
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Unsatisfiability Bounds for Random Constraint Satisfaction Problems from an Energetic
Interpolation Method

Permalink
https://escholarship.org/uc/item/6kk446qh

Author
Menchaca-Mendez, Ricardo

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6kk446qh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

UNSATISFIABILITY BOUNDS FOR RANDOM CONSTRAINT
SATISFACTION PROBLEMS FROM AN ENERGETIC

INTERPOLATION METHOD

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Ricardo Menchaca-Mendez

March 2013

The Dissertation of Ricardo Menchaca-
Mendez
is approved:

Professor Dimitris Achlioptas, Chair

Professor Manfred K. Warmuth

Professor David P. Helmbold

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Ricardo Menchaca-Mendez

2013

Table of Contents

List of Figures v

Abstract vi

Dedication viii

Acknowledgments ix

1 Introduction 1
1.1 Random CSPs . 3
1.2 Satisfiability Bounds . 5

1.2.1 The k = 2 case and the Unit Clause Propagation Algorithm . . . 7
1.2.2 The k = 3 case and DPLL algorithms 10
1.2.3 Resolution Complexity of Random k-CNF Formulas 17
1.2.4 Unsatisfiability of Mixture Formulas 21

1.3 Past Work on the Interpolation Method for Random CSPs 24
1.3.1 The Statistical Physics Approach to Random CSPs 24
1.3.2 The Cavity Method . 28

2 The Entropic Interpolation Method 32
2.1 The Entropic Interpolation Method . 33

2.1.1 Applying Entropic Interpolation to Random CSPs 45
2.1.1.1 Random k-SAT . 45
2.1.1.2 Random Graph Coloring 47

2.2 Difficulties in Using the EIM to Obtain Rigorous Upper Bounds 49

3 Energetic Interpolation Bounds 54
3.1 Energetic Interpolation for General CSPs 55
3.2 The Interpolation Method on Sparse Degree Sequences 59
3.3 Applying Energetic Interpolation to Random CSPs 67

3.3.1 Random k-SAT . 68
3.3.2 Random Max-k-Lin-2 . 69

iii

3.4 Computing Explicit Energetic Interpolation Bounds for k-SAT 71

4 Energy Interpolation Bounds for F2,3(n, ε,∆) 73
4.1 Explicit Computation of the Bound . 75

5 Conclusions and Future Work 79
5.1 Towards Better Satisfiability Upper Bounds 81

A The RS Cavity Method 83
A.1 Computation of the Free Entropy of Single Instances 83
A.2 Belief Propagation and the Computation of the Free Entropy of Ar-

bitrary Instances . 86
A.3 Entropic RS Approximation of the Free Entropy Density 92

A.3.1 Population Dynamics Algorithm 96

B Population Dynamics for random k-SAT 101

C The RS Replica Method 105
C.1 Computing the j-th Moment of the Partition Function 106
C.2 Maximizing g(Q|β) . 108
C.3 Computing the Free Entropy Density . 109

C.3.1 The RS Replica Method for random k- and (2 + p) - SAT. 109
C.4 RS Replica Method vs RS Cavity Method 110
C.5 RS Replica Method Computation of the Tri-Critical Point of (2 + p)- SAT113

Bibliography 118

iv

List of Figures

1.1 Search tree resulting from running ordered-dpll on the instance (1, 2, 3̄)
∧ (1, 3, 4̄) ∧ (2̄, 3, 4) ∧ (1̄, 2̄, 4) ∧ (2̄, 3̄, 4̄) ∧ (2̄, 3̄, 4) ∧ (1, 2, 3), where we
used (1, 2, 3) to denote the clause (x1 ∨ x2 ∨ x3), and so on, to simplify
notation. 10

1.2 Mean path followed by uc for initial densities r = {2, 8/3, 3}. 15
1.3 Resolution derivation for the unsatisfiability of the residual formula gen-

erated after setting x1 = 0. 19
1.4 Rigorous results for the running time of the uc algorithm on random

3-CNF formulas in the context of the best known upper/lower bounds
for the satisfiability threshold of random 3-SAT. 23

2.1 Free entropy density estimate obtained by Population dynamics (fPD)
for random 3-SAT plotted as a function of the density r. 53

2.2 Free entropy density estimate obtained by Population dynamics (fPD)
for random 2-SAT plotted as a function of the density r. Recall that the
satisfiability threshold for random 2-SAT is 1. 53

A.1 Messages in the Belief Propagation algorithm. 88
A.2 Neighborhood or radius 1 for the edge x→ a. 93
A.3 Distribution γ obtained by Population Dynamics for Random 3-SAT

with r = 1.0, nPD = 8000 and nT = 3000. 98
A.4 Distribution γ obtained by Population Dynamics for Random 3-SAT

with r = 2.0, nPD = 8000 and nT = 3000. 99
A.5 Distribution γ obtained by Population Dynamics for Random 3-SAT

with r = 4.5, nPD = 8000 and nT = 3000. 99
A.6 Distribution γ obtained by Population Dynamics for Random 2-SAT

with r = 0.2, nPD = 8000 and nT = 3000. 100
A.7 Distribution γ obtained by Population Dynamics for Random 2-SAT

with r = 0.99, nPD = 8000 and nT = 3000. 100

v

Abstract

Unsatisfiability Bounds for Random Constraint Satisfaction Problems from an

Energetic Interpolation Method

by

Ricardo Menchaca-Mendez

The interpolation method, originally developed in statistical physics, transforms distri-

butions of random Constraint Satisfaction Problems (CSPs) to distributions of much

simpler problems while bounding the change in a number of associated statistical quan-

tities along the transformation path. By now, it is known that, in principle, the method

can yield rigorous unsatisfiability results if one “plugs in an appropriate functional dis-

tribution” to the derived expressions. A drawback of the method is that identifying the

appropriate distribution leads to major analytical challenges as the relevant distribu-

tions are, in fact, infinite dimensional objects. We develop a variant of the interpolation

method for random CSPs on arbitrary sparse degree distributions which trades accuracy

for tractability. In particular, our bounds only require the solution of a 1-dimensional

optimization problem (which typically turns out to be very easy) and as such can be

used to compute explicit rigorous unsatisfiability bounds. We use this new method to

analyze the performance of a number of algorithms on random 3-CNF formulas with n

variables and m = rn clauses. A long series of papers analyzing so-called “myopic” al-

gorithms has provided a sequence of lower bounds for the satisfiability threshold, which

is widely believed to be r ≈ 4.26. Indeed, for each myopic algorithm A it is known

vi

that there exists an algorithm-specific clause-density, rA, such that if r < rA, the algo-

rithm finds a satisfying assignment in linear time. For example, rA is 8/3 = 2.66... for

orderred-dll and 3.003... for generalized unit clause. We prove that for densi-

ties well within the provable satisfiable regime, every backtracking extension of either of

these algorithms takes exponential time. Specifically, all extensions of orderred-dll

take exponential time for r > 2.78 and the same is true for generalized unit clause

for all r > 3.1. Our results imply exponential lower bounds for many other myopic

algorithms for densities similarly close to the corresponding rA.

vii

To my parents, Reina and Rolando,

my siblings, Adriana and Rolando,

and my best friend, Veronica.

viii

Acknowledgments

I want to thank UC MEXUS - CONACyT for their support during the first 5 years of

my doctorate.

ix

Chapter 1

Introduction

In this thesis we develop methods to analyze random Constraint Satisfaction

Problems (CSPs). A CSP is defined by a set of variables and a set of constraints,

each binding a subset of the variables by forbidding some of their possible joint values.

The goal is to find an assignment to the variables so that all constraints are satisfied.

Typically, CSPs involve variables taking values in a small domain, e.g., {0, 1}, with each

constraint binding only a few of the variables. CSPs play an important role in Computer

Science. Their applications range from program verification, where the unsatisfiability

of a CSP built from the algorithm and its specification implies the correctness of the

program; to error correcting codes, where a CSP is used both to detect erroneous

messages (assignments), when they do not satisfy the CSP, and to correct them by

finding the “closest” satisfying message to the erroneous one.

Perhaps the most studied examples of CSPs in computer science are the graph

coloring and the satisfiability problems.

1

Definition (The q-coloring problem.). A q-coloring of the vertices of a graphG = (V,E)

is a function c that maps each vertex in V to the set {1, . . . q}. The q-coloring problem

consist on finding a q-coloring such that for every edge (u, v) ∈ E c(u) 6= c(v) or to

report that none exist.

Definition (The satisfiability problem). A clause is a disjunction (logical or) of literals

(boolean variables or its negations) that forbids one of all the possible assignments of the

variables. A conjunctive normal form (CNF) formula is a boolean formula written as a

conjunction (logical and) of clauses, for instance, (x1∨x̄2∨x3)∧(x̄1∨x2∨x4)∧(x2∨x̄3∨x4)

is a CNF formula on 4 variables where the symbols ∧ and ∨ denote logical and and

logical or respectively, and x̄ denotes the negation of variable x. The satisfiability

problem is to find an assignment to the variables appearing in a CNF formula that

satisfies all clauses or to report that none exist. When all clauses operate on exactly k

literals, the problem is known as k-SAT.

The satisfiability problem is central to the understanding of computational

complexity. It was the first practically relevant problem that was shown to belong to

the NP-complete class in the seminal papers of Cook [17] and Levin [37]. Moreover,

the satisfiability problem is of practical interest as it arises naturally in many different

settings.

2

1.1 Random CSPs

A natural representation of CSPs is as a bipartite constraint graph, known as

factor graph, where vertices represent both the variables and constraints, and an edge

{v, c} reflects that variable v is bound by constraint c. There are many advantages

with using this representation as many properties about a CSP instance translate into

properties of the factor graph representation, for example when the factor graph of a

CNF formula is a tree, then the problem can be solved in polynomial time.

In this thesis, we focus on CSPs where the constraint graph is random i.e.,

one has a set of n variables all with the same finite (and small) domain D and a

set of m constraints, each of which binds a small (O(1)) randomly selected subset of

variables. We will study random CSPs from an asymptotic point of view, i.e., as the

number of variables grows to infinity. We will say that a sequence of random events En

occurs with high probability (w.h.p.) if limn→∞P[En] = 1 and with uniform positive

probability (w.u.p.p.) if limn→∞P[En] > 0. Random CSPs have been used as “simple”

models to study the roots of the hardness of typical instances of NP-complete problems.

For instance, random formulas have emerged as a mathematically tractable vehicle for

studying proof systems and the performance of satisfiability algorithms. In particular,

random k-SAT formulas have become a popular benchmark for testing satisfiability

algorithms1.

Definition (Random k-CNF formulas). For a given set of n boolean variables, let Bk,n

1http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html

3

denote the set of all possible 2k
(
n
k

)
clauses of k distinct non-complementary literals. A

random k-SAT formula Fk(n,m) is formed by selecting uniformly and independently m

clauses from Bk,n and taking their conjunction.

Let gk(n,m) denote the probability that Fk(n,m) is satisfiable. Observe that

gk(n,m) is a monotone decreasing function of m since adding additional clauses can

only reduce the number of satisfying assignments. Using the first moment method one

can show that Fk(n, rn) is unsatisfiable w.h.p. when r ≥ 2k ln 2. The first moment

method bounds probabilities using Markov’s inequality.

Theorem 1 (Markov’s inequality.). Let X be a non negative random variable, then for

all a > 0,

P(X ≥ a) ≤ E[X]
a

.

The unsatisfiability of Fk(n, rn) when r ≥ 2k ln 2 is proved by setting a = 1

and letting X denote the number of satisfying assignments in Fk(n, rn) in Theorem

1: an arbitrary assignment satisfies the random formula with probability (1 − 2−k)rn

since each one of the rn random clauses is satisfied independently with probability

(1 − 2−k); there are a total of 2n assignments, therefore, by linearity of expectation

E[X] is (2(1−2−k)r)n, a quantity that tends to zero exponentially fast when r ≥ 2k ln 2.

On the other hand, Chao and Franco [14] proved that if r < 2k/k then a very simple

algorithm finds a solution w.u.p.p. These results show that the ratio of constraints-

to-variables r = m/n, known as the constraint density, plays a fundamental role when

studying the satisfiability of random k-CNF formulas.

4

It is believed that gk(n, rn) has a step like shape, that is, the transition from

being very close to 1 to being almost 0 is very sharp with respect to r:

Conjecture 2. [Satisfiability Threshold Conjecture] For each k ≥ 3, there exists a

constant r∗k such that for any ε > 0,

lim
n→∞

gk(n, (r∗k − ε)n) = 1, and lim
n→∞

gk(n, (r∗k + ε)n) = 0 .

Experimental and theoretical work [5, 23, 49] suggest that the computational

complexity of many satisfiability algorithms also has a swift increase in a small window

in r. The possible connection between sharp transitions and computational complexity,

which motivates a large part of our work, has attracted a lot of attention in computer

science, mathematics and statistical physics [44, 45, 43].

1.2 Satisfiability Bounds

At this point, neither the value, nor even the existence of r∗k has been es-

tablished. In a breakthrough result, Friedgut [26] gave a very general condition for

a monotone property to have a sharp threshold. In particular, his result yields the

statement of conjecture 2 if one replaces r∗k with a function r∗k(n).

Theorem 3. For each k ≥ 3, there exists a sequence r∗k(n) such that for any ε > 0,

lim
n→∞

gk(n, (r∗k(n)− ε)n) = 1, and lim
n→∞

gk(n, (r∗k(n) + ε)n) = 0 .

The last decade has seen a great deal of rigorous results on random CSPs,

including a proliferation of upper and lower bounds for the satisfiability threshold of a

5

number of problems. The best upper bound for random k-SAT is

r∗k ≤ 2k ln 2− 1 + ln 2
2

+ o(1)

due, independently, to Dubois and Boufkhad [21] and to Kirousis et. al. [34]. The

proof is based on a clever application of the first moment method in which they focus

on the random variable that counts only the number assignments in which no 0 can be

switched to a 1 without violating satisfiability–locally maximum satisfying assignments.

This choice of assignments works because every satisfiable formula has at least one

locally maximum satisfying assignment, for example, the lexicographical greatest one.

The original method to find lower bounds for the satisfiability threshold of

random k-SAT was to prove that an algorithm finds a solution w.u.p.p. (see [3] for

a review). However, the best bounds found this way were of order O(2k/k). Later,

better bounds were found by proving the existence of solutions by analyzing statistical

properties of the entire solution space instead of trying to find an individual solution.

In particular, Achlioptas and Peres [9] used the second moment method to prove the

following lower bound

r∗k ≥ 2k ln 2− (k + 1)
ln 2
2
− 1 + o(1)

The second moment method is used to get lower bounds on Pr(X > 0) for a

non-negative random variable X. It is based on the following inequality.

Theorem 4. For any non-negative random variable X,

Pr[X > 0] ≥ E[X]2

E[X2]

6

To use the above theorem to prove that Fk(n, rn) is w.u.p.p. satisfiable, one

has to find a random variable X(F) such that 1) X > 0 if and only if Fk(n, rn) is

satisfiable and 2) E[X2] = O(E[X]2) i.e., X must concentrate, to some extent, around

its mean. Achlioptas and Peres applied the second moment successfully by focusing on

satisfying assignments in which the number of satisfied literals is km/2 + O(n), which

they labeled as balance assignments. For more details on this result see[9].

The current gap between the densities for which algorithms find solutions

w.u.p.p. (O(2k/k)) and the densities at which solutions exist (2k ln 2 − Θ(k)) raised

the question of whether there exists an ’algorithmic’ barrier below the satisfiability

threshold that causes certain algorithms to fail. To properly address this question we

first need to show that algorithms indeed behave poorly in the satisfiable regime. In

this thesis we prove for the first time exponential running time for a large class of dpll

algorithms (described in section 1.2.2) at densities below the best known lower bound

for the satisfiable threshold of random 3-SAT. The proof comes from getting new up-

per bounds on the satisfiability of formulas composed of a mixture of random 2- and

3-clauses.

1.2.1 The k = 2 case and the Unit Clause Propagation Algorithm

A very simple algorithm known as unit clause propagation (ucp) (see algorithm

1), solves 2-SAT in linear time. ucp finds a solution by building a partial assignment step

by step. It commits to the assignments made at each step and operates on a residual

formula, in which clauses already satisfied have been removed, while the remaining

7

clauses might have been shortened by the removal of a falsified literal. This in turn will

create additional forced choices in the partial assignment, since the variables appearing

in unit clauses have only one possible assignment if the formula is to be satisfied (step

4). The resulting tree of implications will finish either because a) the appearance of a

contradiction i.e., the appearance of a 0-clause (step 6 is evaluated to true) or because

b) the lack of 1-clauses. In case a), the algorithm tries now to assign the opposite

value to x (step 7), if this also results in a contradiction then the formula is unsat. In

case b), a partial assignment has been found and it can be extended to a full satisfying

assignment if and only if the formula is satisfiable because any satisfying assignment

restricted to the clauses still present in the formula is compatible with the current partial

assignment. This argument shows why there is no need to reconsider variables already

analyzed.

A very useful representation of a 2-SAT formula F is the directed graph D(F)

where the set of vertices correspond to all possible 2n literals and for every clause,

say (x1 ∧ x̄4), there is a pair of edges, x4 → x1 and x̄1 → x̄4, corresponding to the

implications resulting by assigning to each variable the values that do not satisfy the

clause. Observe that ucp fails if and only if there is a directed cycle in D(F) containing

a literal and its complement. Thus, the satisfiability of random 2-CNF formulas can

be studied by analyzing the appearance of such directed cycles on random di-graphs.

Using this connection Chvatal and Reed [15], Goerdt [29] and Fernandez de la Vega [22]

independently proved that r∗2 = 1.

8

Algorithm 1 UCP(F)
1: if F is empty then

2: return sat

3: end if

4: Select a variable x ∈ F

5: Let F ′ be the formula resulting from recursively satisfying all 1-clauses in Fx=0

6: if F ′ has a 0-clause (a contradiction) then

7: Let F ′ be the formula resulting from recursively satisfying all 1-clauses in Fx=1

8: if F ′ has a 0-clause (a contradiction) then

9: return unsat

10: end if

11: end if

12: return UCP(F ′)

9

(1, 2, 3̄)(1, 3, 4̄)(2̄, 3, 4)(1̄, 2̄, 4)(2̄, 3̄, 4̄)(2̄, 3̄, 4)(1, 2, 3)

x1 = 0 x1 = 1

x2 = 1 x2 = 0

x3 = 0 x3 = 1

(2, 3̄)(3, 4̄)(2̄, 3, 4)(2̄, 3̄, 4̄)(2̄, 3̄, 4)(2, 3) (2̄, 3, 4)(2̄, 4)(2̄, 3̄, 4̄)(2̄, 3̄, 4)

(3, 4̄)(3, 4)(3̄, 4̄)(3̄, 4)(3̄)(3, 4̄)(3)

(4̄)(4) (4̄)(4)UNSAT

UNSAT

SAT

UNSAT

x2 = 0

Figure 1.1: Search tree resulting from running ordered-dpll on the instance (1, 2, 3̄)
∧ (1, 3, 4̄) ∧ (2̄, 3, 4) ∧ (1̄, 2̄, 4) ∧ (2̄, 3̄, 4̄) ∧ (2̄, 3̄, 4) ∧ (1, 2, 3), where we used (1, 2, 3) to
denote the clause (x1 ∨ x2 ∨ x3), and so on, to simplify notation.

1.2.2 The k = 3 case and DPLL algorithms

For k ≥ 3 satisfiability is an NP-complete problem. For example, applying ucp

to a 3-CNF might not find a solution even if the formula is satisfiable, because fixing

the value of a variable could result in a residual formula containing clauses of size 2 not

present in the original formula, i.e. the extension of the current partial assignment to a

full assignment is no longer guaranteed.

The ucp algorithm can be modified so that when a contradiction is found

the algorithm backtracks to the last choice for which one possibility was not explored.

This will produce a decision tree where the nodes are residual formulas and each edge

corresponds to a particular assignment of a variable. Different algorithms will result

10

depending on the rule used to select the next variable to be fixed given the current

residual formula. This type of algorithms are known as dpll2 search algorithms. The

general dpll algorithm is given in Algorithm 2. Figure 1.1 shows the search tree re-

sulting from applying a dpll algorithm where the variables are selected in a predefined

order and always assigned to the value 0 (known as ordered-dpll) to the 3-CNF

formula (1, 2, 3̄)(1, 3, 4̄)(2̄, 3, 4)(1̄, 2̄, 4)(2̄, 3̄, 4̄)(2̄, 3̄, 4)(1, 2, 3), where we used (1, 2, 3) to

denote the clause (x1 ∨ x2 ∨ x3), and so on, to simplify notation.

Algorithm 2 DPLL(F)
1: Repeatedly satisfy any pure literals and 1-clauses.

