
UC San Diego
Technical Reports

Title
Suspending and Resuming Network Applications using Session Continuations

Permalink
https://escholarship.org/uc/item/6km5s82h

Authors
Snoeren, Alex C
Panigrahi, Debashis
Mukhopadhyay, Shoubhik
et al.

Publication Date
2008-04-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6km5s82h
https://escholarship.org/uc/item/6km5s82h#author
https://escholarship.org
http://www.cdlib.org/

SNOEREN ET AL. 1

Suspending and Resuming Network

Applications Using Session Continuations

Alex C. Snoeren, Debashis Panigrahi, Shoubhik Mukhopadhyay,

Hari Balakrishnan, and M. Frans Kaashoek

March 19, 2008 DRAFT

SNOEREN ET AL. 2

Abstract

Migrate is a system service that allows network applications to suspend upon disconnection and

properly resume when connectivity is restored. Migrate uses session continuations, which allow appli-

cations to explicitly record all the state and resources required to correctly resume. Migrate virtualizes

network connections to function across network address changes, allows portions of an application to

be suspended and securely resumed, and optimizes scarce system resources on servers handling many

suspended clients. We demonstrate that the continuation abstraction is both useful and efficient by show-

ing how two important applications, SSH and Icecast, can use Migrate to implement a suspend/resume

feature. We find that the required source code changes are between 0.5% and 1.75% of the total, that

the generated continuations are between 1% and 5% of the memory footprint of the entire process, and

that session resumption times are small (a few hundred milliseconds) compared to typical disconnection

durations. We also show that he proposed system is scalable to support large number of simultaneous

requests for suspension/resumption.

I. INTRODUCTION

Recent advances in wireless networking technologies are finally bringing the vision of ubiq-

uitous, pervasive mobile computing to today’s Internet users. The proliferation of 802.11-based

Wi-Fi hot spots and 3G wireless broadband deployments has enabled users in many major

metropolitan areas to access the Internet almost anywhere using their personal mobile devices.

Additionally, developments in virtual machine (VM) technologies have renewed interest in anony-

mous, public workstations that serve as a portal into a user’s portable operating environment.

These disparate but complimentary technologies both enable a common paradigm of interaction,

which we call Internet suspend/resume.

It is common for people to use their laptops and handheld devices from several different

networks, often changing networks several times every day. Additionally, in a distributed service

infrastructure, it is often required to transfer application service from one server to another for

balancing the load as well as providing better service from servers at proximity.

While much previous work has focused on protocols for preserving network connectivity as

users continuously move within and between networks [13], [15], [19], [23], [27], very little

system support has been developed to preserve application-level communication for the more

common problem of hosts disconnecting from one network and resuming later from a different

network. Such support is crucial for the seamless operation of applications that establish sessions,

March 19, 2008 DRAFT

SNOEREN ET AL. 3

or long-lived connection-oriented associations between multiple end points. For these applica-

tions, which can include Web sessions, file transfers, streaming media, and remote interactive

shells, application state is distributed between the end points. This paper describes Migrate, a

system that enables network applications to suspend sessions upon disconnection and correctly

resume when connectivity is restored.

The challenge in the design of a network suspend/resume service is how to manage and

restore distributed state. An approach that transparently packages up the entire state of each

communicating process upon suspension (e.g., through check-pointing) and re-instantiates it upon

resumption is not a full solution to the problem for several reasons. First, today’s connection-

oriented transport protocols like TCP name connection end-points by their IP addresses, so

transparent process resumption at a different network location requires some form of connection

virtualization [23], [24], [27] that allows communication across IP address changes. Second, even

with such virtualization, an approach that transparently suspends and resumes entire processes

does not work in the case of a single process (e.g., a Web server) serving multiple connections,

in which client connections may suspend independently. What is needed is the ability to suspend

and resume a portion of a process in this case. Third, an unoptimized suspend/resume method

can consume a disproportionately large amount of scarce system resources in the form of

system memory, file descriptors, and network bandwidth. Finally, exposing disconnection to

the application allows it to specify different methods of resuming, including terminating current

application processes and spawning new ones upon resumption.

We propose migrate, a system service that solves these problems by using a new abstraction

called a session continuation. Session continuations are inspired by the continuation passing style

(CPS) in programming languages [1], [20]. In CPS, a procedure terminates by calling another

and therefore does not need to return, which in turn simplifies compiler construction by easing

state management. In the networking context, an application generates a session continuation that

records all of the state and system resources needed to process the “rest of the session.” Upon

resumption, the system simply invokes the suspended session’s continuation. Because a session

continuation contains all of the information required to correctly resume a suspended application,

the system can safely reuse any resources previously allocated to suspended sessions.

We have implemented Migrate in Linux as a user-level daemon and support library. Session

continuations allow applications to save the subset of their user-level and system state needed for

March 19, 2008 DRAFT

SNOEREN ET AL. 4

resumption, for which they use the library’s continuation API. This subset is often significantly

smaller than the full process state, making the abstraction useful in practice. Our design of

continuations allows sessions to be resumed either within the context of the original hosting

process, or as new processes. It also allows continuations to be generated either as soon as

disconnection is detected, or more lazily. The Migrate daemon manages these continuations,

optimizes the system resource consumption of suspended sessions (e.g., file descriptors and

kernel memory), and monitors end-to-end connectivity on behalf of sessions to determine when

to suspend sessions and securely resume them.

