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Continuum Modeling
of Granular Media
This is a survey of the interesting phenomenology and the prominent regimes of granular
flow, followed by a unified mathematical synthesis of continuum modeling. The unifica-
tion is achieved by means of “parametric” viscoelasticity and hypoplasticity based on
elastic and inelastic potentials. Fully nonlinear, anisotropic viscoelastoplastic models
are achieved by expressing potentials as functions of the joint isotropic invariants of ki-
nematic and structural tensors. These take on the role of evolutionary parameters or
“internal variables,” whose evolution equations are derived from the internal balance of
generalized forces. The resulting continuum models encompass most of the mechanical
constitutive equations currently employed for granular media. Moreover, these models
are readily modified to include Cosserat and other multipolar effects. Several outstanding
questions are identified as to the contribution of parameter evolution to dissipation; the
distinction between quasielastic and inelastic models of material instability; and the role
of multipolar effects in material instability, dense rapid flow, and particle migration
phenomena. [DOI: 10.1115/1.4026242]

1 Introduction

“Granular materials represent a major object of human activities:
as measured in tons, the first material manipulated on earth is
water; the second is granular matter… This may show up in very
different forms: rice, corn, powders for construction… In our
supposedly modern age, we are extraordinarily clumsy with
granular systems…”

P.G. de Gennes [1]1

The epigrammatic quote, familiar to many in the field of granu-
lar mechanics, reflects a long-standing scientific fascination and
practical interest, which is acknowledged by many others [3,4]
and summarized in several monographs and review articles
[5–11], with several devoted to specific applications.

As a general definition, we understand by granular medium a
particle assembly dominated by pairwise nearest-neighbor interac-
tions and usually limited to particles larger than ca. 1 lm, for
which the direct mechanical effects of van der Waals and ordinary
thermal (“Brownian”) forces are negligible. This includes a large
class of materials, such as cereal grains; pharmaceutical tablets
and capsules; geomaterials, such as sand; and the masses of rock
and ice in planetary rings.

Another important class of granular media consists of highly
fractured rock masses, and it is worth recalling that a classic self-
consistent (mean-field) treatment of cracked elastic solids [12]
predicts that all elastic moduli should vanish at a critical crack
concentration. This portends a crack-percolation threshold sug-
gested by other studies [13], such that at least one crack spans the
solid and thereby demarcates at least two “grains”. Hence, this
threshold can be regarded as the transition from a fractured but
still coherent solid to a granular medium that owes its shear resist-
ance to the combined effects of confining pressure, friction, and
granular dilatancy (vide infra).

Of the several facets of research on granular mechanics: experi-
ment and application; analytical and numerical micromechanics;
homogenization (i.e., “upscaling” or “coarse-graining”); the
mathematical classification and solution of field equations; and

phenomenological continuum models, the present review focuses
almost exclusively on the latter. The review is mainly concerned
with dry granular materials, or else with those completely satu-
rated by an interstitial fluid, in which capillary forces and other
forms of cohesion are largely negligible.

Strictly speaking, the above restrictions rule out applications to
the fine powders, colloidal systems, and clayey soils discussed in
other works [8,14], since the granular elastic modulus Gs is the
only relevant stress scale. In this regard, there is an interesting and
nagging question as to the microscopic origins of the stress scales
assumed in various empiricisms associated with critical-state soil
mechanics and hypoplasticity (e.g., Refs. [14–18]). This question
may reflect a philosophical divide, separating those concerned
with the relation of constitutive equations to micromechanics
from those whose primary concern is correlation of data from lab-
oratory and field tests (Ref. [16], p. 13).

It is perhaps a truism that future progress in the applied mathe-
matics and mechanics of granular media rests on the continuing
development of continuum models with plausible connection not
only to experiment, but also to micromechanics. In the classical
paradigm, this development would proceed through a time-
honored approach of homogenization (i.e., upscaling or coarse-
graining) of idealized microstructural models to obtain
continuum-level constitutive models that are applicable to the
boundary-value problems inspired by laboratory and field tests.
The author must confess to an incomplete appreciation of the
practical versus the scientific merits of the recently proposed
methodology that would proceed directly from grain-scale
observations of local microstructure to continuum-level numerical
simulations [19].

The present survey represents an effort by the author to under-
stand and codify in broad outline the ideas underlying much of the
existing constitutive modeling of granular media. One goal is to
point up certain unresolved mathematical and physical issues that
seem crucial to the physical understanding and modeling of granu-
lar flows, and a brief summary of such issues is offered below in
the Conclusions.

Another goal is to identify a broad class of plausible
constitutive equations as generalizations of contemporary
hypoplastic models [14,20] based on elastic and inelastic poten-
tials that are familiar in the classical theories of elastoplasticity
[21–23].
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With all due respect to the outstanding challenges mentioned in
the review article [10] (final paragraph of Sec. 3) and the caveat
expressed in a recent monograph [11] (p. 7)

“…there does not exist a universal constitutive model to simulate the
behavior of bulk solids during both rapid, transitional and slow.
flow…[which] requires a fusion of ideas from solid, fluid and gas
mechanics…”

it will be shown below that the above elastoplastic models can be
enlarged to include models of viscoelastoplasticity that are
broadly applicable to all the prominent regimes of granular flow.
Following the brief review in Sec. 1.1 of phenomenology and
flow regimes, a systematic exposition of such models will be
presented.

There is scant effort in the present survey to cover a large body
of work nominally devoted to the physics of granular media, e.g.,
Ref. [24], since much of it does not appear to be primarily focused
on the development of the continuum models of interest here. Fur-
thermore, while citing results from various numerical simulations,
the present review does not deal with the details of numerical
methods, neither the direct simulation of micromechanics by
means of various distinct element (“DEM”) simulations nor
continuum-mechanics simulations based on finite element meth-
ods (“FEM”) or related techniques.

Apart from the notions of stored and recoverable elastic energy
(Helmholtz free energy) and of energy dissipation, the present
article makes limited formal appeal to thermodynamics, e.g.,
as represented by the standard continuum entropy balance
(Clausius–Duhem inequality). In the author’s view, this has but
marginal relevance to granular mechanics, owing to the lack of
intrinsic kinetic energy at the grain level. Thus, the nominal
“granular temperature” and the associated “kBT” based on grain
kinetic energy owe their existence entirely to external forcing, as
indicated by the seminal paper of Haff [25]. This temperature
enjoys few of the attributes of molecular-kinetic temperature, de-
spite its utility in the pioneering works on the associated kinetic
theory [26].

Without minimizing the importance of comparing theory to
experiment, little effort is made in this review to assess the rela-
tive merits of various constitutive models based on their success
in fitting limited experimental data or numerical simulations to
models with multiple adjustable constants.

It is hoped that the more knowledgeable readers will forgive
the missing citations of important work, misapprehensions about
work actually cited, and finally, the occasional lapse in clarity of
exposition.

1.1 Phenomenological Aspects. We consider here the impor-
tant physical parameters and nondimensional groups that charac-
terize the various regimes of granular mechanics and flows. We
note that Forterre and Pouliquen [10] have given a similar review,
providing more quantitative comparisons for fairly simple shear-
ing flows, where our representative strain rate jD0j0 can be identi-
fied with a representative value of their shear rate _c.

Key Parameters and Nondimensional Groups. Apart from vari-
ous nondimensional parameters describing grain shape, the most
prominent physical parameters for noncohesive granular media,
listed in the Nomenclature, are: grain elastic (shear) modulus Gs

(force/area), intrinsic grain density qs (mass/volume), representa-
tive grain diameter d (length), intergranular (Coulomb) contact-
friction coefficient ls or macroscopic counterpart lC, intergranu-
lar collisional coefficient of restitution es, interstitial (“pore”) fluid
viscosity gf (force-time/area) for neutrally buoyant fluid-saturated
granular media (or fluid-particle suspensions), grain volume frac-
tion (“compacity”) / or “void ratio” e ¼ ð1� /Þ=/, and confin-
ing pressure ps (e.g., lithostatic). Of these, the last two may be
regarded as parameters associated with some reference states or

else variables, either a control variable or an evolutionary internal
variable in the case of /.

In addition to the above, one may identify somewhat less acces-
sible quantities, such as a symmetric second-rank (Satake) fabric
tensor A¼̂½Aij�, and higher-order versions [23], as well as a coordi-
nation number Z or active contact-number density nc ¼ 3Z/=pd3

(for spheres). While certain past studies show that these correlate
well with void ratio e [23] (p. 535ff and Fig. 7.3.1), recent DEM
studies on sphere assemblies [27,28] in the static-elastic and
steady-dense flow regimes suggest a lack of correlation and the
necessity of including both / and Z in the constitutive model.
Unfortunately, it is not clear what set of macroscopic measure-
ments would allow for the determination of nc, Z, or some
mechanically equivalent quantity, a difficulty that becomes even
more severe for nonspherical particles.

Radjai et al. [29] propose to reduce the dependence on coordi-
nation number Z to a multiplicative factor in the definition of
fabric A, which seems to be at odds with the correlation proposed
by others [28].

By assigning the role of control variable to the confining
pressure ps, which we generally identify with mean compressive
stress �trT/3, we emphasize the focus on pressure-sensitive
elastoplasticity [23]. At the same time, we forsake a well-
known “principle of determinism” [30], according to which me-
chanical constitutive equations must specify stress as a function
of a given kinematic history. This unconventional view is
reflected in the implicit constitutive equations studied exten-
sively by Rajagopal [31], e.g., to describe the effect of pressure
on the viscosity of nearly incompressible liquids. While this
view seems to be dignified by practice in numerous stress-
controlled rheological experiments [9,10] and DEM simulations
[32], one can argue that such experiments involve feedback
loops that actually impose the kinematics necessary to attain the
desired stress states.

The above parameters define key nondimensional groups that
serve to delineate various regimes of granular flow, namely, an
elasticity number [2], inertia number [9,10,33,34], and viscosity
number [2,35,36], given, respectively, by

E ¼ Gs=ps; I ¼ jD0j0d
ffiffiffiffiffiffiffiffiffiffiffi
qs=ps

p
; H ¼ gsjD0j0=ps (1)

based on a representative shear rate jD0j0. In addition, we will
have occasion to refer briefly below to a Knudsen number based
on characteristic length scales.

As a bit of perspective and history, note that I is the analog of
the Deborah number of non-Newtonian fluid mechanics, involving
relaxation time that represents the competition between grain iner-
tia and Coulomb friction lCps. As pointed out elsewhere [10], the
quantity I2, representing the ratio of representative granular
kinetic energy qsd

2 _c2 to frictional confinement, could justifiably
be designated as the “Savage number” [33]. With similar attribu-
tion to Savage, it was identified previously as “expansivity” [34],
in analogy to the ratio kBT=psd

3 in molecular gases.
It is instructive to consider the vertical density variation due to

lithostatic pressure psqsgz at elevation z, so that kBT=psd
3

� kBT=mgz, where m is representative grain mass. Then,
with kBT � _c2d2, Boltzmann’s law of the atmosphere q=q0

¼ expf�mgz=kBTg translates to q=q0 ¼ expf�gz=d2 _c2g. Hence,
at shear rates _c � 100 s�1, the vertical e-folding of density is
found to be of the order of one particle diameter for a granular
solid with d� 1 mm. This signals the gravitational collapse of a
granular gas to a dense state.

For the rarefied gaseous state, we should replace d by the mean
free path ‘ ¼ d=6/ in the above estimate for kBT [37], in effect
replacing the shear rate _c by an enhanced value _c=/. With this
modification, the statement of Goldhirsch [37], “granular gases
cannot exist on Earth without a continual supply of energy,”
would still as well read “.a continual and vigorous supply of
energy”.
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The viscosity number H, denoted elsewhere by Iv [36], is iden-
tified in a previous work [35], which also points out its relevance
to the transition from fluid-saturated granular medium to dense
fluid-particle suspension near the point H � 1, where viscous
forces are comparable to frictional forces. Note also that the
Stokes or Bagnold number for fluid-particle suspensions can be
identified with the quantity I2=H, representing the magnitude of
inertial to viscous forces.