2: if The resulting formula F ′ is empty then

3: return sat

4: end if

5: if A contradiction (0-clause) is generated then

6: return unsat

7: end if

8: Select a variable x ∈ F ′ and a value v for x

9: if DPLL(F ′x=v) == unsat then

10: return DPLL(F ′x=¬v)

11: else

12: return sat

13: end if

2Because the initials of their inventors: Davis, Putman, Logemann and Loveland

11

Most of the lower bounds for the satisfiability threshold of random 3-SAT,

including the best bound found so far of 3.52 < r∗3, due to Diaz et. al. [19], come from

showing that different versions of dpll algorithms find a solution w.u.p.p. during the

first branch of the search tree. The proofs are based on the analysis of the evolution of

the number of clauses of sizes 2 and 3 present in the residual formulas produced during

the execution of the algorithms.

Below we present the general intuition behind such analysis (see [3, 10] for

more details). The analysis of the trajectory of 2- and 3-clauses is mathematically

tractable when the studied dpll algorithms satisfy the uniform randomness property:

as long as the algorithm has never backtracked, the residual formula is uniformly random

conditional on its number of 2- and 3-clauses (unit-clauses are satisfied as soon as they

occur). We will refer to the family of dpll algorithms satisfying this property as myopic

algorithms.

Using the principle of deferred decisions, it is possible to show that an algorithm

that satisfies the following properties is myopic [3]:

1. The decision of which variable to set is based only on the lengths of the clauses in

which each variable participates.

2. Having decided which variable to set, the decision on how to set it depends only

on the clauses containing the variable.

The simplest example myopic algorithm ignores any information about the residual

formula and simply picks the next literal uniformly at random among the literals in

12

all current unassigned variables. It is known as Unit Clause (uc) (perhaps for being

the simplest extension of ucp to a full backtracking algorithm). Another example is

generalized unit clause (guc) [27, 14], where in each step a random literal in a

random shortest clause is assigned true.

Observe that the trajectory of the 2- and 3-clause densities in the residual

formulas produced by a myopic algorithm is a Markov chain. For example, the mean

path of the Markov chain corresponding to the uc algorithm can be derived as follows:

let C2(t) and C3(t) denote the number of 2- and 3-clauses after fixing t of the n variables

and let Bin(N, s) denote the binomial random variable with N trials and probability

of success s. The t+ 1 variable xt+1 to be fixed by uc is picked at random among the

remaining n− t variables and because uc is myopic, xt+1 appears independently in each

of the current C3(t) 3-clauses with probability 3/(n−t); thus, the number X of 3-clauses

to be removed from the current residual formula is distributed as Bin(C3(t), 3/(n− t)).

Similarly, the number Z of 2-clauses to be removed from the current residual formula is

distributed as Bin(C2(t), 2/(n− t)). Finally, with probability 1/2 each of the 3-clauses

in which xt+1 appears is unsatisfied by the random assignment of xt+1 and becomes

a 2-clause i.e. the number Y of new 2-clauses in the residual formula is distributed

as Bin(C3(t), 3/(2(n − t))). In summary, the evolution of the vector (C2(t), C3(t)) is

modeled by the following system of stochastic equations:

C3(t+ 1)− C3(t) = −X

C2(t+ 1)− C2(t) = Y − Z ,

13

whereX ∼ Bin(C3(t), 3/(n−t)), Y ∼ Bin(C3(t), 3/(2(n−t))) and Z ∼ Bin(C2(t), 2/(n−

t)). The mean path equations of the above stochastic process are

E[C3(t+ 1)− C3(t)] = −3C3(t)
n− t

E[C2(t+ 1)− C2(t)] =
3C3(t)

2(n− t)
− 2C2(t)

n− t

with

C3(0) = rn and C2(0) = 0 ,

The actual analysis of the trajectory of the 2- and 3-clause densities of the

residual formula is done by approximating the mean path of the Markov chain asso-

ciated with each algorithm with their corresponding set of differential equations. The

justification is that in the large n limit the mean path is highly concentrated for all

t ≤ te = (1 − ε)n, where ε > 0 is an arbitrary small constant, i.e. both of these densi-

ties behave as deterministic functions for every myopic algorithm [3]. This means that

in the absence of backtracking, i.e., if the algorithm continues on after a 0-clause is

generated, we can model the algorithm’s behavior as a continuous 2-dimensional curve

(dr
2(x), d

r
3(x)) of the 2- and 3-clause density, where x ∈ [0, te/n] denotes the fraction of

assigned variables and r is the initial 3-clause density.

To pass to the realm of differential equations, we replace differences with deriva-

tives in the normalized version of the mean path equations: if we let x ≡ t/n and

ck(x) ≡ Ck(xn)/n for k = 2, 3, then the resulting system of differential equations for uc

is:

14

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

d
r

3

d
r

2

2.66

Figure 1.2: Mean path followed by uc for initial densities r = {2, 8/3, 3}.

dc3
dx

= −3c3(x)
1− x

dc2
dx

=
3c3(x)

2(1− x)
− 2c2(t)

1− x

with

c3(0) = r and c2(0) = 0 .

The solution of the above system of differential equations is c3(x) = (1 − x)3

and c2(x) = 3
2rx(1− x)

2. Note that c3(x) and c2(x) is the number of clauses of sizes 3

and 2 normalized by the initial number of variables and not the actual densities dr
2(x)

and dr
3(x) of 2- and 3-clauses in the residual formula after a fraction x of variables

have been fixed; multiplying c2(x) and c3(x) by n/(n− t) recovers the correct densities

dr
2(x) = c2(x)n/(n− t) = 3

2rx(1− x) and dr
3(x) = c3(x)n/(n− t) = (1− x)2 (see figure

1.2 for the parametric plot of (dr
2(x), d

r
3(x)) for initial densities r = {2, 8/3, 3}).

Since the 2-SAT satisfiability threshold is r2 = 1, it follows that for any initial

3-clause density r > 0 and every τ > 0 such that dr
2(x) < 1 for all x ∈ [0, τ), the

15

probability that no 0-clause is ever generated is bounded away from 0 i.e., a myopic

algorithm finds a solution w.u.p.p. for a given initial density r if dr
2(x) < 1 for all

x ∈ [0, 1). Thus, the best lower bound, rA, for the satisfiability threshold that can be

obtained with a myopic algorithm A is given by the largest r such that dr
2(x) < 1 for

all x ∈ [0, 1). For uc this value is 8/3.

The reason that the above results hold only w.u.p.p. is that each algorithm

might generate a contradiction and backtrack destroying the uniform randomness of

the formula. On the other hand, it is possible to show that when the density of the

2-clauses is below 1 i.e. when r < rA this occurs w.h.p. for trivial local reasons

that typically can be fixed by changing O(1) of the variables. Frieze and Suen [27]

introduced a meta-heuristic that can be added on top of myopic algorithms to maintain

uniform randomness when backtracking occurs for local reasons: when a contradiction

is reached, record the portion of the assignment between the last free choice and the

contradiction; these literals become hot. After flipping the value of the last free choice,

instead of making the choice that the original heuristic would suggest, give priority

to the complements of the hot literals in the order that they appeared; once the hot

literals are exhausted continue as with the original heuristic. From here on we assume

that Frieze’s meta-heuristic is being implemented.

The uniform randomness property can be extended [33], for example, by guar-

antying uniform randomness of the residual formula conditional on its number of 2- and

3-clauses and on its degree sequence. Indeed, the best bound found so far of 3.52 < r∗3,

due to Diaz et. al. [19] was proved using this form of uniform randomness.

16

Let us now consider what happens if one gives as input to a myopic algorithm

A a random 3-CNF formula of density r > rA, but only runs the algorithm for x0 · n

steps where x0 is such that dr
2(x) < 1 for all x ∈ [0, x0). Up to that point, the algorithm

will have either not backtracked at all–or backtracked for trivial local reasons–so that

the residual formula will be a mixture of random 2- and 3-clauses in which the 2-clauses

alone are satisfiable. Naturally, if the residual formula is satisfiable the algorithm still

has a chance of finding a satisfying assignment in polynomial time. But what happens if

this mixture, as a whole, is unsatisfiable? How fast will it discover this and backtrack?

The answer to this was was given in [4] by exploiting the relation between the resolution

complexity of random formulas and the search trees produced by dpll algorithms; we

discuss this relation in the next section.

1.2.3 Resolution Complexity of Random k-CNF Formulas

Propositional logic formalizes simple models of reasoning that have been used

in mathematics and philosophy for centuries. One of the most important tasks is to

verify that a boolean formula is a tautology (evaluates to true on every assignment)

or equivalently, to verify that its complement is a contradiction (has no satisfying as-

signments).

Resolution is a procedure aimed to produce a proof that a formula is unsatis-

fiable. It is based on the resolution rule from logic which allows one to logically infer

the clause (A∨B) from the clauses (x∨A) and (x̄∨B)–any truth assignment satisfying

(x∨A) and (x̄∨B) will also satisfy (A∨B) (see Table 1.1). A resolution derivation of

17

x A B x ∨A x̄ ∨B (x ∨A) ∧ (x̄ ∨B) (A ∨B)
0 0 0 0 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 0 0 0
1 0 1 1 1 1 1
1 1 0 1 0 0 1
1 1 1 1 1 1 1

Table 1.1: Resolution rule

a clause C from a CNF formula F is a sequence of clauses C1, C2, . . . , Cl = C such that

each Ci is either a clause of F or follows from two clauses Cj and Ck for some j, k < i

using the resolution rule. A resolution proof of the unsatisfiability of F is a resolution

derivation of the empty clause. The resolution complexity of a formula F , denoted by

res(F), is the size of the minimum resolution proof of unsatisfiability.

Any dpll search tree of an unsatisfiable formula F can be converted to a

resolution refutation proof of F where the pattern of inferences follows the structure

of the tree from the leaves to the root as follows: 1. Label each leaf of the tree with

the result of applying the resolution rule to the original clauses of F that were shown

to be contradictory on that branch of the tree. For example, in Figure 1.3, the label

above the left most leaf is the clause (x1∨x2) which results from the resolution between

the clauses (x1 ∨ x2 ∨ x̄3) and (x1 ∨ x2 ∨ x3); 2. Label each internal node with the

result of applying the resolution rule with the clauses labeling its children nodes. Using

induction, one can show that this process generates an empty clause at the root when

F is unsatisfiable i.e. a resolution refutation proof of F . In conclusion, lower bounds

18

(1, 2, 3̄)(1, 3, 4̄)(2̄, 3, 4)(1̄, 2̄, 4)(2̄, 3̄, 4̄)(2̄, 3̄, 4)(1, 2, 3)

x1 = 0 x1 = 1

x2 = 1 x2 = 0

x3 = 0 x3 = 1

(2, 3̄)(3, 4̄)(2̄, 3, 4)(2̄, 3̄, 4̄)(2̄, 3̄, 4)(2, 3) (2̄, 3, 4)(2̄, 4)(2̄, 3̄, 4̄)(2̄, 3̄, 4)

(3, 4̄)(3, 4)(3̄, 4̄)(3̄, 4)(3̄)(3, 4̄)(3)

(4̄)(4) (4̄)(4)

SAT

x2 = 0

(1, 2, 3̄) (1, 2, 3)

(1, 2)

(1, 3, 4̄) (2̄, 3, 4)

(1, 2̄, 3)

(2̄, 3̄, 4̄) (2̄, 3̄, 4)

(2̄, 3̄)

(1, 2̄)

(1)

Figure 1.3: Resolution derivation for the unsatisfiability of the residual formula gener-
ated after setting x1 = 0.

on the resolution complexity translate into lower bounds on the running time of dpll

algorithms.

It is well known that the resolution complexity of 2-SAT is linear in size.

Random k-CNF formulas and sparse random CSPs in general are locally like a tree; the

neighborhood of each variable is highly under-constrained but at the same time they

are highly connected as a whole i.e., they are good expanders3 if one prunes low degree

vertices. In a seminal paper Chvatal and Szemeredi [16] used the expansion properties

of random k-CNF formulas to establish that for k ≥ 3 their resolution complexity is

(1 + ε)n for some ε = ε(k, r) > 0, thus causing every dpll algorithm to take w.h.p.

exponential time on random k-CNF formulas in the unsatisfiable regime. On the other
3See [32] for an excellent review on expander graphs and its applications.

19

hand, adding (1+ε)n random 2-clauses to a random 3-CNF formula causes its resolution

complexity to collapse from exponential to linear w.h.p., since a formula with (1 + ε)n

random 2-clauses is by itself unsatisfiable w.h.p., because the satisfiability threshold for

random 2-CNF formulas is 1. Later, Achlioptas et. al. [5] proved that adding (1− ε)n

random 2-clauses w.h.p. has no effect in the resolution complexity. We can summarize

these results in terms of the running time of dpll algorithm as follows:

Theorem 5.

1. Any dpll algorithm takes w.h.p. linear time on random formulas composed of

(1 + ε)n random 2-clauses and ∆n 3-clauses for any ε,∆ > 0.

2. Any dpll algorithm takes w.h.p. exponential time on unsatisfiable random

formulas composed of (1− ε)n random 2-clauses and ∆n 3-clauses with ε,∆ > 0.

Theorem 5 highlights the importance of determining the satisfiability of for-

mulas composed of a mixture of (1 − ε)n 2-clauses and ∆n 3-clauses for studying the

running time of general dpll algorithms on random 3-CNF formulas.

The expansion properties of random k-SAT formulas are at the root of the

exponential lower bounds for the running time of general dpll algorithms and we be-

lieve that the same expansion properties can explain similar drops in the efficiency of

many other classes of algorithms. The idea is that when a constraint factor graph is

an expander, difficulty arises from long range interactions that can not be explicitly

represented in the instance.

20

1.2.4 Unsatisfiability of Mixture Formulas

Let F2,3(n, ε,∆) denote a random CNF formula over n variables consisting

of (1 − ε)n random 2-CNF clauses and ∆n random 3-CNF clauses. The equations

describing the mean path of the density of 2- and 3-clauses on the residual formulas

produced by the uc algorithm show that if the initial density of 3-clauses is 8/3, then

the trajectory is tangent to the r2 = 1 line when the density of 3-clauses is 2/3 (see

figure 1.2), suggesting that uc will find a solution w.h.p. on mixtures with ε > 0 and

∆ ≤ 2/3. In [6], Achlioptas et. al. used these arguments to prove the following:

Theorem 6. A random CNF formula with n variables, (1 − ε)n 3-clauses and ∆n

3-clauses is w.h.p. satisfiable for all ε > 0 and all ∆ ≤ 2/3.

The same analysis can be done using different dpll algorithms. Intriguingly,

the mean path equations of all of the algorithms studied so far also give ∆ = 2/3 when

the curve is tangent to the r2 = 1 line. The intuition is that when the density of 2-

clauses is very close to 1 and the density of 3-clauses approaches 2/3, the formula is

so constrained that even the most complex heuristics are no better than the rule that

simply chooses a variable uniformly at random. Smarter heuristics find assignments for

bigger initial densities because they delay the generation of these highly constrained

mixtures. This indicates that for ∆ > 2/3 algorithms fail to find solutions simply

because none exist, i.e.,

Conjecture 7. For all ∆ > 2/3, there exist ε = ε(∆) > 0, such that a random CNF

formula with n variables, (1− ε)n 2-clauses and ∆n 3-clauses is w.h.p. unsatisfiable.

21

If Conjecture 7 is true, then the running time of myopic dpll algorithms

exhibit a sharp threshold behavior in its running time at a density below the satisfiability

threshold: for each myopic algorithm A, let rA < r∗3 denote the initial density that

produces a mean path that passes through ∆ = 2/3. Then A takes linear time for

r < rA and exponential time for r > rA since A will produce w.h.p. a formula with the

characteristics of 2) in Theorem 5.

Let ∆∗ = sup{∆|F2,3(n, ε,∆) is satisfiable w.h.p. for all ε > 0}. Theorem 6

shows that 2/3 ≤ ∆∗ and Conjecture 7 claims that 2/3 is tight. The best upper bound

found before this thesis is ∆∗ ≤ 2.28 due to Achlioptas et. al. [6]. Using this bound and

the same mean path analysis shows that uc and guc take exponential time for r ≥ 3.81

and r ≥ 3.98, respectively. Unfortunately, densities below 3.98 are only conjecture to

be satisfiable i.e., it was not possible to claim exponential lower bounds on the running

time of dpll algorithms on satisfiable formulas.

In this work we take a technique from mathematical physics, the interpolation

method, a remarkable tool originally developed by Guerra and Toninelli [31], and use

it to derive end-to-end rigorous explicit upper bounds for the satisfiability threshold

of a number of problems. To do so, we introduce a new version of the interpolation

method that can be made computationally effective and extends the method to CSPs

with arbitrary degree distributions [8].

Our method can be used to prove that ∆∗ ≤ 1.001 [7], i.e.,

Theorem 8. Let F be a random CNF formula on n variables with (1 − ε)n random

2-clauses and (1 + ε)n random 3-clauses. Then, F is unsatisfiable w.h.p. for ε = 10−4.

22

5.194.493.812.782.66 3.52

1st Moment

Best upper bound
Best lower bound

Kaporis et. al.

UC Exp timeUC Linear time

UC Exp Time
Energetic

Interpolation

r3

Achlioptas et. al. Achlioptas et. al.

Dubois et. al.

Figure 1.4: Rigorous results for the running time of the uc algorithm on random 3-
CNF formulas in the context of the best known upper/lower bounds for the satisfiability
threshold of random 3-SAT.

By improving ∆∗ ≤ 2.28 to ∆∗ ≤ 1.001 we establish that algorithms take

exponential time on random 3-CNF formulas with densities which are not only in the

provably satisfiable regime, but in fact not much greater than the densities for which

the same algorithms find solutions in linear time. For example, uc succeeds in linear

time for r ≤ 8/3 = 2.66.... Our results imply that it requires exponential time for all

r ≥ 2.78, compared to 3.81 from [5] (see Figure 1.4). Similarly, for guc while linear-

time success is guaranteed for r ≤ 3.003, we prove that exponential time is required for

r ≥ 3.1, compared to 3.98 from [5].

Similar results hold for other myopic algorithms, including, for example, all

algorithms analyzed in [3] and [2]. Moreover, our extension of the proof to CSP on

arbitrary degree sequences could be used to develop an analogous machinery to study

myopic algorithms satisfying more complex forms of uniform randomness.

23

1.3 Past Work on the Interpolation Method for Random

CSPs

Some of the most useful tools developed to study CSPs and random CSPs have

come from statistical mechanics. The Markov chain Monte Carlo (MCMC) method [28,

48] and the use of message passing algorithms [38, 41] are two prominent examples. The

tools we present in this thesis to compute upper bounds for the satisfiability threshold

of random CSPs could be seen as the result of a rigorous analysis of message passing

algorithms on random CSPs.

1.3.1 The Statistical Physics Approach to Random CSPs

In the statistical physics approach, the set of all assignments of a CSP is

endowed with the Gibbs probability measure

P (σ|β, I) =
1
Z
e−βH(σ|I) , (1.1)

where H(σ|I) is known as the energy function or Hamiltonian, that counts the

number of unsatisfied constraints in the instance I under the assignment σ, β > 0 is a

constant, and Z, known as the partition function, is the constant that makes P (σ|β, I)

a valid probability density

Z(β) =
∑

σ∈Dn

exp(−βH(σ|I)) .

The parameter β can be seen as a softening parameter that interpolates between the

uniform distribution over the set of all assignments when β → 0 to the uniform distri-

24

bution over the set of all satisfying assignments when β →∞. In other words, taking a

random sample form the distribution P (σ|β, I) can be viewed as a statistical soft-min

operation that gets closer and closer to a hard min as β tends to infinity–what physicists

call the temperature going to zero.

Now consider a random CSP, I(n, rn), formed by picking m = rn constrains

uniformly, independently and with replacement from a set Cn of constraints. For ran-

dom k-SAT, Cn = Bk,n denotes the set of all possible disjunctions of k distinct, non-

complementary literals from its variables, and for random hyper-graph coloring Cn is

the set of all possible k-element subsets of the set of n vertices. Now, the Gibbs distri-

bution of the random instance I(n, rn) involves two levels of randomness. The first is

due to the random nature of the CSP instance itself and the second is from endowing

the instance with the Gibbs measure. A central goal in the statistical physics approach

is to compute the quantity

f(β|r) , lim
n→∞

1
n

E

[
log

(∑
σ∈Dn

exp(−βH(σ|I(n, rn)))

)]
, (1.2)

known as the free entropy density, where the expectation is taken with respect to the

randomness of the random instance I(n, rn). Let us examine (1.2) carefully as it re-

veals a lot of what we are trying to achieve. First consider the case in which H(σ|I)

is not random, but the energy function of a single CSP instance I–for example, the

number of unsatisfied clauses in a k-CNF formula with n variables and rn clauses.

Since the Gibbs distribution weighs each assignment only through its energy, it is re-

vealing to partition the set of assignments Dn into classes according to their energy

25

H(·|I) and then write the sum in f(β|r) in terms of those classes; to this effect, let

N(a) = |{σ ∈ Dn : a = H(σ|I)}|, then

∑
σ∈Dn

exp(−βH(σ|I)) =
∞∑

a=0

N(a) exp(−βa) .

