputsci
https://github.com/VHRanger/nodevectors
https://github.com/VHRanger/nodevectors
https://github.com/eliorc/node2vec
https://github.com/eliorc/node2vec
https://github.com/shenweichen/GraphEmbedding
https://github.com/shenweichen/GraphEmbedding
https://github.com/louisabraham/fastnode2vec
https://github.com/louisabraham/fastnode2vec
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric

Nature Computational Science | Volume 3 | June 2023 | 552–568 559

Resource https://doi.org/10.1038/s43588-023-00465-8

GRAPE CBOW GRAPE SkipGram

FastNode2Vec SkipGram
GRAPE CBOW

GRAPE SkipGram
PecanPy SkipGram

FastNode2Vec SkipGram
GRAPE CBOW

GRAPE SkipGram
PecanPy SkipGram

a

c

e g

f

d

33.3 min 1.1 h

Time
1.7 h 2.2 h 0 2.8 h 5.6 h

Time
8.3 h 11.1 h

0 2 GB 4 GB 6 GB 8 GB 10 GB 12 GB 0 2.8 h 5.6 h 8.3 h 11.1 h 13.9 h 16.7 h

0

500.0 MB

1.0 GB

1.5 GB

2.0 GB

M
em

or
y

2.5 GB

3.0 GB

3.5 GB

4.0 GB

b

0

6 GB

4 GB

2 GB

M
em

or
y

8 GB

10 GB

12 GB

0 1.7 min 3.3 min 5 min 6.7 min
Time

8.7 min 2.2 min 11.7 min

0

500.0 MB

1.0 GB

1.5 GB

2.0 GB

M
em

or
y

2.5 GB

3.0 GB

0 1.7 min 3.3 min 5 min 6.7 min

Time

8.7 min 2.2 h 11.7 min

0

2 GB

4 GB

6 GB

8 GB

M
em

or
y

10 GB

12 GB

0 8.3 min 16.7 min 25 min 33.3 min
Time

41.7 min 50 min

0

200 MB

400 MB

600 MB

800 MB

M
em

or
y

1 GB

0

GRAPE SkipGram

GRAPE CBOW

FastNode2Vec SkipGram

PecanPy SkipGram

GRAPE SkipGram

GRAPE CBOW

FastNode2Vec SkipGram

PecanPy SkipGram

GRAPE SkipGram

GRAPE CBOW

FastNode2Vec SkipGram

PecanPy SkipGram

Memory Time

Out of time (> 3 days)
Out of memory (> 64 GB)

Out of time (> 3 days)
Out of memory (> 64 GB)

W
ik

iE
N

Ph
eK

no
w

La
to

r
C

TD

PecanPy SkipGram

FastNode2Vec SkipGram

GRAPE CPU SkipGram

GRAPE CPU CBOW

PecanPy SkipGram

FastNode2Vec SkipGram

GRAPE CPU SkipGram

GRAPE CPU CBOW

Tr
ai

n
Te

st

CTD PheKnowLator

0.5 0.6 0.7 0.8 0.9 1.0

AUPRC
0.5 0.6 0.7 0.8 0.9 1.0

AUPRC

PecanPy SkipGram

FastNode2Vec SkipGram

GRAPE CPU SkipGram

GRAPE CPU CBOW

PecanPy SkipGram

FastNode2Vec SkipGram

GRAPE CPU SkipGram

GRAPE CPU CBOW

Tr
ai

n
Te

st

CTD PheKnowLator

0.5 0.6 0.7 0.8 0.9 1.0

AUROC
0.5 0.6 0.7 0.8 0.9 1.0

AUROC

FastNode2Vec
SkipGram

GRAPE
CBOW

AUROC

8 × 10–158 × 10–15

8 × 10–158 × 10–15

8 × 10–15

1 × 10–6

1 × 10–68 × 10–15

8 × 10–158 × 10–15

0.02

0.02

GRAPE
SkipGram

PecanPy
SkipGram

Fa
st

N
od

e2
Ve

c
Sk

ip
G

ra
m

G
RA

PE
C

BO
W

G
RA

PE
Sk

ip
G

ra
m

Pe
ca

nP
y

Sk
ip

G
ra

m
FastNode2Vec

SkipGram

GRAPE
CBOW

AUPRC

8 × 10–15 8 × 10–15

 × 10–15 8 × 10–15

8 × 10–15

0.3

0.38 × 10–15

8 × 10–158 × 10–15

0.0005

0.0005

GRAPE
SkipGram

PecanPy
SkipGram

Fa
st

N
od

e2
Ve

c
Sk

ip
G

ra
m

G
RA

PE
C

BO
W

G
RA

PE
Sk

ip
G

ra
m

Pe
ca

nP
y

Sk
ip

G
ra

m

Fig. 5 | Performance comparison between GRAPE and state-of-the-
art implementations of Node2Vec on real-world big graphs. GRAPE
implementations achieve substantially better empirical time complexity.
a–c, The worst performance (maximum time and memory, denoised using a
Savitzky–Golay filter) over ten holdouts on CTD (a), PheKnowLator (b), and
Wikipedia (c). In a and b, the rectangles in the left figure are magnified in the right
figure to highlight GRAPE performances. In the Wikipedia plot (c), only GRAPE
results are available as the others either ran out of time or memory. d, Average

memory and computational time across n = 10 holdouts; data are presented
as mean values ± s.d. e,f, AUPRC (e) and AUROC (f) results of decision trees
trained with different graph-embedding libraries; data are presented as mean
values ± s.d. computed over n = 10 holdouts: GRAPE embedding achieves better
edge prediction performance than those obtained by the other libraries. g, One-
sided Wilcoxon signed-rank test results (P values) between GRAPE and the other
state-of-the-art libraries, in which a win of a row against a column is in green, a tie
in yellow, and a loss in red.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 560

Resource https://doi.org/10.1038/s43588-023-00465-8

GRAPE, FastNode2Vec, and PecanPy (note that the other state-of-the-
art libraries ran out of time or memory on these real-world graph predic-
tion tasks). With the CTD and PheKnowLator biomedical graphs, we can
observe a speed-up of approximately one order of magnitude (Fig. 5a,b)
of GRAPE with respect to both FastNode2Vec and PecanPy and also
a substantial gain in memory usage with respect to PecanPy and a
comparable memory footprint with FastNode2Vec. These results are
confirmed by the average memory and time requirements across ten
holdouts (Fig. 5d). Note that both FastNode2Vec and PecanPy fail with
the Wikipedia task, whereas GRAPE was able to terminate the computa-
tion in a few hours using a reasonable amount of memory (Fig. 5c,d).

GRAPE boosts edge prediction performance. GRAPE not only allows
graph-embedding approaches to be applied to graphs that are big-
ger than what was previously possible and enables fast and efficient
computation, but also can boost prediction performance on big real-
world graphs. Figure 5e,f shows that GRAPE achieves better results on
edge prediction tasks with both CTD and PheKnowLator biomedical
graphs. GRAPE outperforms the other competing libraries at 0.01
significance level, according to the Wilcoxon rank–sum test (Fig. 5g).
The edge embeddings have been used to train a decision tree to allow
a safe comparison between the embedding libraries.

Supplementary Section 6.4 reports AUROC, accuracy, and F1-score
performances and other more detailed results about the experimental
comparison of GRAPE with state-of-the-art libraries.

Discussion
We have presented GRAPE, a software resource with specialized data
structures, algorithms, and fast parallel implementations of graph-
processing methods coupled with efficient implementations of algo-
rithms for RW-based GRL. Our experiments have shown that GRAPE
significantly outperforms state-of-the-art graph-processing libraries
in terms of empirical space and time complexity, with an improvement
of up to several orders of magnitude for common RW-based analysis
tasks. This allows substantially bigger graphs to be analyzed and may
improve the performance of graph machine learning methods by
allowing for more comprehensive training, as shown by our experi-
ments performed on three real-world large graphs. In addition, the
substantial reduction of the computational time achieved by GRAPE
in common graph-processing and learning tasks will help to reduce
the carbon footprint of machine learning researchers and graph-
processing and analyzing practitioners in several disciplines.

Thanks to (1) the huge number of well-known graphs that can
be efficiently loaded and used via GRAPE, (2) the standard interfaces
that allow any user to integrate their own GRL models into GRAPE,
and (3) the modular pipeline that allows the easy design of different
benchmarking experiments, GRAPE can be used to perform a FAIR
comparison between virtually any methods and using any graph data
(including graph data directly provided by the users).

Another related resource that allows a similar comparison is the
OGB resource16. However, as witnessed by the recent OGB-LSC (https://
ogb.stanford.edu/neurips2022/), the datasets and the organization
of the OGB resource are well suited for specific large-scale challenges,
while the GRAPE evaluation pipelines are useful for assessing and
comparing any method on any graph benchmark chosen by any user.
This makes the two resources related but complementary in their dif-
ferent purposes.