In the sections immediately following, we shall focus attention
on dry granular media, deferring to Sec. 3 a brief discussion of
fluid-particle systems.

Granular Flow Regimes. Although granular materials are
devoid of intrinsic thermal motion at the grain level, they never-
theless exhibit a certain kinship to molecular materials, character-
ized by states that resemble solid, liquid, and gas [10]. These
states may coexist as the analogs of multiphase flow, and there are
several outstanding questions as to the proper matching of solid-
like immobile states with the rapidly sheared states [8].

Letting c represent shear strain relative to a rest state,
s=ps ¼ 0; I ¼ 0, the corresponding flow regimes are delineated in
the qualitative, highly simplified sketch in Fig. 1. There, the non-
dimensional shear-stress/pressure ratio s/ps is represented as a
function of a single nondimensional variable of general form

X � lCEc=ðEcþ lCÞ þ I2 (2)

A simpler representation, closer to the constitutive models consid-
ered below and illustrated in Fig. 5, is:

s=ps ¼ lC þ I2 with cE ¼ s=psE (3)

where the first member represents the Coulomb–Bagnold interpo-
lation reflected in certain constitutive models [38] and cE is elastic
deformation at any stress state.

Figure 1 fails to capture the strong nonlinearity and history de-
pendence of granular plasticity in regime Ib, a matter addressed
by the constitutive models to be discussed in the following matter.

As with the liquid states of molecular systems, dense-rapid
flow, represented by a nondimensional function f ðIÞ in Table 1,
may be the most poorly understood regime of granular mechanics.
It involves important phenomena, such as granular size segrega-
tion [39,40], which is touched on only briefly at the end of this
review. The review by Forterre and Pouliquen [10] (Sec. 4) dis-
cusses various efforts to model the transition between regimes II
and III.

Among its many other limitations, the simple schema presented
above may not apply to “soft” granular materials, where the
dense-rapid flow may involve elastic effects of the type suggested
by the DEM simulations of Campbell [32]. This would require, in
effect, a more general function f ðI;EÞ in regime II, implied by

Fig. 5 of Ref. [32], which amounts to a plot of cE ¼ s=psE versus
E=I2. (The rather large and small numerical values on the respec-
tive axes of that plot can no doubt be attributed to large values of
E, such as those estimated below.)

Although not attempted here, the 2D graph in Fig. 1 could more
appropriately be presented as a parametric or multidimensional
plot, in order to represent the effect of nondimensional parame-
ters, such as intergranular friction and initial volume fraction. In
that respect, it is worth noting that Fig. 1 represents the load tem-
perature plane in the 3D “jamming” diagram of Liu and Nagel
[41], based on a paradigm rooted in equilibrium thermodynamics.
Thus, if their load, temperature, and density are replaced by the
proper nondimensional forms I; s=ps, and / for granular media,
their representation of the quasistatic regime I ¼ 0 is tantamount
to a highly simplified yield curve of s=ps versus /, presumably
restricted to rigid, frictionless grains.

Without striving further to simplify the complex, we turn to a
more-detailed discussion of the various regimes shown in Fig. 1.

The Elastic Regime. It is generally recognized that the geomet-
ric nonlinearity of Hertzian contacts should lead to nonlinear elas-
ticity at low confining pressures ps and to an interesting scaling of
elastic moduli and elastic wave speeds with pressure. The paper
by Agnolin and Roux [27] provides a comprehensive survey of
previous literature and the results of their DEM simulations of the
elastic moduli of sphere assemblies. They, as others before them,
point out that classical theoretical predictions are based on a ques-
tionable (Cauchy) “mean-field” or “affine-motion” approximation
for grains, and they give an account of previous attempts to
include the effect of micromechanical grain fluctuations along
with the results of their own DEM study.

Unfortunately, the DEM results in Ref. [27] are presented in
terms of variables with physical dimensions, and this author has
not attempted to translate them to the elasticity number E of the
present work. At any rate, one concludes from the former that the
effect of fluctuations (represented by corrections 1þ a displayed
in their Eq. (27) and Fig. 10) can result in large errors in predicted
elastic modulus at small ps, i.e., at large E, although the exact
magnitude of the error depends crucially on the model for fluctua-
tions and the initial state of their sphere packing. Also, as the
authors of this study recognize, slight departures from sphericity
could have large influence on the results, leaving one to wonder
about typical systems of irregular grains.

With the above reservations in mind, we resort to a rather crude
estimate for the effective global shear modulus G, say, in terms of
the grain modulus Gs based on Hertzian contact and the mean-
field assumption. Thus, with the purely geometric estimate of the
diameter a of the Hertzian contact zone given by a=d � dn=dð Þ1=2

in terms of relative normal displacement dn of particle pairs, esti-
mates of normal stress, strain, contact normal force, and contact
stiffness are given, respectively, by

rn � Gsen; en � dn=d; fn � Gsd
2 dn=dð Þ3=2

kn ¼ dfn=ddn � Gsdðfn=Gsd
2Þ1=3

(4)

which, with the assumption of comparable shear and normal con-
tact forces, leads to the mean-field estimate of global stiffness G
and pressure,

Fig. 1 Schematic diagram of granular-flow regimes

Table 1 Regimes in Fig. 1

Regime s Scaling

I. Quasistatic: (Hertz–Coulomb) elastoplastic “solid”
a. (Hertz) elastic Gsc
b. (Coulomb) elastoplastic lC

II. Dense-rapid: viscoplastic “liquid” psf ðIÞ
III. Rarified-rapid: (Bagnold) viscous “granular gas” qsd

2 _c2
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G � kn=d; ps � fn=d2; hence G=Gs � E�1=3 (5)

Thus, with confining pressures p� 100 kPa and the estimate
Gs� 100 GPa (a rather stiff geomaterial), one finds E � 106 and
G � 10�2Gs, amounting to a huge reduction of global stiffness
due to relatively soft Hertzian contact.

In principle, we should replace Gs by G in Table 1 and
E ¼ Gs=ps by G=ps ¼ E�2=3 in Eqs. (2)–(3). In so doing, we
obtain an estimate of the limiting elastic strain for the onset of
Coulomb slip (with lC� 1) to be cE � E�2=3 � 10�4, given the
above numerical value. Although admittedly crude, this provides
a reasonable estimate of the small elastic range of stiff
geomaterials.

Elastoplastic Regime. Given its venerable history, dating back
to the classical works of Coulomb, Rankine, and others, and its
perennial relevance to geomechanics, the field of elastoplasticity
is without doubt the most thoroughly studied area of granular
mechanics. It is therefore impossible in a brief review to give a
comprehensive summary of the phenomenology and current state
of theoretical understanding, much of which is discussed in recent
treatises [8,23]. Here, we touch on a few salient phenomena and
the theoretical issues surrounding them as background for the dis-
cussion of constitutive modeling to follow.

Figure 2 shows the results from the 2D DEM simulations of
Ehlers [42] of a quasistatic hopper discharge and a biaxial com-

pression test, both of which illustrate a well-known localization of
deformation into shear bands. A hallmark of granular plasticity,
this localized slip (or “failure”) may be implicated in dynamic
“arching” with large transient stresses on bounding surfaces, such
as hopper walls and structural retaining walls. Similar phenomena
are implicated in large-scale landslides.

Figure 3 reveals the development of shear bands in a standard
experimental quasistatic compression test on sand. The literature
abounds with many interesting experimental observations (e.g.,
Ref. [43]) and numerical simulations of shear bands, with numer-
ous striking examples presented in a sustained body of work by
Tejchman [11,14] and Widuli�nski et al. [44]. Following the pioneer-
ing studies of J. Desrues, recent developments in X-ray computer to-
mography have led to grain-level visualization that reveal such
bands via density contrasts arising from granular dilatancy [45].

The occurrence of shear bands can be viewed mathematically
as material bifurcation and instability arising from loss of convex-
ity in the underlying constitutive equations, accompanied by a
change of type in the field equations. From a physical point of
view, this can be regarded as “soft-mode” instability, analogous to
that associated with thermodynamic phase transitions [46]. In the
case of granular media and soils, the preference for shear-banding
modes may be attributed to the relative weakness in shear com-
pared to compression, as exhibited by the Coulomb yield surface
and related empirical variants (Refs. [8] (p. 218ff) and [23,47]).
This is to be contrasted with localized failure in compaction bands
arising from micromechanical buckling instabilities and fracture
in cellular materials [48] and porous sandstones [49] subject to
compressive loads.

To help identify certain crucial issues surrounding elastoplastic
instability in granular media, Fig. 4 presents an iconic qualitative
sketch, cf. Refs. [8] (Chap. 5) and [23] (Chap. 4), of the typical
stress-strain/dilatancy behavior in the axial compression of dense
versus loose sands. While no numerical scale is shown on the
axes, the peak stress and the change of volumetric strain from neg-
ative (contraction) to positive (dilation) typically occurs at strains
of the order of a few percent (i.e., e� 0.01–0.05) for dense sands.

Although tempting to regard the initial growth of axial
compressive stress r with strain e as elastic in nature, the elastic
regime is represented by much smaller strains (corresponding to
the estimates of order 10�4 given above), corresponding to a
nearly vertical unloading from any point on the r–e curve. It is
therefore much more plausible that the initial stress growth repre-
sents an almost completely dissipative plastic “hardening” associ-
ated with compaction (eV< 0) accompanied by growth of contact

Fig. 2 2D DEM simulations (courtesy of W. Ehlers).

Fig. 3 Axial compression of dry Hostun sand specimen (cour-
tesy of W. Ehlers).

050801-4 / Vol. 66, SEPTEMBER 2014 Transactions of the ASME

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 05/14/2014 Terms of Use: http://asme.org/terms



number density nc and contact anisotropy [18], whereas the maxi-
mum in stress can be attributed to the subsequent decrease in nc

accompanying dilation (eV> 0) [50] (p. 345ff).
The above qualitative picture is supported quantitatively by a

micromechanical variant on the well-known double-shearing
model [51] developed by Anand and Gu [52]. The model involves
an assumed dilatancy-coupled plastic hardening, with eventual
softening that leads to curves like that in Fig. 4. Thus, we encoun-
ter an essentially inelastic formation of shear bands.

A somewhat different view of material instability is to be found
in the (Hill) “second-order” work criterion, championed especially
by those in the French School of Geomechanics [16,53–55], the
last dealing with a diffuse “collapse” that may be associated
with seismic liquefaction. According to the second-order work
criterion, no doubt restricted to hypoplasticity, the instability is
basically of the Hadamard type, associated with singularities in
the acoustic tensor arising from nonconvex elasticity.

Thus, in the first interpretation above, one may attribute insta-
bility to a sharp decrease in a dissipative secant modulus, to be
defined below, and in the second interpretation to a nonpositive
quasielastic tangent modulus. To the extent that the first type of
instability is strongly dissipative (“hyperdissipative”), it corre-
sponds to loss of convexity of an inelastic potential, since one can
show that rate-independent plasticity is marginally convex [56].
Hence, we discern two limiting forms of the loss of convexity in
potential: the first involving a hyperdissipative potential and, in
the second, a hyperelastic potential.

Whatever the precise nature of the material instability (a term
we prefer despite Chambon’s reservations on p. 161 of Ref. [16]),
the seminal works of M€uhlhaus and Vardoulakis [57] point out
the fact that it generally calls for multipolar or “higher-gradient”
constitutive models. Such models, endowed with intrinsic length
scale, are necessary to regularize field equations and assign
finite thickness to zones of strain localization. This suggests
yet another thermodynamic analogy, namely the van der
Waals–Cahn–Hilliard thermodynamic models of phase transitions
[37]. The exception may be the diffuse instabilities.

Hence, to our list of important nondimensional parameters we
must now add a Knudsen number K ¼ ‘=L, to be defined more
precisely in Sec. 4 below. It is worth noting here that numerical
simulation of Ehlers [42] cited above involves homogenization
with length-scale and couple stress implicated in the finite-width
shear zone shown in Fig. 2(b).

