
UC Berkeley
UC Berkeley Previously Published Works

Title
A method of alternating characteristics with application to advection-dominated 
environmental systems

Permalink
https://escholarship.org/uc/item/6km505v7

Journal
Computational Geosciences, 22(3)

ISSN
1420-0597

Authors
Georgiou, Katerina
Harte, John
Mesbah, Ali
et al.

Publication Date
2018-06-01

DOI
10.1007/s10596-018-9729-5
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6km505v7
https://escholarship.org/uc/item/6km505v7#author
https://escholarship.org
http://www.cdlib.org/


A method of alternating characteristics with application to 
advection-dominated environmental systems

Katerina Georgiou1,2 · John Harte3 · Ali Mesbah1 · William J. Riley2

1 Department of Chemical and Biomolecular Engineering, University of 
California, Berkeley, CA 94720, USA 2 Earth and Environmental Sciences, 
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., 74R316C, Berkeley, 
CA 94720, USA 3 Energy and Resources Group, University of California, 
Berkeley, CA 94720, USA

Abstract

We present a numerical method for solving a class of systems of partial 
differential equations (PDEs) that arises in modeling environmental 
processes undergoing advection and biogeochemical reactions. The salient 
feature of these PDEs is that all partial derivatives appear in linear 
expressions. As a result, the system can be viewed as a set of ordinary 
differential equations (ODEs), albeit each one along a different characteristic.
The method then consists of alternating between equations and integrating 
each one step-wise along its own characteristic, thus creating a customized 
grid on which solutions are computed. Since the solutions of such PDEs are 
generally smoother along their characteristics, the method offers the 
potential of using larger time steps while maintaining accuracy and reducing 
numerical dispersion. The advantages in efficiency and accuracy of the 
proposed method are demonstrated in two illustrative examples that 
simulate depth-resolved reactive transport and soil carbon cycling.

Keywords: Soil biogeochemical cycles · Reactive transport modeling · 
Numerical methods · Partial differential equations · Method of characteristics

1 Introduction

Typically, models of environmental processes must be solved over long time 
horizons and over many spatial grid points to make projections that establish
how external stimuli might affect the state of a system [1, 2, 5, 14, 36, 41, 
42, 46, 48]. In addition, multi-model ensembles are often used due to 
uncertainty in model structure and parameter values to obtain not only one 
projection but also a range depicting its uncertainty [17, 23, 46, 48]. Such 
simulations require considerable computational resources, especially since 
the solutions must be obtained over sufficiently small time steps to maintain 
accuracy and avoid errors due to numerical dispersion. There is, thus, an 
ongoing need for improving the numerical tools used to solve spatially and 
temporally resolved reactive transport models over large space and time 
horizons.

The type of equations we are concerned with here is typical of those arising 
in environmental systems in which one or more components undergo 
advective transport in addition to chemical or biological reactions. Such 
equations occur, for example, in modeling of pollutant transport through a 



porous, reactive medium or in modeling of soil carbon cycling where leaching
processes transport dissolved organic carbon vertically through the soil 
profile [1, 16, 22, 23, 36, 41, 42, 45]. These types of systems give rise to 
equations of the form 

where ui is the concentration of the ith component of the system, fi(t, 
ui,...,un) is the nonlinear function that encodes the reactions governing ui, 
and ci(t, x) is the advective velocity (e.g., of water through the soil profile). 
We then have equations in which the partial derivatives with respect to 
space and time appear linearly for each ith component, modified only by 
coefficients. We note that the advective velocity (ci) may, in fact, be spatially
varying, so we present an extension of our method to accommodate this 
dependence. These equations comprise a system of coupled, hyperbolic 
partial differential equations (PDEs), and although they can be solved 
numerically via standard methods [11, 12, 20, 26, 33, 35, 43], the specific 
form that arises in environmental processes is often amenable to a natural 
and simpler numerical solution as a set of ordinary differential equations 
(ODEs) along a customized grid by a suitable adaptation of the method of 
characteristics [12, 13].