To demonstrate the effectiveness of the proposed system to suspend/resume network appli-

cations using session continuations, we have integrated them into two popular session-based

Internet services: the Secure SHell (SSH) [26] and the Icecast streaming media server [8]. These

applications present a number of contrasting application design points, such as event vs. thread-

based, one vs. many clients per process, etc. We show that session continuations are flexible

enough to accommodate both in a straight-forward fashion, and encapsulate application state

and almost all the resource dependencies in a generic fashion. The source code change required

is small, between 0.5% (SSH) and 1.75% (Icecast) of the total code. The generated continuations

are only between 1% (SSH) and 5% (Icecast) of the memory consumed by these applications.

We present performance numbers from our Linux-based implementation that show session

continuation based suspend/resume service outperform VM-based approaches by an order of

magnitude in the (limited) cases when VM approaches are viable. This time is small compared

to typical disconnection durations. We also find that the throughput and latency impact of

transport protocols using Migrate on the data path is small for real-world networks, and that this

overhead can be eliminated using an in-kernel TCP migration protocol [23] if desired. Finally,

we show that the system is scalable to handle a large number of simultaneous requests for

suspension/resumption.

The remainder of this paper is organized as follows. We begin in Section II with an overview of

the scenarios where Migrate service of application suspension/resumption can be used and present

an overview of the service. Section III introduces the concept of session continuations and their

use in application servers. Section IV presents the system architecture to enable suspend/resume

service using session continuation and migration service as building blocks. We describe the

implementation of the proposed system service in Section V. Section VI presents a quantitative

March 19, 2008 DRAFT

SNOEREN ET AL. 5

evaluation of the implementation complexity, migration performance and scalability. We then

compare our work to previous approaches in Section VII before concluding in Section VIII.

II. SYSTEM OVERVIEW

In this section, we present an overall architecture of our session migration system and highlight

different issues associated with it. First, we motivate the use of suspend/resume service through

a few example usage scenarios. Next, we present an overview of session layer abstraction that

plays an important role in the service. Finally, we describe the steps involved in enabling the

suspend/resume service for sessions.

A. Example Use of Suspend/Resume Service

Figure 1 presents different scenarios where the suspension/resumption of application can be

useful. In the base scenario, a client is initially accessing a network application service at Server

Location 1 from Client Location 1. The server at location 1 can potentially interact

with other helper services, such as X-display, or any external node. There are several potential

scenarios which necessitate suspending the application and resuming at the same location later

in time or at a different location (Server Location 2). One of the potential scenarios

is to preserve application state through network disconnection. Upon network unavailability,

application server is suspended and resumed later when the network is available. The second

scenario is caused by client mobility, as the client moves out of a given network to another,

the session can be suspended after disconnection and resumed after connectivity is restored in

the same network or a different network. Additionally, as the client moves to a new location

the session can potentially be better served from a different replica server than the current one

necessitating the migration of server. Finally, a scenario where the server migration would be

helpful is in load-balancing between multiple servers handling many different client connections.

Driven by the needs of the above scenarios, the goal of the migration system is to suspend

the service as required and transfer the application service to the same server or another replica

server along with any associated sessions between the server and external resources, and allow

the client to continue accessing the service at the new server without going through the service

setup all over again. The application service may have some interaction with external nodes or

use local helper services. The similar interaction needs to be resumed at the destination location.

March 19, 2008 DRAFT

SNOEREN ET AL. 6

Service Service
Location 2

Location 1
Client Client

Location 2

Handling Client Mobility with Server Migration

Location 1

Handling Client Mobility without Server Migration

Handling Disconnection without Migration

Load Balancing with server migration

Helper

Service

External
Node

Fig. 1. Example Use of Suspend/Resume Service

Apart from providing application service availability for the scenarios illustrated above, namely

network disconnection, client mobility, and server load balancing, another major advantage of

application suspension/resumption is conservation of scarce resources. During period of suspen-

sion, system resources used by application services, such as file descriptors, memory, buffers, can

be conserved. Additionally, the application can lead to conservation of other resources indirectly,

such as energy, by shutting down the network interfaces during periods of disconnection.

A system providing server migration has the following needs: (1) a mechanism to handle

network mobility of client/server and (2) a means of preserving application state for the service

to resume later. For handling network mobility, we leverage Migrate’s session abstraction which

we briefly discuss below. For application state preservation we use session continuations, an

abstraction that enables servers to manage the suspension and resumption of sessions at a different

location.

B. Session Abstraction

Migrate introduces a session layer to the Internet protocol stack to assist applications in dealing

with mobility. A session is a collection of transport-layer connections. While a session can in

general encompass any number of end points, in this work, we focus on sessions between exactly

two end points.

March 19, 2008 DRAFT

SNOEREN ET AL. 7

With Migrate, connections in a session survive periods of disconnection and changes in

attachment point while preserving the semantics of the selected transport protocol. In other

words, one or both of the client and the server can change network attachment point (i.e., move

to a different IP address) or disconnect at any time without adversely affecting the session.

Communication will resume as soon as connectivity is restored. Migrate can preserve TCP

connections in two ways: it uses the TCP Migrate options [23] if available, or falls back to a

user-layer virtualization technique that synthesizes a logical connection out of multiple physical

ones [22].

Migrate allows applications to name session end points using any naming system of their

choice, such as the Internet DNS. Applications provide Migrate with the names of the end points

and a method to resolve them. Migrate sessions track the end points as they change attachment

points, maintaining end-to-end communication between end points. If either end point changes

attachment point or disconnects for some period of time, it securely notifies the other end point

of the change when connectivity resumes. If both end points move at the same time, Migrate uses

the name resolution method provided by the end points to resume communication. The APIs for

using the Migrate functionality is described in detail in the Appendix ??.