We would further remark that GRAPE currently provides efficient
implementations of RW-based embeddings, whose advantage is their
applicability to a larger set of learning problems since the computed
embeddings are usually task independent and unsupervised. By con-
trast, embeddings computed by GNNs are task dependent and super-
vised, and their application to graphs with thousands of nodes and
millions of edges is still hampered by GNN scalability issues that rep-
resent an open research question in literature. For this reason, future

works will be aimed at investigating how to efficiently implement deep
GNN to obtain deep neural models able to efficiently scale with very
big graphs15,21. More precisely, even if Elias–Fano-based data structures
and the SUSS algorithm proposed in this paper have been designed to
efficiently implement RW embedding methods, in future research, we
plan to consider their integration in the context of GNNs. Considering
the ever-increasing amount of knowledge graphs being constructed in
several disciplines, GRAPE may be considered as a powerful, effective,
and efficient resource that advances knowledge by performing graph-
inference tasks to uncover hidden relationships between concepts
or to predict properties and discover structures in complex graphs.
However, a limitation of the current implementation of GRAPE is the
limited availability of algorithms specifically designed for the analysis
of heterogeneous graphs, but we are already working to fill this gap.

GRAPE focuses primarily on CPU models, since most existing GPU
Video RAM (VRAM) are too small for several real-world graphs, leading
to latency problems as data are moved back and forth between RAM
and VRAM. Recently introduced top-tier GPU models provide VRAM
that is considerably larger than previously available ones, potentially
making it viable to translate the current CPU implementation into a
GPU implementation.

Although GRAPE allowed different experimental set-ups to be
compared by composing experiments on different graphs, and by
using several embedding methods and prediction models, no method
systematically outranked other models. To close this knowledge gap,
in future work, we plan to run GRAPE with a large-scale grid search to
identify task-specific trends for the various combinations of models
and their parameters.

Methods
GRAPE provides a wide spectrum of graph-processing methods, imple-
mented within the Ensmallen module, including node-embedding
methods, methods to combine the node embeddings for obtaining
edge embeddings, and models for node-label, edge-label, and edge
prediction, implemented within the Embiggen module. The graph-pro-
cessing methods include fast graph loading, multiple graph holdouts,
efficient first- and second-order RWs, and triple and corrupted-triple
sampling, plus a wide range of graph-processing algorithms that nicely
scale with big graphs, using parallel computation and efficient data
structures to speed up the computation.

Ensmallen is implemented using Rust, with fully documented
Python bindings. Rust is a compiled language gaining importance in the
scientific community17 thanks to its robustness, reliability, and speed.
Rust allows threads and data parallelism to be exploited robustly and
safely. To further improve efficiency, some core functionalities of the
library, such as the generation of pseudo-random numbers and sam-
pling procedures from a discrete distribution, are written in assembly
(Supplementary Section 7.2.1 and 7.2.2).

GRAPE currently provides 50 unique node-embedding models (69
considering redundant implementations, important for benchmarks),
with 28 being 'from-scratch’ implementations and 41 integrated from
third-party libraries. The list of available node-embedding methods is
constantly growing, with the ultimate goal of providing a complete set
of efficient node-embedding models. The input for the various models
(for example, RWs and triples) is provided by Ensmallen in a scalable,
highly efficient, and parallel way (Fig. 1a). All models were designed
according to the “composition over inheritance” paradigm, to ensure a
better user experience through increased modularity and polymorphic
behavior45. More specifically, Embiggen provides interfaces, specific
for either the embedding or each of the prediction tasks, that must
be implemented by all models. Third-party models, such as PyKeen10,
Karate Club33, and Scikit-Learn46 libraries, are already integrated within
GRAPE by implementing these interfaces. GRAPE users can straight-
forwardly create their models and wrap them by implementing the
appropriate interface.

http://www.nature.com/natcomputsci
https://ogb.stanford.edu/neurips2022/
https://ogb.stanford.edu/neurips2022/

Nature Computational Science | Volume 3 | June 2023 | 552–568 561

Resource https://doi.org/10.1038/s43588-023-00465-8

GRAPE has a comprehensive test suite. However, to thoroughly test
it against many scenarios, we also employed fuzzers, that is, tools that
iteratively generate inputs to find corner cases in the library.

In the next section, we describe the succinct data structures used
in the library and detail their efficient GRAPE implementation. We then
summarize the spectral and matrix factorization; the RW-, the triple-,
and the corrupted-triple-based embedding methods and their GRAPE
implementation. Then, we describe the edge-embedding methods
and the node- and edge-label prediction methods available in GRAPE.
Finally, we detail the GRAPE standardized pipelines to evaluate and
compare models for graph prediction tasks.

Succinct data structures for adjacency matrices
In addition to the heavy exploitation of parallelism, the second pillar
of our efficient implementation is the careful design of the data struc-
tures that uses as little memory as possible and quickly performs
operations on them. The naive representation of graphs explicitly
stores its adjacency matrix, with a 𝒪𝒪𝒪𝒪V𝒪2) time and memory complexity,
∣V∣ being the number of nodes, which leads to intractable memory costs
on large graphs. However, since most large graphs are highly sparse,
this problem can be mitigated by storing only the existing edges. Often,
the adopted data structure is a compressed sparse rows (CSR47) matrix,
which stores the source and destination indices of existing edges into
two sorted vectors. In Ensmallen, we further compressed the graph
adjacency matrix by adopting the Elias–Fano succinct data scheme18,
to efficiently store the edges (Supplementary Section 7.1). Since Elias–
Fano representation stores a sorted set of integers using memory close
to the information-theoretical limit, we defined a bijective map from
the graph-edge set and a sorted integer set. To define such encoding,
we assigned a numerical identification (ID) from a dense set to each
node, and then we defined the encoding of an edge as the concatena-
tion of the binary representations of the numerical IDs of the source
and destination nodes. This edge encoding has the appealing property
of representing the neighbors of a node as a sequential and sorted set
of numeric values and can therefore be employed in the Elias–Fano
data structure. Elias–Fano has faster sequential access than random
access (Supplementary Section 7.1.1) and is well suited for graph-pro-
cessing tasks such as retrieving neighbors during RW computation
and executing negative sampling using the outbound or inbound node
degree scale-free distributions. GRAPE provides both CSR- and Elias–
Fano-based data structures for graph representation to allow a time/
memory complexity trade-off for processing large graphs.

Memory complexity. Elias–Fano is a quasi-succinct data representa-
tion scheme, which provides a memory-efficient storage of a monotone
list of n sorted integers, bounded by u, by using at most
ℰℱ𝒪n,u) = 2n + n⌈log2

u
n
⌉ bits, which was proven to be less than half a bit

per element away from optimality18 and assures random access to data
in average constant time. Thus, when Elias–Fano is paired with the
previously presented encoding, the final memory complexity to rep-
resent a graph G(V,E) is ℰℱϕ𝒪𝒪V𝒪, 𝒪E𝒪) = 𝒪𝒪 (𝒪E𝒪 log |V|2

|E|
); this is asymptotically

better than the 𝒪𝒪 (𝒪E𝒪 log 𝒪V𝒪2) complexity of the CSR scheme.

Edge encoding. Ensmallen converts all the edges of a graph G(V, E)
into a sorted list of integers. Considering an edge e = (v,x) ∈ E con-
necting nodes v and x represented with, respectively, integers a and
b, the binary representation of a and b is concatenated through the
function ϕk(a,b) to generate an integer index uniquely representing
the edge e itself:

ϕk𝒪a,b) = a 2k + b,where k = ⌈log2𝒪V𝒪⌉ ⇒ a = ⌊ ϕk(a,b)−b
2k

⌋ ,

b = ϕk𝒪a,b) − a 2k

This implementation is particularly fast because it requires only few
bit-wise instructions:

ϕk𝒪a,b) = a << k𝒪b ⇒ a = ϕk𝒪a,b) >> k,

b = ϕk𝒪a,b) & 𝒪2k − 1)

where << is the left bit shift, ∣ is the bit-wise OR, and & is the bit-wise AND
(see Supplementary Section 7.1.1 for an example and an implementa-
tion of the encoding). Since the encoding uses 2k bits, it has the best
performances when it fits into a CPU word, which is usually 64 bits on
modern computers, meaning that the graph must have less than 232
nodes and less than 264 edges. However, by using multi-word integers,
it can be easily extended to even larger graphs.