While the exact role of multipolar effects in granular mechanics
is still unclear, the very concept gives one reason to be wary of

various experiments and numerical simulations based on rela-
tively small granular systems. In essence, the results of these stud-
ies may involve multipolar effects that may be unwittingly
interpreted as peculiar nonpolar effects. Although molecular sys-
tems dominated by thermal randomization may often exhibit
simple-continuum behavior on small-length scales, to expect the
same of granular systems requires a considerable leap of faith.

We turn now to some simple phenomenological notions that
motivate the continuum models discussed below.

Springs and Slideblocks. The mechanical model in Fig. 5 con-
veys a useful intuitive view of granular mechanics, although such
“spring-dashpottery” is generally shunned by continuum mechan-
icians. There, the applied force T0 is the analog of continuum-
mechanical stress deviator and the rate of extension of the device
represents deviatoric deformation rate D0. Collins [58] proposes a
related model and provides a brief history of such models. The
present version, which differs somewhat from that proposed by
Collins and which can readily be modified to represent pressure-
independent plasticity, is motivated by the hypoplastic models to
be discussed below.

The serrated slide block in Fig. 5 represents the “sawtooth mod-
el” of Rowe [8,59] and the granular “interlocking” of Taylor
[50,60]. Both reflect the contribution of Reynolds dilatancy [61]
to the shearing resistance of a granular medium, owing to the
work of volumetric expansion against the confining pressure. Var-
ious elementary arguments (Refs. [8] (p. 96ff) and [47]) based on
this simple model give the apparent friction, up to the point of
instability at maximum dilation, in terms of the dilatancy angle
and the actual intergranular coefficient of friction ls. Thus, upon
amendment of the analysis in Ref. [8] (p. 96ff), one finds that the
apparent angle of friction for planar deformations is given by

/l;app ¼ tan�1 lC ¼ /l þ /D; with /l ¼ tan�1 ls

and ) jT0j=p ¼
ffiffiffi
3
p

tan /l;app

(6)

where the sawtooth angle /D is the planar equivalent of the angle
of dilatancy defined below. A more comprehensive micromechan-
ical treatment is given elsewhere [47].

At the point of sliding instability in the model, the stored volu-
metric energy must be dissipated by collapse and collisional
impact, which may be assumed to occur on time scales so short
that the precise value of ec is probably immaterial. In any case,
this dissipation of energy gives rise to an apparent sliding friction,
even if ls¼ 0. This idea is borne out by the numerical simulations
of Peyneau and Roux [62] of frictionless sphere assemblies, for
which they find vanishing dilatancy with nonzero friction. At odds
with the energy balance of Reynolds [61] for frictionless particles,
this rapid dissipation of stored energy is emblematic of tribologi-
cal and plastic-flow processes, where, owing to topological rough-
ness and instability in the small stored energy is thermalized on
negligibly small time scales, giving rise to rate-independent forces
in the large.

Fig. 5 Dashpot/spring/slide-block analog of viscoelasto-
plasticity

Fig. 4 Schematic diagram of triaxial stress/dilatation-strain
curves for initially dense (solid curves) and loose (dashed
curves) sands
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A second special feature of the current model, the lateral spring
with constant ~lE converts plastic deformation into the “frozen
elastic energy” of Collins [58] and also provides an elementary
model of plastic work hardening. Although Fig. 5 differs from the
picture of Ref. [58], both illustrate the fact that a fraction of the
stored elastic energy can never be entirely recovered by the sole
mechanical action of T0. This leads to well-known complications
in the thermodynamics [21] and to the history effects associated
with evolutionary plasticity.

As for history effects, it is worth recalling a quote from a
bygone era on the variability of the sand pressure acting on a
retaining wall arising from different modes of sand deposition
[43]:

“… the angle of repose of shaken sand is a phrase without meaning.
When the author was beginning these experiments he had the
advantage of discussing the subject with the late Professor Clerk
Maxwell, who remarked that he supposed that the ‘historical
element’ would enter largely into the nature of the limiting
equilibrium of sand. By this he meant that sand when put together in
different ways would exercise different thrusts, although presenting
visibly the same external appearance. The author has kept this
valuable remark before him throughout and found that Maxwell’s
conjecture was correct. The historical element is one which
essentially eludes mathematical treatment.”

G.H. Darwin [63]

Clearly, Maxwell anticipates the difficulties inherent in plastic-
ity and the lack of “fading memory,” and just as clearly Darwin
(the son of the father of the theory of evolution), fails to anticipate
evolutionary models of plasticity.

Quite similar depositional-history effects have been rediscov-
ered in contemporary experiments [64] on the vertical-pressure
minimum beneath sand piles (the so-called “dip in the heap”),
apparently regarded by many as revolutionary. In that respect, it
should be gratifying to those who labor in the field of continuum
mechanics to learn that continuum plasticity models show promise
of describing this phenomenon [65]. At the same time, it is clear
that more work is needed on the transition between the rapid and
quasistatic granular flows involved in granular deposition and the
associated development of granular anisotropy and “backstress”
[23].

As for rapid granular flow, the viscous dashpot, with (Bagnold)
viscosity gB, in Fig. 5 adds a rate-dependent force associated with
granular kinetic energy and collisional dissipation ec. This leads
to a form of Bingham plasticity discussed below and described by
certain rheological models [8,38], providing a rough interpolation
between regimes I and III in Fig. 1.

Dense Rapid Flows and Granular Gases. The review by Gold-
hirsch [37] provides a comprehensive survey of rapid (or with his
qualification “rapidly sheared”) granular flows, with a focus on
kinetic theory that contains many citations of past work. The more
recent surveys [9,10] provide a comprehensive review of experi-
ments and constitutive modeling of simple shearing flows and
also suggest the need for nonlocal models with intrinsic length
scale. A more recent work [66] suggests a sensitivity to boundary
conditions that may not be anticipated in Ref. [9].

Apart from its advocacy for more general constitutive models
than those currently employed, the present review does not
address the numerous issues and challenges in modeling the
dense-rapid flow regime.

1.2 Mathematical Preliminaries. Before discussing consti-
tutive models, we establish a bit of mathematical notation aimed
at achieving a reasonably compact summary of a wide ranging
body of literature, with formulae that should be fairly evident to
those in theoretical and applied mechanics, particularly those

versed in plasticity theory2 and rheology. Those less comfortable
with the essential tensor analysis may in many instances substitute
scalars for tensors, with a concomitant restriction to extremely
simple kinematics, such as simple shear.

Notation and Kinematics. To the extent possible, we employ
direct notation (bold-face symbols) for tensors, with the conven-
tions indicated in the Nomenclature. When necessary for clarity,
we display tensor indices with lower-case Roman i, j,…, and we
denote elements of abstract arrays of variables or tensors by indi-
ces a and b, which are allowed to represent single tensor indices
or groups of tensor indices, such as a¼ {ij}. With the convention
spelled out in the Nomenclature, the forms

l ¼ 2lðdðsÞ � Î� ÎÞ þ 3jÎ� Î; with dðsÞ¼̂ ½dðijÞðklÞ�

and j ¼ l�1 ¼ 1

2l
ðdðsÞ � Î� ÎÞ þ 1

3j
Î� Î

represent isotropic fourth-rank isotropic moduli and compliances.
As what some may regard as the notational consistency of a

small mind, the author prefers certain notation differing from that
in standard treatises. Thus, x� and x(x�), respectively, are
employed for reference position and current placement of material
points instead of the standard continuum-mechanics X and vðXÞ,
and the moduli l and inverse compliances j are those often
denoted in the standard plasticity literature [22,23] by L andM,
respectively. Also, T is employed for Cauchy (“true”) stress, in
deference to the large body of literature based on the landmark
treatise of Truesdell and Noll [30] and in contrast to the r
employed in most of the engineering-mechanics and plasticity
literature.

When it serves the present purposes, the commonly employed
colon “:” is used for scalar products of second-rank tensors or for
other operations involving a similar-ordered contraction of tensor
indices. We employ conventional strain energies or free energies
based on mass, but our dissipation (pseudo)potentials are based on
unit volume. As the latter represent dissipation rate, the usual
applications do not require time derivatives and they can simply
be divided by mass density q or multiplied by J ¼ det F to obtain
mass-based rates.

The versor or director of vectors and tensors is denoted by
carets and serves to define a multidimensional form of the signum
function, e.g., for vectors

dir a ¼ â ¼ a=jaj :¼ 0 for jaj ¼ 0 (7)

where the norm jðÞj is Euclidean, unless otherwise specified.
As done in much of the applied-mechanics literature, we often

blur the distinction between generalized velocities and conjugate
forces, e.g., deformation rate and stress, as elements of dual
spaces [56], but strive whenever possible to distinguish them,
respectively, by contravariant and covariant tensors indices.

In the standard literature on finite-strain elastoplasticity, heroic
efforts have been expended on the development of various objec-
tive deformation measures, their associated rates, and their work-
conjugate stresses. Comprehensive summaries are given by others
[22,68], but, as emphasized by Casey and Naghdi [69], properly
formulated theories of plasticity should be independent of the par-
ticular choice of frame-indifferent descriptors of kinematics and
stress.

The present work is focused on a class of rheological models
that relate Cauchy stress T to deformation rate D, often referred to
as the Eulerian description [69], which have certain advantages
for numerical treatments. In line with the above remarks, we
exploit the fact that various kinematic rates, representing the
tangent space to the underlying material configuration space, are
connected by invertible linear transformations, e.g., by nonsingu-
lar fourth-rank tensors mapping second-rank tensors into second-
rank tensors.

2Viewed elsewhere [67] as the “quicksand” of continuum mechanics, in a
metaphor particularly appropriate to the present setting.
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Adhering to the Eulerian framework, we therefore treat the lin-
ear transformations connecting D to other rates as a kind of
“mixed metric” tensor that defines bilinear pairing between gener-
alized velocities and dual-space forces. To illustrate this, consider
the left Cauchy–Green tensor B¼FF

T as finite Eulerian strain
measure and its Jaumann (or Zaremba–Jaumann) rate,

B
�
¼ _Bþ sym WB ¼ a½D� ¼ a :D¼̂½aij

::klD
kl� ¼ sym BD (8)

where we distinguish tangent space by raised indices and where D
is a nonholonomic rate (i.e., is not equal to the rate of change of a
strain tensor derived from F).

Now, Eq. (8) defines a linear transformation aðBÞ½D� identical
with that in Eq. (17). The construction of the inverse

c ¼̂ ½cij
::kl� ¼ a�1

is given elsewhere [68], but it is worth noting that, since B is posi-
tive definite, it can also be expressed as

c½X� ¼
ð1

0

e�BsXe�Bsds ¼
ð1

0

e�Bs � e�Bsds

� �
:X (9)

where the matrix exponential can be expressed as a second-order
tensor polynomial in B.

The stress power can then be written as

T :D ¼ T � B
�
¼ T : c½B

�
� ¼ B

�
: c	½T� ¼ cij

::klTijðB
�
Þkl

(10)

where the asterisk denotes the dual linear transformation. This
same idea is employed below to express the power of an ordered
modular array V ¼̂ ½va� of generalized velocities with array of con-
jugate forces T ¼̂ ½Ta� as

T �V ¼def
Ga
:bTavb; with G ¼̂ ½Ga

:b� (11)

where G is an ordered modular array of linear transformations.
We now proceed to a systematic development of parametric

hypoplasticity, a development that rests heavily on classical elas-
toplasticity. There is a twofold justification recognized, at least
tacitly, by numerous workers in the field of granular mechanics.
Firstly, classical elastoplastic models involve physical concepts
and principles that are directly relevant to granular elastoplastic-
ity. Secondly, certain necessary extensions of the classical models
to accommodate granular mechanics provides new vistas and
challenges, e.g., pressure dependence and dilatancy, and rate and
gradient effects, represented above by E�1; I or H, and K.