Note that the number of assignments grows exponentially with n, whereas the number

of classes grows at most linearly with n, thus N(a) is exponential for at least one

value of a. Therefore it will be convenient to write N(a) as exp(n · s(a/n)) where

s(a/n) ≡ lnN(a)/n and the sum is then

∑
x∈{(a/n)|a∈N}

exp(n(s(x)− βx)) .

In the n → ∞ limit, the above sum is dominated by sup{exp(n(s(x) − βx))}, i.e.,

by those value assignments having energy in some narrow window that depends on β.

The idea being that assignments violating more constraints are penalized too heavily to

contribute significantly to the sum, while assignment violating even fewer constraints

are too rare to have substantial contribution. In this context β plays the role of exchange

rate between energy density x and entropy (number of assignments at a given energy)

density s(x). Note that as β is increased, the function f(β|r) places more and more

weight to assignments violating fewer constraints, recovering the number of solutions as

β →∞. Taking the log and normalizing is then just a procedure to extract the quantity

of interest supx{s(x) − βx}. The function s(·) captures a lot of relevant information

about the CSP. For example if s(0) = 0 then the CSP is unsatisfiable. However, it is

very hard to derive, in fact, for most of the cases one approximates f(β|r) to gain access

to s(x) through the Legendre transform supβ{f(β)− βx}.

26

When the CSP is random, martingale arguments imply that if for any finite

β > 0 we have f(β|r) < 0, then w.h.p. no solutions exist, i.e., upper bounds for f(β|r)

that are less than zero can be used to compute upper bounds for the satisfiability

threshold of the random CSP at hand. Let

F (β|n, r) = log

(∑
σ∈Dn

exp(−βH(σ|I(n, rn)))

)
.

A key property about the random variable F (β|n, r) is that it concentrates around

its mean in an o(n) window. This concentration result is a direct consequence of the

following theorem:

Theorem 9 (Independent bound differences Theorem [39]4). Let X = (X1, X2, ..., Xn)

be a family of independent random variables with Xi taking values in a set Ai for each

i. Suppose that the real-valued function g defined on the product space
∏
Ai satisfies

the Lipschitz condition ∣∣g(x)− g(x′)∣∣ ≤ ci
whenever the vectors x and x′ differ only on the ith coordinate. Then for any t ≥ 0,

P(g(X)− E[g(X)] ≥ t) ≤ e−2t2/
P

ci (1.3)

and

P(g(X)− E[g(X)] ≤ −t) ≤ e−2t2/
P

ci . (1.4)

If we let X correspond to the set of constraints of the random CSP, then

F (β|n, r) satisfies the Lipschitz condition with ci = β, since the modification of a single
4Page 10, Theorem 3.1

27

constraint can increase the number of unsatisfied constraints of each assignment by at

most one. Thus, if E[F (β|n, r)] < 0, then by setting t = −E[F (β|n, r)] ≥ 0 in Equation

(1.3) we get

P(F (β|n, r) ≥ 0) ≤ e−2t2/(βrn) .

Consequently, if t increases at least linearly with n, then P(F (β|n, r) ≥ 0) tends to zero,

i.e., F (β|n, r) < 0 w.h.p.; but f(β|r) < 0 implies that5 t = Ω(n), and F (β|n, r) < 0

implies that no solutions exist, therefore, r is an upper bound for the satisfiability

threshold of I(n, rn).

1.3.2 The Cavity Method

The cavity method is a non-rigorous but mathematically sophisticated method

from statistical mechanics used to approximate f(β|r) [38]. It corresponds to an increas-

ingly sophisticated hypothesis about the nature of the induced Gibbs measure. In the

simplest approximation, known as the Replica Symmetric (RS) approximation, it is

assumed that the distribution of the Gibbs measure is equivalent to the distribution

of an instance whose factor graph is a tree. The next level of complexity, called One

Step Replica Symmetry Breaking (1RSB), assumes that the distribution of the Gibbs

measure can be expressed as a convex combination of RS distributions.

The cavity computations can be seen as a variational method in which the

original distribution is being approximated by distributions of increasing complexity. It

has been very hard to prove rigorous results about such approximations in the general
5We say f = Ω(g(n)) if there is an ε > 0 and an integer n0 such that for all n > n0 |f(n)| > εg(n)

[30]

28

case. Nonetheless, in the average case, some rigorous results have been obtained through

the use of the interpolation method. In particular, Franz and Leone [24], in a very

important paper, applied it to random k-SAT and random k-XOR-SAT to prove that

the cavity method for these problems can, in principle, be used to derive upper bounds

for the free entropy density of each problem. As we will see, though, doing so involves

the solution of certain functional equations that appear beyond analytical penetration.

Moreover, the results only hold for finite β, i.e., they can not be applied in the zero

temperature limit. We will refer to this application of the interpolation method as the

entropic interpolation method, since it is used to bound the free entropy density. In [47],

Panchenko and Talagrand showed that the results of Franz and Leone can be derived in

a simpler and uniform way, unifying the treatment of different levels of replica symmetry

breaking.

Rather than working with the free entropy density, we work with the quantity

ξr , lim
n→∞

1
n

min
σ∈Dn

H(σ|I(n, rn)) ,

known as the ground state energy density. That is, rather than working with a soft min

we work with the actual min. In this case, a rigorous lower bound on ξr that is bigger

than zero implies the lack of solutions i.e. an upper bound for the satisfiability thresh-

old. The use of the interpolation method to bound ξr, which we called the energetic

interpolation method, results in expressions that are much simpler, specifically, they

just require the solution of a 1-dimensional optimization problem, which typically turns

out to be trivial, and as such can be used to compute explicit rigorous unsatisfiability

29

bounds. Unfortunately, this analytical tractability comes with the cost of accuracy.

This means that for some problems our method will not deliver bounds as strong as

those that, in principle, can be given by the entropic interpolation method. At the same

time, though, we are the first to derive fully rigorous end-to-end explicit bounds via the

interpolation method for random CSPs.

A crucial ingredient in all the above applications of the interpolation method

is a Poissonization device exploiting that in Erdos-Renyi (hyper)graphs the degrees

of the vertices behave like, essentially independent, Poisson random variables. Franz,

Leone, and Tonnineli [25] extended the interpolation method to other degree sequences,

but at the cost of introducing another level of complexity (multi-overlaps), thus plac-

ing the method even further out of reach in terms of explicit computations. In [46],

Montanari gave a simpler method for dealing with degree sequences in the context of

error-correcting codes, which proceeds by approximating the intended degree distribu-

tion “in chunks”. This, unfortunately, requires the number of approximation steps to

go to infinity (so that the chunk size goes to zero) in order to give results for the original

problem. In this thesis we give a very simple and general device for extending (all fla-

vors of) the interpolation method to arbitrary degree sequences, showing that to derive

explicit bounds it suffices to work with a univariate CSP whose variables have the same

degree distribution as the original CSP [8].

Finally, in a recent paper, Bayati, Gamarnik and Tetali [11], showed that a

combinatorial analogue of the interpolation method can be used to elegantly derive an

approximate subadditivity property for a number of CSPs on Erdos-Renyi and regular

30

random graphs. This allowed them to prove the existence of a number of limits on

these problems. The simplicity of that approach, though, comes at the cost of losing

the capacity to give any bounds for the associated limiting quantities.

The remaining of the thesis is organized as follows: In chapter 2, we give a

uniform, highly explicit presentation of the interpolation method for a wide array of

random CSPs, including random graph and hypergraph coloring, which is the first time

that the method has been successfully applied to CSPs with non-binary domains. In

our exposition, we highlight both the intuition behind the method and the underlying

technical challenges in using the method to compute explicit bounds. We hope that

our presentation makes the method accessible to a much wider community, both in

combinatorics and theoretical computer science. In chapter 3, we introduce our sim-

pler “energetic” flavor of the interpolation method and present the techniques used for

extending (all flavors of) the interpolation method to arbitrary degree sequences. In

chapter 4, we prove Theorem 8, thus completing our proof about the exponential run-

ning time of myopic dpll algorithms on satisfiable formulas. Finally, in chapter 5, we

give the conclusions.

31

Chapter 2

The Entropic Interpolation Method

In this chapter we present the original entropic interpolation method (EIM)

as applied to random CSPs to obtain upper bounds for the free entropy density [47,

24]. These bounds coincide with the expressions obtained with the RS cavity method

approximation[38, 41]. The exposition presented in this chapter, however, can be read

without having any knowledge about the cavity method.

Our goal is to capture the bare bones of the method, for example, we observed

that one of the assumptions presented in the original papers [47, 24] is not neces-

sary. This allowed us to successfully apply the EIM to random k-uniform hyper-graph

qcoloring which is the first time that the method has been applied to random CSP with

non-binary variables.

32

2.1 The Entropic Interpolation Method

For simplicity of exposition we focus on the case where all constraints have the

same arity1 k ≥ 2. Let Ck,n denote the set of all possible k-constraints on n variables for

the CSP at hand and D denote the domain of each variable. For random k-SAT, Ck,n

denotes the set of all possible disjunctions of k literals from its variables, and for random

hyper-graph coloring, Ck,n is the set of all possible k-element subsets of the set of n

vertices. Here we will use a slightly different definition of a random CSP than the one

used in the introductory chapter. A random CSP instance Ik(n,m) is still a conjunction

of m constraints taken independently with replacement from the set Ck,n, but now m is

a Poisson random variable with mean E[m] = rn. Note that in the previous model m is

fixed (not a random variable). Since, the standard deviation of the Poisson distribution

is the square root of its mean we have m = (1 + o(1))rn w.h.p. Therefore, this change

does not affect any asymptotic results regarding densities. At the same time, as we

will highlight, along with the Poissonization of the variable degrees, this is key to the

original development of the method. Eliminating the need for Poisson variable degrees

and allowing arbitrary (sparse) degree sequence, as we do in Section 3.2, is part of the

technical contribution in our work.

As we described in Chapter 1, one way to compute upper bounds for the

satisfiability threshold is by computing negative upper bounds for the free entropy
1Later, in chapter 4, we extend the method to work with constraints of different sizes to analyze

random CNF formulas with clauses of sizes 2 and 3.

33

density

fk(β|r) = lim
n→∞

n−1E

[
log

(∑
σ∈Dn

exp (−βHk(σ|n, r))

)]
. (2.1)

The goal of the entropic interpolation method is to give such upper bounds. For a given

σ, the energy function that counts the number of unsatisfied constraints Hk(σ|n, r) is

written as the sum of m functions ua(xa), one for each constraint, where xa denotes the

vector of variables appearing in constraint a. Thus, ua(xa) = 1 if the associated con-

straint is not satisfied and 0 otherwise. For random k-SAT, each of the m independent

constraints is,

ua(xa,1, ..., xa,k) =
k∏

j=1

1 + Ja,jxa,j

2
, (2.2)

where each of the k variables is picked independently and uniformly from the set of

n variables and each Ja,j ∈ {+1,−1} is an independent binary random variable with

P(Ja,j = +1) = P(Ja,j = −1) = 1/2 that represents the sign of literal xa,j in the

random clause (+1 if the literal is negated and −1 otherwise). Note that in this model

a random constraint might be improper, meaning that its corresponding random clause

might contain repeated and contradictory literals. At the same time, the probability

that the ith selected variable is a repeat is equal to (i−1)/n. Thus, by the union bound,

the probability of an improper constraint is less than k2/n. Therefore, the number of

improper constraints is o(n) w.h.p. Also, proper constraints are selected uniformly

among the set of all proper constraints. As a result, if Ik(n, rn) is satisfiable w.h.p. for

a given r, then for m = rn − o(n) the same is true in the model where we select only

among proper constraints. Similarly, for k-uniform hypergraph q-coloring (k = 2 being

34

graph coloring) each random constraint has the associated function

ua(xa,1, ..., xa,k) = 1xa,1=xa,2=...=xa,k
, (2.3)

where each of the k variables are picked independently from the set of n variables.

The basic object of the interpolation method is a modified energy function

that interpolates between Hk(σ|n, r) and the energy function of a dramatically simpler

(and fully tractable) model. Specifically, for t ∈ [0, 1], let

βHk(σ|n, r, t) ≡ βHk(x1, . . . , xn|n, r, t)

=
mt∑

m=1

β · uam(xam) +
n∑

i=1

ki,t∑
j=1

log (v̂i,j(xi)) , (2.4)

where mt is a Poisson random variable with mean E[mt] = trn, the ki,t’s are i.i.d.

Poisson random variables with mean E[ki,t] = (1 − t)kr, and the functions v̂i,j(·) are

i.i.d. random functions distributed as the function of equation (2.6) below.

Before delving into the meaning of the random functions v̂i,j(·), which are the

heart of the method, let us first make a few observations about (2.4). First, note that

for t = 1, equation (2.4) is simply the energy function of the original model. On the

other hand, for t < 1, we expect (1− t)m of the k-constraints be replaced by k times as

many univariate functions, each taking as input a single variable xi of the assignment

σ. A helpful way to think about this replacement is as a decombinatorialization of

the energy function wherein k-ary functions are replaced by univariate, and therefore,

independent functions. As one can imagine, for t = 0 the model is fully tractable. In

35

particular, letting

fk(t, β|r) = n−1E

[
log

(∑
σ∈Dn

exp (−βHk(σ|n, r, t))

)]
, (2.5)

one can readily compute fk(0, β|r) since one can compute Hk(σ|n, r, 0) by examining

one variable at a time. To relate the two models, the plan is to give a lower bound

for the change in fk(t, β|r) as t goes from 1 to 0, hence the name interpolation, thus

bounding fk(1, β|r) by fk(0, β|r) plus a term depending on our bound on the derivative.

The main idea of the interpolation method is to select the (still mysterious)

univariate functions v̂i,j(·) independently from a probability distribution that reflects

aspects of the geometry of the underlying solution space. The more accurate the re-

flection, the better the bound. One, of course, needs to guess this geometry and here

is where the insights from statistical physics are valuable. A practical aspect of the

interpolation method is that it projects all information about the geometry of the so-

lution space into a single object, a distribution γ as defined below. With that in mind,

we now define the random univariate functions, but without specifying the all-important

distribution γ. This is because the method gives a valid bound for any γ, i.e., the choice

of γ affects the quality but not the validity of the derived bound.

Let v(x) denote the density function of a random variable over D, where the

probabilities p1, . . . , p|D| are themselves chosen at random from a distribution γ with

support on the unit (|D| − 1)-dimensional simplex. Let v̂(x) be a random univariate

function defined as follows

v̂(x) =
∑

y1,...,yk−1

exp (−βu(y1, ..., yk−1, x))
k−1∏
j=1

vj(yj) , (2.6)

36

where u(·) is a constraint-function picked uniformly at random from Ck,n and the func-

tions vi(·) are i.i.d. with the same distribution as v(x).

To interpret the function in (2.6) it helps to think of its argument x as cor-

responding to a particular occurrence of a variable in a constraint c, e.g., a literal

occurrence in a random k-clause. The idea is for (2.6) to simulate the biases that this

particular occurrence of x “feels” from its presence in c. To do this we replace c with a

brand new random constraint (appearing as u(·) in (2.6)) containing k−1 new variables

y1, . . . , yk−1 which are “private” to u(·), i.e., they will not occur in any other constraint

in the interpolating energy function. To simulate the statistical joint behavior of the

k − 1 original variables in c due to their participation in constraints other than c, we

assume that since the underlying random hypergraph is sparse, these k−1 new variables

are independent in the absence of u(·), hence the product in (2.6). Finally, specifying

the probability distribution γ governing the behavior of each ersatz variable is precisely

what reflects our beliefs about the geometry of the space of solutions.

Now, we will show that as t goes from 1 to 0, we can control in the change

of fk(t, β|r). For concreteness, we will demonstrate the final (and non-generic) part

of the proof for random k-SAT and random k-uniform hypergraph q-coloring, i.e., for

functions (2.2) and (2.3), but it will be clear that a similar proof can be used in many

other CSPs.

Theorem 10. For the functions (2.2) and (2.3) and every density function γ over the

37

unit (|D| − 1)-dimensional simplex,

fk(β|r) ≤ fk(0, β|r)− r(k − 1)E [log (vc)] , (2.7)

where

vc =
∑

y1,...,yk

exp(−βu(y1, ..., yk))
k∏

j=1

vj(yj) .

Proof.

Part I. Since fk(1, β|r) = fk(0, β|r) +
� 1
0

∂
∂t (fk(t, β|r)) dt, it suffices to prove that for

every t ∈ [0, 1],

∂

∂t
(fk(t, β|r)) + r(k − 1)E [log (vc)] ≤ 0 . (2.8)

Let

Z = Z(β) =
∑

σ∈Dn

exp (−βHk(σ|n, r, t))

be the so-called partition function. Recall that Z is a random variable depending on

the random choices of mt, ki,t for i = 1, 2, . . . , n as well as the random choices needed

to build the random energy-constraints and the random univariate factors. We define

Zm = Z|mt=m

Zki
= Z|ki,t=ki

Zm,k1,...,kn = Z|mt=m,k1,t=k1,...,kn,t=kn
,

as the value of Z conditioned on the specific values of mt and ki,t for i = 1, 2, . . . , n.

Denote the Poisson probability density function with mean µ as Poi(µ, z) = e−µ(µz/z!).

38

Since the random variable mt and the random variables ki,t are independent, we can

write the expectation in (2.5) as

fk(t, β|r) = n−1
∑

m,k1,...,kn

(
Poi(trn,m)

n∏
i=1

Poi((1− t)rk, ki)

)
E [logZm,k1,...,kn] . (2.9)

Taking the derivative of the joint density in (2.9) with respect to t yields n + 1 terms,

as follows:

∂

∂t

(
Poi(trn,m)

n∏
i=1

Poi((1− t)rk, ki)

)
=

∂

∂t
(Poi(trn,m))

n∏
i=1

Poi((1− t)rk, ki) + (2.10)

Poi(trn,m)
∂

∂t
(Poi((1− t)rk, k1))

n∏
i=2

Poi((1− t)rk, ki) + (2.11)

...(
Poi(trn,m)

n−1∏
i=1

Poi((1− t)rk, ki)

)
∂

∂t
(Poi((1− t)rk, kn)) .

Summing the first of the n+ 1 terms of the derivative (see rhs of (2.10)) over all values

of m, k1, . . . , kn yields

∑
m,k1,...,kn

∂

∂t
Poi(trn,m)

(
n∏

i=1

Poi((1− t)rk, ki)E [logZm,k1,...,kn]

)
=

∞∑
m=0

∂

∂t
(Poi(trn,m)) E [logZm] . (2.12)

Summing the second term, (2.11), over all values of m, k1, . . . , kn yields

∑
m,k1,...,kn

∂

∂t
(Poi((1− t)rk, k1))

(
Poi(trn,m)

n∏
i=2

Poi((1− t)rk, ki)E [logZm,k1,...,kn]

)
=

∞∑
k1=0

∂

∂t
(Poi((1− t)rk, k1)) E [logZk1] .

(2.13)

39

Proceeding similarly with the remaining n − 1 terms corresponding to k2, . . . , kn we

conclude that

∂

∂t
(fk(t, β|r)) =

n−1
∞∑

m=0

∂

∂t
Poi(trn,m)E[logZm] + n−1

n∑
i=1

∞∑
ki=0

∂

∂t
Poi((1− t)rk, ki)E[logZki

]

Recall now that (∂/∂t)Poi(trn,m) = −rnPoi(trn,m) + rnPoi(trn,m − 1).

Here is where the “memoryless” property of the Poisson distribution comes to play: the

derivative with respect to t in (2.12) can be written as

r

∞∑
m=0

(Poi(trn,m− 1)− Poi(trn,m)) E[logZm]

= r

∞∑
m=0

Poi(trn,m) (E [logZm+1]− E [logZm]) . (2.14)

Similarly, the derivatives in the double sum in (2.13) with respect to t can be

written as

−rkn−1
n∑

i=1

∞∑
ki=0

(Poi((1− t)rk, ki − 1)− Poi((1− t)rk, ki)) E [logZki
]

= −rkn−1
n∑

i=1

∞∑
ki=0

Poi((1− t)rk, ki) (E [logZki+1]− E [logZki
]) . (2.15)

Now, a crucial observation is that (2.14) is r times the expected value of the

change in logZ after adding a random constraint, while (2.15) is −rk times the expected

value of the change in logZ after adding a single log v̂ function, whose argument is a

variable selected uniformly at random. Thus, to establish (2.8) we need to show that

the expected change in logZ caused by adding a random constraint minus k times

40

the expected change caused by adding a random log v̂ function is at most −r(k −

1)E [log (vc)]. Observe that the definition of the log v̂ functions is irrelevant so far.

Part II. To make the comparison and prove the assertion above we need to:

1. Select: (i) a random formula H from the distribution Hk(·|n, r, t), (ii) a ran-

dom constraint c, (iii) a random variable x ∈ {x1, . . . , xn}, and (iv) a random

v̂-function.