Operations on Elias–Fano. The aforementioned encoding, when
paired with Elias–Fano representation, allows an even more efficient
computation of RW samples. Indeed, the Elias–Fano representation
allows performing rank and select operations by requiring on aver-
age constant time. These two operations were initially introduced by
Jacobson to simulate operations on general trees and were subse-
quently proven fundamental to support operations on data structures
encoded through efficient schemes. In particular, given a set of integers
S, Jacobson defined the rank and select operations as follows19:

rank𝒪S,m) returns thenumberof elements in S less or equal thanm

select𝒪S, i) returns the ith smallest value in S

As explained below, to speed up computation, we deviate from this
definition by defining the rank operation as the number of elements
strictly lower than m. To compute the neighbors of a node using the
rank and select operations, we observe that for every pair of nodes α,β
with numerical ids a,b respectively, it holds that

a 2k ≤ a 2k + b < 𝒪a + 1) 2k ⇒ ϕk𝒪a,0) ≤ ϕk𝒪a,b) < ϕk𝒪a + 1,0)

Thus, the encoding of all the edges with source α will fall in the discrete
range

[ϕk𝒪a,0), ϕk𝒪a + 1,0)) = [a 2k, 𝒪a + 1) 2k)

Thanks to our definition of the rank operation and the aforementioned
property of the encoding, we can easily derive the computation of the
degree d(a) of any node v with numerical ID a for the set of encoded
edges Γ of a given graph, which is equivalent to the number of outgoing
edges from that node:

d𝒪a) = rank𝒪Γ,ϕk𝒪a + 1,0)) − rank𝒪Γ,ϕk𝒪a,0))

Moreover, we can retrieve the encoding of all the edges Γa starting from
v encoded as a, by selecting every index value i falling within the range
[ϕk(a,0), ϕk(a + 1,0):

Γa = {select𝒪Γ, i)𝒪rank𝒪Γ,ϕk𝒪a,0)) ≤ i < rank𝒪Γ,ϕk𝒪a + 1,0))}

We can then decode the numerical id of the destination nodes from
Γa, thus finally obtaining the set of numerical IDs of the neighbors’
nodes N(a):

N𝒪a) = {select𝒪Γ, i) &𝒪2k − 1)𝒪rank𝒪Γ,ϕk𝒪a,0)) ≤ i < rank𝒪Γ,ϕk𝒪a + 1,0))}

In this way, by exploiting the above integer encoding of the graph
and the Elias–Fano data scheme, we can efficiently compute the degree
and neighbors of a node using rank and select operations.

Efficient implementation of Elias–Fano. The performance and
complexity of Elias–Fano heavily rely on the details of its implemen-
tation. In this section, our implementation is sketched, to show how

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 562

Resource https://doi.org/10.1038/s43588-023-00465-8

we obtain an average constant time complexity for rank and select
operations. A more detailed explanation can be found in Supple-
mentary Section 7.1.

Elias–Fano is essentially aimed at the efficient representation of
a sorted list of integers y0, …, yn bounded by u, that is ∀ i ∈ {1, …, n − 1}
it represents 0 ≤ yi−1 ≤ yi ≤ yi+1 ≤ u.

To this aim, it initially splits each value, yi, into a low-bits part, li,
and a high-bits part, hi, where it can be proven that the optimal split
between the high and low bits requires ⌊log2

u
n
⌋ bits19.

The lower bits are consecutively stored into a low-bits
array L = [l1,… , ln] , while the high bits are stored in a bit vector
H = [h1,… ,hn] , by concatenating the inverted unary encoding, 𝒰𝒰,
of the differences (gaps) between consecutive high-bits parts:
H = [𝒰𝒰𝒪h1 − 0), 𝒰𝒰𝒪h2 − h1),… ,𝒰𝒰𝒪hn − hn−1)] . We recall that the inverted
unary encoding represents a non-negative integer, n, with n zeros fol-
lowed by a 1; as an example, 5 is represented by 000001 (see Supple-
mentary Figs. 21 and 23 for a more detailed illustration of this scheme).

The rank and select operations on the Elias–Fano representation
require two fundamental operations: finding the ith 1 or 0 on a bit
vector. To perform them in an average constant time, having preset a
quantum q, we build an index for the zeros, O0 = [o1, …, ok], which stores
the position of every q zeros, and an index for the ones, O1 = [o1, …, ok],
which similarly stores the position of every q ones.

Thanks to the constructed index, when the ith value v must be
found, the scan can be started from a position, oj, for j = ⌊ i

q
⌋, that is

already near to the ith v. Therefore, instead of scanning the whole high-
bits array for each search, we only need to scan the high-bits array from
position oj to position oj+1.

It can be shown that such scans take an average constant time 𝒪𝒪𝒪q)
at a low expense of the memory complexity, since we need 𝒪𝒪 (n

q
log2n)

bits for storing the two indexes (Supplementary Section 7.1). Indeed,
in our implementation, we chose q = 1,024, which provides good
performance at the cost of a low memory overhead of 3.125% over the
high bits and, on average, for every select operation, we need to scan
16 words of memory.

Available data-structure trade-offs. GRAPE offers a choice between
two data structures, CSR and Elias–Fano, at compile time. The CSR data
structure is the default option because of its speed and efficiency in
handling common graph operations, such as exploring a node’s neigh-
borhood. This structure stores the graph as an array of row pointers,
column indices, and non-zero values, providing efficient access to the
non-zero elements in sparse adjacency matrices.

On the other hand, Elias–Fano’s succinct data structure is primarily
effective for representing large graphs because, as mentioned earlier, it
requires the least amount of memory without additional assumptions.
The Elias–Fano structure is recommended in cases in which the graph
size is so big that memory conservation becomes crucial.

While GRAPE provides the option to choose between two data
structures, an expert user can add and use any other graph data struc-
ture optimized for their specific task.

Spectral and matrix factorization embedding methods
Spectral and matrix factorization methods start by computing
weighted adjacency matrices and may include one or more factoriza-
tion steps. Next, given a target embedding dimensionality, k, these
models generally use as embeddings the k eigenvectors or singular
vectors corresponding to spectral or singular values of interest.

A description of the spectral and matrix factorization methods
implemented in GRAPE is reported in Supplementary Section 8.1.

GRAPE provides efficient parallel methods to compute the initial
weighted adjacency matrix of the various implemented methods,
which are computed either as dense or sparse matrices depending
on how many non-zero values the metrics are expected to generate.

The singular vectors and eigenvectors are currently computed using
the state-of-the-art LAPACK library48, although more scalable meth-
ods that compute the vectors using an implicit representation of the
weighted matrices are currently under investigation.

First- and second-order RW-based embedding methods
First- and second-order RW embedding models are shallow neural
networks, generally composed of two layers and trained on batches
of RW samples. Given a window size, these models learn some prop-
erties of the sliding windows on the RWs, such as the co-occurrence
of two nodes in each window using Glove28, the window central node
given the other nodes in the window using CBOW27, or vice versa the
nodes in the window from the window central node using SkipGram27.
The optimal window size value may vary considerably depending on
the graph diameter and overall topology. Once the shallow model has
been optimized, the weights in either the first or the second layer can
be used as node embeddings.

An overview of the RW-based methods implemented in GRAPE is
reported in Supplementary Section 8.2.

Efficient implementation of SkipGram and CBOW models. GRAPE
provides both its own implementations and Keras-based imple-
mentations for all shallow neural network models (for example,
CBOW, SkipGram, TransE). Nevertheless, since shallow models allow
for particularly efficient data-race aware and synchronization-free
implementations32, the from-scratch GRAPE implementations sig-
nificantly outperform the Keras-based ones, as TensorFlow APIs are
too coarse and high level for such fine-grained optimizations. While
GPU training is available for the TensorFlow models, their overhead
with shallow models tends to be so relevant that from-scratch CPU
implementations outperform those based on GPU. Moreover, the
embedding of large graphs (such as Wikipedia) does not fit in most
GPU hardware memory. Still, Keras-based models allow users to
experiment with the open software available in the literature for
Keras, including, for example, advanced optimizer and learning rate
scheduling methods.

The SkipGram and CBOW models are trained using scale-free nega-
tive sampling, which is efficiently implemented using the Elias–Fano
data structure rank method.

To obtain reliable embeddings, the training phase of the shallow
model would need an exhaustive set of RW samples to be provided for
each source node, so as to fully represent the source-node context.
When dealing with big graphs, the computation of a proper amount
of RW samples needs efficient routines to represent the graph into
memory, retrieve and access the neighbors of each node, randomly
sample an integer, and, in the case of (Node2Vec) second-order RWs29,
compute the transition probabilities, which must be recomputed at
each step of the walk.

The first-order RW is implemented using a SIMD routine for
sampling integers (Supplementary Section 7.2.1). When the graph is
weighted, another SIMD routine is used to compute the cumulative
sum of the unnormalized probability distribution (Supplementary
Section 7.2.2). The implementation of the second-order RW requires
more sophisticated routines described in the next two sections. After
that, we present an approximated weighted and second-order RW that
allows dealing with high-degree nodes.

Implementation of second-order RWs. Node2Vec is a second-order
RW sampling method29 whose peculiarity relies on the fact that the
probability of stepping from one node v to its neighbors considers
the preceding step of the walk (Supplementary Figure 27). More pre-
cisely, Node2Vec defines the unnormalized transition probability πvx
of moving from v to any direct neighbor x, starting at a previous step
from node t, as a function of the weight wvx on the edge connecting v
and x(v,x), and a search bias αpq(t,x):

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 563

Resource https://doi.org/10.1038/s43588-023-00465-8

πvx = αpq 𝒪t, x)wvx

The search bias αpq(t,x) is defined as a function of the distance d(t,x)
between t and x, and two parameters p and q, called, respectively, the
return and in–out parameters:

αpq𝒪t, x) =

⎧
⎪
⎨
⎪
⎩

1
p
if d𝒪t, x) = 0

1 if d𝒪t, x) = 1
1
q
if d𝒪t, x) = 2

(1)

If the return parameter p is small, the walk will be enforced to
return to the preceding node; if p is large, the walk will otherwise be
encouraged to visit new nodes. The in–out parameter q allows varying
smoothly between breadth first search (BFS) and depth first search
(DFS) behaviors. Indeed, when q is small, the walk will prefer outward
nodes, thus mimicking DFS; it will otherwise prefer inward nodes
emulating in this case BFS. Since α must be recomputed at each step
of the walk, the algorithm to compute it must be carefully designed to
guarantee scalability.