2 Elastoplastic Models

Nemat-Nasser [23] gives an account of the elastoplasticity of
pressure-sensitive materials. The author could not recommend a
more comprehensive survey of the classical plasticity of granular
media than that given in Sections 4.3 and Chapter 7 of that trea-
tise. The introductory paragraphs contain an impressive summary
of the subsequent matter, which contains a wealth of ideas and in-
formation on granular plasticity and the important microstructural
parameters, including void ratio e, contact number density nc

(denoted there by �nc), and the (first) fabric tensor A¼A
T (denoted

there by U), along with various higher-order variants.
As an extension of classical plasticity, the present review

focuses on a class of generalized hypoplastic models, also based
heavily on a stress-space formulation. Although the approxima-
tion of incrementally linear elastic response is suitable for many
granular materials, particularly stiff geomaterials, a nonlinear
elastic theory is offered here based on an isotropic extension
of nonlinear anisotropic elasticity that employs evolutionary

parameters to describe anisotropy. The nonlinear elastic model
may be appropriate to soft granular materials, such as pharmaceu-
tical capsules and clayey soils.

The intent of this review is to provide a rather broad theoretical
survey and distillation of the major results of mathematical mod-
eling, showing the progression from elasticity to viscoelastoplas-
ticity, with a pronounced emphasis on elastoplasticity. The
approach is based heavily on parametric hypoplasticity, reflecting
the view that differential equations, essentially ordinary differen-
tial equations in the material or Lagrangian description, are the
natural vehicles for describing evolutionary phenomena, such as
history-dependent elastoplasticity. We will occasionally designate
these as Lagrangian ordinary differential equations (“LODEs”).

The treatise by Kolymbas [20] and the contemporaneous collec-
tion [16], particularly the chapter by Wu and Kolymbas [70],
provide an excellent overview and history of hypoplastic model-
ing. The more recent monograph [11] provides an account of
multipolar hypoplasticity with numerous applications to shear
localization.

While many proponents of hypoplasticity seem to regard it as
completely distinct from classical plasticity, the present work
takes pains to show that it includes classical plasticity as a special
case and, moreover, that it may require some of the structure
of classical plasticity in order to achieve thermodynamic
admissibility.

This review is decidedly theoretical in viewpoint, and compari-
sons with experiments or numerical simulations are largely rele-
gated to references. For the theoretical development, we shall rely
on two important concepts. First, we shall represent evolutionary
material parameters by means of structural tensors, i.e., collec-
tions of scalars, vectors, and higher-order tensors that serve as in-
ternal variables of a type that are familiar in the literature on
plasticity and, to a lesser extent, in the literature on complex flu-
ids. Second, and as signaled above, the discussion of rheological
models is based almost entirely on fourth-rank tensor moduli or
compliances, either elastic or dissipative (inelastic), representing
pseudolinear forms connecting stress or stress-rate to deformation
rate. This is close in spirit to elementary rheological models based
on one-dimensional depictions of stress and deformation, and it
generally allows for a rather obvious generalization to fully three-
dimensional models.

For hyperelastic (or “Green-elastic”) systems, the existence of
the above moduli is guaranteed by the underlying strain energy
function or Helmholtz free energy. On the other hand, for strongly
dissipative or hyperdissipative systems, it is guaranteed by the
existence of a dissipation potential or inelastic potential (dubbed
“pseudopotential” by Ref. [21], p. 52, where it seems to be
restricted to homogeneous forms).

The existence of an inelastic potential, assumed in countless
papers and a much-cited work [71], is mathematically guaranteed
by the landmark work of Edelen [56,72], which serves to extend
the Onsager “force-flux” formalism to nonlinear systems by
means of pseudolinear “conductance” and “resistance” matrices.
Moreover, it applies not only to plasticity but to viscoplasticity
as well, a fact not generally recognized in the literature on
viscoplasticity.

The relevant moduli or matrices are given as Hessians of poten-
tials or complementary (Lagrangian dual) potentials, which assign
an underlying Hessian geometric structure [73] to energy storage
or dissipation, a structure that is imparted to equilibrium thermo-
dynamics and thermodynamic fluctuations by the metrics of
Weinhold [74] and Ruppeiner [75], with obvious application to
the elastic strain energy of the present work.

Thus, in both hyperelastic and hyperdissipative systems, the
respective moduli serve as induced metrics connecting forces, as
covariant vectors, to displacements or velocities, representing
contravariant vectors in the tangent space of the underlying
manifold of material configurations. This abstract concept is
immediately relevant to the mechanics at hand, since the loss of
convexity of the associated potentials may be viewed as a
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topological transition involving nonpositive moduli and signaling
the onset of the bifurcation and material instability that is such a
prominent feature of granular plasticity.

In the sections to follow, we shall deal with anisotropic elastic
response that depends on the history of plastic deformation. As
anticipated above, we assume that both intrinsic and evolutionary
anisotropy can be represented by a discrete set of evolutionary in-
ternal variables. In so doing, we set aside a long-standing issue as
to the modification of material symmetry by inelastic deformation
and related processes, including proposals for modifications of
Noll’s well-known classification [30,67,76–79].

2.1 From Anisotropic Elasticity to Hypoelasticity. Before
treating plastic deformation, we consider the representation of ani-
sotropic nonlinear elasticity. The main purpose of this section is
to show how a special form of evolutionary elastic anisotropy
leads to a general form of hypoelasticity summarized by Eq. (23).
One goal is to reveal certain shortcomings of hypoplasticity as a
model of elastoplasticity before proceeding to the more plausible
hypoplasticity. Those who are content to accept Eq. (23) as an
evident extension of standard hypoelasticity may wish to skip
directly to that relation.

Otherwise, recall that, given the deformation gradient
F ¼ @xðx�Þ=@x� at a material point x� [30], the frame-indifferent
(Helmholtz) strain energy (per unit mass) of a hyperelastic or
Green-elastic solid is given by a scalar-valued function w�EðCÞ of
the right Cauchy–Green strain C ¼ FTF. Moreover, this function
is invariant under the material symmetry group G, a subset of the
full orthogonal group Oð3Þ, i.e.,

w�EðQGCQT
GÞ ¼ w�EðCÞ; 8QG 2 G 
 Oð3Þ (12)

It appears possible for many crystalline symmetry groups,

although perhaps not all [80], to obtain an isotropic extension �wE
of Eq. (12) represented by an isotropic function of C and a set of
vectors and second-rank tensors designated as structural tensors,
which, to be definite, are assumed to be independent of C. To
make the point, we focus attention on the special case of a single
vector b� and an independent second-rank tensor A�, with

w�EðCÞ ¼ �wEðC;A�;b�Þ
¼ �wEðQCQT;QA�;Qb�QTÞ; 8Q 2 Oð3Þ (13)

Hence, �wE must reduce to a function of the well-known [81] joint
isotropic scalar invariants of C, A�, and b�.

Making use of Eq. (12), it is easy to show that

�wEðC;QGA
�
QT
G;QGb

�Þ ¼ �wEðC;A
�
; b�Þ; 8QG 2 G (14)

i.e., �wE qua function of b� and A
�

depends only on their joint scalar
invariants under G.

We may take A� ¼ I and b� ¼ 0 for a fully isotropic reference
state. On the other hand, if A� ¼ I and b 6¼ 0, we obtain transverse
isotropy with axis of symmetry b� or, if A� ¼ A�T 6¼ I and b� ¼ 0,
orthotropic symmetry, with three symmetry axes represented by
the principal directions of A�, according to Xiao et al. [80].
Degeneracy (confluence of two eigenvalues) in one invariant sub-
space of A� leads once again to transverse isotropy. When there is
no dependence on A� or b�, we obtain full isotropy, with
G � Oð3Þ.

The above structural tensors may be identified with various rep-
resentations of texture or fabric of anisotropic bone, polycrystal-
line metals, and granular materials [28,78,82–85]. By considering
a set of vectors b defining lattice parameters, Rubin [86] has pro-
posed a theory to remove indeterminacies inherent to the standard
elastoplastic decomposition discussed below.

From Eq. (13), we may obtain an isotropic extension involving
the left Cauchy–Green strain B,

�wEðC;A�;b�Þ ¼ �wEðRTBR;A�;b�Þ ¼ WEðB;A;bÞ

¼ WEðQBQT;QAQT;QbÞ; 8Q 2 Oð3Þ;

where B ¼ FFT; A ¼ FA
�
FT; b ¼ Fb�

(15)

It is clear that Eq. (15) is frame indifferent, which dictates the
symmetry of the second-rank tensor

@BWE ¼ ð2B@B þ @X ÞWE;

where @X ¼ 2AT@A þ b� @b;

B ¼ fB;Xg; and X ¼ fA; bg
(16)

defining the linear operator such that dWE ¼ @BWE½dB�. Anticipat-
ing the notation for the arrays of internal variables discussed
below, we have distinguished the control variable B from the
microstructural tensors X .

The requirement that A� and b� be material constants leads to
the following evolution equations involving linear forms in D:

A
�
¼ a½D� ¼ DAþ DA

and b
�
¼ b½D� ¼ Db

(17)

where the first equation is also satisfied by B.
As discussed below, Eq. (17) must in general be replaced for

more general evolution equations for A and b, regarded as a spe-
cial case of a more general set of internal variables. However, as a
preliminary consideration, we treat the special case of the
imbedded microstructure defined by Eq. (17) in order to identify
conjugate elastic forces and stress rate associated with that
relation.

Thus, if we assume that all structural tensors are enslaved to the
velocity gradient L, the expression for the conservative stress
power follows from the appropriate limit of the standard Clau-
sius–Duhem inequality [87]:

T :D ¼ q _WE (18)

and yields the following expression for the Cauchy stress:

T ¼ tðBÞ ¼ q@BWEðBÞ (19)

where the derivative is defined in Eq. (16).
The Jaumann stress rate is then given by Eqs. (17)–(19) as the

linear function of D,

T
�
¼ t
�
ðBÞ½D� ¼ tB � a½D� þ tA � a½D� þ tb � b½D�

¼ tB½DBþ BD� þ tA½DAþ AD� þ tb½Db�
(20)

where the in-line “�” denotes functional product and tX½ � the lin-
ear function defining the partial derivative @t=@X.

Assuming invertibility of Eq. (19) with respect to the argument
B, we have

B ¼ bðSÞ ¼ t�1ðSÞ; with S ¼ fT;Xg (21)

and, hence, the stress rate in terms of tangent modulus,

T
�
¼ lEðSÞ½D�; where lEðSÞ ¼ ðt

�
�bÞðSÞ (22)

Despite the frequent claims for the merits of particular objective
rates, one may obtain any rate of the form

T
r
¼ T
�
þ kðSÞ½D�
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where kðSÞ is an isotropic function of S, by the substitution
lE ! lE � k. Hence, apart from possible issues associated with
numerical integration, the fundamental issue would seem to be the
mathematical properties of the modulus lE and not of the
derivative.

The relations in Eqs. (17) and (22) are subsumed in the rate-
independent LODEs,

S
�
¼MðSÞ½D� (23)

As a generalized form of hypoelasticity [30], this represents a
dynamical system, with linearity in the control variable D. Since
this system governs the evolution of stress as well as the structural
parameters X , the previously proposed [85] designation paramet-
ric hypoelasticity seems appropriate. Up to an initial condition on
S, the system in Eq. (23) satisfies the principle of determinism
[30,76].

We could have begun with the first equality in Eq. (21) and the
first relation in Eq. (17) with A¼B to obtain the inverse form of
Eq. (23) involving a compliance K ¼M�1.

The above derivation is an anisotropic version of that employed
to derive isotropic hypoelasticity from isotropic hyperelasticity
[88,89]. As for the converse, we recall Bernstein’s [89] integrabil-
ity conditions for the reduction of the isotropic form of Eq. (23),
with S � T;M � lðTÞ, to the isotropic form of Eq. (12), with
G ¼ Oð3Þ. It would no doubt be more difficult and largely of theo-
retical interest to establish similar conditions for the reduction of
the anisotropic form in Eq. (23), involving Eqs. (17) and (22), to
the form in Eq. (19).