In essence, the proposed method transforms the above coupled PDEs into 
coupled ODEs, each one propagating along its own characteristic, and 
alternates in solving each equation by step-wise numerical integration along 
its corresponding characteristic. The method takes advantage of the fact 
that the solutions of advection-dominated PDEs are generally much 
smoother along their characteristics than they are in the time direction [12, 
49]. This allows for larger time steps in a simulation without a loss of 
accuracy and reduces the numerical dispersion present in many Eulerian 
methods [12, 43]. Additionally, since the grid is uniquely defined by the 
physics (via the characteristics) of the system, the proposed method is not 
susceptible to grid orientation effects, in contrast to finite-difference 
methods. We implement a numerical integration using the implicit Euler 
method to achieve better accuracy and stability compared to the explicit 
Euler scheme [24, 33]. For specific forms of the governing equations, the 
method can be generalized to more than one spatial dimension.

In the next section, the proposed method, termed the method of alternating 
characteristics (MAC), is described for a system of two, three, or more 
characteristic directions and extended to spatially variable characteristic 
directions and more than one spatial dimension, as well as to systems where
both advection and diffusion are present. We then present, in Section 3, two 
example applications that arise in modeling reactive transport and depth-
resolved soil carbon cycling. We solve each system of equations using the 
method of alternating characteristics and standard methods for 



approximating PDEs (e.g., finite differences). We compare the solutions in 
terms of accuracy, speed, and robustness and explore advantages of the 
proposed method. While optimized integration schemes may outperform our 
chosen standard, we emphasize that the goal here is to illustrate that the 
physics of advection-dominated environmental systems is uniquely suited for
the proposed method and that further optimization may be necessary. 
Finally, concluding remarks are given in Section 4.

2 Method of alternating characteristics

In general, for a given component (i), the partial differential equation

along the characteristic x(t) defined by dx(t) dt = ci(t, x) [12, 33]. For a 
system with two or more PDEs as above, the basic idea of the MAC is to 
alternate between (ordinary) integrations along characteristics, each time 
integrating step-wise the corresponding ODE equation along its respective 
characteristic. We first focus on the case where ci is constant, in which case, 
the characteristic is

and will be referred to as a constant characteristic direction. The method is 
described in detail, first for a system with two constant characteristic 
directions, followed by a discussion for extending this method to systems 
with more general (e.g., spatially varying) characteristic directions as well as 
systems with more than two characteristics. Our interest is mainly in one 
spatial dimension; in Section 2.4, we remark and discuss special cases where
the method can be extended to more than one spatial dimension.

In the developments that follow, we adopt the commonly used compact 
notation of denoting partial derivatives ∂u ∂x by ux and ∂u ∂t by ut .

2.1 System of two constant characteristic directions Consider a system of 
two PDEs as in Eq. 1, with constant advective velocities (ci) where i ∈ {1, 2}.
Without a loss of generality, we can assume that one of the two is equal to 
zero and the other normalized to 1. Thus, simplifying the notation for 
illustration, we consider two scalar functions, u(t, x) and v(t, x), satisfying



where the function g depends on u(t, x0). However, u(t, x0) is not known 
ahead of time and depends on values of u(t, x) at nearby points in the spatial
direction, via Eq. 2a. In turn, Eq. 2a can be written as an ODE when solved 
along its corresponding characteristic,

along the line x˙u (t) = 1, or, equivalently, along xu (t) = x0 + t. This is so 
because Eq. 2a has the character of a wave equation [33]. Here, the function
(f ) depends on v(t, x0+t) which evolves in time and space via Eq. 2b. We 
summarize that Eq. 2b can be solved as an ODE along the characteristic x˙v 
= 0, while Eq. 2a can be solved as an ODE along x˙u = 1. We briefly note 
that along the line x˙v = 1, Eq. 2b is no longer an ODE, but rather, it 
becomes

Thus, the wave nature of one of the two equations complicates matters and 
we cannot reduce the system to a corresponding system of ODEs unless we 
alternate between the directions of the two characteristics: x˙u = 1 to solve 
for u and x˙v = 0 for v. By developing a customized grid, we can alternate 
between these characteristic directions and solve the system as two ODEs, 
rather than as numerically approximated PDEs.

For the particular example above, with characteristics x˙v = 0 and x˙u = 1, 
the corresponding grid is shown in Fig. 1a, where we can solve the ODE for u 
diagonally and for v horizontally. We can only solve each over the time step t
since we must update the value of both u and v at the nodes of the grid for 
successive points in time.