2. Let H ′(σ) = H(σ) + uc, H ′′ = H(σ) + log v̂(x) and let Z ′ and Z ′′ denote the

respective partition functions.

3. Let Y = (logZ ′ − logZ)− k(logZ ′′ − logZ).

4. Prove that EY , over the choice of H,u, v, v̂, is at most −(k − 1)E [log (vc)].

The averaging task in the last step above appears quite daunting, as we need to average

overH. The reason we can establish the desired conclusion is that something far stronger

holds. Namely, we will prove that for every realization of H, the conditional expectation

of Y , i.e., the expectation over only u, v and v̂, satisfies the desired inequality.

Specifically, let H0 denote any realization of Hk(·|n, r, t) and let

Z0 =
∑

σ∈Dn

exp (−βH0(σ))

be its partition function. We are going to compute the expected value in the change of

logZ0 after adding a new random function ua(xa) and after adding a new random uni-

variate function log (v̂i(·)) to a uniformly selected variable and show that the following

41

inequality holds for any realization H0:

(
E
[
logZ ′

]
− logZ0

)
− k

(
E
[
logZ ′′

]
− logZ0

)
− (k − 1)E [log (vc)] ≤ 0 . (2.16)

It will be convenient to write exp(βua) as follows

exp (βua(xa)) = 1− (1− e−β)ua(xa) . (2.17)

Note that, the above expression evaluates to e−β when the constraint is unsatisfied and

to 1 when it is not, as it should.

The partition function resulting after adding a random constraint to H0 is

equal to

Z ′ =
∑

σ∈Dn

(
1− (1− e−β)ua(xa)

)
exp (−βH0(σ))

= Z0 − (1− e−β)
∑

σ∈Dn

ua(xa) exp (−βH0(σ)) .

To lighten notation, below, we won’t make explicit the variables that appear in ua(·)

and just write ua(σ) instead. The expected value of the change in the partition function

is thus

E
[
logZ ′

]
− logZ0 = E

[
log
(

1− (1− e−β)
∑

σ∈Dn ua(σ) exp (−βH0(σ))
Z0

)]
. (2.18)

Using the Taylor series expansion of log(1 − x) for 0 ≤ x < 1, i.e., log(1 − x) =

42

−
∑∞

i=1 x
i/i we rewrite (2.18) as

E

[
−

∞∑
i=1

(1− e−β)i

i

(∑
σ∈Dn ua(σ) exp (−βH0(σ))

Z0

)i
]

=

E

− ∞∑
i=1

(1− e−β)i

i
·

∑
σ1
. . .
∑

σi

[∏i
j=1 ua(σj) exp

(
−β
∑i

j=1H0(σj)
)]

Zi
0

 =

−
∞∑
i=1

(1− e−β)i

i
·

∑
σ1
. . .
∑

σi

[
E
[∏i

j=1 ua(σj)
]
exp

(
−β
∑i

j=1H0(σj)
)]

Zi
0

. (2.19)

The expression for the change in the partition function after the addition of a new

random univariate factor is computed similarly. In this case, the partition function that

results from adding the univariate factor is

Z ′′ =
∑

σ∈Dn

exp(log v̂i(xi)) exp (−βH0(σ)) =
∑

σ∈Dn

v̂i(xi) exp (−βH0(σ)) .

This is the first point where some aspect of the choice of the v̂i(·) functions

becomes relevant. Recall that

v̂i(xi) =
∑

y1,...,yk−1

exp (−βu(y1, ..., yk−1, xi))
k−1∏
j=1

vj(yj) ,

i.e., each univariate function contains as a factor a random u-constraint, albeit one cho-

sen independently of all other constraints and in which k−1 of the variables, y1, . . . , yk−1

are “private” to the constraint. Using the representation of constraints given by equa-

tion (2.17), we finally rewrite the univariate factor as

v̂i(xi) =
∑

y1,...,yk−1

(
1− (1− e−β)u(y1, . . . , yk−1, xi)

) k−1∏
j=1

vj(yj)

= 1− (1− e−β)
∑

y1,...,yk−1

u(y1, . . . , yk−1, xi) ·
k−1∏
j=1

vj(yj) . (2.20)

43

The computation of E [logZ ′′]− logZ0 is done following exactly the same pro-

cedure as for computing E [logZ ′] − logZ0 and employing the expression in (2.20). It

yields that E [logZ ′′]− logZ0 is

−
∞∑
i=1

(1− e−β)i

i
·
(
Zi

0

)−1∑
σ1

. . .
∑
σi

E

 i∏
j=1

 ∑
y1,...,yk−1

u(y1, . . . , yk−1, σi) ·
k−1∏
j=1

vj(yj)

 exp

−β i∑
j=1

H0(σj)

 (2.21)

Finally, in an entirely analogous manner, we get

−(k − 1)E [log (vc)] =

−(k − 1)E

log

1− (1− e−β)
∑

y1,...,yk

u(y1, . . . , yk) ·
k∏

j=1

vj(yj)

 =

−
∞∑
i=1

(1− e−β)i

i
(k − 1)E

 ∑
y1,...,yk

u(y1, . . . , yk) ·
k∏

j=1

vj(yj)

i . (2.22)

Since
∑

σ1
. . .
∑

σi

[
exp

(
−β
∑i

j=1H0(σj)
)]

= Zi
0, we can rewrite (2.22) as

−r
∞∑
i=1

(1− e−β)i

i
·
(
Zi

0

)−1∑
σ1

. . .
∑
σi

(2.23)

E

(k − 1)

 ∑
y1,...,yk

u(y1, . . . , yk) ·
k∏

j=1

vj(yj)

i exp

−β i∑
j=1

H0(σj)


We are now left to compare the difference between the quantities in (2.19)

and (2.21), with the quantity in (2.23). Observe that the only difference between

these three expressions is in the quantity inside the expectation. This was precisely the

reason for introducing (2.17) as, via the Taylor expansion, it allows us to decompose

the comparison along moments (“replicas” in the language of statistical physics). This

is the end of the general part of the proof. Now, to succeed in our goal it suffices to

44

focus on these three expectations and prove that they satisfy the desired inequality for

the equations (2.2) and (2.3).

2.1.1 Applying Entropic Interpolation to Random CSPs

At this point, we need to start looking at the problem-specific univariate func-

tions v̂(x) and, as result, the proof splits per problem. Nevertheless, we will see that

the proofs for the different problems are highly parallel and the structure of the overall

computations is identical.

2.1.1.1 Random k-SAT

In equation (2.19) the expectation is equal to the probability that the con-

straint associated with the function ua(·) is unsatisfied by all assignments σ1, ..., σi.

Thus, if l denotes the number of variables in which all the assignments σ1, ..., σi agree,

then the probability of ua(·) not satisfying all of them is equal to

(
l

2n

)k

.

In equation (2.21) the expectation is

E

 i∏
j=1

 ∑
y1,...,yk−1

u(y1, . . . , yk−1, σi) ·
k−1∏
j=1

vj(yj)

 =

E

 i∏
j=1

[(
1 + Jixj

2

)
·

k−1∏
l=1

(∑
yl

(
1 + Jlyl

2

)
vl(yl)

)] .

Note that each of the terms inside the innermost product of the r.h.s. are i.i.d. random

45

variables in [0, 1]. We will use the letter A to refer to them, that is,

Al =
∑
yl

(
1 + Jlyl

2

)
vl(yl) .

We will also define g(xi) = (1+Jixi)/2 and, again, we will suppress the explicit argument

writing g(σ) instead. Thus, the r.h.s. of the above equation simplifies to

E

 i∏
j=1

[
g(σi)

k−1∏
l=1

Al

] = E

k−1∏
l=1

Ai
l

i∏
j=1

[g(σi)]


=

k−1∏
l=1

E
[
Ai

l

]
E

 i∏
j=1

g(σi)

 (2.24)

=
(
E
[
Ai

l

])k−1 E

 i∏
j=1

g(σi)

 (2.25)

=
(
E
[
Ai

l

])k−1
(
l

2n

)
.

For (2.24) we used the independence of the random variables involved in the expectation,

while for (2.25) we used the fact that the A’s are i.i.d. random variables. The rightmost

expectation in (2.25) is just the probability that all assignments σ1, ..., σi do not satisfy

the function g(σi), i.e., (l/2n).

Finally, the expectation in equation (2.23) is

E

−(k − 1)

 ∑
y1,...,yk

u(y1, . . . , yk) ·
k∏

j=1

vj(yj)

i =

−(k − 1)E

 k∏
j=1

Aj

i =

−(k − 1))
(
E
[
Ai

l

])k
Combing (2.19), (2.21), and (2.23) we get that

(
E
[
logZ ′

]
− logZ0

)
− k

(
E
[
logZ ′′

]
− logZ0

)
− (k − 1)E [log (vc)]

46

is

−

((
l

2n

)k

− k
(
l

2n

)(
E
[
Ai

l

])k−1 + (k − 1)
(
E
[
Ai

l

])k)
,

which is always less than or equal to 0 since the polynomial F (x, p) = xk − kpk−1x +

(k − 1)pk ≥ 0 for all 0 ≤ x, p ≤ 1. To see this last statement note that (i) F (0, p),

F (1, p), F (x, 0), F (x, 1) ≥ 0 and, (ii) the derivative of F with respect to p is 0 only

when p = x, in which case F (x, x) = 0.

2.1.1.2 Random Graph Coloring

To compute the expectation in equation (2.19) define the following equivalence

relation on [n]: given j1, j2 ∈ [n], j1 is related to j2 if they have the same color in all

the colorings σ1, ..., σi, that is, j1 ∼ j2 if σl(j1) = σl(j2), for all l = 1, . . . , i. Let O∗
s ,

1 ≤ s ≤ J , for some 1 ≤ J ≤ n, be the corresponding equivalence classes. A random

k-uniform hyper-edge is unsatisfied by all the colorings σ1, ..., σi if the selected vertices

are in the same equivalence class i.e., the probability is equal to

∑
1≤s≤J

(
|O∗

s |
n

)k

.

In equation (2.21) the expectation is

E

 i∏
l=1

 ∑
y1,...,yk−1

u(y1, . . . , yk−1, σi(x)) ·
k−1∏
j=1

vj(yj)

 = E

 i∏
l=1

k−1∏
j=1

vj(σl(x))


=

k−1∏
j=1

E

[
i∏

l=1

vj(σl(x))

]

=

(
E

[
i∏

l=1

v1(σl(x))

])k−1

47

where x is the index of a vertex picked at random. In the last equalities, we used the

fact that the v(·) functions are i.i.d. By conditioning the selection of the random vertex

on the equivalence classes defined above, we get

E

[
i∏

l=1

[v(σl(j))]

]
=

J∑
s=1

|O∗
s |
n

(
E

[
i∏

l=1

v1(σl(x∗s))

])k−1

,

where x∗s is any vertex in O∗
s . We will say that E

[∏i
l=1 v(σl(x∗s))

]
is the profile of a

vertex in O∗
s .

Finally, the expectation in equation (2.23) is

E

−(∑
y1,...,yk

u(y1, ..., yk)v1(y1)...vk(yk)

)i
 =

−E

(∑
y

v1(y)...vk(y)

)i
 =

−E

[∑
y1

. . .
∑
yi

i∏
l=1

v1(yl) · · ·
i∏

l=1

vk(yl)

]
=

−
∑
y1

. . .
∑
yi

E

[
i∏

l=1

v1(yl)

]
· · ·E

[
i∏

l=1

v2(yl)

]
=

−
∑
y1

. . .
∑
yi

(
E

[
i∏

l=1

v1(yl)

])k

.

In the second to last equation, we used the independence between the v(·) functions.

Note that the summation in above equation is over the k-th power of all possible profiles,

thus, we can partition the above summation as the sum of the k-th power of the J profiles

given by the colorings σ1, ..., σi plus a positive constant P equal to the sum of the k-th

power of the remaining profiles giving

−
∑

1≤s≤J

(
E

[
i∏

l=1

v(σl(x∗s))

])k

− P .

48

Combining (2.19), (2.21), and (2.23) we get that

(
E
[
logZ ′

]
− logZ0

)
− k

(
E
[
logZ ′′

]
− logZ0

)
− (k − 1)E [log (vc)]

is

−

 ∑
1≤s≤J

(
|O∗

s |
n

)k

−
∑

1≤s≤J

|O∗
s |
n

(
E

[
i∏

l=1

v(σl(x∗s))

])k−1

+

∑
1≤s≤J

(
E

[
i∏

l=1

v(σl(x∗s))

])k

+ P

 =

∑
1≤s≤J

−

(|O∗
s |
n

)k

− |O
∗
s |
n

(
E

[
i∏

l=1

v(σl(x∗s))

])k−1

+

(
E

[
i∏

l=1

v(σl(x∗s))

])k
 −

P

The quantity inside parenthesis is a polynomial like the one for random k-SAT p, i.e.,

always non-negative. Therefore the whole expression is non-positive since −P is a non-

positive constant.

2.2 Difficulties in Using the EIM to Obtain Rigorous Up-

per Bounds

At this point, we have a rigorous bound that is a functional of a distribution

over a d-dimensional simplex (d = 2 for random k-SAT and d = q for random q-

Coloring). A direct optimization of the functional of Theorem (10) seems very daunting.

Indeed, the form of the functional does not fall into any of the well known patterns for

which a methodology for solving the problem is already available [50, 18].

49

Rather than trying to find the right distribution via analytical methods, one

approach is to obtain a distribution with finite support and then plug it into equation

2.7. If for a given value of r the free entropy density is negative, then such r would be

a rigorous upper bound for the satisfiability threshold of the random CSP under study

because Theorem 10 is valid for any distribution γ.

The EIM bounds coincide with the expressions obtained with the RS cavity

method approximation with the exception that the distribution γ is not a parameter, but

the solution of a system of stochastic equations. It is very hard to solve these stochastic

equations analytically too, so one has to use a numerical method called Population

Dynamics [1] (In Appendix A we describe the RS cavity method and the Population

Dynamics algorithm).

The distributions γ obtained through Population Dynamics are therefore

natural choices to plug in into the EIM bound. Unfortunately, Population Dynamics

breaks, a denominator goes to zero, before the free entropy density goes below zero.

Division by zero occurs when elements in the population start taking values of either 0

or 1, meaning that the empirical distribution of γ puts weight greater than zero to the

probability that a variable is frozen to a specific value. Figures 2.1 and 2.2 show the

value of the RS approximation as a function of r for random k-SAT with k = 3 and

k = 2, respectively. All the points were computed using Monte Carlo Methods, that

is, sample equation (2.7) multiple times and report the sample average. To get rigorous

bounds, we must compute the expectations explicitly (which has its own problems). In

both plots, bigger densities make Population Dynamics fail. Observe that the RS

50

estimate of f for random 3-SAT goes very close to zero (0.003), however for random

2-SAT Population Dynamics fails when the estimate of f is 0.38. Physicists use

the density at which Population Dynamics fails to converge as the transition point

predicted by the method i.e., according to the plots, the RS predictions of the threshold

for random 2- and 3-SAT is approximately 1.0 and 4.67 respectively. The idea is that

Population Dynamics fails because the number of solutions is zero i.e. the uniform

distribution on the set of satisfying assignments (β →∞) is not well defined anymore.

Since Population Dynamics fails with the appearance of frozen variables,

one could try to write the distribution γ parametrically so that the fraction of variables

b is explicitly defined, and then take the limit of the expression in (2.7) when b goes

to zero. In [12], the authors used this idea to prove bounds for random k-SAT using

the replica method, another method from statistical mechanics for which no formal

results are known. However, the expressions used in the replica method are simpler

than (2.7) and the same technique could not be applied. In Appendix C, we give a brief

introduction to the replica method and the difficulties we encountered when trying to

use the above idea with the bound of Equation (2.7).

One possibility at this point is to find the maximum density for which Popu-

lation Dynamics works and store the corresponding density γMAX . Then, keep γMAX

fixed and compute Equation 2.7 for increasing values of r until the density become nega-

tive. This alternative works well with random 3-SAT giving a bound of2 4.69. However,

for random 2-SAT the bound obtained is ∼ 1.91 i.e. way above the known value of 1.0.
2This bound can be improved to 4.67 by a more careful numerical computation.

51

Another alternative to make f go below zero is to add a small fraction δn of

constraints. The hope is that if f is small enough, then the price in density δ we have to

pay is very small compared to the original density. Lemma (11) gives the exact amount

of δ needed for a given value of f .

Lemma 11. Let Z count the number of satisfying assignments in an random k-CNF

formula Fk(n, rn), let (1/n)E logZ ≤ f , and let Zδk
count the number of satisfying

assignments after adding δk · n new clauses of size k to Fk(n, rn). Then,

1
n

E[logZδk
] ≤ f + δk log(1− 1

2k
) .

Proof.

E[logZδk
] = E[E[logZδk

|Z]]

≤ E[log E[Zδk
|Z]]

= E[log((1− 1
2k

)δknZ)]

= δkn log(1− 1
2k

) + E[logZ]

≤ δkn log(1− 1
2k

) + nf

The first equality follows from the rule of iterated expectation. The inequality of the

second line follows from Jensen’s inequality, since log(·) is concave. Each of the satisfying

assignments implied by Z will satisfy the new formula with probability (1− 1
2k)δkn giving

the third line. Finally, we applied the hypothesis of the Lemma to prove the result.

Unfortunately, this approach does not give good results for random 2-SAT

either. So we turn to a different approach in the next chapter.

52

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

r

f P
D

Figure 2.1: Free entropy density estimate obtained by Population dynamics (fPD) for
random 3-SAT plotted as a function of the density r.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

r

f P
D

Figure 2.2: Free entropy density estimate obtained by Population dynamics (fPD) for
random 2-SAT plotted as a function of the density r. Recall that the satisfiability
threshold for random 2-SAT is 1.

53

Chapter 3

Energetic Interpolation Bounds

The two main reasons that motivated our derivation of a different, so-called,

energetic interpolation method are 1) to avoid the analytical difficulties of the entropic

interpolation method; we will see that the energetic approach leads to bounds which can

be derived essentially analytically, and 2) to capture in a simple model the continuous

transition of the fraction of frozen variables in problems like random 2SAT, random

MAX-2-SAT, random MAX-2-LIN-2, and F2,3(n, ε,∆). More precisely, we model the

phenomenon in which a frozen variable that appears in a constraint “the wrong way”

causes the other variable in the constraint to also freeze. This percolative type of be-

havior causes the fraction of frozen variables to takeoff smoothly in such problems, a

situation that can be captured by a simple model that focuses explicitly on the propa-

gation of frozen variables.

54

3.1 Energetic Interpolation for General CSPs

To develop an energetic interpolation method we replace the (far richer) free

entropy density of the previous section with the following simpler quantity

ξk,r , lim
n→∞

n−1E
[

min
σ∈Dn

Hk(σ|n, r)
]
, (3.1)

known as ground-state energy density, which simply tells us what fraction of constraints

is violated by the optimal (least-violating) assignment.

The random variable minσ∈Dn Hk(σ|n, r) concentrates around its expectation

in a o(n) window. This result can be proven using the independent bound differences

theorem (which we repeat below as Theorem 12) in a similar way as it was used to prove

the concentration result for the free entropy.

Theorem 12 (Independent bound differences Theorem [39]1). Let X = (X1, X2, ..., Xn)

be a family of independent random variables with Xi taking values in a set Ai for each

i. Suppose that the real-valued function g defined on the product space
∏
Ai satisfies

the Lipschitz condition ∣∣g(x)− g(x′)∣∣ ≤ ci ,
whenever the vectors x and x′ differ only on the i-th coordinate. Then for any t ≥ 0,

P(g(X)− E[g(X)] ≥ t) ≤ e−2t2/
P

ci (3.2)

and

P(g(X)− E[g(X)] ≤ −t) ≤ e−2t2/
P

ci . (3.3)
1Page 10, Theorem 3.1

55

If the set of constraints correspond to the set of random variablesX in Theorem

12, then minσ∈Dn Hk(σ|n, r) satisfies the Lipschitz condition with ci = 1, since changing

any constraint cannot change the minimum by more than 1. Thus, by setting t = µ =

E [minσ∈Dn Hk(σ|n, r)] in equation 3.3 we get

P(min
σ∈Dn

Hk(σ|n, r) ≤ 0) ≤ e−2µ2/(rn) .

Consequently, if µ increases at least linearly with n, then P(minσ∈Dn Hk(σ|n, r) ≤ 0)

tends to 0, i.e., minσ∈Dn Hk(σ|n, r) > 0 w.h.p.. But ξk,r > 0 implies that µ = Ω(n) and

minσ∈Dn Hk(σ|n, r) > 0 implies that no solutions exist, therefore r is an upper bound

for the satisfiability threshold for Ik(n, rn).

The application of the interpolation method to minσ∈Dn Hk(σ|n, r) shares

many ideas from its application to the free entropy. In particular, the idea of inter-

polating between Hk(σ|n, r) and a simpler model composed of univariate factors only.