A somewhat more practical but theoretically more difficult
issue is the thermodynamic admissibility of hypoelastic models
[85,90,91], which inter alia requires that stress work be nonnega-
tive on periodic cycles of deformation. Unfortunately, there is no
guarantee of thermodynamic admissibility of the general form in
Eq. (23), in contrast to various constitutive equations built on
plausible physical models in the field of classical plasticity [71].

This raises another important question as to the relation of iso-
tropic hypoelasticity to classical incremental theories of plasticity.
Various attempts [30,92–94] have been made to establish an
equivalence-based special or singular dependence of lðTÞ on T,
but it is doubtful that a strictly linear form in D suffices. This is
shown explicitly by the classical formula for nonassociative, per-
fect (i.e., nonhardening) plasticity involving an elastic region E in
stress space and a plastic potential uPðTÞ [23],

T
�
¼ lðTÞ :D; with l ¼ lE �

ðlE :MÞ � ðN :lEÞ
N :lE :M

H;

where

H ¼
1 for T 2 @E and N :l :D � 0

0; otherwise

� (24)

where N(T) and M(T) are the respective normals to @E and to the
level surfaces of uPðTÞ. It is clear that the (Kuhn–Tucker [95])
inequality condition on D in Eq. (24) cannot be represented by a
strictly linear form lðTÞ½D�.

Removing the inequality from Eq. (24), one does indeed obtain
a hypoelastic model, but it permits plastic deformation on unload-
ing from the yield surface. Tacitly assumed in a previous work by
the present author [85], this does not seem to be ruled out by any
general physical principle and may be a good approximation for
many materials. However, it is less than evident that one can
account for history-dependent effects, such as work hardening,
within the standard hypoelastic framework.

By contrast, and as discussed next, the constitutive equation in
Eq. (24), as well as a well-known version involving work harden-
ing [23], is easily represented by generalized hypoplasticity.
Moreover, it appears that the so-called “pseudoelasticity” [96] can
readily be incorporated into the same framework.

In closing here, we remark that, within the strictly elastic
framework, the individual partial derivatives in Eq. (16) can be
viewed as conjugate forces for the microstructural tensors, a mat-
ter discussed in more detail below.

2.2 From Hypoelasticity to Hypoplasticity. Following a
long-standing body of work on the viscoplasticity of particulate
media [34,67,84,85], we show how hypoplasticity can be based on
pseudolinear forms that are derivable from potential functions.
Although the resulting hypoplastic model is less general than
those obtained by converting viscoelastic-fluid models of the “rate
type” to a rate-independent form [97,98], it offers a much more
direct way to construct variants on classical models that exhibit
proper dissipative behavior. Moreover, the model is readily
extended to include higher-order stress rates [85].

As one step in the rational construction of hypoplasticity, we
consider the representation of a dissipative process by the pseudo-
linear forms involving secant moduli,

T ¼ gðDÞ :D or D ¼ uðTÞ :T; with u ¼ g�1 (25)

represented by viscosity g and fluidity u. Here, we have sup-
pressed notation for dependence of these quantities on the parame-
ters X . For rate-independent (rigid) plasticity, we take [67]

g ¼ lP=jDj and T ¼ lPðD̂Þ : D̂ or D̂ ¼ jPðTÞ :T

with jP ¼ l�1
P and jjPðTÞ :Tj ¼ 1

(26)

where D̂ ¼ D=jDj and the modulus and compliance are positive-
definite and invertible as indicated. The third relation in Eq. (26)
is equivalent to the classical plastic flow rule, as discussed below.

The relations in Eqs. (25) and (26) can also be derived from a
dissipation potential [56,72]. Thus, given the convex stress poten-
tial uPðTÞ (energy/volume), one can construct [56] a function
WPðTÞ such that

D ¼ @TuP¼ u :T ¼ ð@2
TWPÞ:T

with uP¼T :@TWP�WP; where @2
T ¼ @T � @T

and ) jP ¼ @2
TWP=j@2

TWP :Tj

(27)

This expression for the compliance jP represents the normaliza-
tion required by the final member of Eq. (26), a condition that is
misconstrued in a previous work [85] as a yield condition.

By contrast, a recent work [56] shows that rate-independence
implies marginal convexity of uP, which can be associated with
the differentiable surface of a bounded region in stress space of
the form

jTj ¼ rðT̂Þ with r 2 C1 (28)

If this surface is regarded as a yield surface, then Eq. (27) repre-
sents the standard associative flow rule of classical plasticity
[22,23]. That is, the flow rule is a mathematical consequence of
strong dissipation and convexity, requiring no further physical or
mathematical postulates. As an exception to this state of affairs,
the idealized conical yield surfaces often attributed to granular
plasticity cannot be represented in the above form. This reflects
an extreme form of “vertex plasticity” and leads to a breakdown
of associative plasticity, with appropriate representations given
below.

In order to attribute dissipation solely to plastic deformation,
we must replace D in Eqs. (26) and (27) by a plastic strain rate
DP, such as that obtained by the classical additive (tangent-space)
decomposition, with associated (Kr€oner–Lee) product decomposi-
tion in configuration space [22,79],
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L ¼ LE þ LP and F ¼ FEFP

with DE ¼ symLE ¼ D� DP; W ¼ skwLE;

DP ¼ symLP; WP ¼ skwLP

_FE ¼ LEFE and _FP ¼ ðF�1
E LPFEÞFP

(29)

where FP represents the plastic deformation from the reference
state to a stress-free intermediate state and FE represents the cur-
rent elastic deformation from that state. The present definition of
plastic velocity gradient LP differs inconsequentially from that
employed by others, and it is evident that Eq. (29) represents
a time-integrable system for FE and FP given L¼DþW,
LP¼DPþWP, and hence, DE¼D – DP at a fixed material point
x�.

In principle, we should substitute LP for D in Eq. (25), thereby
allowing for a contribution of plastic spin WP to dissipation.
However, as discussed below, we shall eventually express WP as
a pseudolinear form in DP based on an internal moment balance,
leading to a result like Eq. (25).

To recall the major postulates underlying classical (incremen-
tal) plasticity models, we make use of elastoplastic moduli to
retrace the principal steps in the formulation. For this purpose, we
consider the special case of perfectly plastic materials, where the
moduli are isotropic functions of T in the absence of history
effects, such as work hardening.

Classical Postulates and Internal Moments. The additivity of
elastic and plastic rates in the first member of Eq. (29) represents
the first postulate of classical elastoplasticity (by which we refer
to the incremental form relating stress increment linearly to plastic
strain increment). Since LE and LP represent separate and gener-
ally independent kinematical degrees of freedom, one should, as
advocated by Gurtin and Anand [79], respect the principle of
virtual work and assign distinct conjugate stresses TE and TP with
stress power,

P ¼ TE:DE þ TP:LP (30)

These same authors [79] appeal to the notion of an intrinsic force
balance involving stresses TE and TP together with external force
fields and inertial effects. In the absence of the latter two effects,
their analysis for isotropic materials leads to the second postulate
of classical elastoplasticity,

TP ¼ TE ¼ qB@BwE � T ¼ TT for jDPj > 0 (31)

It is plausible that the condition in Eq. (31) can also be obtained
from simultaneous extrema of elastic and inelastic potentials
under quasistatic condition with fixed L and W viz.,

@LP
wP :dLP þ k@BwE � _B½dDE� ¼ 0

with dL ¼ dDE þ dLP ¼ 0
(32)

where k is a Lagrange multiplier. We note that external forces
derivable from a potential could also be included in Eq. (32).

Various works on plasticity appear to conclude that relations
like Eq. (31) represent a functional connection between
potentials. The notion of a single potential motivates several
“thermomechanical” models of granular elastoplasticity, notably
by Collins [58,99], who traces the history and assumes additive
elastic and plastic contributions to a single potential. By contrast,
the elastic and inelastic potentials are treated here as completely
independent.

While not pursued further in the present paper, the joint
extrema of independent potentials is an alternative notion that
appears worthy of further investigation, as it might possibly be
extended to networks or composite media containing both dissipa-
tive and elastic parts. At any rate, and as discussed further below,

Eq. (31) is restricted to simple (i.e., nonpolar) materials, since it
rules out the multipolar effects discussed below in Sec. 4. Such
effects, which lead to asymmetric stress and associated couple
stress, may arise in strongly inhomogeneous deformations also
discussed below.

Within the framework of nonpolar materials, the present model-
ing allows for an internal moment balance, e.g., of the type that is
known to occur in viscous suspensions of anisometric freely rotat-
ing particles [100]. In particular, the dissipative moment balance
requires that

0 ¼ skwTP ¼ skw@LP
wP

¼ gðÞP :DP þ fðÞP :WP

(33)

where ð ÞðÞ indicates skew symmetrization of a pseudolinear form

and f
ðÞ
P represents a “spin” viscosity or plasticity. In principle,

this relation and Eq. (25) yield a solution for spin,

WP ¼ xP½DP� ¼ xP � u :T with xP ¼ f
ðÞ�1
P � g

ðÞ
P (34)

where u is the fluidity tensor in Eq. (25). This or other specifica-
tion of viscoplastic spin is essential to the integration of Eq. (29)
in models with microstructural orientations determined by the
inelastic deformation FP.

Isotropic Hypoplasticity. To obtain the simplest version of
hypoplasticity, we consider the isotropic form of Eq. (22) com-
bined with Eq. (26), where DE and DP are substituted, respec-
tively, for D. This yields

T
�
¼ lEðTÞ½ðD� jDPjMÞ�; with MðTÞ ¼ jP :T (35)

where M is up to an algebraic sign equal to tensor appearing in
Eq. (24) and lEðTÞ is an isotropic tensor function of T.

It remains to specify jDPj, and rate-independence dictates a rela-
tion of the form

jDPj ¼ #ðT; D̂ÞjDj and ) DE ¼ ðd� #M� D̂Þ :D (36)

where the second equation is one of the relations essential to the
integration of Eq. (29) discussed above at the end of the preceding
section.

Up to an algebraic sign, jDPj is equal to quantities denoted vari-
ously in the standard plasticity literature by k [101] or by _k as
“consistency parameter” [102], quantities which take on both
positive and negative values. In the present representation, this
parameter is nonnegative, whereas the unit tensor M ¼ jP½T� rep-
resenting the direction DP=jDPj, may reverse sign depending on
the direction of T.

It is obvious that Eqs. (35) and (36) represent a special case of
the most basic hypoplastic model, with stress rate given as a
homogeneous form of degree one in deformation rate,

T
�
¼ �ðT; D̂Þ :D ¼ lðTÞ :D� jDjKðTÞ;

where � ¼ lðTÞ �KðTÞ � D̂
(37)

To recover classical elastoplasticity, one must interpret # in
Eq. (36) as an “inelastic-clock” function [85], a notion embodied
in the general treatment of Pipkin and Rivlin [103]. This can be
expressed in terms of a timelike variable usually identified as plas-
tic strain in (0, t),

eP ¼
ðt

0

jDPjdt ¼
ðt

0

#jDjdt (38)
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Thus, as a modification of the hypoelastic form proposed else-
where [85], we take

# ¼ #PH; where #P ¼ ðN :lE : D̂Þ=ðN :lE :MÞ

H ¼ 1; for T 2 @E and N :lE½ðD̂� #PMÞ� � 0

0; otherwise

(
(39)

in Eq. (35) to yield the result in Eq. (24). The expression for #P in
Eq. (39) reflects the assumption that stress changes elastically
along the yield surface [22,23].

It is apparent from the preceding analysis that the present
version of the classical theory is closed by specification of three
scalar functions, two potentials, and an inelastic-clock function,
respectively, wE, wP, and #. The function # is obviously necessary
to describe plastic yield.

The usual treatments (e.g., Ref. [23]) postulate various models
for a yield function f ðT;XÞ, such that a relation f¼ 0 defines the
boundary of the elastic region @E, with N ¼ @Tf=j@Tf j represent-
ing its unit normal appearing in Eq. (39). According to a recent
analysis [85], one should always identify the plastic potential uP

with the yield function whenever the yield surface is a bounding
surface having the form in Eq. (28). As done above for hypoelas-
ticity, we return to the problem of describing the evolution of
microstructure.