C. Suspend/Resume System Overview

Within the scope of the Migrate architecture, we implement migration functionality broadly in

four steps: (1) suspending the current session and generating a session continuation, (2) validating

the feasibility of session continuation upon resumption request, (3) transferring the continuation

with associated application state and system resources securely to the new server if needed, and

(4) invoking the continuation at the new server to resume the application. The steps involved in

application session suspension/migration is shown in Figure 2.

In our system, we assume that the suspension of the original session may be initiated by either

of its end points, triggered by application events or network connectivity events. Upon discon-

nection notification from network (shown as Step 1), Migrate informs application to suspend

the service. As a part of the suspension process, the system generates a session continuation

for the application. In addition to preserving necessary state and control function, generation of

continuation needs to handle all currently open system resources and take appropriate steps to

make it available later at resumption.

March 19, 2008 DRAFT

SNOEREN ET AL. 8

1. Disconnection

 Notification

Session Abstraction

Continuation Func.

Application
 Generation

3. Continuation

4. Migrate/ Resume

 Notification

Session Abstraction

Continuation Func.

Application

 Notification

2. Application

5. Secure Transfer of

Continuation

MIGRATE Service

 Continuation

 Continuation

7. Invoking

6. Validation of
 Continuation
 Dependency

Network Network

MIGRATE Service

7. Invoking

 Continuation

Fig. 2. Steps in Application Suspension/Resumption

At the time of resumption, the migration/resumption notification is received by the destination

Migrate service node. For a simple implementation without sacrificing generality, we assume

that the request to begin application migration/resumption, i.e. to transfer and execute the

session continuation, needs to originate at the client host only. Upon resumption notification,

the Migrate services on the source and destination nodes coordinate to evaluate the feasibility

of invoking session continuation at the destination by validating the various system/application

dependencies specified in the continuation. After successful dependency check, the session con-

tinuation is securely transfered to the destination node (Step 6). Finally, the session continuation

is invoked to resume the application at the destination node.

Having presented the overview of Migrate-based suspend/resume service for applications, next,

we present in detail Session Continuation, backbone of our system.

III. SESSION CONTINUATIONS

By making the notion of the “rest of the session” explicit, session continuations enable graceful

handling of session disconnection, reconnection, and re-binding. Upon disconnection, server

sessions generate a continuation that specifies in a generic fashion how to resume the session and

includes any state and information about the necessary system resources. Upon reconnection, the

server invokes the safely stored continuation to resume processing. Unlike a process checkpoint,

a session continuation is not simply a snapshot of the current local state. A state snapshot is

problematic to capture and restore and is likely to be inconsistent with current conditions at the

time and location the continuation is invoked. Rather, a session continuation is a function from

the state of the end points at session resumption time to an execution context, such that returning

control to the application with that context continues the session correctly.

March 19, 2008 DRAFT

SNOEREN ET AL. 9

In most cases, the state that must be preserved in a continuation is substantially smaller than

the original state and set of resources; a continuation may provide a session with alternate,

equivalent state and resources. For example, in some cases Migrate may replace the original

application process with a new copy. In other cases, changes in end point or network conditions

may dictate that the application state upon resumption be different, reflecting the new network

attachment point as well as current network and end point characteristics (e.g., link bandwidth).

The relatively small size of session continuations as compared to process or virtual machine

checkpoints [18], [21] is a significant advantage for resource constrained hosts or busy Internet

servers where scalability is important.

Despite their disparate structures, a common property of network applications is that they

function as event loops, iteratively processing client events, blocking only on external I/O

operations. As a result, it is usually possible to find a point in the control flow of the application,

otherwise called quiescent points, where the state of a session can be described concisely. The

more straightforward this description, the simpler the continuation generation. Finding such a

quiescent point to generate continuation is also simplified by the ability of network applications

to execute in the absence of network connectivity. Hence, it is typically straightforward to

identify quiescent points where the suspension and resumption could occur. In particular, after

completing all pending tasks, network applications use the select() system call to block

awaiting additional input, so generating a continuation at this point is straightforward; in fact,

this is when the application generates the continuation regardless of when the daemon notifies

the handler of disconnection. It is important to note that the decision of quiescent point should

ensure that the point can be reached from any point in the application after network connectivity

is lost; there by guarantees generation of appropriate session continuation.

Session continuations fall naturally into three classes, corresponding to the architecture of the

particular application:

• System continuations (Csys) continue portions of the session managed by the system, such

as network connections, file handles, and so on. Such continuations can be generated and

executed by the system transparently to applications.

• Internal continuations (Cint) continue a session within its hosting process. For applications

like Web servers that service many sessions at once, the disconnection of one session

generally does not lead to the suspension of the entire application.

March 19, 2008 DRAFT

SNOEREN ET AL. 10

Kernel

User level

Csys

Cint

Ccomp

App
Session

Session

Layer

Fig. 3. Three separate continuations make up a complete session continuation: a base continuation, Csys, an internal continuation

Cint, and one that restarts the entire application, Ccomp.

• Complete continuations (Ccomp) continue a session in the absence of its original process

(e.g., by starting another instance of the same application). Many applications (SSH and

FTP, for example) start a new process for each session which can be discarded if the session

suspends.