The univariate factors in the energy interpolation method are given as follows:

• For 1 ≤ j ≤ |D|, let Ij denote the indicator function that the input is the j-th

element of D, i.e., Ij is 1 if its input is dj and 0 otherwise.

• Let I∗ denote the function that assigns 0 to all elements of D.

• Let b(x) be a random function in {I1, . . . , I|D|, I∗} with Pr(h(·) = I∗) = 1− p and

Pr(h(·) = Ij) = p/|D|.

The analogue of 2.6 is now defined to be

ĥ(x) = min
y1,...,yk−1

{
u(y1, .., yk−1, x) +

k−1∑
i=1

bi(yi)

}
, (3.4)

56

where u(·) is the energy function of a random constraint while the functions bi(·) are

i.i.d. random functions distributed as b(x).

Observe that the energy interpolation method models all information about

the geometry of the solution space into a single probability p, which can be interpreted

as the probability that a variable picked at random will be frozen, i.e., have the same

value in all optimal assignments. If that occurs for all k − 1 variables y1, .., yk−1 and

they all happen to be frozen “the wrong way” as far as u is concerned, then unless

variable x takes the value desired by u the function ĥ(x) will evaluate to 1. When, at

the end of the interpolation, we will have replaced all k-ary constraints with univariate

random functions ĥ, the optimal overall assignment is simply found by assigning to each

variable the value that makes the majority of its ĥ functions evaluate to 0. The method

delivers a valid bound for any choice of p ∈ [0, 1] and the bound is then optimized by

choosing the best value of p, i.e., performing a single-parameter search.

At this point, we can give lower bounds on (3.1) for random CSPs defined on

Erdos-Renyi (hyper)graphs by exploiting the same Poissonization device as in the deriva-

tion of the Entropic Interpolation method presented in the previous chapter. Specifi-

cally, the interpolation function Hk(σ|n, r, t) in the energetic version is as follows: for

t ∈ [0, 1], let

Hk(σ|n, r, t) =
mt∑

m=1

uam(xam,1 , ..., xam,k
) +

n∑
i=1

ki,t∑
j=1

ĥi,j(xi) , (3.5)

where mt and the ki,t’s are defined in the same way as in the entropic method. Namely,

mt is a Poisson random variable with mean E[mt] = trn and the ki,t’s are i.i.d. Poisson

57

random variables with mean E[ki,t] = (1− t)kr. The difference is in the functions ĥi,j(·)

which in this case are i.i.d. random functions distributed as the function defined in 3.4.

Let

ξk,r(t) = lim
n→∞

1
n

E
[

min
σ∈Dn

Hk(σ|n, r, t)
]
.

The energetic bounds come from the following theorem.

Theorem 13. For any choice of p ∈ [0, 1], ξk,r = ξk,r(1) ≥ ξk,r(0)− r(k− 1)E [hc], with

hc = min
y1,...,yk

{
u(y1, .., yk) +

k∑
i=1

bi(yi)

}
. (3.6)

To prove Theorem 13, we would start and proceed exactly as in the proof of

Theorem 10 up to (2.16), except that we would replace logZ (and its different condi-

tionals) with minH (and its respective conditionals). That is, in the context of the

energetic interpolation method, the proof reduces to comparing the expected change in

minH0 after adding a random energy-function associated with a random k-constraint

and the expected change in minH0 after adding a random univariate factor ĥ(x) to

an arbitrary energy function H0. The fact that the proof holds for every H0 suggest

that it should be possible to extend the proof to random CSPs with an arbitrary degree

sequences. In the next section, we present a different combinatorial proof that bypass

the use of Poisson random variables which we use to extend the method to (sparse)

degree distributions. This enables the treatment not only of regular graphs but, more

importantly, of degree sequences that result by first applying some preprocessing of the

random CSP. For example, to prove that random graphs with a certain average de-

gree are not q-colorable (an Erdos-Renyi CSP) it is desirable to apply the interpolation

58

method to the q-core of the random graph, i.e., to first iteratively remove all vertices of

degree strictly less than q.

3.2 The Interpolation Method on Sparse Degree Sequences

Let dx denote the number of times variable x should appear in the random

instance and let Lx = {xj}dx

j=1 denote its actual set of occurrences. The occurrences

can be decorated so that, for example in k-SAT, we can specify how many of the Lx

occurrences correspond to positive literals and how many to negative literals. In the

models discussed here, decorations will be assigned uniformly at random, for example,

in the case of k-SAT, each literal has sign selected uniformly at random from {+1,−1}.

It will be helpful to think of each occurrence as a piece of paper carrying the index of the

underlying variable along with any desired decoration. We will refer to L =
⋃
Lx as the

degree sequence of a random CSP. We will focus on random CSPs with sparse degree

distributions, that is, the total number of occurrences |L| is of order O(n). Let Ik(n, r,L)

denote the family of CSPs over n variables, rn constraints and degree sequence L. To

form a random instance Ik(n, r,L), we simply choose a random permutation of all krn

elements of L and consider the first k to specify the first constraint, the next k to specify

the second constraint, etc. Let Hk(σ|, n, r,L) denote the corresponding energy function

i.e. the number of clauses not satisfied and let

ξk,r,L , n−1E
[

min
σ∈Dn

Hk(σ|, n, r,L)
]

denote its ground state energy density.

59

Instead of defining the interpolation function in terms of Poisson random vari-

ables, we use an algorithm that builds an energy function where the degrees of the

variables is given by L and the number of random constraints and random univariate

factors like the ones in (3.4) is specified by a interpolation sequence w ∈ {con, uni}t of

length t (t will be at most the cardinality of L). The sequence w tells the algorithm

what type of factor to add at each step: if the i-th element of w is a const then a new

random constraint is added with probability 1/k and if the element is a uni then a

random univariate factor is added with probability 1. Adding a random constraint with

probability 1/k is what allows us to compare the change in the ground state energy after

adding a random constraint versus k times the change after adding a single univariate

factor as in the Poisson case. The complete algorithm is given below.

Let H(L, w) denote the random energy functions H produced by the interpola-

tion algorithm 3. Observe that when t = |L| and w = uni, . . . uni, the energy functions

produced by the algorithm has variable degree distribution given by L and consist of

univariate factors only. On the other hand when t = |L| and w = con, . . . , con the

resulting energy functions consist of m̃ energy constraint functions of arity k where m̃ is

a Binomial random variable with krn trials and probability of success 1/k, conditioned

on having at most rn successes (constraints). Observe that the expected value of ground

state energy H(L, w) is a lower bound of the one for the original problem Hk(σ|, n, r,L)

because the probability that a formula is satisfiable is a monotone decreasing function,

that is, when m̃ < rn the instances can only became easier to satisfy.

The goal now is to relate the ground state energy of these two extreme cases. A

60

Algorithm 3 interpolation algorithm

Input: Set of literals L, Interpolation sequence w

1: H = ∅, i = 1, and j = 1

2: Select a random permutation π of the elements of L

3: while j ≤ |L| and i ≤ |w| do

4: if w[j] = uni then

5: Add a random univariate factor to H with argument π(j)

6: j ← j + 1

7: end if

8: if w[t] = con then

9: With probability 1/k, add a random k-constraint to H on literals π(j), . . . ,

π(j + k − 1)

10: j ← j + k

11: end if

i← i+ 1

12: end while

13: return H

61

key property, which will allow us to establish such relation, is that H(L, w) is invariant

under any permutation π(w) of the elements in w as long as the number of unconsumed

literals by the interpolation algorithm is bigger than k.

Lemma 14. Let π(w) denote an arbitrary permutation of the sequence w and b de-

note the number of unused literals by the algorithm, then the random energy functions

H(L, w) and H(L, π(w)) are equivalent conditional on b > k.

Proof. We show that interchanging any adjacent pair of elements in w results in the

same family of energy functions when the number of available literals is bigger than k.

Write w = x, uni, con, v, w′ = x, con, uni, v and consider the execution of the algorithm

on both sequences. Couple the random choices of the two runs of the algorithm on

inputs w and w′ for the first |x| iterations so that the partial energy function H and

the set of current unused literals L are the same in both executions. Note that the

processing of the following two symbols, in both cases, results in the addition of a new

univariate factor and possibly the addition of a new energy-clause. Thus, in order to

prove that the families are equivalent is enough to show that 1) the probability pu(l)

that the new univariate factor is connected to literal l is the same after processing the

next two symbols for both sequences and 2) the probability pc(l) that a energy-clause

of size k is connected to literal l is also the same for both sequences. By the principle

of deferred decisions, we can think of the permutation of the literals at step 2) of the

algorithm as generated on-the-fly, i.e., as we need occurrences to consume.When we add

the univariate factor first, pu(l) is simply the probability of selecting the literal l among

62

the |L| currently available literals, therefore,

pu(l) =
1
|L|

whereas when we add the univariate factor in the second step, the value of pu(l)

depends, in principle, on whether a clause were added or not, events whose probabilities

are denoted by Pr(c) and Pr(¬c) respectively, and if a clause was indeed added, on

whether the literal l was selected selected or not, thus

pu(l) = pu(l|¬c) Pr(¬c) + Pr(l|c) Pr(c)

If no clause was added, no variable was used, thus

pu(l|¬c) Pr(¬c) =
1
|L|
·
(

1− 1
k

)
and if a clause was added,

Pr(c)pu(l|c) =
1
k
·
(

1
|L| − k

· Pr(¬l)
)

=
1
k
·
(

1
|L| − k

· |L| − 1
|L|

· |L| − 2
|L| − 1

· · · |L| − k
|L| − (k − 1)

)
=

1
k
· 1
|L|

thus

pu(l) =
1
|L|

The analysis for pc(l) is very similar. When the univariate factor is added

second, pc(l) is equal to:

pc(l) =
1
k
·
(

1− |L| − k
|L|

)
=

1
|L|

63

and when the univariate factors is added first, pc(l) depends on whether the univariate

factors added in previous step was connected to literal l or not:

pc(l) =
|L| − 1
|L|

(
1
k
·
(

1− |L| − k − 1
|L| − 1

))
=

1
|L|

Lemma 15. When t = kr(1 − ε)n with ε > 0, then the number of unused literals

resulting after the execution of the algorithm is bigger than εrn w.h.p.

Proof. The sequence w = cont maximizes the possible number of used literals, therefore

is enough to prove the statement of the lemma is true when the input of the algorithm

is w = cont. Let X be the number of times that the algorithm tries to add a random

k-constraint. Then X is a binomial random variable with t = kr(1 − ε)n trials and

probability of success 1/k. Thus, X concentrates and the number of unused literals is

at least linear in n. Formally, the probability that the algorithm leaves at most 1
2εkrn

unused literals is

P(X − r(1− ε)n ≥ 1
2
εrn) =

P(X − r(1− ε)n ≥ ε

2(1− ε)
r(1− ε)n) ≤

exp

(
−r(1− ε)n ·

(
ε

2 (1− ε)

)2

/3

)

In the last inequality we used the Chernoff bound

P(X − µ ≥ δµ) ≤ exp
(
−µ · δ2/3

)
64

with δ ∈ (0, 1).

Since the ordering does not matter, then for any L and any s ≤ t, let us write

HL(σ|t, s) to denote the energy functions generated by the algorithm when we take t

steps in total, t− s of which are additions of univariate factors. Let

ξk,r,L(t, s) = n−1E
[

min
σ∈Dn

HL(σ|t, s)
]
.

Observe that ξk,r,L(krn, krn) corresponds to the original ground state energy, whereas

ξk,r,L(krn, 0) corresponds to the ground state energy of the model composed of univari-

ate factors only.

Our lower bounds come from the following theorem.

Theorem 16. For any choice of p ∈ [0, 1],

ξk,r,L ≥ ξk,r,L(krn, krn) ≥ ξk,r,L(krn, 0)− r(k − 1)E [hc]− o(1) , (3.7)

where

hc = min
y1,...,yk

{u(y1, .., yk) +
k∑

i=1

bi(yi)} .

To prove this we will show that as s goes from t to 0, we can control the change

of ξk,r,L(t, s). Specifically,

Lemma 17. If t = (kr − ε)n, then for any ε > 0 and all 0 ≤ s ≤ t,

E [min{HL(σ|t, s− 1)}]− (k − 1)k−1E [hc] ≤ E [min{HL(σ|t, s)}] + o(1)

65

Proof of Theorem 16. Iteratively applying Lemma 17 so that we can increase the num-

ber of univariate factors from 0 to t = (kr − ε)n yields

E [min{HL(σ|t, 0)}]− rn(k − 1)E [hc] + εn(k − 1)k−1E [hc] ≤

E [min{HL(σ|t, t)}] + n · o(1) .

The expectation E [min{HL(σ|krn, 0)}] is upper bounded by E [min{HL(σ|t, 0)}] + εn.

To see this, couple the execution of the interpolation algorithm for the first t = (kr−ε)n

steps. In the worse case the next εn steps will make the ground state energy increase

by one each time, thus

E [min{HL(σ|krn, 0)}]− εn− rn(k − 1)E [hc] + εn(k − 1)k−1E [hc] ≤

E [min{HL(σ|t, t)}] + n · o(1) .

Note that E [min{HL(σ|t, t)}] is an increasing function of t since adding constrains can

only make the instances harder to satisfy i.e.,

E [min{HL(σ|krn, 0)}]− εn− rn(k − 1)E [hc] + εn(k − 1)k−1E [hc] ≤

E [min{HL(σ|krn, krn)}] + n · o(1) .

Multiply the above inequality by 1/n to obtain

ξk,r,L(krn, 0)− ε− r(k − 1)E [hc] + ε(k − 1)k−1E [hc] ≤

ξk,r,L(krn, krn) + o(1) .

Finally, taking the ε→ 0 limit gives the bound of Theorem 16

ξk,r,L(t, 0)− r(k − 1)E [hc]− o(1) ≤ ξk,r,L(krn, krn) .

66

Proof of Lemma 17. Let HL(σ|t − 1, s − 1) denote the energy function resulting from

executing t − 1 steps of the algorithm where t − (s − 1) of such steps correspond to

adding a univariate factor. The key observation is that HL(σ|t, s − 1) and HL(σ|t, s)

can be obtained from HL(σ|t−1, s−1) by executing an additional step of the algorithm:

HL(σ|t, s−1) corresponds to the processing of a con element and HL(σ|t, s) corresponds

to the precessing of a uni element. We will show that conditional on any realization of

H0 of HL(σ|t− 1, s− 1), we have

E [min{HL(σ|t, s− 1)}|H0]− (k − 1)k−1E [hc] ≤ E [min{HL(σ|t, s)}|H0] + o(1) , (3.8)

that is, the proof reduces to comparing the effect of adding with probability 1/k a single

constraint to adding a single univariate factor–exactly as in the entropic interpolation

method.

The proof of 3.8 is problem specific. Next we prove it for random k-SAT and

random Max-k-Lin-2. For all other random CSPs with binary domains, the proof is

very similar.

3.3 Applying Energetic Interpolation to Random CSPs

Below we give the proofs of (3.8) for random k-SAT and random Max-k-Lin-2.

67

3.3.1 Random k-SAT

Let C∗ ⊆ {0, 1}n be the set of optimal assignments in H0. A variable x is

frozen if its value is the same in all optimal assignments. The processing of a c symbol

will increase the value of the minimum by at most 1 only if the following two conditions

hold: 1) a new random clause is added, which occurs with probability 1/k, and 2)

all the literals appearing in the new clause correspond to frozen variables with signs

opposite to the frozen value. By the principle of deferred decisions, we can think of

the permutation π as generated on-the-fly, i.e., as we need occurrences to consume.

Therefore, if the number of remaining occurrences is g(n) = Ω(n) and z denotes the

fraction of them that are associated with frozen variables corresponding to H0, then,

since the variables are selected without replacement, the probability of 2) is

2−k
k−1∏
i=0

z · g(n)− i
g(n)− i

= 2−k
k−1∏
i=0

(z − i

g(n)
)(1− i

g(n)
)−1 .

The Taylor series expansion of (1− i/n)−1 at infinity is 1+ i
n + i2

n2 + . . . , thus the above

expression reduces to

2−kzk +O(
1
n

) .

Thus, the change in the ground state energy is given as follows:

E [min{HL(σ|t, s)}|H0]−min{H0} = k−12−kzk +O(
1
n

) .

Similarly, the processing of a u symbol will increase the value of the minimum

by 1 if 1) the chosen literal corresponds to a frozen variable and 2) the variable takes

the opposite of its frozen value in order to minimize the new factor ĥ(x). Thus, the

68

expected change is

E [min{HL(σ|t, s− 1)}|H0]−min{H0} = 2−kpk−1z .

Finally,

E [hc] = E

[
min

y1,...,yk

{u(y1, .., yk) +
k∑

i=1

bi(yi)}

]
= 2−kpk .

By combining the above equations and adding −(k − 1)k−12−kpk, we get

E [min{HL(σ|t, s− 1)}|H0]− (k − 1)k−12−kpk − E [min{HL(σ|t, s)}|H0]

= k−12−k
(
kpk−1z − zk − (k − 1)pk

)
+O(1/n)

≤ O(1/n) ,

since the polynomial F (x, p) = xk−kpk−1x+(k−1)pk ≥ 0 for all 0 ≤ x, p ≤ 1.

To see this last statement, note that (i) F (0, p), F (1, p), F (x, 0), F (x, 1) ≥ 0 and (ii) the

derivative of F with respect to p is 0 only when p = x, in which case F (x, x) = 0.

3.3.2 Random Max-k-Lin-2

In the Max-k-Lin-2 problem, the goal is to maximize the number of satisfied

linear equations mod 2, where each equation has exactly k variables. The constraints

in the Max-k-Lin-2 problem are chosen uniformly from the set of all 2nk possible boolean

equations on n variables, i.e., the k variables are chosen at random with replacement

and the required parity is equally likely to be 0 or 1. Let C∗ ⊆ {0, 1}n be the set of

optimal assignments in H0. A variable x is frozen if its value is the same in all optimal

assignments. The processing of a c symbol will increase the value of the minimum by at

69

most 1 only if the following three conditions hold: 1) a new Boolean equation is added,

which occurs with probability 1/k, 2) all the literals appearing in the new random factor

correspond to frozen variables, and 3) the parity of the frozen variables is different from

the one required by the new equation. As in the proof for random k-SAT above, if

the number of remaining literals is Ω(n) and z denotes the fraction of them that are

associated with frozen variables corresponding to H0, then

E [min{HL(σ|t, s)|H0]−min{H0} = k−12−1zk +O(1/n) ,

where the last term is due to the fact that we are selecting without replacement. Sim-

ilarly, the processing of a c symbol can increase the value of the minimum by 1 if the

chosen literal corresponds to a frozen variable and the variable must take the opposite

of its frozen value to minimize the added factor ĥ(x). Thus, the expected change is

given by

E [min{HL(σ|t, s− 1)}|H0]−min{H0} = 2−1pk−1z .

Finally,

E [hc] = E

[
min

y1,...,yk

{u(y1, .., yk) +
k∑

i=1

bi(yi)}

]
= 2−1pk .

Combining the above equations and adding −(k − 1)k−12−1pk, we get

E [min{HL,t,s−1(σ)}|H0]− (k − 1)k−12−kpk − E [min{HL,t,s(σ)}|H0]

= k−12−1
(
kpk−1z − zk − (k − 1)pk

)
+O(1/n)

≤ O(1/n) ,

where the r.h.s. of the equality entails the same polynomial as for random k-SAT.

70

3.4 Computing Explicit Energetic Interpolation Bounds

for k-SAT

In this section, we compute the energetic interpolation bound for standard

random k-SAT, that is, for the case in which the degree distribution of each variable is

given by an independent Poisson random variable with mean rk. Applying Theorem 13,

we get that

ξk,r,L(0) = lim
n→∞

n−1E
[

min
σ∈Dn

HL(σ|krn, 0)
]

= lim
n→∞

n−1E

min
σ∈Dn

n∑
i=1

di∑
j=1

ĥi,j(xi)

 ,

where the di’s are independent Poisson random variables with mean rk. Since all the

variables are independent of each other, the minimum can be computed one variable

at a time. Moreover, the expected value is the same for all variables because they are

equally distributed. Thus, the above expression reduces to

ξk,r,L(0) = E

 min
x∈{0,1}

 s∑
j=1

ĥj(x)

 , (3.9)

where s is a Poisson random variables with mean kr, and the functions ĥj(·) are random

functions in {I0, I1, I∗} with Pr(ĥj(·) = I1) = Pr(ĥj(·) = I0) = 2−kpk−1.

Let l0, l1, and l∗ denote the number I0, I1, and I∗ functions respectively among

the ĥj(·) functions inside the summation of equation (3.9). Conditional on the value

of s, the random vector (l0, l1, l∗) is distributed as a multinomial random vector and,

71

therefore,

ξk,r,L(0) =
∞∑

x=0

x∑
l0=0

x−l0∑
l1=0

min{l0, l1} × Poi(kr, x)Multi(l0, l1, x− l0 − l1) ,

where Multi(·, ·, ·) denotes the multinomial density function.