2.3 Parametric Hypoplasticity. If one assumes once again
that microstructure can be described by structural tensors of vari-
ous orders, b,…, A, B, …, the essential problem is to prescribe a
set of LODEs for their evolution. We may of course require simi-
lar equations for scalars such as /;Z;…, and this totality of all
such evolutionary parameters or internal variables together with
the LODEs governing their evolution serve to define parametric
hypoplasticity [85].

While one may postulate phenomenological evolution equa-
tions, e.g., as done elsewhere for fluid-particle suspension [84], an
effort is made here to show how such equations might follow
from a postulated internal balance of dissipative and elastic forces.
This of course raises an interesting question as to the microstruc-
tural origins and physical significance of the dissipative forces
associated with the rate of change of structural tensors.

A second issue is the choice of a convenient representation of
the structural tensors, and we cast them here into a form that facil-
itates the expression of their rates of change in terms of Jaumann
rates. While other objective rates could be employed, these would
simply change the form of various hypoplastic moduli to be
obtained below.

Thus, given that

X ¼ VEREXPRT
E VE for X ¼ A;B; and b ¼ VEREbP

it is easy to show that the strain energy in Eq. (15) can be
expressed as an isotropic function of a new set of variables,

WE ¼ wEðBE;Y;H;A;bÞ
¼ wEðQBEQT;QYQT;QHQT;QAQT;QbÞ
8Q 2 OðeÞ;

where

Y¼QEBPQT
E; H ¼ REQT

E; A¼QEAPQT
E ; b¼QEbP

with _QE¼WQE; H
�
¼ ðXE �WÞH; and XE ¼ _RERT

E

(40)

Here, RE is the finite rotation in the polar decomposition of FE

and, for convenience, we have introduced the mean rotation QE

generated by the spin W. Also, subscript P refers once again to
the intermediate plastic state, and the definitions of A and b have

been changed in an obvious way, such that, for constant AP and
bP, their Jaumann rate vanishes.

The objective orthogonal tensor H ¼ REQT
E represents the com-

peting effects of mean and finite rotation on structural elastic
energy. Its Jaumann rate shown in Eq. (40) has the hypoelastic
form, since the difference in spin ðXE �WÞ is linear in the
elastic deformation rate DE [68]. Moreover, it makes a contribu-
tion HT@HwE :ðXE �WÞ to the rate of elastic energy storage.
However, since one can only demand symmetry of a complete de-
rivative like that defined in Eq. (16), and since skwH

T@HwE repre-
sents but one contribution to an elastic torque, it must vanish in
the absence of external torques.

The net result of the representation in Eq. (40) is the addition of
two structural tensors having the character of A, and we can
include it in a general array of such tensors, with strain energy
given by the frame-indifferent form

�WE ¼ wEðBE;XÞ; where X ¼ fA;…; b;…g (41)

with BE¼ I, A¼AP,…b¼ bP,… in the relaxed plastic state,
where we take HP¼ I.

One obtains a form appropriate to linear elasticity on replacing
BE by

E ¼ 1

2
ðBE � IÞ; with E

�
¼ Dþ sym ED (42)

the Eulerian form of a standard Lagrangian strain. The terms in
ED are neglected in linear elastostatics but, to the extent they are
important in the present setting, can be incorporated into the defi-
nition of the hypoelastic modulus.

We recall that the assumption of linear elastic response from
plastically deformed states, assumed in much of the classical plas-
ticity literature, also represents a useful approximation for the
plasticity of stiff granular materials. It leads to a simpler model
that is strictly dissipative, except for small strain intervals involv-
ing elastic loading or unloading [85].

In a relaxed plastic state, the quantities AP,…, bP,… may be
treated as constant in any elastic deformation DP � 0 from that
state. In such deformations, only BE and H have nonvanishing
Jaumann rates and Eq. (20) is replaced by

T
�
� t
�
¼ tBE

½DE BE þ BE DE� þ tH½ðXE �WÞH� (43)

where tX are derivatives of the type defined in Eq. (20), and the
term in ðXE �WÞ is also linear in DE.

For a material that is isotropic in some virgin state, with
A� ¼ I,…, b� ¼ 0,…, plastic deformation can lead to anisotropy in
the current state. If, however, wE depends only on the isotropic
invariants of A,…, b…, then isotropic states remain isotropic. For
example,

1

2
jA� Ij ¼ 1

2
½trðA2Þ � 2trðAÞ þ 3�1=2; with A ¼ HBPHT

represents the plastic strain in Eq. (38).

Internal Balances. The array X in Eq. (41) represents a special
case of general set of internal variables {na} envisaged in numer-
ous previous works [71,87,104,105] and summarized by others
[21,22]. The indices a¼ 1, 2,… are understood to be in one-to-
many correspondence with the indices individual tensors in the set
X . When enslaved to the global kinematics, they are qualified
elsewhere [106] as passive and dubbed “parameters”. Here, we
consider the possibility of an internal balance providing the neces-
sary evolution equations.

Whenever the free energy wE depends on these variables, the
partial derivatives of the isotropically extended elastic potential
by wEðBE;XÞ
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f E
a ¼ q@na

E
wE; i:e:; FE ¼ ff E

a g ¼ q@XwE (44)

can be treated as conjugate thermodynamic forces, as done in the
works cited above.

Certain investigators [87,104] treat the forces in Eq. (44) as
strictly dissipative, and others [21,22,71,105] require that they
also satisfy certain equilibrium-thermodynamic (Maxwell) rela-
tions. In the present work, we assume only that:

(1) Generalized forces may be assigned to internal variables
[79,107]

(2) Conservative forces should generally be distinguished from
dissipative forces by means of independent potentials, and

(3) Generalized velocities may be decomposed according to
the classical incremental elastoplastic rule

U ¼ UE þ UP (45)

where

U ¼ fuag; ua ¼ n
�
a; i:e:; U ¼ X

�
(46)

represent Jaumann rates as generalized velocities. While Eq. (45)
is by no means the most general decomposition of velocities, it
suffices to yield the hypoplastic forms adopted in this review.

To indicate their role as dual spaces and also to avoid unsightly
juxtaposition of indices P, E, and a, b,…, we employ oppositely
disposed indices to represent the corresponding velocities ua and
forces fa, with elastic and plastic power given by forms like
Eq. (11).

Then, by means of the inelastic potential wPðDP;UPÞ, we can
express strictly dissipative forces in terms of dissipative velocities
as

fP
a ¼ @ua

P
wP or FP ¼ @UP

wP (47)

provided there exist no additive “gyroscopic” or “powerless”
forces of the kind admitted by Edelen’s general theory. In this
case, Eq. (47) represents a strongly dissipative or hyperdissipative
material [56] assumed in this review.

Enlarging the set of generalized velocities and conjugate forces
to include both internal and “control” variables [21], with

V ¼ fvag ¼ fD;Ug ¼ fDij; uag
and T ¼ fTag ¼ fT;Fg ¼ fTij; fag

(48)

and assuming that wPðVPÞ is a convex function, we can express
Eq. (47), as a pseudolinear (generalized Onsager) form [56]
involving symmetric positive matrices as generalized secant mod-
uli depending generally on VP or T P,

TP
a ¼ RP

abvb
P ; i:e:; T P ¼ <P½VP� or VP ¼ LP½T P�;

with <P ¼ ðLPÞ�1
(49)

Excluding the special case of rate-independent forces, where
the inelastic potential wP is homogeneous degree-one in rate, one
can write the above moduli as

<P¼ðLPÞ�1¼@2
VP

UP; with wP ¼ VP � @VP
UP � UP (50)

A formula for UP in terms of wP and a dual form are given else-
where [56].

In the exceptional case of rate-independent forces, we can sim-
ply write

VP ¼ LP½T P� ¼ jDPjKP½T P� (51)

Strictly Dissipative Systems. In the case where all elastic effects
are absent, we have VE � 0;V � VP, and Eq. (49) gives an
expression for the generalized velocity U and, hence, according to
Eq. (46), an evolution equation for the internal variables X in
terms of D or T. This fact is ignored in certain treatments of evo-
lutionary anisotropy [28,84], where an evolution equation for a
fabric tensor A is postulated without allowing for the possible de-
pendence of dissipation on the rate of change of A. This appears
tantamount to assuming a special form for dissipation, which may
or may not be justified by the underlying physics. At any rate, it is
a matter worthy of further investigation.

Viscoelastoplastic Systems. In the case of systems endowed
with elastic energy, one may generalize Eq. (31), invoking inter-
nal force balances between forces in Eqs. (44) and (47), to obtain
the following generalization of Eq. (31),

FE ¼ FP ¼ F and ) T E ¼ T P ¼ T for VP 6¼ 0 (52)

with inelastic velocities given by

VP ¼ LP½T � ¼ qLP½@BwE� (53)

In order to obtain the evolution equations from Eqs. (45) and
(46), one must further specify the elastic velocities

VE ¼ faE½DE�;…;bE½DE�;…g (54)

However, if one adopts the representation in Eq. (40), assuming
that elastic torques associated with H vanish and that all remain-
ing internal variables have the character of the structural tensors
A and b, then all their rates aE;…; bE;… in Eq. (54) may be
assumed to vanish, so that VE � 0;V � VP, and the above bal-
ance between dissipative and conservative elastic forces yields the
evolution equation for internal variables,

X
�
¼ UPðT Þ; i:e:; n

�
a ¼ ua ¼ L

ab
P Tb ¼ Ua

PðTbÞ;
with

T ¼ fTbg ¼ q@BwE ¼ qð2BE@BE
þ @X ÞwE

(55)

the latter relation representing an elastic form like that introduced
in Eq. (16).

By taking D¼DP in Eq. (27), one obtains the evolution equa-
tion for stress

T
�
¼ lEðT Þ D� uðT Þ :T½ � ¼ lEðT Þ½D� � lE :uðT Þ :T (56)

and it is clear that Eqs. (55) and (56) represent a set of viscoelastic
evolution equations for S ¼ fT;Xg with D as control variable.

In the case of rate-independent plasticity, we take

L
ab
P ¼ #jDjK

ab
P ; u ¼ #jDjjP; and ) S

�
¼MðS; D̂Þ½D�

(57)

where #ðSÞ is an inelastic-clock function of the type discussed
above.

The last member of Eq. (57) represents a general statement of
parametric hypoplasticity, which requires specification of an elas-
tic potential, an inelastic potential, and a yield condition repre-
sented by #.

In closing here, we observe that it is a relatively easy matter
to derive an alternative version of hypoplasticity, in which the
mixed variable S ¼ fT;Xg is replaced by the generalized force
T ¼ fT;Fg in the final relation of Eq. (57).

Rigid Grains and Reynolds Dilatancy. In the case of rigid
grains, we encounter a system devoid of characteristic stress or
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time scales. This implies that the stress strain-rate relation must be
homogeneous of degree zero in both quantities, representing cones
in the respective dual spaces. In this singular limit, plastic dissipa-
tion is homogeneous degree one in either or stress or strain rate.
Hence, the convex duality between stress and strain potentials
breaks down, since the Lagrangian dual of a homogeneous poten-
tial of degree one must vanish identically. However, as anticipated
above, the concept of dissipative modulus and compliance still
holds [85], with

T ¼ plCðD̂PÞ : D̂P and D̂P ¼ p�1jC :T (58)

involving a nondimensional Coulomb friction tensor and its
inverse.

In the case of rigid grains, the dilatancy constraint and, hence,
the granular mass balance can be expressed, respectively, as [85]

DP : Î � 1p
3

trDP ¼ tan /DjD0Pj ¼ # sin /DjDj;

with Î ¼ I=
p

3 and _/ ¼ �trDP/

(59)

where /D ¼ /DðXÞ is the dilatancy angle (unfortunately shown
as the complementary angle in Ref. [85]).