In GRAPE, we sped up its computation by decomposing the search
bias αpq(t,x) into the in–out bias βq(t,x), related to the q parameter, and
the return bias γp(t,x), related to p:

αpq𝒪t, x) = βq𝒪t, x)γp𝒪t, x) (2)

where the two new biases are defined as

βq𝒪t, x) = {
1 if d𝒪t, x) ≤ 1
1
q
if d𝒪t, x) = 2

γp𝒪t, x) = {
1
p
if d𝒪t, x) = 0

1 if d𝒪t, x) > 0
(3)

It is easy to see that equation (2) is equivalent to equation (1).

Efficient computation of the in–out and return biases. The in–out
bias can be re-formulated to allow an efficient implementation: starting
from an edge (t,v), we need to compute βq(t,x) for each x ∈ N(v), where
N(v) is the set of nodes adjacent to v including node v itself.

βq𝒪t, x) = {
1 if d𝒪t, x) ≤ 1
1
q
otherwise

⇒ βq𝒪t, x) = {
1 if x ∈ N𝒪t)
1
q
otherwise

This formulation (Supplementary Fig. 26) allows us to compute in
batch the set of nodes Xβ affected by the in–out parameter q:

Xβ = {x𝒪βq𝒪t, x) =
1
q ,q ≠ 1} = N𝒪v) ⧵ N𝒪t)

where N(v) are the direct neighbors of node v. In this way, the selection
of the nodes Xβ affected by βq simply requires computing the difference
of the two sets N(v)⧹N(t). We efficiently compute Xβ by using a SIMD
algorithm implemented in assembly, leveraging AVX2 instructions that
work on node-set representations as sorted vectors of the indices of
the nodes (see Supplementary Sections 7.2.1 and 7.2.2 for more details).
The return bias γp can be simplified as

γp𝒪t, x) = {
1
p
if d𝒪t, x) = 0

1 otherwise
⇒ γp𝒪t, x) = {

1
p
if t = x

1 otherwise

It can be efficiently computed using a binary search for the node t in
the sorted vector of neighbors. Summarizing, we re-formulated the
transition probability πvx of a second-order RW in the following way:

πvx = βq𝒪t, x)γp𝒪t, v, x)wvx

βq𝒪t, x) = {
1 if x ∈ N𝒪t)
1
q
otherwise

γp𝒪t, v, x) = {
1
p
if t = x

1 otherwise

If p,q are equal to one, the biases can be simplified, so that we can
avoid computing them. In general, depending on the values of p,q and
on the type of the graph (weighted or unweighted), GRAPE provides
eight specialized implementations of the Node2Vec algorithm, to sig-
nificantly speed up the computation (Supplementary Tables 50 and 51).
GRAPE automatically selects and runs the specialized algorithm that
corresponds to the choice of the parameters p,q and the graph type.
This strategy allows a relevantspeed-up. For instance, in the base case
(p = q = 1 and an unweighted graph), the specialized algorithm runs
more than 100 times faster than the most complex one (p ≠ 1, q ≠ 1,
weighted graph). Moreover, as expected, we observe that the major bot-
tleneck is the computation of the in–out bias (Supplementary Table 51).

Efficient sampling for Node2Vec RWs. Sampling from a discrete
probability distribution is a fundamental step for computing an RW and
can be a notable bottleneck. Many graph libraries implementing the
Node2Vec algorithm speed up sampling by using the alias method (see
Supplementary Section 7.2.3), which allows sampling in constant time
from a discrete probability distribution with the support of cardinality
n, with a pre-processing phase that scales linearly with n.

The use of the alias method for Node2Vec incurs the “memory
explosion problem” since the pre-processing phase for a second-order
RW on a graph with 𝒪E𝒪 edges has a support whose cardinality is 𝒪𝒪(∑eij∈E
deg(j)), where deg(j) is the degree of the destination node of the edge
eij ∈ E.

Therefore, the time and memory complexities needed for pre-
processing make the alias method impractical even on relatively small
graphs. For instance, on the unfiltered human STRING–PPI graph
(19,354 nodes and 5,879,727 edges), it would require 777 GB of RAM.

To avoid this problem, we compute the distributions on the fly.
For a given source node v, our sampling algorithm applies the follow-
ing steps:

 (1) Computation of the unnormalized transition probabilities to
each neighbor of v according to the provided in–out and return
biases

 (2) Computation of the unnormalized cumulative distribution,
which is equivalent to a cumulative sum

 (3) Uniform sampling of a random value between 0 and the maxi-
mum value in the unnormalized cumulative distribution

 (4) Identification of the corresponding index through either a
linear scan or a binary search, according to the degree of the
node v

To compute the cumulative sum efficiently, we implemented
an SIMD routine that processes at once in CPU batches of 24 values.
Moreover, when the length of the vector is smaller than 128, we apply
a linear scan instead of a binary search because it is faster thanks to
lower branching and better cache locality. Further details are available
in Supplementary Section 7.2.2.

Approximated RWs. Because the computational time complexity of
the sampling algorithm for either weighted or second-order RWs scales
linearly with the degree of the considered source node, computing an
exact RW on graphs with high-degree nodes (where ‘high’ refers to nodes
having an outbound degree larger than 10,000) would be impractical,
also considering that such nodes have a higher probability to be visited.

To cope with this problem, we designed an approximated RW
algorithm, where each step of the walk considers only a sub-sampled set
of k neighbors and where the parameter k is set to a value significantly
lower than the maximum node degree.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 564

Resource https://doi.org/10.1038/s43588-023-00465-8

An efficient neighborhood sub-sampling for nodes with degree
greater than k requires uniformly sampling unique neighbors whose
original order must be maintained. To uniformly sample distinct neigh-
bors in a discrete range [0,n], we developed an algorithm (SUSS) that
divides the range [0,n] into k uniformly spaced buckets and then ran-
domly samples a value in each bucket. The implementation of the
algorithm is reported in Supplementary Algorithm 1 (Supplementary
Section 7.2.4). After splitting the range [0, …, n − 1] into k equal seg-
ments (buckets) with length ⌊delta/k⌋, SUSS samples an integer from
each bucket by using the Xorshift random number generator. To estab-
lish whether the distribution of the integers sampled with SUSS is truly
approximating a uniform distribution, we sampled n = 10,000,000
integers over [0, …, 10,000], by using both SUSS and by drawing from
a uniform distribution in [0, …, 10,000]. We then used the one-sided
Wilcoxon signed-rank test to compare the frequencies of the obtained
indices, and we obtained a P value of 0.9428, meaning that there is not
a statistically significant difference among the two distributions. There-
fore, by using a time complexity Θ(k) and a spatial complexity Θ(k),
SUSS produces reliable approximations of a uniform distribution.

The disadvantage of this sub-sampling approach is that two con-
secutive neighbors will never be selected in the same sub-sampled
neighborhood. Nevertheless, considering that the sub-sampling is
repeated at each step of the walk, consecutive neighbors have the same
probability of being selected in different sub-samplings.

Triple-sampling and corrupted-triple-sampling methods
Triple-sampling methods are shallow neural networks trained on tri-
ples, (v,ℓ,s), where {v, s} is a node pair composed of a source (v) and a
destination node (s), and ℓ is a property of the edge (v,s) connecting
them. Similar to triple-sampling methods, corrupted-triple-sampling
methods are trained on the (true) triples (v,ℓ,s), but also on corrupted
triples, which are obtained by corrupting the original triples by substi-
tuting the source and/or destination nodes {v, s} with randomly sampled
nodes {v′, s′}, while maintaining the attribute unchanged 𝒪v′, ℓ, s′). More
details about triple sampling and corrupted-triple-sampling methods
are available in Supplementary Sections 8.3 and 8.4.

GRAPE provides a full implementation of first- and second-order
LINE triple-sampling methods31, as well as a Rust parallel implementa-
tion of the TransE corrupted-triple-sampling method32. Moreover, a
large set of corrupted-triple-sampling models is integrated from the
PyKeen library. The integrated models include Translating Hyperplanes
Embedding (TransH), DistMult, Holographic Embedding (HolE), Auto-
matic Scoring Functions (AutoSF), TransF, TorusE, DistMA, Projection
Embedding (ProjE), Convolutional Embedding (ConvE), RESCAL, Qua-
ternion Embedding (QuatE), TransD, ERMLP, CrossE, TuckER, Translat-
ing Relationships Embedding (TransR), Paired Relations Embedding
(PairRE), Rotate Embedding (RotatE), Complex Embedding (ComplEx),
and Box Embedding (BoxE)10. We refer to each of the original papers
for the extensive explanation. The parameters used for the evaluation
of node-embedding models in GRAPE pipelines are available in Sup-
plementary Section 4.1.