If the application state does not change during disconnection, the continuation simply needs

to restore the system resources required by the session and identify the point in the application

to which control should be returned. We call this simple preservation continuation the system

continuation, Csys. A special category of system continuation that preserve system resources is

resource continuations that effectively restore the resources when called, but release them for

use by other applications until then. One example of a class of system resources that can be

effectively conserved while a session is disconnected is file descriptors. Because Migrate manages

the network connections associated with open communication sessions, it is easy to generate

continuations that release file descriptors for suspended network connections by aborting the

connection and instantiating a new one upon resumption. Doing so can realize considerable

resource savings in practice. In addition to the file descriptor data structure itself, network sockets

have associated send and receive buffers containing data that has not yet been sent by the

operating system or received by the application, respectively. These buffers need to be large for

good performance over high-speed links. Buffer memory in contemporary operating systems is

fixed or unpageable, meaning that a suspended session’s connection buffer may decrease the

amount of physical memory available for active sessions. Migrate also conserves swap space by

freeing application memory dedicated to session state and storing a compressed version of the

attribute/value store as part of each session’s continuation.

While Csys preserve the state of the system resources, application state associated with a

March 19, 2008 DRAFT

SNOEREN ET AL. 11

session might change through the period of disconnection. Hence, in addition to system resources,

application state needs to be preserved with state information distributed between the client and

the sever. This is an example of an internal continuation, Cint, which needs to contain sufficient

application state to allow the session to continue including a function that restores the context

required by the session. Internal continuations are useful for applications like Web servers that

service many sessions in one process, where the disconnection of one session generally does not

lead to the suspension of the entire application process.

Depending on the application design, if session resumption necessitates starting of appropriate

application process, in addition to preserving system resource and application state, the context

of the application needs to be preserved to be resumed appropriately in future. This type of

continuation is called Ccomp. Many applications including SSH and FTP start a new process for

each session, which can be discarded if the session suspends. A complete continuation resumes

the application process through its own continuation, Ccomp, before returning control to it. A

complete continuation is a composition of continuations as shown in Figure 3. The contents of

Ccomp depend on the operating system. In our UNIX implementation it includes the process’

command line arguments, environment variables, and the current directory. The more general

the representation, the more portable the continuation: in fact, a complete continuation could be

run on a system different from the one that originated the session.

Another base of continuation classification is the location of session resumption. The definition

of each of the above type of continuation depends on whether the session is resumed at the same

host where the continuation is generated or at a separate host. While system resources are made

available by Migrate service, appropriate session resumption steps need to specified by the

application to resume service across hosts using the continuation generated for resumption at a

separate host.

The type declaration of a Migrate session continuation is shown in Figure 4. This structure

is composed of three classes of information. The first represents Csys: a set of file descriptors

corresponding to files, devices, UNIX pipes, etc. that will be needed upon resumption, in addition

to the network sockets that make up the session. File descriptors and sockets included here are no

longer available to the application and will be restored only upon execution of the continuation.

The second component of the continuation structure is the internal continuation function, Cint,

defined within the application process that Migrate should call upon resumption of connectiv-

March 19, 2008 DRAFT

SNOEREN ET AL. 12

typedef struct {

fd_set fds; /* IPC to preserve: C∅ */

void * db; /* Data to preserve */

cont_func cont; /* Cont. function: Cint */

const char * argv[]; /* Cmdline args: Capp */

const char * envp[]; /* Env. variables: Capp */

const char * cwd; /* Current dir.: Capp */

} migrate_continuation;

Fig. 4. A Migrate continuation structure contains a set of file descriptors that must be preserved, an attribute/value store, and

the continuation function itself. Complete continuations also specify several parameters used when restarting the application

process.

ity (instead of the normal mobility handler specified through register_handler()). The

third class of information constitutes Ccomp which includes command-line arguments (argv),

environment variables (envp) and the current working directory (cwd).

By generating a session continuation, applications are able to simultaneously manage the

suspension and resumption of disconnected sessions while allowing the host operating system to

reclaim application and system resources during disconnection. Each Migrate-aware application

can suspend a session by providing its own session continuation. Migrate reclaims system

resources by additionally generating incremental resource continuations that are composed with

application-provided continuations. Section VI evaluates the effectiveness of Migrate’s resource

continuations with respect to system memory, open file descriptors (both those associated with

network connections and otherwise), and power consumption.

IV. SUSPEND/RESUME USING SESSION CONTINUATIONS: SYSTEM LEVEL ISSUES

The basic steps involved in the proposed Suspend/Resume system architecture were introduced

in Section II. In this section, we highlight the issues involved in enabling the service as presented

before and present the solutions of the issues as provided in the Migrate system.

A. Connectivity Monitoring/Application Notification

One of the important issues in Migrate service of suspension/resumption is to monitor

connectivity and notify the application accordingly to suspend (generate continuation) or resume

March 19, 2008 DRAFT

SNOEREN ET AL. 13

(invoke continuation). Depending on the needs of the applications, the decision to migrate the

server could be made by any one of the various agents involved: the client, the initial server,

the final server, or most likely by some external system modules that can monitor the current

network attachment point and/or server activities. Upon change in network attachment point, the

monitor agent can interact with the system to evaluate the feasibility of migrating the server to

potential new locations, and select a location guided by pre-assigned service policies.

To decide if an end point is connected at its current attachment point, Migrate needs to monitor

the connectivity of on-going sessions. Unlike existing approaches that assume connectivity is

strictly a function of the local attachment point [9], Migrate’s notion of “connected” can vary

from session to session. To be connected, application sessions may require a certain level of

connectivity, expressed in terms of available bandwidth, maximum latency, or similar metric.