Changing the limits of all summations to infinity does not change the value

of ξk,r,L(0) since Multi(·, ·, ·) evaluates to zero for negative numbers, hence, we can

interchange the order of the summations to get

ξk,r,L(0) =
∞∑

l0=0

∞∑
l1=0

min{l0, l1} ×
∞∑

x=0

Poi(kr, x)Multi(l0, l1, x− l0 − l1) .

The last equation can be simplified by summing out the randomness in the Poisson

random variable. The result is that l0 and l1 become two independent Poisson random

variables with mean k
2k rp

k−1. Thus,

ξk,r,L(0) =
∞∑

l0=0

∞∑
l1=0

min{l0, l1} × Poi
(
k

2k
rpk−1, l0

)
× Poi

(
k

2k
rpk−1, l1

)
,

i.e., ξk,r,L(0) is the expected value of the minimum of two independent Poisson random

variables l0, l1 with mean λ = k
2k rp

k−1. Consequently, the bound becomes

ξk,r,L ≥ E [min{l0, l1}]−
(k − 1)

2k
rpk . (3.10)

Finally, we note that

E [min{l0, l1}] =
∞∑
i=0

i

2Poi(λ, i)

1−
i−1∑
j=0

Poi(λ, j)

− (Poi(λ, i))2

 . (3.11)

To compute a rigorous lower bound for (3.11), one now simply truncates the sum at any

desired level of accuracy.

72

Chapter 4

Energy Interpolation Bounds for

F2,3(n, ε, ∆)

The energetic interpolation method1 can be naturally extended to random

CSPs composed of clauses of different sizes either in its Poisson or in its combinatorial

version. The key idea is that in both types of proofs it is possible to compare the

change in the ground state energy resulting from adding a new random constraint and

k times adding a new univariate factor for any current energy function H0. This makes

it possible to interpolate independently the 2 and 3 clauses. In this chapter, we show

how to apply this generalization for F2,3(n, ε,∆) formulas using the Poisson version of

the proof. Recall that F2,3(n, ε,∆) denotes a random CNF formula over n variables

consisting of (1 − ε)n random 2-CNF clauses and ∆n random 3-CNF clauses. As we

discussed in Chapter 1, bounds for the satisfiability of F2,3(n, ε,∆) immediately imply

1The entropic interpolation method can be extended as well using the same ideas.

73

exponential lower bounds for myopic dpll algorithms on random 3-CNF satisfiable–with

density smaller than known lower bounds for the satisfiability threshold–formulas.

As in Chapter 2, we modify the random model F2,3(n, ε,∆) by ’poissonizing’

the total number of clauses of each size. In particular, let F2,3(n, ε,∆) denote a random

CNF formula over n variables consisting of m2 random 2-CNF clauses and m3 random

3-CNF clauses, , where m2 is a Poisson random variable with mean E[m2] = (1 − ε)n

and m3 is a Poisson random variable with mean E[m3] = ∆n. Thus, the energy function

is now

H2,3(σ|n, ε,∆) = H2(σ|n, 1− ε) +H3(σ|n,∆) .

Similarly, the interpolation function is the sum of the two independent interpolation

functions corresponding to k = 2 and k = 3, i.e.,

H2,3(σ|n, ε,∆, t) = H2(σ|n, 1− ε, t) +H3(σ|n,∆, t) . (4.1)

Letting

ξε,∆(t) = lim
n→∞

n−1E
[

min
σ∈{0,1}n

H2,3(σ|n, ε,∆, t)
]
, (4.2)

the analogue of Theorem 10 for random mixtures of 2- and 3-clauses is the following:

Theorem 18. For every value of p ∈ [0, 1],

ξε,∆ ≥ ξε,∆(0)− 1
4
(1− ε)p2 − 1

4
∆p3 . (4.3)

Proof. As with Theorem 10, the joint probability distribution implicit in the expec-

tation of ξε,∆(t) can be written as the product of Poisson random functions, due to

the independence among the random variables appearing in H2,3(σ|n, ε,∆, t). Now, the

74

derivative with respect to t gives rise to two independent set of equations similar to

the ones in (2.14) and (2.15) for k = 2 and k = 3, where the base energy function is

H2,3(σ|n, ε,∆, t). Since all the relevant properties of the mixture are captured by its

set of frozen variables, the theorem follows simply by applying the proof of (2.8) in

Theorem 10 twice.

4.1 Explicit Computation of the Bound

We conclude this chapter by computing explicit bounds for the r.h.s. of equa-

tion (4.3). In particular, we show that ξε,∆ > 0 for ε = .0001 and ∆ = 1.0001, thus

proving

Theorem 19. Let F be a random CNF formula on n variables with (1 − ε)n random

2-clauses, and (1 + ε)n random 3-clauses. W.h.p. F is unsatisfiable for ε = 10−4.

The computation of ξε,∆(0) is very similar to its analogue in Section(3.4).

ξε,∆(0) = lim
n→∞

n−1E
[

min
σ∈{0,1}n

H2,3(σ|n, ε,∆, 0)
]

= lim
n→∞

n−1E

 min
σ∈{0,1}n

 n∑
i=1

k2,i∑
j=1

ĥ2,i,j(xi) +
k3,i∑
j=1

ĥ3,i,j(xi)


= lim

n→∞
n−1E

 n∑
i=1

min
xi∈{0,1}

k2,i∑
j=1

ĥ2,i,j(xi) +
k3,i∑
j=1

ĥ3,i,j(xi)


= lim

n→∞
n−1

n∑
i=1

E

 min
xi∈{0,1}

k2,i∑
j=1

ĥ2,i,j(xi) +
k3,i∑
j=1

ĥ3,i,j(xi)

 ,

where the k2,i’s and the k3,i’s are Poisson random variables with means 2(1−ε) and 3∆,

respectively, as defined in (4.1). Note that the n expectations in the above summation

75

are identical, thus

ξε,∆(0) = E

 min
x∈{0,1}

 s2∑
j=1

ĥ2,j(x) +
s3∑

j=1

ĥ3,j(x)

 , (4.4)

where s2 and s3 are Poisson random variables with means 2(1− ε) and 3∆, respectively;

and the functions ĥ2,j(·) and ĥ3,j(·) are i.i.d. copies of the function ĥ(·) in (3.4) for

k = 2 and k = 3, respectively, i.e., they are random functions in {I0, I1, I∗} with

Pr(ĥk,j(·) = I1) = Pr(ĥk,j(·) = I0) = 2−kpk−1.

Let lk,0, lk,1, and lk,∗ denote the number of I0, I1, and I∗ functions, respectively

among the ĥk,j(·) functions inside the summation in (4.4). Conditional on the value of

sk, the random vector (lk,0, lk,1, lk,∗) is distributed as a multinomial random vector with

sk trials and probability vector (2−kpk−1, 2−kpk−1, 1− 2−k+1pk−1), therefore,

ξε,∆(0) =
∞∑

x=0

∞∑
y=0

x∑
l2,0=0

x−l2,0∑
l2,1=0

y∑
l3,0=0

y−l2,0∑
l3,1=0

min{l2,0 + l3,0, l2,1 + l3,1} ×

Poi(2(1− ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1)×

Poi(3∆, y)Multi(l3,0, l3,1, y − l3,0 − l3,1) ,

where Multi(·, ·, ·) denotes the multinomial density function.

Changing the limits of all summations to infinity, does not change the value

of ξε,∆(0), since Multi(·, ·, ·) evaluates to zero for negative numbers, hence, we can

76

interchange the order of the summations to get

ξε,∆(0) =
∞∑

l2,0=0

∞∑
l2,1=0

∞∑
l3,0=0

∞∑
l3,1=0

min{l2,0 + l3,0, l2,1 + l3,1} ×

∞∑
x=0

Poi(2(1− ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1)×

∞∑
y=0

Poi(3∆, y)Multi(l3,0, l3,1, y − l3,0 − l3,1) .

The last equation can be simplified by summing out the randomness in the Poisson

random variables. The result is that l2,0 and l2,1 become two independent Poisson

random variables with mean 1
2(1− ε)p, that is,

∞∑
x=0

Poi(2(1− ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1) =

Poi((1− ε)p/2, l2,0)× Poi((1− ε)p/2, l2,1) .

Similarly, l3,0 and l3,1become two independent Poisson random variables with mean

3
8∆p2. Moreover, letting

λ =
1
2
(1− ε)p+

3
8
∆p2 ,

we see that l0 = l2,0 + l3,0 is itself a Poisson random variable with mean λ, since the

sum of two independent Poisson random variables with means λ1 and λ2 is a Poisson

random variable with mean λ = λ1 + λ2. Thus,

ξε,∆(0) =
∞∑

l0=0

∞∑
l1=0

min{l0, l1} × Poi (λ, l0)× Poi (λ, l1) ,

i.e., ξε,∆(0) is the expected value of the minimum of two independent Poisson random

variables l0, l1 with mean λ. Consequently, the bound of Theorem 18 becomes

ξε,∆ ≥ E [min{l0, l1}]−
1
4
(1− ε)p2 − 1

4
∆p3 . (4.5)

77

Finally, we note that

E [min{l0, l1}] =
∞∑
i=0

i

2Poi(λ, i)

1−
i−1∑
j=0

Poi(λ, j)

− (Poi(λ, i))2

 . (4.6)

Thus, to compute lower bounds for (4.5) it is enough to truncate (4.6) at any

value of i. In particular, by letting ε = 0.0001, ∆ = 1.0001 and i = 50, we get that for

p = 1.2 · 10−3 the truncated version of (4.5) is greater than 0, implying that a random

CNF formula with 0.9999n 2-clauses and 1.0001n 3-clauses is unsatisfiable w.h.p.

78

Chapter 5

Conclusions and Future Work

In this thesis, we used the interpolation method to prove unsatisfiability bounds

for random CSPs. The core idea of the interpolation method is to set up a process that

transforms a complex quantity into a manageable quantity in a controlled way. Franz

and Leone [24] used the free entropy density as the main quantity and derived upper

bounds for random k-SAT and random k-XOR-SAT that coincide with the ones derived

using the cavity method from statistical physics. In particular, their RS cavity bounds

come from using the free entropy of a model where all variables are independent, as

the manageable quantity. However, it was difficult to compute explicit rigorous bounds

due to the complexity of the resulting expressions. More precisely, the RS bound is

a functional of a probability density γ of a single variable. The bound is valid for all

possible densities γ, therefore, the best result is obtained by minimizing the functional

with respect to γ. Unfortunately, solving the optimization problem analytically proved

very difficult, which is the reason why physicists use stochastic numerical methods

79

instead. Although numerical methods gave ’reasonable’ explicit bounds for random 3-

SAT, they were not suited to manage the continuous transition of the fraction of frozen

variables present in models like the mixture model composed of random CNF formulas

of sizes 2 and 3..

We applied the interpolation method directly to the energy function to avoid

the analytical difficulties of the entropic interpolation method by explicitly modeling the

propagation of frozen variables. This allowed us to compute new rigorous upper bounds

for the satisfiability threshold of random formulas composed of (1 − ε)n random 2-

clauses and ∆n random 3-clauses in which we where able to prove that for ∆ > 1.0001

there exist an ε > 0 such that the resulting mixtures are unsatisfiable w.h.p.. This

improvement over the old result in which 1.0001 is replaced by 2.28 helped us to prove

exponential lower bounds on the running time of DPLL algorithms on random 3-CNF

formulas at densities that can be solved with positive probably by existing algorithms.

Two key elements in the application of the entropic interpolation method to

random CSPs are 1) that the proof reduces to establishing a bound in the change of

the free entropy when a new constraint is added versus k times the change when a

new univariate factor is added and 2) that the proof of such a bound holds for any

arbitrary initial energy function H0. Identifying these two points helped us to apply

the entropic interpolation method to random k-hyper graph coloring, which is the first

time that the method is successfully applied to models with non-binary variables. But

more importantly, it helped us to extend both the entropic and the energetic interpo-

lation method to random CSPs with an arbitrary sparse degree sequence. We hope

80

this expands the applicability of the method, particularly, to CSPs that result from

preprocessing standard random CSPs.

5.1 Towards Better Satisfiability Upper Bounds

In principle, we should be able to produce better bounds with the interpolation

method by increasing the complexity of the object towards which we want to interpolate.

In all versions of the interpolation method studied in this thesis we used quantities based

on a model in which all the variables are independent of each other. A natural increase

in complexity arises from choosing a model that is a convex combination of independent

models. In the context of the entropic interpolation method, the resulting bounds using

this new model coincide with the 1-RSB cavity bounds when the appropriate convex

combination is chosen[24, 47]. In this case, the resulting expressions are functionals of

a distribution over the set of all possible single variable distributions, which makes the

explicit computation of bounds very difficult, even using numerical methods only. We

were also able to prove energetic interpolation bounds using a convex combination of

independent models. However, we could not find a convex combination that would give

better bounds than the ones presented in this thesis.

From a message passing point of view (see Appendix (A)), the 1-RSM cavity

method can be seen as the result of applying Belief Propagation to the factor graph

that represents the fixed point equations of Belief Propagation when applied to

the factor graph of the original CSP. In this new factor graph, the variables are the

81

messages and the factors enforce that the Belief Propagation fixed point equations

are satisfied and also give each fixed point a weight exponential to its free entropy. The

idea is to capture the existence of multiple Belief Propagation fixed points. However,

even running Population Dynamics in this new factor graph is very inefficient. A

more efficient approach is to apply Belief Propagation to the factor graph that

represents the Warning Propagation fixed point messages instead [42]. From using

this procedure, it is possible to estimate the number of Warning Propagation fixed

points at each energy density i.e., if the results were rigorous, then the satisfiability

threshold could be determined by finding the density at which the number of fixed

points at zero energy goes from a positive number to 0. Using this method, it was

estimated that the satisfiability threshold for random 3-SAT is 4.267 [40]. Also, our

own calculation using this method gives that ∆c = 2/3, where ∆c is defined as the

largest ∆ such that for every ε > 0, a mixture of (1− ε)n 2-clauses and ∆n 3-clauses is

satisfiable w.h.p. Recall that in [6] the authors proved that 2/3 ≤ ∆c < 2.28... Therefore,

if the method is right then it would imply that 2/3 is tight. We believe the method

produces correct upper bounds and our current research is focused on formalizing it

using the interpolation method.

82

Appendix A

The RS Cavity Method

In this chapter we discuss the RS cavity method approximation of the free

entropy density. We begin by describing the RS cavity method approximation of the

free entropy density of a single instance, then, we assume that the instance is taken

from a random ensemble and analyze its average behavior as the number of variables

tends to infinity.

A.1 Computation of the Free Entropy of Single Instances

Let I(X,C) denote a CSP instance with set of constraints C and set of variables

X. For notational simplicity, we assume that all variables x ∈ X share the same1 finite

domain D. We will use xa to denote the set of variables that appear in constraint a ∈ C

and ∂x to denote the set constraints in which variable x ∈ X participates. We will

write the energy function H(σ|I) as the sum of the |C| functions ua(xa), one for each
1The more general case in which each variable has its own domain can also be analyzed using the

methods described here.

83

constraint a ∈ C, i.e. ua(xa) = 1 if constraint a is unsatisfied and 0 otherwise. For

example, for k-SAT, we take the domain of the variables to be {+1,−1}n and for each

k-clause a, with set of variables xa = {xa,1, . . . , xa,k}, we let

ua(xa) =
k∏

j=1

1 + Ja,jxa,j

2
, (A.1)

where Ja,j ∈ {+1,−1} represents the sign of literal xa,j in the clause: +1 if the literal

is negated and −1 otherwise. Similarly, for k-uniform hypergraph coloring, k = 2 being

graph coloring, each constraint is

ua(xa) = 1xa,1=xa,2=...=xa,k
, (A.2)

where 1E is the indicator function for the event E .

Recall that in the statistical physics approach, the set of all assignments of a

CSP is endowed with the Gibbs probability measure

P (σ|β, I) =
1
Z
e−βH(σ|I) , (A.3)

whereH(σ|I), known as the energy function or hamiltonian, counts the number

of unsatisfied constraints in the instance I under the assignment σ, β > 0 is a constant,

and Z, known as the partition function, is the constant that makes P (σ|β, I) a valid

probability density,

Z(β) =
∑

σ∈Dn

exp(−βH(σ|n, r)) .

Observe that the Gibbs distribution P (σ|β, I) factorizes according to the constraints in

C, that is,

P (σ|β, I) =
1
Z

∏
a∈C

exp(−βua(xa)) .

84

To lighten the notation, we will sometimes use ψa(xa) to denote the factor exp(−βua(xa)),

hence,

P (σ|β, I) =
1
Z

∏
a∈C

ψa(xa) .

A lot of effort has been put into developing tools to analyze probability dis-

tributions like P (σ|β, I), that is, probability distribution that factor according to a

bipartite graph where the factor vertices are connected to a small number of variables.

The idea is to take advantage of the independence relations imposed by the graph in

order to develop efficient algorithms for solving the following inference problems:

1. Compute the marginal distribution P (A|β, I) over a particular subset A ⊂ X of

the variables in the CSP i.e.

P (A|β, I) =
1
Z

∑
X\A

∏
a∈C

ψa(xa) .

Note that if these marginals can be computed, then conditional distributions of

the form PI(A|B, β, I) for a disjoint subset A and B can be computed as well,

since P (A|B, β, I) = P (A,B|β, I)/P (B|β, I).

2. Computing the maximum or mode of the joint density

max
σ∈Dn

{P (σ|β, I)}

and the assignment σ∗ that achieves it

σ∗ = arg max
σ∈Dn

{P (σ|β, I)} ,

i.e. find the assignment that minimizes the function H(·|I).

85

3. Compute the free entropy

F (β|I) = log

(∑
σ

∏
a∈C

ψa(xa)

)
,

Among the most successful approaches at solving the above problems are the Markov

chain Monte Carlo (MCMC) framework [28, 48] and message passing type of algorithms

[38, 41]. The latter, as we show in the next section, can solve the problems exactly

when the underlying factor graph is a tree, but when applied to general graphs message

passing algorithms are used just as approximations. In [51] it was shown that many

message passing algorithms can be seen as a variational method. Still, in the general

case, the computations can not be used to give rigorous upper/lower bounds of the

desired quantities.

A.2 Belief Propagation and the Computation of the Free

Entropy of Arbitrary Instances

Consider the probability distribution

P (σ|β, I) =
1
Z

∏
a∈C

ψa(xa) .

defined in the previous section. The Belief Propagation algorithm was designed to

compute the marginal distribution of each of the variables in P (·) when its associated

factor graph is a tree[36]. The solution is based on dynamic programing over a tree

i.e. to compute the marginal distribution of a variable, we first root the tree at such

variable and for each edge of type a→ x (from factor node to variable node) we define

86

the subproblem v̂a→x(x), or message in the language of Belief Propagation, as the

marginal distribution of variable x for the factor tree Ta→x composed of the sub-tree

under and including the edge a → x (see Figure A.1). Similarly for an edge of type

y → a (from variable node to factor node) we define the message vy→a(y) as the marginal

distribution of variable y for the sub-tree Ty rooted at variable node y (see Figure A.1).

Both messages can be computed in constant time (O(k)) from the messages coming

from its children. In the following V (T) and C(T) denote the set of variables and

constraints respectively contained in the tree T . By definition, the message (marginal)

from constraint to variable is computed by summing out all the variables in V (Ta→x)\x:

v̂a→x(x) ∼=
∑

V (Ta→x)\x

 ∏
c∈C(Ta→x)

ψc(xc)

 .

Observe that V (Ty) ∩ V (Tz) = ∅ for each pair of variables y, z ∈ xa\x, therefore, the

above summation can be organized as follows:

v̂a→x(x) ∼=
∑
xa\x

ψa(xa)
∏

y∈xa\x

 ∑
V (Ty)\y

 ∏
c∈C(Ty)

ψc(xc)


=

∑
xa\x

ψa(xa)
∏

y∈xa\x

vy→a(y) .

In other words the joint density P (xa\x) can be written in product form because the

variables in xa\x are independent of each other when the constraint a is removed from

the tree. The message from variable x to factor a can be computed similarly resulting

in the following expression:

vx→a(x) ∼=
∏

b∈∂x\a

v̂b→x(x) .

87

c

a

b

x

v̂a→x(x)

T a
→

x

y

vy→a(y)

Ty

Figure A.1: Messages in the Belief Propagation algorithm.

Finally, the marginal of the variable node at the root is proportional to the product of

the probabilities computed by its children factor nodes.