Thus, the numerical scheme amounts to updating the value of u and v at the 
node points, as follows:

Fix t and consider successively the points in time t ∈ {0, t, 2t, . . . , kt, . . .} 
and the corresponding values of



A small modification of the approach allows the usage of the implicit 
(backward) Euler method for solving the differential equations along the 
characteristics. More specifically, replace Eq. 3, by the following implicit 
equations:

Therefore, the fixed-point iteration in Eq. 5 converges. In the simulations, a 
fixed number of steps for the iteration are deemed sufficient, and it is 
observed that they give an improvement over the standard explicit Euler 
method.



The proposed method can be applied to a system of more than two 
equations without any modification, provided they share the same two 
characteristics. In fact, this is not unusual in many natural systems. For 
example, in soil, some chemical components may experience advection (i.e.,
leaching) with a particular gravity- or pressure-driven water velocity, while 
other components experience no leaching [1, 36]. In that case, a subset of 
equations can be solved along the characteristic dictated by the magnitude 
of the water advective velocity (i.e., x˙ (t) = c for some value c), while the 
remaining equations can be solved along constant values of x (i.e., x˙ (t) = 
0).

If, however, there are more than two characteristics, e.g., for three 
dependent variables (u, v and w), we need to adjust the grid appropriately 
and possibly interpolate values of some of the dependent variables. This 
scenario will be discussed below, along with the case where the velocities 
(and therefore the characteristics) vary spatially.

2.2 System of three or more characteristic directions

Consider the case of three coupled PDEs

Once again, and without a loss of generality, one velocity is normalized to 1 
and another to 0, and the remaining advective velocity is c.

We may form a grid as before on which to alternate directions and integrate 
Eqs. 6a and 6b. However, in order to update the values of w, we need to 
integrate Eq. 6c along a different characteristic. If the advective velocity of w
(c; denoted x˙w) is an integer (i.e., integer multiple of x˙u), the grid points 



dictated by the advective velocities of u and v are sufficient, namely the (uv)
grid as defined in Section 2.1. Then, all dependent variables can be 
consistently determined on these points. If, however, c is not an integer 
multiple of the advective velocity of u, the value of w needs to be 
interpolated accordingly. More specifically, the value of w can be computed 
by integrating Eq. 6c at points that fall outside the grid and those values can 
then be used to approximate w on the (uv) grid (see Fig. 2). For instance, the
values of w at points (t, x1) and (t, x2) can be used to linearly interpolate the
value of w at (t, x), as shown in Fig. 2. We note that, in principle, the 
interpolation should be of at least the same order as the integration scheme,
which is here of first order.

In this way, following the rationale in the MAC, we can again use ordinary 
integration along characteristics as specified by the physics of the system. 
The choice of which equations to normalize and, thereby, determine the grid 
on which to evaluate the parameters may have an impact on the numerical 
accuracy. Further analysis is needed to assess the optimal choice.

2.3 System with spatially varying characteristic directions

On account of the underlying physics, the advective velocity may vary in 
space and time, i.e., as c(t, x) [16, 23, 41, 42]. For example, the number and 
size of pore spaces in soil (and consequently, the bulk density) through 
which water flows may vary with depth [1, 29, 36, 47]. Given mass balance 
considerations and no accumulation, this implies that the velocity changes 



with depth as the flow path changes. Additionally, leaching may vary 
according to the amount of water entering the soil (e.g., due to changes in 
precipitation) at a particular point in time [15, 29, 36, 47]. Thus, we can see 
that the method presented above often needs to be extended to the case of 
variable characteristic directions.

For illustration purposes, we consider the case where the advective velocity 
is only spatially variable; i.e., it is c(x). Figure 3 displays a suitable grid for 
the numerical scheme to solve an example with depth-varying advective 
velocity. Of particular interest, conferring advantages to the MAC may be the
case where the depth-varying velocity changes abruptly between layers 
(rough coefficients in the PDEs) as dictated by the underlying physics. An 
example of such a case will be simulated and discussed in Section 3.1.