Hence, Migrate needs a suite of modular connectivity monitors to assist in evaluating the

current levels of connectivity being experienced by each session. Connectivity monitors may

gather information from a variety of sources, including the physical and network layers (e.g.,

loss of carrier, power loss, change of address, etc.), the end point applications themselves,

or appropriately authorized external entities (e.g., [2]) that may be concurrently monitoring

connection state. Since a session may span multiple protocols, connections, and application

processes, there may be several sources of connectivity information for any particular session.

Using the connectivity information gathered from different sources, migrate needs to decide

on the appropriate action to be performed including the location of target servers for resumption.

B. Session Continuation Generation/Invocation

Based on the notification generated by Migrate, the next issue is to generate appropriate type

of continuation at the desired time and select desired continuation type at the resumption. The

generation/invocation of continuation depends on the application architecture and application-

level policies.

When Migrate notifies an application upon detecting disconnection, the handler can generate

session continuations either eagerly or lazily, depending on the application. Some applications re-

quire immediate notification of disconnection, usually to buffer outstanding data, claim or release

locks, or reset timers. Alternatively, the application can execute unaffected during disconnection

and generate the continuation lazily. The continuation is not generated until the system needs to

March 19, 2008 DRAFT

SNOEREN ET AL. 14

reclaim the resources currently being used by the disconnected session.

Another application level policy related to session continuation is to decide on the type of

continuation to generate as it might affect the feasibility of resumption later. For example, if a

complete continuation is generated assuming resumption at the same host, the application service

can not be resumed. Similarly, if Cint generated is intended for resumption at the same server,

the session can not be resumed at a different host..

Apart from application-level policies to decide generation of appropriate continuation, the

application instrumentation necessary for continuation generation depends on the application

architecture. For example, finding quiescent point for an application process is very different

from threaded application. In case of threaded application, in addition to finding the information

to be stored in the continuation, the place of continuation generation is important and has to

consider possibility of any deadlock because of data dependency across threads. Additionally,

for a threaded application, for communication between migrate service and application a master

controlling thread has to be identified for notification/information exchange.

C. Session Continuation Management

While session continuations enable resource savings, they incur costs as well. In particular,

each individual session continuation must be stored and managed by both disconnected end points

until connectivity is restored. In some cases, however, connectivity may never be restored; two

end points may never come in contact with each other again.

Hence, session continuations must be garbage collected at some point—continuations that are

deemed useless need to be purged from the system. Garbage collection creates two complications:

First, at what point is it appropriate to discard an apparently unwanted continuation? Second,

since the application that created the continuation expected it to be invoked, how can the

continuation be disposed of while ensuring the application is not left in an inappropriate state. The

first issue is quite complicated and remains an area for further study. Migrate currently enforces

an expiration date on session continuations established through a combination of application,

user, and system-wide policy.

March 19, 2008 DRAFT

SNOEREN ET AL. 15

D. Session Dependency

A server application can potentially have multiple sessions which are dependent on each

other. An example case of session dependency is shown in Figure 5. For instance, an SSH

server that provides X forwarding would have (at least) two sessions per client: one containing

the connection between the SSH client and SSHD server (S1), and additional sessions between

the SSHD server and each open X application (S2). (Recall that X applications communicate

with the X server through TCP connections.)

Local

Client Client

Node

Old

Server
S2

Server

S
S

H
D

S
S

H
D

S
S

H

Ext.

S3

S1

S4

S5

New

Server

Fig. 5. An instance of session dependencies for SSHD server where S3 is dependent on S2.

In these instances, we must take appropriate steps to ensure the complete migration of all

sessions constituting the service when a client changes servers, honoring any dependencies

between them. For example, as shown in the Figure 5 when the session S1 is suspended, the

dependent session S2 also has to be suspended. Upon migration of SSHD from old server to new

one, as S1 is migrated to become S4, one end of the S2 has also to migrate (to S5). In order to

take appropriate actions, it is important to understand the dependency between different sessions

of an application. In most cases, the dependency between sessions is one-directional, i.e.for a

pair of dependent sessions, suspending the first should result in suspension of the second, but

not vice versa.

It is practically infeasible to implicitly estimate inherent dependency between different session

automatically. Our current implementation requires server applications to explicitly provide

information about the dependencies between different sessions belonging to the application,

but we are considering techniques to automatically detect such dependencies.

March 19, 2008 DRAFT

SNOEREN ET AL. 16

E. Server Dependency Verification

In order to enable applications to effectively use session suspend/resume, there is a need to

verify the compatibility of the execution environment where the session is resumed compared

to the one where it was suspended. This is especially important for long-lived applications

which maybe resumed after a long time or those which need to move a suspended session to a

different before resuming. The parameters that need to be compared may include environment

variables, available versions of supporting programs and libraries. This may depend on several

factors including future resource requirements of the application, system settings and service

configuration at the new host. Some of these properties are generic enough to be verified by

migrate, while some properties are specific to the service and need support from the application.

Examples of such configuration parameters include the version of the service available, the

existence of a particular library, availability of specific NFS mount points, default configuration

of the service (such as X-forwarding option for sshd).

Apart from the issues mentioned above, there are other issues related to the system, such

as authentication, session synchronization, which would be discussed later. Having described

the different components of the suspend/resume system using session continuation, in the next

section, we will present salient features of our implementation.