Edge-embedding methods and graph visualization
GRAPE offers an extensive set of methods to compute edge embed-
dings from node embeddings (for example, concatenation, average,
cosine distance, L1, L2, and Hadamard operators29), and the choice of
the specific edge-embedding operator is left to the user, who can set
it through a parameter. To meet the various model requirements, the
library provides three implementations of the edge embedding. In the
first one, all edge-embedding methods are implemxented as Keras/
TensorFlow layers and may be employed in any Keras model. In the
second one, all methods are also provided in a NumPy implementa-
tion. Finally, the third one uses Rust for models where performance is
particularly relevant. For instance, the cosine similarity computation in
the Rust implementation is over 250× faster than the analogous NumPy

implementation. Whenever possible, the computation of edge embed-
dings is executed lazily for a given subset of the edges at a time since the
amount of RAM required to explicitly rasterize the edge embedding can
be prohibitive on most systems, depending on the edge set cardinality
of the considered graph. More specifically, while the lazy generation
of edge embeddings is possible during training for only a subset of the
supported edge and edge-label prediction models, it is supported for
all models during inference.

The library also comes equipped with tools to visualize the com-
puted node and edge embedding and their properties, including edge
weights, node degrees, connected components, node types, and edge
types. For example, in Fig. 1c, we display the node and edge types of
the KGCOVID19 graph and whether sampled edges exist by using the
first two components of the t-SNE decomposition of the node/edge
embeddings49.

Node-label, edge-label, and edge prediction models
GRAPE provides implementations to perform node-label prediction,
edge-label prediction, and edge prediction tasks.

All the models devoted to any of the three prediction tasks share
the following implementation similarities. Firstly, they all implement
the abstract classifier interface and therefore provide straightforward
methods for training (fit) and inference (predict and predict_proba).

Secondly, all models are multi-modal; that is, they can receive
not only the (user-defined) node- or edge-embedded representation,
but also other embeddings computed in multiple ways and therefore
carrying different semantics (for example, topological node or edge
embeddings or BERT embeddings). For edge prediction and edge-
label prediction models, this also generalizes to multiple node-type
features, which, if available, are concatenated to the considered node
features and to the possibility of computing traditional edge metrics
(for example, Jaccard, Adamic–Adar, and so on).

For each task, we make available at least eight models from the
literature, adapted to the considered task: five are Scikit-learn-based
models, namely random forest, extra trees, decision tree, multi-layer
perceptron (MLP), and gradient boosting. The remaining three are
TensorFlow-based models, namely GraphSAGE1, Kipf GCN50, and a
baseline GNN.

As per the node-embedding models, custom and third-party mod-
els can be integrated through task-specific Python abstract classes.

Scikit-learn-based models make available all the parameters that
are available in the Scikit version. It is straightforward to achieve a sub-
stantial speed-up without any modification of the Scikit-learn code by
simply using Intel’s sklearnex (https://www.intel.com/content/www/
us/en/developer/articles/technical/benchmarking-intel-extension-
for-scikit-learn.html).

TensorFlow-based models make available parameters to set the
number of layers in each provided feature’s sub-module and head
module.

Visualizations of the Kipf GCN model for node-label, edge-label,
and edge prediction tasks are also available (see Supplementary
Section 9).

All edge prediction models can be trained by sampling the graph
negative edges by following either a uniform or a scale-free distribu-
tion; by default, we set a scale-free distribution because it generally
produces more informative negative training sets, characterized by a
smaller covariate shift with respect to the positive set. This approach
still guarantees a negligible number of false-negative edges. The unbal-
ance between positive and negative edges is also a free parameter
which may be arbitrarily set: by default, the models are trained using
a balanced approach; that is, we sample a number of negative edges
equal to the number of positive edges.

In addition to the eight models presented in ‘Node-label,
edge-label, and edge prediction models’, we also make available a
multi-modal perceptron model implemented in Rust. This model,

http://www.nature.com/natcomputsci
https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-intel-extension-for-scikit-learn.html
https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-intel-extension-for-scikit-learn.html
https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-intel-extension-for-scikit-learn.html

Nature Computational Science | Volume 3 | June 2023 | 552–568 565

Resource https://doi.org/10.1038/s43588-023-00465-8

analogously to all other models, supports lazy computation of edge
embedding and edge features, but does this in an extensively paral-
lel manner with no additional memory requirement over the model
weights. The model optimizer is Nadam. The perceptron is a great
baseline for comparison, given its rapid convergence, minimal hard-
ware requirements (no GPUs nor notable RAM requirement), and
competitive performance in many considered tasks. Such a model is
essential to put into perspective the improvements achieved by more
complex and often substantially more expensive models.

Parameters used for the evaluation of edge prediction models in
GRAPE pipelines are available in Supplementary Section 4.2.

All of the provided edge-label prediction models support binary
and multi-class classification tasks. We currently lack support for multi-
label classification tasks, which is being addressed.

All of the provided node-label prediction models support binary,
multi-class, and multi-label classification tasks. Parameters used for
the evaluation of node-label prediction models in GRAPE pipelines are
available in Supplementary Section 4.3.

Pipelines for the evaluation of graph-prediction tasks
To provide actionable and reliable results, the fair and objective com-
parative evaluation of datasets, graph embedding, and prediction
models is crucial and requires not only specifically designed and real-
world benchmark datasets51 but also pipelines that allow non-expert
users to easily test and compare graphs and inference algorithms on
the desired graphs.

FAIR graph retrieval. GRAPE facilitates FAIR access to an extensive set
of graphs and related datasets, including both commonly used bench-
mark datasets and graphs actively used in biomedical research. Any of
the available graphs can be retrieved and loaded with a single line of
Python code (Fig. 1b), and their list is constantly expanding, thanks to
the generous contributions of GRAPE users. The list of resources cur-
rently supported can be found in Supplementary Section 3.1.

Findability and accessibility. Datasets may change locations, versions
may appear in more than one location, and file formats may change.
Using an ensemble of custom web scrapers, we collect, curate, and
normalize the most up-to-date datasets from an extensive resource
list (currently over 80,000 graphs). The collected metadata is shipped
with each GRAPE release, ensuring that end users can always find and
immediately access any available version of the provided datasets.

Interoperability. The graph retrieval phase contains steps that robustly
convert data from (even malformed) datasets into general-use tab-
separated values (TSV) documents that, while primarily used as graph
data, can be used for any desired application case.

Reusability. Once loaded, the graphs can be arbitrarily processed
and combined, and used with any of the many embedding and clas-
sifier models from either the GRAPE library or any third-party model
integrated in GRAPE by implementing the interface described in the
following section.

FAIR evaluation pipelines. GRAPE provides pipelines for evaluating
node-label, edge-label, and edge prediction experiments trained on
user-defined embedding features by using task-specific evaluation
schemas.

In particular, the evaluation schemas for edge prediction models
are K-fold cross-validations and Monte Carlo and connected Monte
Carlo (Monte Carlo designed to avoid the introduction of new con-
nected components in the training graph) holdouts. All of the edge
prediction evaluation schemas may sample the edges in a uniform
or stratified way, with respect to a provided list of edge types. Sam-
pling of negative (non-existing) edges may be executed by following

either a uniform or a scale-free distribution. Furthermore, the edge-
prediction evaluation may be performed by using varying unbalance
ratios (between existent and non-existent edges) to better gauge the
true-negative rate (specificity) and false-positive rate (fallout). Strati-
fied K-fold and stratified Monte Carlo holdouts are also provided for
node- and edge-label prediction models.

For all tasks, an exhaustive set of evaluation metrics are computed,
including AUROC, AUPRC, balanced accuracy, miss rate, diagnostic
odds ratio, markedness, Matthews correlation coefficient, and many
others.

All the implemented pipelines have integrated support for differ-
ential caching, storing the results of every step of the specific experi-
ment and “smoke tests,” that is, for running a lightweight version of the
experimental set-up with minimal requirements to ensure execution
until completion before running the full experiment.

The pipelines can use any model implementing a standard inter-
face we developed. The interface requires the model to implement
methods for training (fit or fit_transform) and inference (predict
and predict_proba) plus additional metadata methods (for example,
whether to use node types, edge types, and others) which are used to
identify experimental flaws and biases. As an example, in an edge-label
prediction task using node embeddings, GRAPE will use the provided
metadata to check whether the selected node-embedding method
also uses edge labels. If so, the node embedding will be recomputed
during each holdout. Conversely, if the edge labels are not used in the
node-embedding method, it may be computed only once. The choice to
recompute the node embedding for each holdout, which may be helpful
to gauge how much different random seeds change the performance,
is left to the user in this latter case.

To configure one of the comparative pipelines, users have to
import the desired pipeline from the GRAPE library and specify the
following modular elements:

Graphs: the graphs to evaluate, which can be either graph objects
or strings matching the names from graph retrieval.

Graph normalization callback: for some graphs, it is necessary to
execute normalization steps and filtering, such as the STRING graphs
which can, for example, be filtered at 700 minimum edge weight. For
this reason, users can provide this optional normalization callback.

Classifier models: the classifier models to evaluate, which can be
either a model implemented in GRAPE or custom models implement-
ing the proper interface.

Node, node type, and edge features: the features to be used to train
the provided classifier models. These features can be node-embedding
models, implemented in GRAPE, or custom embedding models imple-
menting the node-embedding interface.

Evaluation schema: the evaluation schema to follow for the
evaluation.