The final equation in Eq. (59) represents one member of the set
of evolution equations for X , namely, that governing granular
volume fraction / or void ratio e ¼ ð1� /Þ=/. The constraint
represents a cone in strain-rate space [85], with meridional plane
depicted in Fig. 6, where DP is represented by symbol D. For sim-
plicity, the cone is depicted as symmetric about the isotropic axis
defined by Î, although that need not be the case when there is
strain-induced anisotropy and backstress, such as that often attrib-
uted to kinematic hardening [23].

The figure also illustrates the principle of constrained materials
[30], according to which the stress in a material subject to internal
constraints is determined only up to an additive reactive stress T[,
which does no work in any deformation compatible with those
constraints. The present author and coworkers [85] (and referen-
ces therein) have long advocated the generalization to generally
nonholonomic and evolutionary constraints of the form
kðDP;XÞ ¼ 0.

Following a previous analysis [85], the foregoing principle may
be stated as

T ¼ T] þ T[; where T[ :DP ¼ 0 for kðDP;XÞ ¼ 0 (60)

where T] may be called the coactive stress (since it is the covector
or dual of D and since the term active employed in previous works
[85] conflicts with other usages.) It follows that T[ must be given

as a projection onto the tangent space of the constraint surface,
i.e., as a vector orthogonal @Dk.

When the dilatancy constraint is given by the cone in Eq. (59),
the required projection must have the general form [85]

T[ ¼ pðd� D̂P � D̂PÞ :K;

with D̂P ¼ cos /D Îþ sin /D
bD0P (61)

where bD0P ¼ dirD0P, p is the pressure, and Kð bD0P;XÞ is a nondi-
mensional tensor serving as Lagrange multiplier.

Now, it follows from a previous analysis [56] that Eq. (61) is
given by the nondissipative part of the gradient of a dissipation
potential wP that is homogeneous degree one in DP, as guaranteed
by rate-independence of stress, provided that K is symmetric. If
so, then the same function represents the Edelen potential, giving
the total stress in Eq. (60) as T ¼ @DP

wP. Hence, provided the ten-
sor K in Eq. (61) is symmetric, there exists no gyroscopic contri-
bution to reaction stress.

The above results are in accord with conventional granular-
plasticity models based on separate yield function and plastic
potential, such as that considered by Ref. [23] (Sec. 4.3). How-
ever, in keeping with the stress-space formulation of this and
similar works, it is necessary to restate the principle of constrained
materials in a rather obvious dual form that is not shown here.

In closing this section, we point out that the coefficient of dila-
tancy a [85], the dilatancy parameter @pG of Nemat-Nasser [23]
(Sec. 4.3.1), and the above dilatancy angle are related by

a ¼ �
ffiffiffi
2
p

@pðG=JÞ ¼
ffiffiffi
3
p

cot /D (62)

since his stress potential g is expressed in the current notation as
gðT;XÞ ¼ JuPðT;XÞ=

ffiffiffi
2
p

, where uP is the stress potential of the
present work.

In the model explored by Nemat-Nasser, G¼G(p, e, c) and
q�1¼ J¼ J(e), where c is an accumulated plastic strain whose
definition depends on the normal N to an evolving yield surface.
However, in the case of rigid grains without stress scale, the func-
tion G must be linear in pressure p, such that e is independent of
p. This is to be contrasted with all phenomenological models that
involve dependence of e on p/p0, where p0 represents a stress scale
whose micromechanical significance is generally unclear.

It should be emphasized that dilatancy and the cones in Fig. 6
are in general evolutionary and depend on parameters, such as
particle volume fraction, accumulated plastic strain, and fabric.
Also, we recall that the dilatancy vanishes asymptotically at a so-
called critical state, which generally depends on the deformation
history. Such asymptotic states are central to various “critical-
state” ideas, including the recent model of “barodesy” [108].

3 Viscoplasticity

The formulation set forth above applies to a broad class of
viscoelastic or viscoelastoplastic materials, for which we can
identify both elastic potential or free energy and an inelastic
potential that generally depend on various internal variables.

For example, viscoplastic fluids with “Bingham” yield behavior
are described by a pseudolinear form proposed several years ago
[67] as a special case of Eq. (26),

T ¼ @DwPðDÞ ¼ gP½D� ¼ lPðD̂Þ½D̂� þ gðDÞ½D� (63)

which we now know can be derived from an inelastic potential
wP, with fluidity uP ¼ g�1

P given by a dual potential uPðTÞ. This
general model can include viscous effects arising from the inter-
stitial fluid in a granular medium or the suspending fluid in fluid-
particle suspensions.

One may readily arrange Eq. (63) to a form more appropriate to
granular media, with T0=p expressed as a function of aFig. 6 2D version of dilatancy constraint (after Ref. [85])
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nondimensional deviatoric deformation rate D0=jD0j0 and the
dimensionless parameters /; I; and H. One may also include the
elasticity number E provided the sole effect of granular elasticity
is to modify the dissipative response, as perhaps suggested by the
work of Campbell [32] discussed above in Sec. 1.1. The evolution
of granular volume fraction / must generally be specified by a
mass balance involving granular dilatancy [85].

By means of an isotropic extension of the type discussed in
Sec. 2.1, we may express Eq. (63) as an isotropic tensor polyno-
mial in D0 and, e.g., a second-rank fabric tensor A, as has been
done for the special case of Stokesian suspensions [35,84]. Such
forms are most readily derived from a inelastic potential wP in
Eq. (63) that depends on the isotropic scalar invariants of D0 and
A, invariants whose general form is well known [81].

Thus, one may trivially construct an inelastic potential [56] for
the plasticity model proposed by Sun and Sundaresan [28],

T0=p ¼ lð/;Z;A : bD0Þ bD0 (64)

a generalization of the quasistatic limit of the model of Forterre
and Pouliquen [10] cited below in Eq. (65), which in turn is a spe-
cial case of the isotropic model proposed several years ago [34].

For the isotropic case, A¼ I, the above tensor polynomials
reduce to second-degree polynomials, which may be employed
to derive various conical yield surfaces by the method given
elsewhere [34]. Again, such representations are most easily and
reliably obtained from the derivative of an inelastic potential
depending on the isotropic invariants tr D02 ¼ jD0j2 and tr D03 or
det D0.

This isotropic model includes, of course, the elementary iso-
topic form proposed by Forterre and Pouliquen [10]

T0 ¼ plPð/; IjD0j=jD0j0Þ bD0 (65)

which gives the classical Drucker–Prager circular yield cone and
exhibits no viscometric normal stress, in contrast to the general
isotropic model [34] or various anisotropic models depending
on a fabric tensor [28,84]. In effect, Eq. (65) describes rate-
dependent plastic creep for elastically stiff materials, correspond-
ing to infinite lE in Fig. 5.

The existence of an intrinsic time scale in Eq. (65) allows for
the prediction of nonflat velocity profiles, i.e., for departures from
pluglike plastic flow. One can achieve similar results with multi-
polar models involving a length scale, as discussed below.

With simplified models, such as Eqs. (64) and (65), one should
not expect to describe three-dimensional rheological effects, such
as secondary circulations and free-surface deflections in open-
channel flows [109,110] or the related “negative rod climbing”
observed in Couette flows of dense suspensions [111]. It is even
less clear that one should expect a unified description of such
effects, let alone a unification of granular mechanics and suspen-
sion rheology [36], without more comprehensive models. Such
models, exemplified by the general form in Eq. (63), may suggest
at the very least what effect is being ignored by the overly simpli-
fied versions.

4 Multipolar Effects

For strongly inhomogeneous systems, such as the inhomogene-
ous shear field associated with shear bands, we expect to encoun-
ter departures from the response of the classical “simple” (i.e.,
nonpolar) material devoid of intrinsic length scale. The situation
is generally characterized by nonnegligible magnitudes of a
Knudsen number K ¼ ‘=L, where ‘ is a characteristic microscale
and L is a characteristic macroscale, e.g., that defined by
L�1 � r log jðÞj � k, with r and k representing gradients or Fou-
rier wave numbers of macroscopic fields ( ). Setting aside rarified
granular gases, where ‘ should be identified with mean free path
[37], we focus on dense systems.

In the case of elastoplasticity, the comprehensive review by
Tejchman [14] of empirical parameters for soils suggests a micro-
scopic scale of ‘� 5–10d50, where d50 is median grain diameter.
This scale is most plausibly associated with the length of the ubiq-
uitous force chains in static granular assemblies. Thanks to the
seminal work of Radjai et al. [112], it is now generally accepted
that these represent the microscopic force network that supports
granular shear stress.

It is safe to say that the micromechanics determining the length
of force chains is still poorly understood. Recent works [113] at-
tribute it to an Euler buckling instability, already postulated sev-
eral years ago to explain departures from the Hertzian scaling
displayed in Eqs. (4) and (5) [114]. Should the buckling mecha-
nism prove robust, it might also suggest a source of mesoscopic or
macroscopic instability implicated in shear-band formation. If so,
this would establish a kinship to the buckling instabilities involved
in the compaction bands discussed in Sec. 1.1, which in some
cases may be attributed to the loss of elastic convexity, also dis-
cussed in that section.

Whatever the physical origins, a microscopic length scale
serves as a parameter in various enhanced continuum models,
including various micropolar, micromorphic, and higher-gradient
models [115], all of which represent a form of weak nonlocality
that we refer to by the blanket term multipolar. Here, we consider
some of the simpler Cosserat models, often referred to as micro-
polar, and then a more general hypoplastic version.

Viscoplastic Forms. The seminal paper of Lippmann [107]
provides a model of (perfect) Cosserat plasticity that treats plastic
spin as Cosserat rotation. It has been applied to by Mohan et al.
[116] to provide a length-scale resolution of wall slip in the
quasistatic granular flow in channels. As noted in Sec. 3, this is
resolved in a different manner by the time scale inherent to visco-
plastic models.

The success of a recently proposed nonlocal model [117] in fit-
ting steady various experimental velocity may point up the neces-
sity of micropolar viscoplastic models having both length and
time scales to mediate the transition between the quasistatic and
dense-rapid flow regimes, especially in flows involving large-
velocity gradients in thin layers. We note that the model of
Ref. [117], which is formulated in terms of fluidity, can be written
in the present notation as a simpler form of the tensorial model

D ¼ u :T ¼ IjDj0uP; with ‘2r2uP ¼ uP � u�P (66)

in which u is replaced by a scalar. Here, the fluidity u�P is nondi-
mensional, with limiting value u�P for ‘¼ 0 defined by a variant of
the local viscoplastic model in Eq. (65). The ratio ‘/d is given as a
function of the stress ratio jT0j=p, which tends to infinity as this ra-
tio approaches the associated Drucker–Prager yield surface. Thus,
yielding is defined by “jamming” at a diverging microscopic cor-
relation length. Otherwise, the term involving ‘ in Eq. (66) obvi-
ously imparts a diffuse width to shear zones, and in this respect,
the model bears a certain kinship to gradient-plasticity models
involving similar diffusive effects [118]. At any rate, the model of
Ref. [117] seems to offer a considerable improvement on the
“nonlocal” model of Ref. [119], from which this author has been
unable to disentangle a definitive multipolar constitutive equation.

To the extent that the plasticity and viscoplasticity models of
the preceding paragraphs are strongly dissipative, they are once
more susceptible to representation by a inelastic potential, which
can be constructed from the corresponding dissipation functions
by Edelen’s method [56]. Moreover, both must correspond to the
dissipative limit of more general hypoplastic models of a type that
may be necessary to describe evolutionary effects occurring in
transient flows.

Cosserat Hypoplasticity. The monograph of Tejchman [11]
provides a comprehensive summary of a fairly general form of
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Cosserat hypoplasticity, which merits only a slight elaboration
here. Suffice it to note that it is subsumed by the hypoplastic form
in Eq. (57) by enlarging the set of variables to S ¼ fR;M;Xg,
where the second-rank tensor R represents an asymmetric stress,
with T ¼ symR denoting the symmetric Cauchy stress conjugate
to D; S ¼ skwR a skew-symmetric stress, whose vector s is conju-
gate to the vector of Cosserat spin w; and M the second-rank
moment stress conjugate to the torsion rw. Thus, the expression
for stress power is

P ¼ T :Dþ s�wþM :rw (67)

As opposed to the internal balances discussed above, Cosserat
mechanics is subject to linear and angular momentum balances
that follow from virtual work principles based on internal power
in Eq. (67) and related boundary conditions.