V. IMPLEMENTATION

We have implemented the Migrate sservice in Figure 6 as a user-level daemon in Linux. Our

implementation of the session layer is a dynamically loadable library linked against individual

applications. The main support infrastructure for the session abstraction is implemented in the

Migrate daemon, which interacts with both local policy engines and with a suite of connectivity

monitors to manage open sessions.

Here we first describe the interface presented to the application by the session layer library

and illustrate how the interface can be used to access the suspend/resume services. This will

be followed by a discussion of the code instrumentation necessary to use these APIs for some

example applications. We shall also describe the implementation of the Migrate daemon followed

by the control protocol used between different hosts during session migration.

March 19, 2008 DRAFT

SNOEREN ET AL. 17

A. Session Continuation Interface

Table I lists the extensions to the Migrate API that allow applications to construct and

manipulate session continuations. A key feature of session continuations is the ability to preserve

session state separately from the hosting applications. To simplify the task of continuation gener-

ation for applications that lack their own mechanisms for maintaining session state persistently,

Migrate provides a simple persistent attribute/value store. Applications add continuation state

to the store using the store() call. This state is then available through the retrieve()

function until the session is destroyed either using session_close() (Appendix ??) or by

the continuation garbage collector (Section IV-C). Applications that need to know how large the

value of an attribute is before retrieving it from the store (to allocate a sufficiently large buffer,

for example) can call store_size().

int store(Session s, char *attr, void *value, int len)

int retrieve(Session s, char *attr, void *buffer)

int store_size(Session s, char *attr)

int export(Session s, char *attr)

int freeze(Session s)

int return_cont(Session s, Continuation c)

int register_handler(Session s, Handler h)

int register_attach_handler(Handler h, int ServId)

int register_compat_vector

(Session s, char *attr, void *val)

int compat_store(Session s, char *attr, void *value)

TABLE I

SESSION CONTINUATION API.

In certain instances, sessions build up shared state that is not readily observable from the

remote end point, but may be necessary for session resumption. Rather than require the ap-

plication to explicitly communicate this state as part of its continuation, Migrate supports the

exchange of small amounts of state during session resumption. Applications can request the

exchange of any attribute in a session’s store through the export() call for use by the remote

continuation. The session control protocol communicates exported values to the remote end point

upon reconnection.

March 19, 2008 DRAFT

SNOEREN ET AL. 18

Session Layer

Connectivity

Monitor
Policy Engine

Attribute-value

cont. store

Network

3. Call F() on disconnect

• On disconnection,
- call F()

• On reconnection,

- dependency checks
- state transfer
- call G()

Disconnected / reconnected

with session end point?To session end-point

Server application Migrate service

5. Restart or call G() on

resumption

Migrate Handler F()

Processing Thread

Global Application

Management Thread

Migrate Global

Attach Handler G()

1. register_attach_handler(G)

& register_compat_vector()

2. register_handler(F)

4. return_cont()/

return_int_cont()

Fig. 6. Usage of Migrate’s session continuation API to provide suspend-resume support in a multi-threaded server.

For each session, the application can setup a call-back function to handle disconnection

notifications from Migrate through the register handler() function. The call-back func-

tion registered is called by Migrate to trigger a continuation generation. For multi-threaded

applications which contain a global monitor thread handling new server sessions, an attach

handler may be set up using the register_attach_handler() call. This call-back would

be called on resume to invoke a continuation and attach the resumed session to the already

running service.

To support server dependency verification (Section IV-E), Migrate maintains a registry of com-

patibility parameters for all applications that require migration support. The registry is updated

through the register_compat_vector() anytime a Migrate-aware service is installed.

During continuation generation, the application can use the compat_store() API to export

a vector of compatibility tags to the Migrate service, expressing the set of server-related depen-

dencies that need to be satisfied to run the service. Each tag, of the form <id,name,value>,

carries an id specific to a property, name of the property and the value to be checked. Before

starting the process of migration, the property checking is performed in a step that uses the

dependency tags exported by the application and the destination host’s registry to check whether

they are compatible.

Figure 6 shows how the APIs can be used to add support for continuation-based session

migration to a multi-threaded server application, along with the variations necessary for sin-

gle process applications. At startup, applications register the global attach handler (G) and

compatibility vectors(step 1). As sessions are started up, the thread handling each session

March 19, 2008 DRAFT

SNOEREN ET AL. 19

also registers the migrate handlers (F) for each session with the Migrate service (step 2).

For a single process application, there will be no global handler, and the compatibility vector

registration would be done in step 2. When the connectivity monitors detect a disconnection

for a session, Migrate invokes the registered migrate handler (step 3). The handler generates a

session continuation (step 4), which could be a complete continuation (for process-based servers)

or an internal one (for multi-threaded servers). After storing the continuation with Migrate the

application process/thread exits, discarding the state and freeing up the resources associated with

the suspended session.

For separate host migration, migrate now decides on the new host to migrate the suspended

session to, and transfers the continuation and associated state to the new location after verifying

the authenticity of the new host and the compatibility of the suspended state with the new

environment. The compatibility verification step in not required for same host migration. When

the connectivity monitor subsequently determines that connectivity has been restored for a dis-

connected session, Migrate invokes the stored session continuation, which causes the application

to resume the session from the point specified in the continuation (step 5). For single process

applications, this is done by restarting the application which executes the complete continuation at

startup. For multi-threaded applications, upon execution of the global handler by migrate service

on the new host the global application management thread invokes the continuation to attach a

new session. Finally, Migrate may call freeze() at any time on a suspended session that does

not have a stored continuation if it wants to reclaim system resources (e.g., file descriptors or

memory) that are tied up by the application. In addition, on each disconnection or reconnection,

the Migrate service consults the policy engine (Section V-E) to decide which of several possible

network interfaces is currently best suited for each session.