Given any input graph, each pipeline starts by retrieving it (if the
name of the graph was provided) and validating the provided features
(checking for NaNs, i.e., Not a Number, constant columns, compat-
ibility with the provided graphs); next, and if requested by the user, it
computes all the node embeddings to be used as additional features
for the prediction task. Once this preliminary phase is completed, the
pipeline starts to iterate and generate holdouts following the provided
evaluation schema.

For each holdout, GRAPE then computes the node embeddings
required to perform the prediction task (such as, topological node
embeddings for a node-label prediction task or topological node
embeddings followed by their combination through a user-defined
edge-embedding operator to obtain the edge embedding in an edge-
prediction task), so that a new instance of the provided classifier mod-
els can be fitted and evaluated (by using both the required embedding
and, eventually, the additional, label-independent features computed
in the preliminary phase). The classifier evaluation is finally performed
by computing an exhaustive set of metrics including AUROC, AUPRC,

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 3 | June 2023 | 552–568 566

Resource https://doi.org/10.1038/s43588-023-00465-8

balanced accuracy, miss rate, diagnostic odds ratio, markedness, Mat-
thews correlation coefficient, and many others.

Interfaces are made available for embedding models, node-label
prediction, edge-label prediction, and edge prediction. All models
available in GRAPE implement these interfaces, and they can be used
as starting points for custom integrations. Many usage examples are
available in the library tutorials: https://github.com/AnacletoLAB/
grape/tree/main/tutorials.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
GRAPE graph retrieval includes all the graphs used in the Ensmallen
benchmarks and the pipeline experiments and are all available from
https://github.com/AnacletoLAB/grape. Graphs used for the Ensmal-
len benchmarks are detailed in Supplementary Section 2. Graphs used
for edge and node-label prediction experiments are detailed in Sup-
plementary Section 3. The real-world graphs are downloadable from
https://archive.org/download/ctd_20220404/CTD.tar (pre-built CTD),
https://archive.org/download/pheknowlator_20220411/PheKnowLa
tor.tar (pre-built biomedical PheKnowLator data) and https://archive.
org/download/wikipedia_edge_list.npy/wikipedia_edge_list.npy.gz
(pre-built English Wikipedia). More details are available in Supplemen-
tary Section 6. The procedures for the construction of the train and test
graphs for edge prediction are detailed in Supplementary Section 10.2.
Source data are provided with this paper.

Code availability
All the codes of the experiments presented within the manuscript are
publicly available from GitHub repositories. GRAPE can be installed
from PyPI: https://pypi.org/project/grape. The source code, reference
manual, and tutorials for its usage, alongside several application exam-
ples, are available on GitHub: https://github.com/AnacletoLAB/grape.
In particular, more than 50 tutorials from which to learn how to use the
main functionalities of GRAPE are available from https://github.com/
AnacletoLAB/grape/tree/main/tutorials. The code is also available on
Zenodo: https://doi.org/10.5281/zenodo.7926104 (ref. 52).
All the scripts to reproduce the experiments showed in the paper are
available from GitHub. Ensmallen benchmarks: loading graphs, execut-
ing first- and second-order RWs https://github.com/LucaCappelletti94/
ensmallen_experiments. Approximated RW experiments: https://
github.com/AnacletoLAB/grape/blob/main/tutorials/Comparing%20
DeepWalk%20and%20Node2Vec%20running%20on%20exact%20
and%20approximated%20random%20walks.ipynb. Experimental
comparison of node-embedding methods: (1) edge prediction experi-
ments: https://github.com/AnacletoLAB/grape/blob/main/tutorials/
Using%20the%20edge%20prediction%20pipeline.ipynb; (2) node-
label prediction experiments: https://github.com/AnacletoLAB/grape/
blob/main/tutorials/Using%20the%20node-label%20prediction%20
pipeline.ipynb. Comparison of GRAPE with state-of-the-art librar-
ies on big real-world graphs: https://github.com/LucaCappelletti94/
embiggen_experiments/tree/master/node2vec_comparisons.
The software is delivered under the MIT license.

References
1. Hamilton, W. L. Graph representation learning. Synth. Lect. Artif.

Intell. Mach. Learn. 14, 1–159 (2020).
2. Shervashidze, N., Schweitzer, P., Van Leeuwen, E., Mehlhorn, K. &

Borgwardt, K. M. Weisfeiler-Lehman graph kernels. J. Mach. Learn.
Res. 12, 2539–2561 (2011).

3. Wu, Z., et al. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning systems. 32,
4–24 (2020).

4. Csardi, G. & Nepusz, T. The Igraph software package for complex
network research. Inter. J. Complex Sys. 1695, 1–9 (2006)

5. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C. and
Hellerstein, J.M., Graphlab: a new framework for parallel machine
learning. In Proc. 26th Conference on Uncertainty in Artificial
Intelligence, UAI’10 340–349 (AUAI Press, 2010).

6. Hagberg, A., Schult, D. & Swart, P. Exploring network structure,
dynamics, and function using networkx. Proc. 7th Python Sci.
Conf., 11–15. (2008)

7. Gonzalez, J.E., et al. Graphx: Graph processing in a distributed
dataflow framework. In 11th {USENIX} Symposium on Operating
Systems Design and Implementation 14, 599–613 (2014).

8. Leskovec, J. & Sosič, R. Snap: a general-purpose network analysis
and graph-mining library. ACM Trans. Intell. Syst. Technol. 8, 1
(2016).

9. Liu, R. & Krishnan, A. Pecanpy: a fast, efficient and parallelized
python implementation of node2vec. Bioinformatics 37,
3377–3379 (2021).

10. Ali, M. et al. PyKEEN 1.0: a Python library for training and
evaluating knowledge graph embeddings. J. Mach. Learn. Res. 22,
1–6 (2021).

11. Wang, M. et al. Deep Graph Library: Towards Efficient and
Scalable Deep Learning on Graphs. CoRR abs/1909.01315 (2019)
https://doi.org/10.48550/arXiv.1909.01315

12. Fey, M. & Lenssen, J. E. Fast graph representation learning with
PyTorch Geometric. arXiv:1903.02428 [cs.LG] https://doi.
org/10.48550/arXiv.1903.02428

13. Grattarola, D. & Alippi, C. Graph neural networks in TensorFlow and
Keras with Spektral. IEEE Comput. Intell. Mag. 16, 99–106 (2021).

14. Zhang, D., Yin, J., Zhu, X. & Zhang, C. Network representation
learning: a survey. IEEE Trans. Big Data 1, 3–28 (2020).

15. Zeng, H. et al. Decoupling the depth and scope of graph neural
networks. In: Advances in Neural Information Processing
Systems. Editors: A. Beygelzimer and Y. Dauphin and P. Liang and
J. Wortman Vaughan, 2021. https://openreview.net/forum?id=_
IY3_4psXuf

16. Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y. and Leskovec, J.
LSC: a large-scale challenge for machine learning on graphs.
arXiv:2103.09430 https://doi.org/10.48550/arXiv.2103.09430
(2021).

17. Perkel, J. M. Why scientists are turning to Rust. Nature 588,
185–186 (2020).

18. Elias, P. Universal codeword sets and representations of the
integers. IEEE Trans. Inf. Theory 21, 194–203 (1975).

19. Pibiri, G. E. & Venturini, R. Dynamic Elias-Fano representation.
In 28th Annu. Symp. Combinatorial Pattern Matching (CPM 2017)
(Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017).

20. Zheng, D., Wang, M., Gan, Q., Zhang, Z. & Karypis, G. Scalable
graph neural networks with deep graph library. In Proc. 26th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’20 3521–3522 (Association for Computing
Machinery, 2020).

21. Happ, M., et al. Exploring the Limitations of Current Graph Neural
Networks for Network Modeling. In: NOMS 2022-2022 IEEE/IFIP
Network Operations and Management Symposium (IEEE, 2022).

22. Bader, D. A. & Madduri, K. Parallel algorithms for evaluating
centrality indices in real-world networks. In 2006 Int. Conf.
Parallel Processing (ICPP’06) 539–550 (IEEE, 2006).

23. Ou, M., Cui, P., Pei, J., Zhang, Z. & Zhu, W. Asymmetric transitivity
preserving graph embedding. In Proc. 22nd ACM SIGKDD Int.
Conf. Knowledge Discovery and Data Mining 1105–1114 (2016).

24. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K. and Tang, J., Network
embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec. In: Proc. 11th ACM Int. Conf. on web search and data
mining (2018).

http://www.nature.com/natcomputsci
https://github.com/AnacletoLAB/grape/tree/main/tutorials
https://github.com/AnacletoLAB/grape/tree/main/tutorials
https://github.com/AnacletoLAB/grape
https://archive.org/download/ctd_20220404/CTD.tar
https://archive.org/download/pheknowlator_20220411/PheKnowLator.tar
https://archive.org/download/pheknowlator_20220411/PheKnowLator.tar
https://archive.org/download/wikipedia_edge_list.npy/wikipedia_edge_list.npy.gz
https://archive.org/download/wikipedia_edge_list.npy/wikipedia_edge_list.npy.gz
https://pypi.org/project/grape
https://github.com/AnacletoLAB/grape
https://github.com/AnacletoLAB/grape/tree/main/tutorials
https://github.com/AnacletoLAB/grape/tree/main/tutorials
https://doi.org/10.5281/zenodo.7926104
https://github.com/LucaCappelletti94/ensmallen_experiments
https://github.com/LucaCappelletti94/ensmallen_experiments
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Comparing%20DeepWalk%20and%20Node2Vec%20running%20on%20exact%20and%20approximated%20random%20walks.ipynb
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Comparing%20DeepWalk%20and%20Node2Vec%20running%20on%20exact%20and%20approximated%20random%20walks.ipynb
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Comparing%20DeepWalk%20and%20Node2Vec%20running%20on%20exact%20and%20approximated%20random%20walks.ipynb
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Comparing%20DeepWalk%20and%20Node2Vec%20running%20on%20exact%20and%20approximated%20random%20walks.ipynb
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Using%20the%20edge%20prediction%20pipeline.ipynb
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Using%20the%20edge%20prediction%20pipeline.ipynb
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Using%20the%20node-label%20prediction%20pipeline.ipynb
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Using%20the%20node-label%20prediction%20pipeline.ipynb
https://github.com/AnacletoLAB/grape/blob/main/tutorials/Using%20the%20node-label%20prediction%20pipeline.ipynb
https://github.com/LucaCappelletti94/embiggen_experiments/tree/master/node2vec_comparisons
https://github.com/LucaCappelletti94/embiggen_experiments/tree/master/node2vec_comparisons
https://doi.org/10.48550/arXiv.1909.01315
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.48550/arXiv.1903.02428
https://openreview.net/forum?id=_IY3_4psXuf
https://openreview.net/forum?id=_IY3_4psXuf
https://doi.org/10.48550/arXiv.2103.09430

Nature Computational Science | Volume 3 | June 2023 | 552–568 567

Resource https://doi.org/10.1038/s43588-023-00465-8

25. Torres, L., Chan, K. S. & Eliassi-Rad, T. GLEE: geometric Laplacian
eigenmap embedding. J. Complex Netw. 8, cnaa007 (2020).

26. Tang, L. & Liu, H. Relational learning via latent social dimensions.
In Proc. 15th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining 817–826 (2009).

27. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation
of word representations in vector space. In 1st Int. Conf. Learning
Representations, ICLR 2013 (eds. Bengio Y. & LeCun, Y.) (2013).

28. Pennington, J., Socher, R. & Manning, C. D. GloVe: global vectors
for word representation. In Proc. 2014 Conf. Empirical Methods in
Natural Language Processing (EMNLP) 1532–1543 (2014).

29. Grover, A. & Leskovec, J. node2vec: scalable feature learning
for networks. In Proc. 22nd ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining 855–864 (2016).

30. Perozzi, B., Kulkarni, V., Chen, H. & Skiena, S. Don’t walk, skip!
Online learning of multi-scale network embeddings. In Proc. 2017
IEEE/ACM Int. Conf. Advances in Social Networks Analysis and
Mining 2017 258–265 (2017).

31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J. and Mei, Q Line:
Large-scale information network embedding. In Proc. 24th Int.
Conf. on World Wide Web. 1067–1077 (2015).

32. Zhang, D., Li, M., Jia, Y., Wang, Y. & Cheng, X. Efficient parallel
translating embedding for knowledge graphs. In Proc. Int. Conf.
Web Intelligence, 460–468, (2017).

33. Rozemberczki, B., Kiss, O. & Sarkar, R. Karate Club: an API oriented
open-source Python framework for unsupervised learning on
graphs. In Proc. 29th ACM Int. Conf. Information and Knowledge
Management (CIKM ’20) 3125–3132 (ACM, 2020).

34. Davis, A.P., Grondin, C.J., Johnson, R.J., Sciaky, D., McMorran, R.,
Wiegers, J., Wiegers, T.C. and Mattingly, C.J. The comparative
toxicogenomics database: update 2019. Nucleic Acids Research,
47, D948–D954 (2019).

35. Callahan, T. J., Tripodi, I. J., Hunter, L. E. & Baumgartner, W. A.
A framework for automated construction of heterogeneous large-
scale biomedical knowledge graphs. Preprint at bioRxiv https://
doi.org/10.1101/2020.04.30.071407 (2020).

36. Hagberg, A., Swart, P. & Chult, D. S. Exploring Network Structure,
Dynamics, and Function Using NetworkX (Los Alamos National
Lab, 2008).

37. Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based python
JIT compiler. In Proc. Second Workshop on the LLVM Compiler
Infrastructure in HPC 1–6 (2015).

38. Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S.,
Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H.,
Bork, P. and Jensen, L.J. STRING v11: protein–protein association
networks with increased coverage, supporting functional
discovery in genome-wide experimental datasets. Nucleic acids
research, 47, D607–D613 (2019).

39. Sun, D. L. & Fevotte, C. Alternating direction method of multipliers
for non-negative matrix factorization with the beta-divergence.
In 2014 IEEE Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP) 6201–6205 (IEEE, 2014).

40. Zhang, Z., Cui, P., Li, H., Wang, X. & Zhu, W. Billion-scale network
embedding with iterative random projection. In 2018 IEEE Int.
Conf. Data Mining (ICDM) 787–796 (IEEE, 2018).

41. Cao, S., Lu, W. & Xu, Q. GraRep: learning graph representations
with global structural information. In Proc. 24th ACM Int. Conf.
Information and Knowledge Management, 891–900 (2015).

42. Ahmed, N.K., Rossi, R.A., Lee, J.B., Willke, T.L., Zhou, R., Kong, X.
and Eldardiry, H. role2vec: Role-based network embeddings.
Proc. DLG KDD, 1–7 (2019)

43. Kadlec, R., Bajgar, O. & Kleindienst, J. Knowledge base
completion: baselines strike back. In Proc. 2nd Workshop
on Representation Learning for NLP 69–74 (Association for
Computational Linguistics, 2017).

44. Errica, F., Podda, M., Bacciu, D. & Micheli, A. A fair comparison of
graph neural networks for graph classification. In Proc. 8th Int.
Conf. Learning Representations (ICLR) (2020).

45. Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley,
1995).

46. Pedregosa, F., et al. Scikit-learn: Machine learning in Python.
J. Mach. Learn. Res. 12, 2825–2830 (2011).

47. Saad, Y. Parallel iterative methods for sparse linear systems. In
Studies in Computational Mathematics Vol. 8, 423–440 (Elsevier,
2001).

48. Anderson, E. et al. (eds) LAPACK Users’ Guide. (Society for
Industrial and Applied Mathematics, 1999).

49. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE.
J. Mach. Learn. Res. 9, 2579–2605 (2008).

50. Welling, M. & Kipf, T. N. Semi-supervised classification with graph
convolutional networks. In Int. Conf. Learning Representations
(ICLR 2017) (2016).

51. Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M.
and Leskovec, J., Open graph benchmark: Datasets for machine
learning on graphs. Adv. in Neural Inform. Processing Sys. 33,
22118–22133 (2020).

52. Cappelletti, L. et al. GRAPE v.0.1.30 Zenodo https://doi.
org/10.5281/zenodo.7926104 (accessed 14 June 2023)

53. Reese, J.T., et al. KGCOVID-19: A framework to produce
customized knowledge graphs for COVID-19 response. Patterns,
2, 100155–100166 (2021).

54. Boldi, P., Rosa, M., Santini, M. & Vigna, S. Layered label
propagation: a multiresolution coordinate-free ordering for
compressing social networks. In Proc. 20th Int. Conf. World Wide
Web (eds. Srinivasan, S. et al.) 587–596 (ACM Press, 2011).

Acknowledgements
This research was supported by the National Center for Gene Therapy
and Drugs based on RNA Technology, PNRR-NextGenerationEU
program (G43C22001320007), NIH/National Cancer Institute
(U01-CA239108-02), Transition Grant Line 1A Project ‘NIMI
PARTENARIATI H2020’ (PSR2015-1720GVALE_01), the Common Fund,
Office of the Director, National Institutes of Health (U01-CA239108-02),
the Monarch Initiative, National Institute of Health (1R24OD011883-01),
Project PID2021-128970OA-I00 by MCIN/AEI/10.13039/501100011033/
FEDER, and the Director, Office of Science, Office of Basic Energy
Sciences of the US Department of Energy under contract no. DE-AC02-
05CH11231. The funders had no role in the study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Author contributions
Conceptualization and methodology: L.C., T.F., G.V., E.C., J.R., and
P.N.R.; software (design and implementation): L.C. and T.F. with
contributions from V.R., T.C., and J.R.; software (documentation):
L.C. and T.F.; data curation and investigation: J.R., P.N.R., V.R., T.C., C.C.,
and M.J.; supervision: G.V., E.C., P.N.R., and J.R.; funding acquisition:
C.M., P.N.R., and G.V.; writing (original draft preparation): G.V., E.C., J.R.,
and P.N.R.; writing (review and editing): all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43588-023-00465-8.