In order to compute all the marginals we could run the algorithm n times,

however, it is possible to compute the marginals more efficiently by noting that trees

rooted at different variables share some directed subtrees i.e. the message associated

with those subtrees could be computed only once. One way to implement this idea is by

viewing the messages in dynamic programing as variables of a discrete time dynamical

system whose dynamics is governed in the same way as the computation of the messages

in dynamic programming. More precisely, there are, at iteration t, two messages v(t)
a→x

and v̂
(t)
x→a for each edge (a, x) in the factor graph and its dynamics is given by the

following equations:

v(t+1)
x→a (x) ∼=

∏
b∈∂x\a

v̂(t)
a→x(x) (A.4)

88

v̂(t)
a→x(x) ∼=

∑
xa\x

ψa(xa))
∏

y∈xa\x

v(t)
y→a(y) (A.5)

A Belief Propagation fixed point of these equations is the set of t-independent

messages va→x and v̂x→a which satisfy the previous equations. In the case of a tree

factor graph the correctness of the dynamic programming algorithm suffices to prove

the convergence of the dynamical system.

Theorem 20. (Belief Propagation is exact on trees [41]) Consider a tree factor

graph with diameter2 t∗. Then

1. Irrespective to the initial conditions, the Belief Propagation update rules con-

verge after at most t∗ iterations. In other words, for any edge (x, a) and any t > t∗,

we have v(t)
a→x = va→x and v̂(t)

x→a = v̂x→a.

2. The fixed point equations provide the exact marginals

P (x) ∼=
∏

a∈∂x

v̂a→x(x)

Once the Belief Propagation has converged, the free entropy can by computed using

the fixed point messages v and v̂ according to the following equation:

F (β|I) = F (β|v, v̂) =
∑
a∈C

Fa(v) +
∑
x∈V

Fx(v̂)−
∑

(x,a)∈E

Fx,a(v, v̂) (A.6)

where

Fa(v) = log(
∑
xa

ψa(xa)
∏

y∈xa

vy→a(y))

2The diameter of a graph is the length of the greatest shortest path in the graph [20].

89

Fx(v̂) = log(
∑

x

∏
b∈∂x

v̂b→x(x))

Fx,a(v, v̂) = log(
∑

x

vx→a(x)v̂a→x(x)) ,

and E denotes all the of edges in the factor graph associated to I i.e. (x, a) ∈ E

iff x ∈ xa. The main idea behind the derivation of Eq. A.6 is that the probability

distribution of a tree factor graph can be expressed as the product of local marginals as

the following theorem shows.

Theorem 21. In a tree factor graph T , the joint probability distribution P (σ) of all the

variables can be written in term of the marginals P (x∂a) and P (x) as follows:

P (σ) =
∏
a∈C

P (x∂a)
∏
x∈V

P (x)1−|∂x| .

Therefore, the free entropy of a tree factor graph can be written in terms of

local marginals too, which in turn can be expressed in terms of the fixed point messages.

For a complete derivation see [41].

Note that the Belief Propagation equations are properly defined even when

the factor graph is not a tree. Thus, one could try to approximate the marginals of a non-

tree factor graph using the same iterative procedure. The hope is that the joint densities

P (xa\x) of the graph obtained after removing a factor node can be approximated by

writing the joint density in product form. Indeed, this is what happens in locally like

tree CSPs until long range correlations start to emerge.

The behavior of Belief Propagation and other message passing algorithms

on factor graphs with cycles can be understood in the context of variational methods

90

[51]. The idea is to express the free entropy as the solution of an optimization problem.

Then, the optimization problem can be relaxed either by approximating the function to

be optimized or by approximating the set over which the function is being optimized.

Yedida et. al. [52] were able to show that Belief Propagation can be seen as a

Lagrangian method applied to an optimization problem in which both the function to be

optimized and the set over which the optimization takes places are being approximated.

Unfortunately, a consequence of those approximations is that there is no guarantee of

convergence, and the Belief Propagation algorithm can converge to one of possibly

many different fixed points. Also, there is the possibility that some of the fixed points

do not correspond to a valid probability distributions. All in all, this prevents the use

of the computations made by Belief Propagation as valid upper/lower bounds.

In summary, the RS computation of the free entropy consist of iterating equa-

tions A.4 and A.5 until convergence and then use Eq. A.6 to compute the free entropy.

This computation is based on the following assumptions:

1. Belief Propagation computes the right ’local’ marginals, namely, it computes

the right values of the single variable marginals P (x) and the k-variable marginals

P (xa) associated with the k-variables that appear in each one of the factors.

2. The free entropy can be expressed as in Eq. (A.6) i.e. as the free entropy of a tree

factor graph.

91

A.3 Entropic RS Approximation of the Free Entropy Den-

sity

We described the RS computation of the free entropy for an arbitrary in-

stance. Now consider the random family Ik(n, rn) of CSP instances formed by picking

m = rn constrains uniformly, independently and with replacement from the set Ck,n

composed of all possible constraints of k variables that can be built from n variables.

For random k-SAT Ck,n = Bk,n denotes the set of all possible disjunctions of k distinct,

non-complementary literals from its variables, and for random hyper-graph coloring Ck,n

is the set of all possible k-element subsets of the set of n vertices.

When the instance comes from the family Ik(n, rn) the free entropy becomes

a random object and we are interested in the asymptotic growth of its expected value

relative to the number of variables

fk(β|r) = lim
n→∞

1
n

E [Fk(β|n, r)] , (A.7)

because an negative upper bound for fk(β|r) implies that r is an upper bound for the

satisfiability threshold of the random CSP under study (see Section 1.3).

The RS cavity method approach to estimate the free entropy density is based

on the asymptotic analysis of the distribution γ(t) of the Belief Propagation message

passing at iteration t through a random variable-to-factor edge of the factor graph of a

random CSP–recall that a message is itself a distribution on D i.e. γ(t) is a distribution

over the possible distributions on D–In the case of an arbitrary instance, the message

92

Figure A.2: Neighborhood or radius 1 for the edge x→ a.

passing through an edge e = (x, a) at iteration t depends only on the initial variable-to-

factor messages coming out from variable nodes connected to x through a directed path

whose number of factor nodes is at most t (Figure A.2 shows an example with t = 1).

We define the neighborhood of directed edge e = (x, a) of radius t, denoted by BI(e, t),

as the sub-graph of I composed of all the variable nodes at a distance–the distance is

the number of factor nodes in a directed path between two variable nodes–at most t to

x and all the factor nodes connected only to those variables.

The RS computation approximates γ(t) with the distribution of the fixed point

messages of a random edge of an infinite random factor tree with the same local structure

as the family Ik(n, rn). The local structure of radius t of a random edge x → a in the

random infinite tree is described using the following generative procedure: To build a

neighborhood of radius one, generate l new random factor nodes and connect them to

variable node x, where l is a random variable with the same distribution as the random

93

variable describing the number of factor nodes adjacent to a random edge x → a in

the Ik(n, rn) model i.e. a Poisson random variable with mean rk. Then for each new

factor node generate k − 1 new variable nodes and attach them to it. To generate a

radius two neighborhood apply the same procedure to the variable nodes just generated

in the previous step. Follow this procedure recursively to obtain a neighborhood of any

radius t. One consequence of this recursive characterization is that the local structure

of all the edges in the infinite tree has the same distribution. This allows us to express

the distribution of the fixed point message flowing through a random edge x → a as

a transformation of the BP fixed point equations into distributional equations. More

precisely, γ and γ̂ satisfy the following distributional equations

v(x) ∼=
∏
j≤l

v̂j(x) (A.8)

v̂(x) ∼=
∑

y1,...,yk−1

ψ(y1, ..., yk−1, x)
∏

j≤k−1

vj(yj) , (A.9)

if 1) v̂(·) has distribution γ̂ when {vj(·)}k−1
j=1 are i.i.d. random functions with

distribution γ and ψ(·) is the factor associated with a random constraint and 2) v(·)

has distribution γ when {v̂j(·)}lj=1 are i.i.d. random functions with distribution γ̂ and l

is a Poisson random variable with mean rk. It is very hard to solve these distributional

equations analytically, so one has to use numerical methods like the Population Dy-

namics algorithm [1]. Before describing the algorithm, we show how the free entropy

density looks like once one takes the expected value of Eq. A.6 with respect to the the

distributions γ and γ̂:

94

E[Fk(β|n, r)] = E[Fk(β|v, v̂)] =
∑
a∈C

E[Fa(v)] +
∑
x∈V

E[Fx(v̂)]−
∑

(x,a)∈E

E[Fx,a(v, v̂)] .

Since all the constraints in a Ik(n, rn) instance have the same distribution, then in the

n → ∞, the expected value E[Fa(v)] is the same for all but a finite set of constraints,

and similarly for the expectations E[Fx(v̂)] and E[Fx,a(v, v̂)]. Thus the RS free entropy

density is given by

f
(RS)
k (β|r) = f

(RS)
k (β|γ, γ̂)

= lim
n→∞

1
n

E[Fk(β|v, v̂)]

= rE[Fa(v)] + E[Fx(v̂)]− rkE[Fx,a(v, v̂)] , (A.10)

with

E[Fa(v)] = E

log(
∑

x1,...,xk

ψ(x1, . . . , xk)
k∏

j=1

vj(xj))


E[Fx(v̂)] = E

log(
∑
xi

l∏
j=1

v̂j(xj))



E[Fx,a(v, v̂)] = E

[
log(

∑
x

v(x)v̂(x))

]
,

where v(x) and {vj(·)}kj=1 are i.i.d. random functions with distribution γ, ψ(·) is the

factor associated with a random constraint, v̂(x) and {v̂j(·)}lj=1 are i.i.d. random func-

tions with distribution γ̂ and l is a Poisson random variable with mean rk. The above

95

expression for the free entropy density is the one commonly used for numerical compu-

tations like Population Dynamics, however, it can be further simplified by writing it

in terms of γ only. The resulting expression coincides with the rigorous bound obtained

using the entropic interpolation method of Section (2.1).

A.3.1 Population Dynamics Algorithm

The goal of the Population Dynamics algorithm is to generate sets of i.i.d.

samples from γ (and γ̂). To do so, it maintains at each iteration t, two sets γ(t)
PD and γ̂(t)

PD

of size nPD, which represent the current approximation of the algorithm. To improve

the estimate γ̂(t−1)
PD , the algorithm assumes that the current estimate γ(t−1)

PD is correct

and use it to sample a new set γ̂(t)
PD using equation A.9, then the set γ(t−1)

PD is updated

using the new estimate γ̂PD(t) and equation A.8. The hope is that, after a reasonable

number of iterations, this Markov Chain will give samples that correctly represent the

empirical distribution of γ and γ̂. The pseudo-code of the Algorithm is given below.

The inputs are the size of the populations nPD and the total number of iteration nT . We

use γ̂(t)
PD[i] and γ(t)

PD[i] to denote the i-th sample in the sets γ̂(t)
PD and γ(t)

PD respectively.

Figures A.3, A.4 and A.5 show the empirical distribution of γ obtained by

applying Population Dynamics to random 3-SAT for r = 0.1, r = 0.3 and r = 0.45

respectively. Note, that for small densities most of the probability mass is around 1/2,

but as more constraints are added the probability that a variable is biased towards either

0 or 1 increases i.e. more and more variables are forced to take a particular value in

order to satisfy all the constraints. It is important to mention that non of the samples

96

Algorithm 4 Population Dynamics

Input: nPD, nT ,

Initialize γPD(0)

for t = 1, ..., nT do

for i = 1, ..., nPD do

Draw s1, ..., sk−1 uniformly in {1, ..., nPD}

Draw a random contraint-function ψ(·)

Set γ̂(t)
PD[i](x) ≈

∑
y1,...,yk−1

ψ(y1, ..., yk−1, x)
∏

j≤k−1 γ
(t−1)
PD [sj](yj)

end for

for i = 1, ..., nPD do

Draw a random sample l from Poi(rk)

Draw s1, ..., sl uniformly in {1, ..., nPD}

Set γ(t)
PD[i](x) ≈

∏
j≤l γ̂

(t)
PD[sj](x)

end for

end for

return γ
(nT)
PD and γ̂(nT)

PD .

97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

γ
PD

(3,1.0), f
RS

=0.56

Figure A.3: Distribution γ obtained by Population Dynamics for Random 3-SAT
with r = 1.0, nPD = 8000 and nT = 3000.

used in the previous histograms correspond to a completely bias values of 0 or 1. Indeed,

any of those values would make Population Dynamics fail. A similar phenomenon

occurs for random 2-SAT as shown in figures A.6 and A.7. However, observe that the

mass around biased values for random 3-SAT is considerably bigger that for 2-SAT. This

suggest that if we increase the density then the fraction of biased values will change from

0 to a positive value disdcontinually for random 3-SAT and continuously for random

2-SAT. This has been proved rigorously for random 2-SAT [13] and there is substantial

experimental and non-formal evidence for random 3-SAT [12, 35, 40].

In the next section we show that any set of empirical distributions can be used

to give rigorous bounds for the free entropy density. The hope is that Population

Dynamics will provide distributions that will give “good” bounds.

98

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

γ
PD

(3,3.0), f
RS

=0.28

Figure A.4: Distribution γ obtained by Population Dynamics for Random 3-SAT
with r = 2.0, nPD = 8000 and nT = 3000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

γ
PD

(3,4.5), f
RS

=0.03

Figure A.5: Distribution γ obtained by Population Dynamics for Random 3-SAT
with r = 4.5, nPD = 8000 and nT = 3000.

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ
PD

(2,0.2), f
RS

=0.63

Figure A.6: Distribution γ obtained by Population Dynamics for Random 2-SAT
with r = 0.2, nPD = 8000 and nT = 3000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ
PD

(2,0.99), f
RS

=0.38

Figure A.7: Distribution γ obtained by Population Dynamics for Random 2-SAT
with r = 0.99, nPD = 8000 and nT = 3000.

100

Appendix B

Population Dynamics for random k-SAT

The first section contains the implementation details of Population Dynam-

ics for random k-SAT in the context of the entropic interpolation method.

Experimental Results for Random k-SAT

Below, we repeat the pseudocode of Population Dynamics for general ran-

dom CSPs–with constraints of size k– we introduced in section A.3.1. Note that only

line 5 is problem specific: in the case of random k-SAT, drawing a random constraint

function ψ(·) corresponds to picking the sign of the k literals in the clause, thus

ψ(xa) = exp (βua(xa))

= 1− (1− e−β)ua(xa)

= 1− (1− e−β)
k∏

j=1

1 + Ja,jxa,j

2
, (B.1)

where the Ja,j are binary random variables with uniform distribution on {±1}.

101

Algorithm 5 Population Dynamics

Input: nPD, nT ,

1: Initialize γPD(0)

2: for t = 1, ..., nT do

3: for i = 1, ..., nPD do

4: Draw s1, ..., sk−1 uniformly in {1, ..., nPD}

5: Draw a random contraint-function ψ(·)

6: Set γ̂(t)
PD[i](x) ≈

∑
y1,...,yk−1

ψ(y1, ..., yk−1, x)
∏

j≤k−1 γ
(t−1)
PD [sj](yj)

7: end for

8: for i = 1, ..., nPD do

9: Draw a random sample l from Poi(rk)

10: Draw s1, ..., sl uniformly in {1, ..., nPD}

11: Set γ(t)
PD[i](x) ≈

∏
j≤l γ̂

(t)
PD[sj](x)

12: end for

13: end for

14: return γ
(nT)
PD and γ̂(nT)

PD .

102

On the other hand, it is possible to optimize the code by taking advantage of

the specifics of the problem. In the general algorithm, every element of the population–a

sample message passing trough a random edge– is a vector of dimension equal to the

cardinality of the domain D of the variables minus one since the vectors correspond to

discrete probability densities i.e. the values have to sum to 1, so in the case of random

k-SAT we need to store only one value. We could choose to store either the value

corresponding to the input +1 or -1, however, as we will see, it is more convenient to

choose an alternative parametrization in which the value of γ(t)
PD[i] corresponds to the

value of x that unsatisfies the clause associated with the message.

With this parameterization, step 6 of the algorithm can be computed as follows:

first observe that when x takes the value that satisfies the random clause, then Eq. B.1

evaluates always to 1 and therefore the whole summation evaluates to 1 as well, since

the γ(t−1)
PD [s] are all probability densities; and when x unsatisfies the clause then Eq.

B.1 takes the value 1 for all values of the auxiliary variables with the exception of the

case where all the auxiliary variables yj unsatisfy the clause giving e−β as result, thus

the whole summation can be written as 1 minus the correction term
∏

j≤k−1 γ
(t−1)
PD [sj]

plus the correct value e−β
∏

j≤k−1 γ
(t−1)
PD [sj]. Finally the normalized value of γ̂PD[i] is

γ̂PD[i] =
1− (1− e−β)

∏
j≤k−1 γ

(t−1)
PD [sj]

2− (1− e−β)
∏

j≤k−1 γ
(t−1)
PD [sj]

.

Note that this reduces the complexity of the computation in step 6 from Θ(k2k−1) to

Θ(k).

For the computation of step 11, recall that the number of messages coming to

103

a random edge (x, c) in random k-SAT is given by a Poisson with mean rk. Each of

those messages come from a clause in which x can appear with the same sign as the one

in witch it appears in c with probability 1/2. In other words, lu ∼ Poi(rk/2) messages

in the computation in 11 come from clauses that don’t agree with c (with respect to x)

and ls ∼ Poi(rk/2) messages come from clauses that do agree with c. Thus,

γ
(t)
PD[i] =

∏lu
j=1 γ̂

(t)
PD[sj] ·

∏ls
j=1(1− γ̂

(t)
PD[sj])∏lu

j=1 γ̂
(t)
PD[sj] ·

∏ls
j=1(1− γ̂

(t)
PD[sj]) +

∏ls
j=1 γ̂

(t)
PD[sj] ·

∏lu
j=1(1− γ̂

(t)
PD[sj])

,

which also takes Θ(k) to compute.

104

Appendix C

The RS Replica Method

The RS replica method is another technique from statistical physics used to

approximate the free entropy density. In this section we give a brief overview of the

replica method with the objective of acquire a general idea of the method and can

be skipped. We do not give the complete derivation of the free entropy density of any

RCSP, rather in the next section we state the expression (without derivation) of the free

entropy density approximation for random k- and (2 + p)-SAT using this approach and

compare it with the one obtained using the cavity method. Then we proceed to explain

how Biroli et. al. [12] manipulated the expression to give a bound for the tri-critical

point of (2 + p)-SAT. The goal is either to mimic their approach using the expression

obtained using the cavity method or to establish a inequality relationship between the

two expressions.

The replica method is based on the idea that computing the expectation of

the j-th integer moment of a complex random variable is easier than computing the

105

expectation of other functions of the random variable like its logarithm. Thus, the

method uses equations that relate the expected value of the j-th moment to the expected

value of the function that needs to be computed, for example, the following relation

E[logZ] = lim
j→0

E[Zj]− 1
j

is used to compute the expected value of the free entropy. Notice that the

relation require us to treat n as real variable in order to take the limit. This is common

of the method and it is one of the things that makes it non rigorous. Another relation

frequently used to compute the expected value of the free entropy is

E[logZ] = lim
j→0

1
j

log(E[Zn]) .

C.1 Computing the j-th Moment of the Partition Func-

tion

The computation of the j-th moment will depend, of course, on the particular

system under study, however there are some aspects of the computation that can be

generalized. First note that Zj can be written as an j-fold sum

Zj =

(∑
σ

exp(−βH(σ|I))

)j

=
∑
σ1

· · ·
∑
σj

exp

(
−β

j∑
i=1

HI(σi)

)
.

The above expression is interpreted as the partition function of a new system, where a

configuration now consist of j assignments σ = (σ1, . . . , σj) with σi ∈ Dn and energy

106

function H(σ) =
∑j

i=1HI(σi). Observe that this new system consist of j independent

copies of the original one. Each of those copies is known as replica.

By using the independence between the constraints in HI(·), the expected

value of Zj is

E
[
Zj
]

=
∑
σ1

· · ·
∑
σj

E

[
exp

(
−β

j∑
i=1

HI(σi)

)]

=
∑
σ1

· · ·
∑
σj

E

[
exp

(
−β

m∑
t=1

j∑
i=1

θt(σi)

)]

=
∑
σ1

· · ·
∑
σj

(
E

[
exp

(
−β

j∑
i=1

θ(σi)

)])m

. (C.1)

The computation of the expectation in the above equation depends, for many

RCSPs including random k-SAT, on the vector of replicas σ = (σ1, . . . , σj) only through

the overlap function Q : 2[j] → {1, . . . , n} that counts the number of variables in which

a subset of the replicas agrees. Thus, we can rewrite the j-fold sum in terms of all the

possible overlap functions Q.

E[Zj] =
∑
Q

Nn(Q) exp(rn · f(Q, β)) ,

whereNN (Q) denotes the number of configurations with overlap functionQ and exp(f(Q, β))

denotes the expectation inside the parenthesis of Eq (C.1) for a given overlap function

Q. The number of valid overlap functions is at most n2j
whereas the number of possible

number of configurations for the replicas is 2nj , thus we expect the function Nn(Q) to

satisfy a large deviation principle: Nn(Q) .= exp(n · s(Q)). With these considerations,

107

the j-th moments is written as

E[Zj] =
∑
Q

exp(n(r · f(Q, β) + s(Q))) .