B. Application Instrumentation

To understand the instrumentation steps necessary to enable application migration, we first

discuss different parts of code modification using examples from the applications modified. We

attempt to illuminate our discussion by referring to brief code snippets from SSHD and Icecast

listed in Figures 7 and 8, respectively.

1) Session Preparation: The first task in enabling session migration support for any server

application is to associate appropriate handlers for disconnection and attachment events. For

March 19, 2008 DRAFT

SNOEREN ET AL. 20

main() {. . . .

/* Check if it is a migrate resumption process */

mfileid = is migrate continuation();

/* If resuming, call continuation function to restore state */

if (mfileid) { 5

ssh session = migrate get session(mfileid);

SSH restart();

}. . . .

/* Check for existence of migrate libraries */ 10

if(migrate avail()) {

ssh session = migrate get session(main socket);

/* Registering handler function */

migrate register handler(ssh session,SSH hndlr);

}. . . . 15

}

/* In quiescent point in main application

processing loop . . . */

void server loop() {. . . . 20

/* Save process context */

if(sigsetjmp(migrate bs, 1) | |

/* Check for outstanding suspend requests */

migrate suspend now()) {

/* Generate continuation and 25

suspend application process */

SSH gen cont();

}

else

/* just keep track of saved context */ 30

migrate bs valid = 1;

/* Sleep in select() until there is something to do */

wait until can do something(&readset, &writeset,

. . ., max time millisec); 35

/* If starting some processing, reset saved context */

migrate bs valid = 0;

. . .

/* loop */ 40

March 19, 2008 DRAFT

SNOEREN ET AL. 21

SSHD, at the onset of each application process (recall that each client is handled by a separate

process), we associate a handler SSH hndlr() for the main connection as shown in lines 13–14

of Figure 7. Icecast, on the other hand, is a multi-session application, so a handler is registered

for each client session as it is established. Additionally, the Icecast also registers a global handler

at server startup (lines 3-4 in Figure 8) to accept any clients that may elect to migrate existing

sessions.

The next step in instrumenting a server application is identifying a quiescent point where the

continuation can be generated and read. It was simple to identify quiescent points for SSHD

and Icecast where the suspension and resumption could occur. In particular, after completing all

pending tasks, both applications use the select() system call to block awaiting additional

input, so generating a continuation at this point is straightforward.

For instance, the top of the server loop() function was selected as the quiescent point

for SSHD. As shown in lines 21–23 of Figure 7, the session checks for a suspension request

once per iteration. (The process context is stored using the sigsetjmp() system call to allow

immediate return to the quiescent point in case the application is blocked waiting for network

activity.) The Icecast implementation is similar, checking for suspension requests each time it

polls the media source for more data, as shown in lines 11–13 of Figure 8. It is important to

note that the choice of quiescent point affects the latency of the resumption as that decides

the frequency of the lookup after migration of session serving the session can not be resumed

unless the point is reached. The ease with which the programmer was able to do this for these

two applications, together with the prevalence of select-loop design for network applications,

suggests that Migrate’s session continuation approach may be a natural way to enable migration

in many network applications.

Once a quiescent point has been instrumented, the handler itself is straightforward. A light-

weight signal handler, it simply records the notification from Migrate, performs any necessary

pre-processing, and allows session processing to continue unabated until the quiescent point is

reached. In the case of SSHD, the handler may need to interrupt the blocking select() system

call through siglongjmp(), as shown in line 47 in Figure 7.

2) Continuation Generation & Resumption: In contrast to the handler registration, the con-

tinuation generation functions are quite application-specific.

March 19, 2008 DRAFT

SNOEREN ET AL. 22

SSHD: Since SSHD handles each client session by spawning a new process, it requires Ccomp

to be generated at the suspension. The environment information necessary for process resumption

is generated my migrate return cont. The information stored as part of the continuation

include command line options, environment variables, and current working directory. We assume

that system infrastructure of different potential servers to migrate are similar so that the above

information is sufficient to resume the application at a different host.

In terms of preserving the application state, the continuation contains information about the

main SSH session as well as any forwarded connections, such as X11 or TCP/IP ports. For

listening sockets associated with port forwarding, the port numbers are stored in the Migrate-

provided attribute/value store so that appropriate listening sockets can be opened at resumption.

For all connections currently being forwarded, we associate dependencies between the main SSH

session and the sessions containing them. As the number of forwarded connections grows, the

associated state to be stored can grow relatively large. Additionally, to resume SSHD service

across different hosts, the application state needs to include addition information, such as user

login, authentication mode etc. Finally, Migrate generates appropriate resource continuation and

makes them available before the application is resumed.

At resumption, Migrate starts new SSHD application using the continuation. When the appli-

cation starts up, it checks the MIGRATE environment variable to decide whether the process is a

resumed service. (Migrate adds this variable, along with several others containing configuration

parameters, in the environment of every complete continuation.) If so, the process retrieves

all the necessary session state stored in the attribute/value store and populates the appropriate

data structures. While the resource continuation will ensure any forwarded connections are

restored, SSHD itself must open a new pseudo-terminal and associate the terminal with the

main ssh session. Future versions of Migrate may provide built-in support for pseudo-terminal

resource continuations.