Correspondence and requests for materials should be addressed to
Giorgio Valentini.

http://www.nature.com/natcomputsci
https://doi.org/10.1101/2020.04.30.071407
https://doi.org/10.1101/2020.04.30.071407
https://doi.org/10.5281/zenodo.7926104
https://doi.org/10.5281/zenodo.7926104
https://doi.org/10.1038/s43588-023-00465-8

Nature Computational Science | Volume 3 | June 2023 | 552–568 568

Resource https://doi.org/10.1038/s43588-023-00465-8

Peer review information Nature Computational Science thanks
Seung-Hwan Lim and the other, anonymous, reviewers for their
contribution to the peer review of this work. Primary Handling Editor:
Jie Pan, in collaboration with the Nature Computational Science team.
Peer reviewer reports are available.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other
third party material in this article are included in the article’s
Creative Commons license, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s
Creative Commons license and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natcomputsci
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1

nature portfolio | reporting sum
m

ary
M

arch 2021

Corresponding author(s): Giorgio Valentini

Last updated by author(s): May 6, 2023

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All the graphs considered within the manuscript experiments can be downloaded using the GRAPE software available from our GitHub
repository (https://github.com/AnacletoLAB/grape).

Data analysis In order to perform the data analysis performed in our work we used our GRAPE open source code and also open source code from other
publicly available libraries.
In particular we used Python v. 3.7 and Rust v. 1.63.0 and the following open source libraries:
 networkx v. 2.8.5
 igraph v. 0.9.11
 csrgraph v. 0.1.28
 pecanpy v.2.0.0 https://github.com/LucaCappelletti94/PecanPy
 node2vec v.0.4.5 https://github.com/LucaCappelletti94/node2vec
 graphEmbedding v.0.1.0 https://github.com/LucaCappelletti94/GraphEmbedding
 nodevectors v.0.1.23 https://github.com/LucaCappelletti94/nodevectors
 snap v.6.0 https://github.com/snap-stanford/snap/tree/0b73cda5f0c9f0dcfd47172eea8be26ba414941a
 fastnode2vec v. 0.0.6
 PyTorch Geometric v.2.2.0 https://github.com/pyg-team/pytorch_geometric
 PyKeen v.1.10.1 https://github.com/pykeen/pykeen
 Karateclub v.1.3.4 https://github.com/benedekrozemberczki/karateclub
 Nodevectors v.0.1.23 https://github.com/VHRanger/nodevectors
All the GRAPE code related to the experiments presented within the manuscript is available from publicly accessible GitHub repositories.
 Firstly, GRAPE (v. 0.1.30) can be readily installed from PyPI: https://pypi.org/project/grape.

2

nature portfolio | reporting sum
m

ary
M

arch 2021
The source code, reference manual and tutorials for its usage, alongside several application examples, are available on GitHub: https://
github.com/AnacletoLAB/grape.
All the scripts to reproduce the experiments showed in the paper are available from GitHub:
a) Ensmallen benchmarks: loading graphs, executing first and second-order random walks: https://github.com/LucaCappelletti94/
ensmallen_experiments;
b) Approximated random walk experiments: https://github.com/AnacletoLAB/grape/blob/main/tutorials/Comparing%20DeepWalk%20and%
20Node2Vec%20running%20on%20exact%20and%20approximated%20random%20walks.ipynb;
c) Experimental comparison of node embedding methods: (I) Edge prediction experiments: https://github.com/AnacletoLAB/grape/blob/
main/tutorials/Using%20the%20edge%20prediction%20pipeline.ipynb, (II) Node-label prediction experiments: https://github.com/
AnacletoLAB/grape/blob/main/tutorials/Using%20the%20node-label%20prediction%20pipeline.ipynb;
d) Comparison of GRAPE with state-of-the-art libraries on big real-world graphs: https://github.com/LucaCappelletti94/
embiggen_experiments/tree/master/node2vec_comparisons.
The GRAPE software is delivered under the MIT license.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

GRAPE graph retrieval includes all the graphs used in the Ensmallen benchmarks and the pipeline experiments and more than 80,000 graphs are available from
https://github.com/AnacletoLAB/grape. Graphs used for the Ensmallen benchmarks are detailed in Supplementary Information Section 2. Graphs used for
edge and node-label prediction experiments are detailed in Supplementary Information Section 3. The real world graphs used in Section 2.5 are downloadable from
https://archive.org/download/ctd_20220404/CTD.tar (Pre-built CTD), https://archive.org/download/pheknowlator_20220411/PheKnowLator.
tar (Pre-built biomedical PheKnowLator data), and https://archive.org/download/wikipedia_edge_list.npy/wikipedia_edge_list.npy.gz (Pre-built English Wikipedia).
More details are available in Supplementary Information Section 6. The procedures for the construction of train and test graphs
for edge prediction are detailed in Supplementary Information Section 10.2. Source Data for Figures 2, 3, 4 and 5 are available with this manuscript

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender NA

Population characteristics NA

Recruitment NA

Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our resource sw can be applied not only to biological data, but to any data that can be represented by a graph. From this standpoint our
porposed sw resource can be applied not only to Life Science studies, Behavorial and social sciences and Ecological and environmental
sciences, but to any discipline where the corresponding data can be represented through a graph. In our experiments we used data from
different public repositories (including biological data too) and we did not study the sample size since in most cases we analyzed very big
graphs, characterized by a high number of nodes and huge number of edges.
We included 44 different data sets for comparing the empirical computational time in classical graph processing tasks across different state-
of-the-art graph libraries. The size of each graph varies from a few hundreds to billions of edges in order to evaluate the scalability of software
libraries. To our knowledge this is one of the largest esperimental comparison performed to evaluate the performance of graph processing
software libraries. We then analyzed in detail the performance of state of the art graph processing libraries on three large real-worlds graphs.

3

nature portfolio | reporting sum
m

ary
M

arch 2021
We selected the CTD and Wikipedia graphs since they are two wll-known big graphs largely used by the scientific community. Moreover we
used also a biomedical Knowledge Graph generated through the tool PheKnowLator, in order to provide an experimental comparison on a
significant and large biomedical graph to show the effectiveness of GRAPE in processing and analyzing big biomedical graphs that are
interesting for the biomedcial community.

Data exclusions We did not exclude any data from our experiments. We only used the GRAPE sw to remove duplicated data in the analyzed repository.

Replication GRAPE has been designed to make easily reproducible all the results, also comparing results obtained with different sw resources and
libraries, by using the standardized pipelines available in GRAPE. All the machine learning experiments described in the paper can be
successfully reproduced using the scripts available from the GRAPE GitHub repository.
In particular experimental comparisons between the different libraries and methods have been repeated from 10 to 30 times, depending on
the different computational experiments performed, using multiple hold-out techniques. The results obtained by the GRAPE library are robust
and stable as witnessed by the low standard deviation of the measured accuracy on the different test sets generated in the repeated
experiments.

Randomization Examples were always randomly assigned to training and test samples, using multiple Montecarlo hold-out techniques in order to obtain
statistically robust results. GRAPE offers sw resources to perform these randomization steps in a fully automated way in the context of graph-
structured data.

Blinding In our experiments we used publicly available data in graph format where labels associated with nodes (when available) are public. However
our experimental procedures to assign samples to groups were completely randomized and in our supervised or semi-supervised prediction
tasks always the labels of the test set have been not used for training. Hence from this standpoint our experiments were blind. However, the
main aim of our work was not to provide novel experimental results in Life Sciences (or in any other field), but to provide a sw resource that
can be robustly applied to the analysis of graphs to obtain reproducible results and that can scale efficiently with big graphs obtaining at the
same time prediction results comparable with state of the art methods.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

	GRAPE for fast and scalable graph processing and random-walk-based embedding
	Results
	Embiggen and Ensmallen
	Fast error-resilient graph loading
	GRAPE outperforms state-of-the-art libraries on RW generation
	Experimental comparison of graph-processing libraries
	Approximated RWs to process graphs with high-degree nodes

	GRAPE enables a fair comparison of graph-based methods
	Experimental comparison of node- and edge-embedding methods

	Scaling with big real-world graphs
	Experimental set-up
	Results on scaling tests

	Discussion
	Methods
	Succinct data structures for adjacency matrices
	Memory complexity
	Edge encoding
	Operations on Elias–Fano
	Efficient implementation of Elias–Fano
	Available data-structure trade-offs

	Spectral and matrix factorization embedding methods
	First- and second-order RW-based embedding methods
	Efficient implementation of SkipGram and CBOW models
	Implementation of second-order RWs
	Efficient computation of the in–out and return biases
	Efficient sampling for Node2Vec RWs
	Approximated RWs

	Triple-sampling and corrupted-triple-sampling methods
	Edge-embedding methods and graph visualization
	Node-label, edge-label, and edge prediction models
	Pipelines for the evaluation of graph-prediction tasks
	FAIR graph retrieval
	FAIR evaluation pipelines

	Reporting summary

	Acknowledgements
	Fig. 1 Schematic of GRAPE, Ensmallen and Embiggen.
	Fig. 2 Experimental comparison of GRAPE with state-of-the-art graph-processing libraries across 44 graphs.
	Fig. 3 Approximated RW.
	Fig. 4 Comparison of embedding methods through the GRAPE pipelines on edge- and node-label prediction.
	Fig. 5 Performance comparison between GRAPE and state-of-the-art implementations of Node2Vec on real-world big graphs.