In principle, it is also possible to include temporal variation, either as c(t) or 
c(t, x) depending on the system. However, in such a case, the suitable grid 
may be complicated or may require additional interpolation. Since MAC is a 
first-order method, in principle, any approximation should be at least of first 
order. In practice, however, simplifications are often employed that ignore 
this time dependence. In the case of soil carbon modeling, a temporally 
averaged water flux is often used, calculated based on monthly or annually 
averaged precipitation [1, 29]. Hence, the velocity is taken as a constant in 
time and the use of a temporally varying velocity may depend on the 
timescale of interest.

2.4 Characteristics in more than one spatial dimension



The basic property that allows adapting the method of characteristics to a 
hyperbolic system of PDEs is the ability to generate a customized lattice 
(grid) where the spatial and temporal derivatives can be numerically 
approximated, consistently and simultaneously, for each of the equations of 
the hyperbolic system. For this to be the case, it is important that the 
characteristics display a suitable spatial invariance. The type of equations 
that arises in environmental models (e.g., of biogeochemical processes) is 
often simple enough to justify such a property.

Once again, we consider two dependent variables, u and v. We consider two 
spatial dimensions with coordinates designated as x and y and PDEs of the 
form

This set of equations arises naturally in instances where two components 
(with concentrations, u and v) chemically interact, while one of the two 
advects (e.g., component u leaches through the soil) and the other is 
stationary (e.g., v is adsorbed to the soil matrix). The advective velocities in 
the x and y directions may depend on different physical factors. For 
example, the velocity in the y (horizontal) direction could be driven by a 
constant pressure gradient, possibly due to a nearby river or sloped 
catchment [15, 31, 37, 47]. The gravity-driven velocity in the x (vertical) 
direction, on the other hand, may be a function of the depth (rather than 
being constant) due to differing medium properties (e.g., porosity) with 
depth [1, 36]. In this instance, the characteristics for component u 
(distinguished by a superscript) are defined by



As seen in Fig. 4a, a customized lattice, where spacing is regular in the y 
direction and adjustable in the x direction, provides a grid that allows 
integration of ODEs numerically along corresponding characteristics in a 
suitable manner. The curves in Fig. 4b represent the projection of the 
characteristics of u (that may be spatially variable, as shown) on the (xy) 
plane, whereas the dots represent the projection of the characteristics of v. 
The lattice consists of points

and the corresponding variables for the numerical scheme are labeled 
accordingly as uk,l,m and vk,l,m. Along the characteristics in Eqs. 8a, b and 
9a, b the ordinary difference equations for the explicit Euler scheme take the
form

respectively, where u and v are computed recursively for increasing values 
of k ≥ 0, starting from given boundary conditions

Similarly, the implicit Euler method, together with a fixed-point iteration 
scheme, can be employed using f and g evaluated at (uk+1,l,m, vk+1,l,m).

In more general situations, when a family of characteristics cannot be found 
that meets at the nodes of a lattice, advantages may still be drawn from a 
customized grid in conjunction with approximation schemes to interpolate at 
in-between points as discussed earlier.

2.5 System with diffusion and advection



For many of the physical processes that we consider, it is expected that a 
small amount of diffusion will be present; e.g., that dissolved organic carbon 
will diffuse through the porous soil media. Thus, a more accurate model may 
be of the form

If we use Eqs. 4a, b and 12a, b instead, the difference equations become 
implicit as both uk+1,l and vk+1,l appear in the expression for the second 
partial with respect to x. These equations must be solved by relying on a 
fixedpoint iteration as before. However, since the estimate for the second 
partial requires x2 in the denominator, the relative sizes of t, x, and ε values 
are critical and a Lipschitz constant of less than 1 may not be possible to 
guarantee. This appears to be the case when the magnitude of t ≈ x and x is 
small relative to the ε values.