We note that the Cosserat balances can be cast into a compact
complex-variable form, such that Cosserat mechanics reduces to
complex Cauchy mechanics [106]. We do not address the issue as
to whether plastic spin is generally to be regarded as internal vari-
able or as an extrinsic variable subject to control at bounding
surfaces.

A Restricted Cosserat Model. The microscopic origins of the
skew-symmetric stress S is one of the more puzzling and contro-
versial aspects of the quasistatic mechanics of granular media.
The most convincing micromechanical models [120] require gran-
ular contact moments in order to obtain continuum level stress
asymmetry in the absence of body couples. However, the rela-
tively small dimensions of the typical Hertzian or quasi-Hertzian
contact zone, given, e.g., by the estimate in Eq. (5) as
a=d � E�1=3, suggests that contact moments, which scale as a/d
relative to the moments associated with contact forces, should be
entirely negligible.

While the theoretical analysis of Ref. [121] (and later defense
thereof [122]) as well as simulations like those of Ref. [42] show
weakly asymmetric stress in confined regions, other analyses
[115] indicate that the static moment balance on individual par-
ticles should rule out stress asymmetry in regions of any size, at
least according to the standard formula for the macroscopic stress.

There are at least two plausible explanations for the above state
of affairs:

(1) The standard formula for stress may break down for small
samples [115] or

(2) Dynamically unstable microscopic states may lead to a dis-
sipative, rate-independent asymmetric stress, analogous
to the dissipative stress revealed by the simulations of
Peyneau and Roux [62] discussed above.

Neglecting the stress asymmetry, one obtains a restricted form
of Cosserat mechanics, in which grains may be construed to rotate
as quasistatic “idlers” devoid of rotational couple, as is the case of
the torque-free particles in a viscous fluid referred to in conjunc-
tion with the moment balance in Eq. (33). It this case, the moment
stress M may still be nonzero, satisfying the static moment
balance

r�M ¼ 0 (68)

as a companion to static Cauchy-stress equilibrium. A forthcom-
ing paper [51] undertakes a study of the field equations for the
above model (which that author has informally characterized as
“Cosserat-B” in informal communications).

Although not contributing directly to stress power, the mean
particle rotation must nevertheless be taken into account whenever
the effects on texture or fabric arising from mean orientation of
(nonspherical) particles is important. Moreover, this rotation must
be specified by constitutive equations for particle spin like that in
Eq. (25). This is analogous to the tracking of plastic spin [82] as

an orientational effect, even though no asymmetric stress is
involved.

Particle Migration. Various models of particle migration
in suspensions [84] or size segregation in granular media
[39,40,123] involve various diffusionlike terms that suggest multi-
polar effects. While some models [40] involve gravitational
driven sedimentation opposed by diffusional remixing, others
[123] show a direct effect of gradients in shearing akin to those
found in suspensions [84]. It is perhaps significant that many gran-
ular size-segregation effects are associated with dense flow in thin
layers, which again suggests the likelihood of Knudsen number or
multipolar effects.

Whatever the origins of particle migration, it can probably be
treated as a strictly dissipative process, implying that it also can
be represented as a generalized velocity in a dissipation potential.
If so, then this suggests a convenient way of formulating properly
invariant constitutive relations [84].

Relevance to Material Instability. The limitations of space
and time do not allow for a meaningful review of instabilities in
granular flow. As pointed out by Ref. [8], there is a bewildering
variety of such instabilities. These range from the shear-banding
instabilities in quasistatic flow discussed above in the Introduc-
tion, to gravitational layering in moderately dense rapid flow
[124], to clustering instabilities in granular gases [37].

To clarify matters, the author advocates a distinction between
material or constitutive instability, representing the instability of
homogeneous states in the absence of boundary influences [46]
and the dynamical or geometric instability that occurs in materi-
ally stable media, such as elastic buckling, inertial instability of
viscous flows, etc. With this distinction, it becomes much easier
to assess the importance of multipolar and other effects.

Pioneering works on the subject [57] reveal the multipolar
effects on elastoplastic instability, not only on postbifurcation fea-
tures, such as the width of shear bands, but also on the material
instability itself. This represents an interesting and challenging
area for further research based on the parametric viscoelastic or
hypoplastic models of the type discussed above. The general ques-
tion is whether and how the length scales that lend dimensions to
spatially patterned states enter into the initial instability giving
rise to those states.

As discussed in the review [46] and the monograph [8] (Sect.
8.4), the linear instability of homogeneous base states of a nonpo-
lar fluid model is reducible to a set of ODEs, whose stability ma-
trix is given as a polynomial in disturbance wave number with
time-dependent matrix coefficients. As indicated in Ref. [46], the
above representation should carry over to multipolar models, with
higher-order polynomials in wave number representing the effects
of higher spatial gradients. This offers the possibility of greatly
simplified analytical or numerical studies of linear instabilities,
but such techniques have yet to be applied to elastoplastic media.
It is possible that weakly nonlinear stability analyses can also be
carried out for the simpler constitutive models in order to assess
the effects of disturbance amplitude.

5 Conclusions and Questions

As summarized in the abstract, a survey has been given of cer-
tain salient phenomenological aspects of granular flow, along with
a unified mathematical synthesis of current continuum models.
Parametric viscoelasticity and hypoplasticity provide a unified
description based on elastic and inelastic potentials, like those
assumed in the classical models of plasticity. The inelastic poten-
tials follow without assumption from the work of Edelen, and
they apply to viscoplasticity as well as ordinary plasticity.

To achieve a fully nonlinear anisotropic viscoelastoplasticity, it
is assumed that the elastic or inelastic potentials may, by isotropic
extension, be expressed in terms of the joint isotropic invariants
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of elastic strain or inelastic strain rate and an appropriate set of
structural tensors. The latter represent evolutionary internal varia-
bles or parameters, whose evolution equations are based on an
assumed internal balance of generalized forces derived from the
elastic and inelastic potentials.

The resulting continuum models encompass most of the special
constitutive models that have been proposed for granular media,
and these models are readily modified to include Cosserat and
other multipolar effects.

Several conclusions arise from the present study:

(1) Hypoelasticity does not encompass classical plasticity,
whereas the latter is easily represented by means of para-
metric hypoplasticity.

(2) Most existing models of granular rheology are based on
highly simplified versions of hypoplasticity that are incapa-
ble of describing certain phenomena, such as noncircular
yield cones and viscometric normal stress.

(3) Many features of plasticity and granular plasticity follow
mathematically from the existence and convexity of inelas-
tic potentials, requiring no special physical arguments.

(4) Loss of convexity in potentials can give rise to both inelas-
tic and elastic material instabilities.

(5) The simplest forms of material instability should be suscep-
tible to linear stability analyses based on the general models
discussed in this review.

And several major questions may be identified, including:

(1) What is the physical significance of the characteristic stress
scales appearing in various phenomenological models of
granular media and soils?

(2) Are the typical elastoplastic instabilities in granular media
quasielastic or inelastic in nature? To what extent are they
modified by the multipolar effects defining the spatial
scales of the resulting patterns?

(3) Does the rate of change of internal variables, such as granu-
lar volume fraction and fabric, contribute significantly to
dissipation, requiring their inclusion in the inelastic poten-
tials, with assignment of internal forces?

(4) What class of composite media if any are driven quasistati-
cally to simultaneously minimize both elastic and inelastic
potentials?

(5) Are multipolar models required to model dense rapid flows
in thin layers and phenomena, such as particle migration
and granular segregation?

It is hoped that this review will serve as motivation and perhaps
as a guide to further work on these and related questions.
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Nomenclature

General

a� b; a� A;A� b;… ¼ tensor products
a � b;A � B;… ¼ bilinear pairing based

on given metric
jaj ¼

ffiffiffiffiffiffiffi
a�a
p

; jAj ¼
ffiffiffiffiffiffiffiffiffiffi
A :A
p

;… ¼ Euclidean norms
A :B ¼ trðABTÞ ¼ Euclidean scalar

product and
contractionbA0 ¼ dirðA0Þ ¼ dirðdevAÞ ¼ director of the
deviator

Ab,… ¼ second-rank tensor as
linear map R3 ! R3

bl. and bu. ¼ bold lower case and
upper case in this list

bl. Fraktur f; g;… ¼ tensor-valued
functions

bl. Greek or Hebrew a;b;…@;… ¼ tensors of rank> 2
bl. Roman a, b,… ¼ vectors (rank-1

tensors) 2 R3

bu. Fraktur A½ �;B½ �;… ¼ linear maps of arrays
bu. Roman or Greek A;B;C;… ¼ rank-2 tensors 2

GL(3)
bu. scriptA;B;… ¼ abstract arrays of

tensors
C ¼ FTF;B ¼ FFT ¼ (right and left)

Cauchy–Green strains
det A, sym A, and skw A ¼ determinant, sym., and

skew parts
D¼symL; _c¼jD0j;W¼skwL ¼ straining, shearing,

spin
F¼@x=@x�; J¼det F;L¼ _FF

�1¼rvT ¼ kinematic tensors
I, AB, and AT,… ¼ second-rank identity,

product, and transpose
trðAÞ ¼ I:A;A0 ¼devðAÞ¼A�ðtrA=3ÞI ¼ trace and deviator

T; p¼� 1
3

trT0 and s¼jT0j ¼ Cauchy stress,
pressure, and shear

U ¼pC;V ¼pB;R ¼ FV�1¼ U�1F ¼ stretch and rotation
x or x(x�,t) ¼ spatial position or

material placement
a½ �;b½ �;… ¼ associated linear or

pseudolinear forms
a�b ¼ ða�bÞ½ð Þ�;… ¼ product of compatible

maps
d ¼̂ ½dijkl� ¼ ½dikdjl� ¼ fourth-rank identity:

GL(3)! GL(3)
ðÞðsÞ and ðÞðÞ ¼ symmetrization and

skew symmetrization
ðÞ ¼̂ ½ðÞijk…� ¼̂ ½ðÞ

kl…
ij… � ¼ components on given

basisbðÞ ¼ dirðÞ ¼ ðÞ=jðÞj ¼ director (or “versor”)
of tensors

ðÞ
_¼
dtðÞ ¼ @=@tð Þx� ðÞ ¼ (Lagrangian) material

rates
ðÞ

_¼
ð@t þ v � rÞðÞ; v ¼ _x ¼ Eulerian material rates

()� and x� ¼ referential value and
material-point position

@t ¼ @=@tð Þx ¼ (Eulerian) time rates
of change

Special

d, Gs ¼ representative grain
diameter and elastic
modulus

ec, ps ¼ collisional restitution
coeff. and confining
pressure

E; I;H;K ¼ elastic, inertial,
viscous, and Knudsen
numbers

L;< ¼ generalized
conductance and
resistance matrices

M ¼ generalized
hypoelastic or
hypoplastic
modulus

M, N ¼ normals to plastic
potential and yield
surfaces
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Z, A ¼ granular coordination
number and fabric
tensor

c; _c; jD0j0 ¼ shear, shear rate, and
characteristic shear
rate

g ¼ u�1 ¼ fourth-rank viscosity
as inverse fluidity
tensor

gf ;/l ¼ interstitial viscosity
and granular friction
angle

j½ðÞ� ¼ j :ðÞ ¼ fourth-rank
compliance: GL(3)!
GL(3)

lE ¼ j�1
E ; lP ¼ j�1

P ¼ elastic and plastic
modulus and inverse

l½ðÞ� ¼ l :ðÞ ¼ fourth-rank modulus
as map GL(3)!
GL(3)

qs, ls ¼ grain density and
intergranular friction
coefficient

/; nc ¼ granular volume
fraction and contact
density

w and u ¼ Helmholtz or Edelen
potential and dual

()E and ()P ¼ elastic and
plasticoviscous
contributions

#; #P ¼ plastic “clock
functions”
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