The summation thus depends on an energy term r · f(Q, β) and an entropic term s(Q)

and the parameter β determines which one of them dominates: at high temperatures the

entropic term dominates whereas at low temperatures the energetic term does. In the

large limit n→∞ the previous summation is computed using the saddle point method

i.e. we have to look for the overlap functions that maximize g(Q|β) = r ·f(Q, β)+s(Q).

C.2 Maximizing g(Q|β)

The maximization (minimization) of g(Q|β) is not an easy task, and physicists

have used physical insights in order to come up with reasonable saddle points. First it

is important to highlight that the function g(Q|β) is symmetric under permutation of

replicas i.e. g(Q|β) = g(π(Q)|β), where π(Q) denotes the overlap function Q resulting

from a permutation π(·) of the replicas. This is due to the fact that the replicas are

indistinguishable from each other, thus g(Q|β) should not depend on the details of any

specific replica.

The search for saddle points has been organized through families of overlap

functions that satisfy different levels of symmetry. The first level consist on the family

of overlap functions that are symmetric Q = π(Q). If the saddle points are in this family

then it is said that the system is replica symmetric (RS). The next level known as 1-

step replica symmetry breaking (1RSB) divides the replicas into s different symmetric

108

groups, meaning that the overlap function corresponding to each group is symmetric.

This argument can be generalized by subdividing the groups into subgroups (2RSB)

and so on.

C.3 Computing the Free Entropy Density

Once a expression for E[Zj] has been obtained. One treats j as an integer and

takes limits in the definition of the free entropy density:

f ≡ lim
n→∞

1
n

E[logZ] = lim
n→∞

lim
j→0

1
jn

log(E[Zj]) .

Notice that the n → ∞ limit is taken after taking the j → 0 limit. However, in our

calculation of the j-th moment we were implicitly assuming that we were in the n→∞

limit: we assumed a large deviation principle for Nn(Q) and we used the saddle point

method. The interchange of the limits is not general and needs a mathematical proof

for every particular system, unfortunately for most models there is no such proof and

we have to include this to the set of steps that make the method non-rigorous.

C.3.1 The RS Replica Method for random k- and (2 + p) - SAT.

In section (C.4) we state the RS cavity method and the RS replica method

expression of the free entropy density for random k-SAT. The goal is to show the main

differences among them. It is believed that both methods are equivalent in the sense

that both predict the same location of the phase transitions for random k-SAT and

other RCSP, however, as far as we know, there is no rigorous proof of such statement.

109

In section (C.5) we give an overview of the analysis made by Biroli et.al. [12]

to show that the tri-critical point for (2+p)-SAT is upper bounded by 2/3 by assuming

that the RS replica method is correct.

C.4 RS Replica Method vs RS Cavity Method

The RS replica method approximation for the free entropy density for random

k-SAT is given by the following expression1 [12]:

fRSrm(r|γrm) =
� ∞

−∞

dhdv

2π
eivh · Γft(v) · [1− log Γft(v)] log[2 cosh(βh)]

+r
� ∞

−∞

k∏
l=1

dhlγrm(hl) · log

[
1 + (e−β − 1)

k∏
l=1

(
e−βhl

2 cosh(βhl)

)]
,(C.2)

where γrm(·) is a probability density function over R and Γft(v) =
�∞
−∞ dx exp(−ixv)γrm(x)

denotes the Fourier transform of γrm(·). Because equation (C.2) was obtained through

the saddle point method, the correct density γrm(·) is the one that minimizes fRSrm(r|γrm)

(i.e. the one that maximizes the free energy density).

On the other hand, the RS cavity computation for the free entropy density

for random k-SAT derived using the methodology presented in Appendix A is given as

follows: Let v(x) denote the density function of a random variable over {+1,−1}, where

the probability Pr[x = +1] = p+1 is itself chosen at random from a distribution γcm(·)

with support on [0, 1], and let
1The expression in Biroli’s paper is the free energy density. To get the free entropy density we just

have to multiply by −β.

110

fr(0) = E

log

 ∑
x∈{+1,−1}

∏
j≤s

v̂j(x)

 ,

where s is a poisson random variables with mean kr, and the v̂j(x) are i.i.d

random univariate function defined as

v̂(x) =
∑

y1,...,yk−1

exp (−βθ(y1, ..., yk−1, x))
k−1∏
j=1

vj(yj) , (C.3)

where θ(·) is a random constraint-function and the functions vi(·) are i.i.d. with the

same distribution as v(x). In the case of random k-SAT

exp (−βθ(x1, ..., xk)) = 1 + (e−β − 1) ·
k∏

j=1

1 + Jjxj

2
,

where the J ’s are uniform random variables over {+1,−1}. That is, the variables J de-

termine the random signs of the literals in a random clause. Thus exp (−βθ(x1, ..., xk)) =

exp(−β) if the clause is unsatisfied and exp (−βθ(x1, ..., xk)) = 1 otherwise. Using the

previous definitions, the RS cavity expression is

fRScm(r|γcm) = fr(0)− r(k − 1)E [log (vc)] ,

where

vc =
∑

y1,...,yk

[
1 + (e−β − 1) ·

k∏
i=1

1 + Jiyi

2

]
k∏

j=1

vj(yj) .

The first thing to notice is that γcm(·) is a distribution over [0, 1] whereas

γrm(·) is a distribution over the reals. Fortunately, this is just a difference in notation.

It is possible to write the function v(·) in terms of a density over the reals as follows

111

v(x|h) =
exp(βxh)

exp(βh) + exp(−βh)
=

exp(βxh)
2 cosh(βh)

,

where h is a random variable over R with distribution γ(·). The expression for E [log (vc)]

using this parametrization is

E [log (vc)] = E

[
log

(∑
y1,...,yk

[
1 + (e−β − 1) ·

k∏
i=1

1 + Jiyi

2

]
k∏

i=1

exp(βyihi)
2 cosh(βhi)

)]
.

Any of the 2k realization of the J random variables occurs with probability 2−k and for

all of them

E

[∑
y1,...,yk

[
1 + (e−β − 1) ·

k∏
i=1

1 + Jiyi

2

]
k∏

i=1

exp(βyihi)
2 cosh(βhi)

]
=

E

[
1 + (e−β − 1)

k∏
i=1

exp(βhi)
2 cosh(βhi)

]
,

where we use the fact that exp(βxh)/2 cosh(βh) is a density and the product
∏k

i=1(1 +

Jiyi)/2 is 1 for a single combination of the y’s and 0 otherwise. Thus,

E [log (vc)] = E

[
log

(
1 + (e−β − 1)

k∏
i=1

exp(βhi)
2 cosh(βhi)

)]
,

which corresponds to the expression appearing in the second term of fRSrm(r|γrm) after

the expectation with respect to the h’s random variables has been written explicitly.

The term fr(0) is more problematic. The v̂(·) functions expressed in terms of

the new parametrization have the following form

v̂(x) =
∑

y1,...,yk−1

[
1 + (e−β − 1) · 1 + Jx

2

k−1∏
i=1

1 + Jiyi

2

]
k−1∏
i=1

exp(βyihi)
2 cosh(βhi)

.

112

Again, for any realization of the Ji random variables we have

v̂(x) = 1 + (e−β − 1) · 1 + Jx

2

k−1∏
i=1

exp(βhi)
2 cosh(βhi)

.

Therefore,

fr(0) = E

log

 ∑
x∈{+1,−1}

∏
j≤s

v̂j(x)


= E

log

 ∑
x∈{+1,−1}

∏
j≤s

{
1 + (e−β − 1) · 1 + Jjx

2

k−1∏
i=1

exp(βhi,j)
2 cosh(βhi,j)

} .

It does not seem like the above expression can be transformed into something simi-

lar to the first term of fRSrm(r|γrm). Perhaps taking the expectation with respect to

the poisson random variable s could give rise to the Fourier transform terms Γft(v)

after the correct algebraic manipulations, unfortunately we were not able to find such

transformation.

Also, note that we are taking the expectations with respect with the random-

ness of the model at the very end of the cavity computation, whereas this step was done

at very early stages of the replica method.

C.5 RS Replica Method Computation of the Tri-Critical

Point of (2 + p)- SAT

In [12] the authors showed how to compute the tri-critical point of (2+p)-SAT

assuming that equation (C.2) gives upper bounds on the free entropy density. In the

next paragraphs we describe such computation.

113

The first step consist in parametrizing the density γ(·) as follows:

γ(h) = (1−B)δ(h) +
B√
∆

Φ(
h√
∆

) ,

where B ∈ [0, 1] represents the fraction of frozen variables in the model and∆ is the

typical squared scale of (the field) h acting on frozen variables at β → ∞. The func-

tion δ(·) is the Dirac function that accounts for the fraction of free variables and Φ is

an even probability distribution. After taking theβ → ∞ limit and using the above

parametrization, the functional fRSrm(·) for (2 + p)-SAT has the following form:

fRSrm(r, p,B,∆|Φ) = 2
√
4(

B

π

� ∞

0

dv

v
Φ′

ft(v) ln[1−B +BΦft(v)]

+r
� 1/(2

√
∆)

0
dh{(1− p)B2[Φcc(v)]2 + pB3[Φcc(v)]3})

where

Φft(v) =
� ∞

−∞
dx exp(−ixv)Φ(x)

Φcc(h) =
� ∞

h
dxΦ(x)

are the Fourier transform and the complementary cumulative function of Φ respectively.

Once a distribution Φ is chosen, the goal is to find the values of B and∆ that minimize

fRSrm(·) for given values of r and p.

When p = 0 the problem reduces to random 2-SAT and the best upper bound

for the satisfiability threshold that can be computed using this approach is obtained by

solving for the value of r where fRSrm(r, p = 0, B,∆) changes sign. Note that when

B = 0, fRSrm(r, p = 0, B,∆) = 0 and since the fraction of frozen variables is continuos

114

at the transition and is zero for r < r∗2, is possible to identify the transition by expanding

the expression around B = 0 and ∆ = 0 to the leading order and neglecting irrelevant

terms in ∆, thus getting

fRSrm(r, p,B,∆|Φ) = 2
√
4(B2f (2)

rs (r) +B3f (3)
rs (r)) ,

where

f (2)
rs (r) =

1
π

� ∞

0

dv

v
Φ′

ft(v)[Φft(v)− 1]

−r
� ∞

0
dh[Φcc(v)]2

f (3)
rs (r) = − 1

2π

� ∞

0

dv

v
Φ′

ft(v)[Φft(v)− 1]2 .

Observe that f (3)
rs (r) is always positive, thus, the minimum is located at B = 0 when

f
(2)
rs (r) ≥ 0 and at B > 0 if f (2)

rs (r) < 0. Therefore the threshold r∗2 is determined by the

condition f (2)
rs (r2) = 0. This condition gives r∗2 = 1 independently of the distribution Φ

used.

When p = 1 the problem reduces to random 3-SAT. In the SAT phase B = 0,

but the transition is not continuos so it is not possible to expand around to B = 0. In

this case the threshold value is obtained by solving for the value of r where the minimum

of fRSrm(r, p = 1, B,∆) with B > 0, ∆ > 0 changes sign.

fRSrm(r, p = 1, B,∆) = 2
√

∆(B3(srs(B)− rers(∆)) ,

115

where

srs(B) =
1

πB2

� ∞

0

dv

v
Φ′

ft(v) ln[1−B +BΦft(v)]

ers(∆) =
� 1/(2

√
∆)

0
dh[Φcc(v)]3 .

When B > 0, ∆ > 0, the minimum of fRSrm(r, p = 1, B,∆) changes sign at

r =
minB srs(B)
max∆ ers(∆)

=
srs(BC)
ers(∆C)

.

To analyze the tri-critical point expand fRSrm(·) in powers of B,

fRSrm(r, p,B,∆) = 2
√

∆(B2f (2)
rs (r, p) +B3f (3)

rs (r, p)) ,

where,

f (2)
rs (r, p) = (1− (1− p)r)

� ∞

0
dh[Φcc(v)]2

f (3)
rs (r, p) = − 1

2π

� ∞

0

dv

v
Φ′

ft(v)[Φft(v)− 1]2

−rp
� ∞

0
dh[Φcc(v)]3 .

As long as f (3)
rs remains positive, the threshold is at rc = 1/(1 − p) as in the case of

2-SAT. Therefore, the tri-critical point p0 can be found through the condition

f
(3)
RS(1/(1− p0), p0) = 0 .

116

Note that the value of p0 depends on the choice of the distribution Φ(·). Let Φ(1) and

Φ(2) with p(1)
0 < p

(2)
0 . It is possible to show that this implies that the free entropy density

using Φ(1) is smaller than the one obtained using Φ(2). Thus p0 has to be minimized

over the choice of possible distributions Φ.

117

Bibliography

[1] R. Abou-Chacra, DJ Thouless, and PW Anderson. A selfconsistent theory of

localization. Journal of Physics C: Solid State Physics, 6(10):1734, 2002.

[2] D. Achioptas and G.B. Sorkin. Optimal myopic algorithms for random 3-SAT. In

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on,

pages 590–600. IEEE, 2000.

[3] D. Achlioptas. Lower bounds for random 3-SAT via differential equations. Theo-

retical Computer Science, 265(1-2):159–185, 2001.

[4] D. Achlioptas, P. Beame, and M. Molloy. A sharp threshold in proof complexity.

In Proceedings of the thirty-third annual ACM symposium on Theory of computing,

pages 337–346. ACM New York, NY, USA, 2001.

[5] D. Achlioptas, P. Beame, and M. Molloy. A sharp threshold in proof complexity

yields lower bounds for satisfiability search. Journal of Computer and System

Sciences, 68(2):238–268, 2004.

118

[6] D. Achlioptas, L.M. Kirousis, E. Kranakis, and D. Krizanc. Rigorous results for

random (2+ p)-SAT. Theoretical Computer Science, 265(1):109–129, 2001.

[7] D. Achlioptas and R. Menchaca-Mendez. Exponential lower bounds for DPLL

algorithms on satisfiable random 3-cnf formulas. Theory and Applications of Sat-

isfiability Testing–SAT 2012, pages 327–340, 2012.

[8] D. Achlioptas and R. Menchaca-Mendez. Unsatisfiability bounds for random CSPs

from an energetic interpolation method. Automata, Languages, and Programming,

pages 1–12, 2012.

[9] D. Achlioptas and Y. Peres. The threshold for random k-SAT is 2klog2 − O(k).

JOURNAL-AMERICAN MATHEMATICAL SOCIETY, 17(4):947–974, 2004.

[10] Dimitris Achlioptas. Setting 2 variables at a time yields a new lower bound for

random 3-sat. In Proceedings of the thirty-second annual ACM symposium on

Theory of computing, pages 28–37. ACM, 2000.

[11] Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to

the interpolation method and scaling limits in sparse random graphs. In STOC’10,

pages 105–114, 2010.

[12] G. Biroli, R. Monasson, and M. Weigt. A variational description of the ground

state structure in random satisfiability problems. The European Physical Journal

B-Condensed Matter and Complex Systems, 14(3):551–568, 2000.

[13] B. Bollobás, C. Borgs, J.T. Chayes, J.H. Kim, and D.B. Wilson. The scaling

119

window of the 2-SAT transition. Random Structures & Algorithms, 18(3):201–256,

2001.

[14] M.T. Chao and J. Franco. Probabilistic analysis of two heuristics for the 3-

satisfiability problem. SIAM Journal on Computing, 15(4):1106–1118, 1986.

[15] V. Chvátal and B. Reed. Mick gets some (the odds are on his side)[satisfiability].

In Foundations of Computer Science, 1992. Proceedings., 33rd Annual Symposium

on, pages 620–627. IEEE, 1992.

[16] V. Chvatal and E. Szemeredi. Many hard examples for resolution. Journal of the

Association for Computing Machinery, 35(4):759–768, 1988.

[17] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

[18] R. Courant and D. Hilbert. The Calculus of Variations. Wiley Online Library,

2007.

[19] J. Dı́az, L. Kirousis, D. Mitsche, and X. Pérez-Giménez. On the satisfiability

threshold of formulas with three literals per clause. Theoretical Computer Science,

410(30-32):2920–2934, 2009.

[20] R. Diestel. Graph theory. 2005. Grad. Texts in Math, 2005.

[21] O. Dubois and Y. Boufkhad. A general upper bound for the satisfiability threshold

of random r-SAT formulae. Journal of algorithms, 24(2):395–420, 1997.

120

[22] W. Fernandez de la Vega. Random 2-SAT: results and problems. Theoretical

computer science, 265(1):131–146, 2001.

[23] A. Flaxman. Algorithms for random 3-SAT. Encyclopedia of Algorithms, pages

742–744, 2008.

[24] S. Franz and M. Leone. Replica bounds for optimization problems and diluted spin

systems. Journal of Statistical Physics, 111(3):535–564, 2003.

[25] S. Franz, M. Leone, and F.L. Toninelli. Replica bounds for diluted non-poissonian

spin systems. Journal of Physics A: Mathematical and General, 36:10967, 2003.

[26] Ehud Friedgut. Sharp thresholds of graph properties, and the k-sat problem. J.

Amer. Math. Soc, 12:1017–1054, 1998.

[27] A. Frieze and S. Suen. Analysis of Two Simple Heuristics on a Random Instance

of k-SAT. Journal of Algorithms, 20(2):312–355, 1996.

[28] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Markov chain Monte Carlo in

practice. Chapman & Hall/CRC, 1996.

[29] A. Goerdt. A threshold for unsatisfiability. Journal of Computer and System

Sciences, 53(3):469–486, 1996.

[30] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete mathematics: a foundation

for computer science, volume 2. Addison-Wesley Reading, MA, 1994.

121

[31] F. Guerra and F.L. Toninelli. The thermodynamic limit in mean field spin glass

models. Communications in Mathematical Physics, 230(1):71–79, 2002.

[32] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their

applications. Bulletin of the American Mathematical Society, 43(4):439–562, 2006.

[33] A.C. Kaporis, L.M. Kirousis, and Y.C. Stamatiou. How to prove conditional ran-

domness using the principle of deferred decisions. In Special Volume on Computa-

tional Complexity and Statistical Physics. Santa Fe Institute, Studies in, 2002.

[34] L.M. Kirousis, E. Kranakis, D. Krizanc, Y.C. Stamatiou, et al. Approximating the

unsatisfiability threshold of random formulas. Random Structures and algorithms,

12(3):253–269, 1998.

[35] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborova.

Gibbs states and the set of solutions of random constraint satisfaction problems.

Proceedings of the National Academy of Sciences, 104(25):10318, 2007.

[36] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor graphs and the sum-product

algorithm. IEEE Transactions on information theory, 47(2):498–519, 2001.

[37] L.A. Levin. Universal sequential search problems. Problemy Peredachi Informatsii,

9(3):115–116, 1973.

[38] M Virasoro Marc Mézard, G Parisi. Spin Glass Theory and Beyond: An Introduc-

tion to the Replica Method and Its Applications. World Scientific, 1986.

122

[39] Colin McDiarmid. Concentration, probabilistic methods for algorithmic discrete

mathematics, 195–248. Algorithms Combin, 16, 1998.

[40] S. Mertens, M. Mézard, and R. Zecchina. Threshold values of random k-SAT from

the cavity method. Random Structures & Algorithms, 28(3):340–373, 2006.

[41] M. Mézard and A. Montanari. Information, Physics and Computation, 2008.

[42] M. Mezard and A. Montanari. Information, physics, and computation. Oxford

University Press, USA, 2009.

[43] R. Monasson and R. Zecchina. Tricritical points in random combinatorics: the SAT

case. Journal of Physics A: Mathematical and General, 31:9209, 1998.

[44] Rémi Monasson and Riccardo Zecchina. Entropy of the K -satisfiability problem.

Phys. Rev. Lett., 76:3881–3885, May 1996.

[45] Rémi Monasson and Riccardo Zecchina. Statistical mechanics of the random k-

satisfiability model. Phys. Rev. E, 56:1357–1370, Aug 1997.

[46] A. Montanari. Tight bounds for ldpc and ldgm codes under map decoding. Infor-

mation Theory, IEEE Transactions on, 51(9):3221 –3246, sept. 2005.

[47] D. Panchenko and M. Talagrand. Bounds for diluted mean-fields spin glass models.

Probability Theory and Related Fields, 130(3):319–336, 2004.

[48] C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag,

2004.

123

[49] B. Selman, H. Kautz, B. Cohen, et al. Local search strategies for satisfiability

testing. Cliques, coloring, and satisfiability: Second DIMACS implementation chal-

lenge, 26:521–532, 1993.

[50] B. Van Brunt. The calculus of variations, volume 1. Springer, 2004.

[51] M.J. Wainwright. Graphical Models, Exponential Families, and Variational Infer-

ence. Now Publishers, 2008.

[52] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Understanding belief propagation and

its generalizations. Exploring artificial intelligence in the new millennium, 8:236–

239, 2003.

124