3 Applications and results



The MAC is uniquely suited to solve systems where subsets of the chemical 
constituents experience different advective velocities. Such instances arise 
naturally in many depth-resolved reactive transport models with flow 
through a porous, reactive medium, where only a subset of the constituents 
experience leaching [1, 16, 22, 23, 32, 36, 41, 42]. For example, this 
encompasses many instances of pollutant transport through soil and extends
to models of soil carbon cycling where dissolved organic matter experiences 
leaching in addition to microbial decomposition and adsorption to mineral 
surfaces. Earlier method-ofcharacteristics-based ideas [3, 7, 8, 13, 38] have 
not been applied to this type of system where multiple characteristics must 
be reconciled and simultaneously utilized on a customized grid, limiting our 
ability to compare directly to such methods. The efficiency and accuracy 
(convergence towards the exact solution) of the MAC is therefore compared 
to a standard finite-difference scheme. More specifically, the first-order, 
implicit upwind finite-difference scheme (hereafter, FD) is used to allow for a 
direct comparison with the first-order, implicit Euler method used in the MAC,
as detailed in Eqs. 4a, b and 5a, b. For the system in Eqs. 1 and 2a, b, 
following the discretization uk,l = u(kt, lx) and vk,l = v(kt, lx), the upwind 
scheme employed can be represented in compact notation as follows:

where c+ = max (c, 0) and c− = min (c, 0) and, similarly, for vk+1,l with g  
uk+1,l, vk+1,l [33, 34]. Thus, if c > 0, as is the case in the examples below, 
c+ = c and c− = 0. This implicit scheme can be solved by a fixed-point 
iteration, as described in Eqs. 4a, b and 5a, b, as opposed to an explicit 
scheme where f and g are directly evaluated at (uk,l, vk,l). We note that 
implicit evaluation of spatial derivatives at tk+1 resulted in additional 
numerical dispersion. We have therefore restricted our attention to the case 
where only f and g are implicitly evaluated as in Eq. 13. The upwind finite-
difference scheme in Eq. 13 is first order in both space and time. While we 
consider only first-order schemes here, alternative higher-order schemes can
be used for both the MAC and FD, e.g., higher-order Runge-Kutta methods to 
approximate the ODE in the MAC and, accordingly, for the FD [19, 25]. The 
performance of the proposed method is highlighted by two examples of 
typical one-dimensional environmental applications in Sections 3.1 and 3.2.

3.1 Reactive transport through a porous medium

We apply the MAC to simulate depth-resolved, advectiondominated transport
in which an unspecified number of substrates (for example, dissolved organic
matter or extraneous pollutants) are leached through a porous medium (e.g.,
soil) while also undergoing reactions with the stationary parent material. 
Here, we imagine that a substrate flows through the soil profile but can no 
longer be leached if adsorbed to a mineral surface. In its dissolved and 



leachable state, the substrate constitutes the dissolved pool (CD), while in its
adsorbed and stationary state, the substratemineral complex makes up the 
mineral-associated pool (Cq ). The adsorption and desorption reaction rate 
constants are denoted kads and kdes, respectively, and the advective 
transport is driven by the water velocity (c) through the medium (see Fig. 5). 
Assuming that a surplus of mineral binding sites (qmax) exists to adsorb the 
substrate, the temporal and spatial evolution of the two dependent variables 
is dictated by

where all functions depend on time (t) and depth (x). This example is easily 
extended to the case where there are multiple substrates that undergo 
reactions, multiple mineral surface types, as well as biological activity in 
which select substrates are consumed. The key is that only a subset of 
components undergoes advection, making the MAC uniquely suited to solve 
such a system.

Without a loss of generality, the parameters kads, kdes, qmax, and c in the 
above model were assumed to take the values of 1 day−1 kg−1 m3, 1 
day−1, 1 kg m−3, and 0.2 m day−1, respectively, recognizing that in real 
applications, these values are estimated from laboratory experiments; e.g., 
sorption isotherms for each particular substrate are used to calculate the 
relevant adsorption and desorption parameters (kads, kdes, qmax) [30]. 
Figure 6 shows the temporal and spatial evolution of the system in Eq. 14a, b
in response to a step input of pollutant of 1 kg m−3 at the surface. The initial
condition of both pools is zero pollutant concentration, while the boundary 
(surface) condition is initially rich in pollutant (imagine a continuous spill) 
and then free of pollutant (e.g., the spill is contained). Ultimately, the shape 
of the pollutant profile depends on the initial and boundary conditions, the 
relative magnitude of the adsorption and desorption rate constants, as well 
as the advective velocity.



We compared the solutions of Eq. 14a, b with time steps (t) ranging from 
0.001 to 0.5 days for both the MAC and FD (Fig. 6), where x for MAC is 
predefined by the nature of the method (i.e., x = ct) and, thus, the same x 
was adopted for FD to ensure a fair comparison at the same resolution. As 
aforementioned, we show results from the first-order, implicit upwind finite-
difference scheme in Eq. 13 but also note that the first-order, explicit upwind
finite-difference scheme was more prone to instabilities, as expected [12, 
33]. Comparing the solution of FD across a range of time steps in Fig. 6, 
where the spatial step size is chosen to allow direct comparison to MAC, we 
can see that there is substantial numerical dispersion at larger time steps. 
However, comparing the MAC (Fig. 6, top) to the FD (Fig. 6, bottom), we can 
clearly see that the MAC maintains performance at coarser grid resolution. 
This pattern is also illustrated in Fig. 7 where the error (defined as the 
difference between the solution obtained using t = 0.5 and t = 0.0005) is 
displayed for both the MAC and FD schemes. The two methods converge at 
smaller time steps (Δt) < 0.001, and thus Δt = 0.0005 is a good 
approximation of the true solution [4, 33]. It is observed that the MAC offers 
a significant advantage, as it allows for faster simulations with larger 
integration steps that do not sacrifice accuracy.



In Fig. 8, we show the simulation runtime and absolute error (defined here as
the absolute value of the difference between the solution at each t and the 
true solution at t = 0.0005; i.e., |estimated − true| as per [4, 33]) as a 
function of the time step for each of the two methods. While we show the 
average absolute error (i.e., the L1 norm, |estimated − true|) over space and
time in Fig. 8, we also explored the error at select time points, as well as the 
average squared error (i.e., the L2 norm, (estimated − true) 2) since the 
choice of norm can be important and should reflect the goal of the 
computation [4, 44]. We can clearly see that, for this system, the MAC has a 
distinct advantage over FD and, especially, at larger step sizes. The error is 
essentially proportional to the step size, as seen in the matching slopes of 
the MAC and FD lines in Fig. 8b, confirming that we are dealing with first-
order numerical methods [33]. By its very nature, the MAC outperforms FD, 
especially when steep concentration gradients occur. We note that in cases 
with smoother concentration gradients, the two methods showed similar 
accuracy, but we did not find the converse, where FD would perform better 
than the MAC.



While we have thus far explored a numerical example with constant 
advective velocity, the properties of the medium (e.g., mineralogy and 
porosity of soil) generally vary with depth [1, 36]. It is also possible to have 
rough coefficients with depth, for example, in distinct soil horizons (i.e., 
layers) [30, 36]. A system with heterogeneous coefficients may be more 
naturally handled by taking advantage of the physics in the MAC solution. A 
numerical example is presented in Fig. 9, where an abrupt change in the 
advective velocity occurs with depth. The FD solution results in significant 
numerical dispersion, especially with steep velocities and large time steps, 
as seen by comparing the right-hand panels of Fig. 9.



3.2 Depth-resolved biogeochemical cycling in soil We now apply the MAC to 
a depth-resolved soil carbon model that includes four pools of organic carbon
to a depth of 1 m. These pools include the carbon in polymeric soil organic 
matter (CS), dissolved organic matter (CD) that leaches down the soil profile 
with a water transport velocity (c), microbial biomass carbon (CB), and 
mineralassociated organic matter (Cq ). The temporal and spatial evolution 
of these four dependent variables is dictated by



where all functions depend on time (t) and depth (x). The nonlinear functions
of CS, CD, CB, and Cq represent various chemical and biological reactions, 
including soil organic matter decomposition, uptake of dissolved organic 
matter into microbial biomass, and organo-mineral adsorption (see 
schematic in Fig. 10).

We can observe that the system is, in fact, of the same form as the previous 
example and that of Eq. 1. Here, u and v can be thought of as vector-valued 
with u = [CD] and v = [CS, CB, Cq ], so that there are, again, two 
corresponding characteristics: x˙u = c and x˙v = 0, respectively. Without a 
loss of generality, we assume values of the parameters as reported in the 
literature (e.g., [1] and [27]), noting that the relative importance of each 
term in Eq. 15a–d, as dictated by the values of the parameters, does not 
affect our conclusions. The parameters Vmax, Km, Vmax,U, Km,U, kB, ε, 
kads, kdes, qmax, and c take values of 1 day−1, 250 mg C g−1 soil, 0.1 
day−1, 0.26 mg g−1, 0.005 day−1, 0.31, 1 (mg g−1)−1 day−1, 0.02 day−1,
1.5 mg g−1, and 0.5 m day−1, respectively (Table 1) [1, 27, 30]. Most of 
these parameters are derived from laboratory incubations (e.g., kads, kdes, 
and qmax via sorption isotherm experiments [30] and ε via measurements of
microbial growth and respiration [40]), and the remaining parameters are 
statistically fit to match overall pool sizes (i.e., CS, CD, CB, and Cq ) at the 
field site of interest [1, 27]. We note that the estimation of these parameters,
and the final model structure, depends largely on the application. We 
therefore use these parameters to illustrate the implementation of this 
method, and this analysis should be taken in that spirit.



Integrating Eq. 15a–d with MAC and FD (both with first-order integration 
schemes of ordinary and partial derivatives, respectively) across a range of 
time steps (t = 0.01, 0.05, 0.1, 0.25, 0.5) with corresponding spatial steps (x)
as defined by MAC, we show the resulting transient and steady-state total 
soil carbon (CS + CD + CB + Cq ) profiles in Fig. 11. It is clear that the MAC 
approaches the steady-state faster and with greater accuracy than FD. This 
is also illustrated in Figs. 12 and 13, where we show the percent absolute 
error of the MAC and FD solutions as compared to the true solution (i.e., 
100·|estimated − true|/true) for a range of time steps (t). For this example, 
we conclude that the MAC outperforms FD in accuracy, stability, and speed, 
especially at larger time steps.



4 Discussion and concluding remarks

We have presented a method for solving systems of advection-dominated 
PDEs in which all partial derivatives appear in linear expressions, as in many 
reactive transport models. The proposed method, termed the method of 
alternating characteristics (MAC), is based on alternating between 
characteristic directions of the equations, such that a system of PDEs can be 
sequentially integrated, one step at a time, as ODEs along corresponding 
directions. We described extensions of this method to systems with two or 
more characteristics, spatially and temporally varying characteristics, and 
more than one spatial dimension. Finally, we presented two numerical 
examples, including applications to contaminant transport with mineral 
adsorption in a porous medium and to soil carbon cycling. The key is that 
only a subset of the chemical constituents undergoes advection, while the 
remaining constituents are stationary. This scenario arises naturally when a 
compound can be leached through a porous medium in its dissolved state, 
for example, but cannot be advected once adsorbed to the surrounding 
medium.

We compared the MAC using the first-order, implicit Euler method for ODE 
integration to the standard firstorder, implicit upwind finite-difference 
scheme for PDE integration in space and time [12, 33] and demonstrated 
that the MAC is substantially more accurate for a given grid resolution or 
simulation runtime (Fig. 8). More specifically, because the solutions of 



advection-dominated PDEs are smoother along their characteristics than in 
the time direction, the MAC can use larger time steps while maintaining 
stability and accuracy. This fact is especially true for situations with steep 
concentration profiles. For such a case, we found that the MAC has a 
significant advantage in performance with regard to simulation time as well.

In implementing finite-difference schemes, we have not implemented 
additional advances, e.g., that improve stability [9, 18, 28, 31, 39]. Further, 
besides stability, when implementing finite-difference schemes, it is also 
important to preserve conserved quantities if that is the case [19, 26, 34]. 
This last point has not been considered in the current paper either. However,
we anticipate that both improved stability and conservation can be suitably 
addressed since MAC in essence reduces to integration of ODEs. This is a 
topic of current interest and research.

Our point in the present paper has been to highlight the potential 
advantages of the proposed method and underscore the suitability for 
advection-dominated environmental systems with biogeochemical reactions. 
We expect that the proposed MAC will be useful to other fields of study in 
which time-dependent advection-dominated PDEs arise, such as air pollution 
(e.g., atmospheric pollutant transport), geomorphology and geochemistry 
(e.g., sediment and contaminant transport [5, 6, 16, 41]), ecology (e.g., 
population densities of drift-prone aquatic species [10]), and engineering 
applications.
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