Icecast: As mentioned earlier, Icecast is a threaded process with each client is associated

with a thread. We generate Cint for Icecast sessions since suspension/resumption of any icecast

session does not require shutting down and starting the Icecast process. We assume that Icecast

service is available at all potential hosts for migration so that Cint is sufficient to resume service

across hosts, otherwise appropriate Ccomp needs to be generated.

For each icecast session, the Cuint needs to store the request identifier to look up the appro-

March 19, 2008 DRAFT

SNOEREN ET AL. 23

void source func() {

/* If migrate available, register attach handler */

if (migrate avail())

migrate register global handler(. . .)

. . . 5

/* Process all clients for current source */

while() {

/* Attach waiting clients migrating here */

if(migrate attach > 0) client attach();

. . . 10

for(all current clients) { . . .

/* Suspend client with outstanding

migration requests */

if(client to be migrated)

icecast gen cont(session, socket); 15

/* Proceed with regular processing */

. . .

}

} 20

}

void client attach() {

/* Restore client-related info. from migrate */

migrate client restore(cli session); 25

/* Find source for the client */

source = find mount with req(request);

/* Create client connection & associate with source */

client = create client();

pool add(client); 30

client−>source = source;

}

while() {

if(migrate attach > 0) client attach(); 35

for(all current clients) { . . .

if(client to be migrated)

icecast gen cont(session, socket);

} . . .

} 40

March 19, 2008 DRAFT

SNOEREN ET AL. 24

priate source at the new server and the client’s current offset in the playback. In addition to

storing the appropriate information, the continuation generation involves performing appropriate

bookkeeping operations to remove the client session from the active session for streaming and

add the session to the list at the resumption time. The system continuation for icecast only

includes the network socket used to server the client session and the data in the TCP buffer.

At resumption, whenever a client session is migrated, the global handler is invoked with the

network socket of the migrated client session as an input. A new client connection is

created in response as shown in lines 23–30 of Figure 8. Next, the client’s original request is

used to look up the appropriate source for its streaming request, and the client connection is

added to the list of connections for the server to stream to in future.

C. Migrate Daemon

The Migrate daemon runs with super-user privileges and is responsible for managing all open

sessions on an end host; it registers each connection associated with a Migrate session with

the available connectivity monitors and receives any changes in network availability or session

connectivity. Upon receiving an event, the daemon consults the policy engine to decide how

to handle it. Options include informing the application (the common case), forcing a migration

(e.g., when a cheaper network attachment point becomes available), suspending the session, or

even delaying or ignoring the notification in highly variable conditions.

When managing a session, if either the owning application or the system policy engine

informs the daemon a session should react to an event, the daemon contacts the remote end

point. It does so by communicating over a separate TCP control channel that is created during

session establishment or when resuming sessions. Control channel establishment is initiated by

the connecting/migrating end point by sending a message to a well-known port on the remote

host. 1

1) Continuation Management: When an application generates a continuation, either by passing

it as a return value from its mobility handler function or through the return_cont() function,

1Our implementation assumes that contacting different ports at the same IP address results in connections with the same end

point. While this assumption generally holds in the direction of connection establishment, it may be not be true with some

esoteric NATs.

March 19, 2008 DRAFT

SNOEREN ET AL. 25

the Migrate library considers whether the continuation should be executed immediately or passed

to the Migrate daemon, where it may be composed with additional resource continuations.

To invoke an internal continuation, Migrate must temporarily interrupt the execution of the

application process that generated the continuation and cause it to pass control to the function

specified by the continuation. The Migrate daemon interrupts the application process using an

asynchronous POSIX signal; the continuation function is invoked by a signal handler in the

session layer library running inside the application process.

The Migrate signal handler sets the process signal mask to ensure that further mobility

events will be queued until the continuation function has returned. It is further expected that

continuations are not recursive (i.e., they don’t call return_cont() internally). These two

conditions combined ensure that both mobility handlers and continuations are not re-entrant—

freeing programmers from the need for synchronization or mutual exclusion.

2) Complete Continuations: The implementation of complete continuations is considerably

more complicated than that of internal continuations. In the case of a complete continuation,

Migrate terminates the original application process after the continuation is generated and in-

stantiates a new one once session connectivity is restored. In many ways, the challenges faced

are similar to those presented in process migration, except that the new process executes on the

same host environment as the previous process. In both cases, the system must do one of three

things for each resource used by the application process: transfer state from the original process

to the new one, arrange for forwarding, or use similar state from the new process and sacrifice

transparency.

Continuations are designed to limit the scope of the state and resources that must be transferred

from the old process to the new and are explicitly not transparent. Only critical session state

(indicated by its presence in the session’s attribute/value store) is transferred to the new process.

Similarly, only network connections and those file descriptors included in the continuation are

forwarded to the new process. All other state from the original process, including code and

data segments, open files, message channels, execution state, and the process control block, is

discarded. In the interest of system security, however, some aspects of the process control block,

such as the real and effective user ID, priority, and current working directories are transferred

to the new process.

The working directory of the new process is set to that specified in the cwd field of the

March 19, 2008 DRAFT

SNOEREN ET AL. 26

continuation. Immediately before calling execve() with the argv and envp values from

the continuation (argv[0] is treated as the executable), the process restores the signal mask

in place in the original process when the continuation was generated. To assist applications in

discovering the identity of the session being continued, the Migrate daemon adds two variables

to the process’ environment: MIGRATE_CONT contains a file descriptor corresponding to a

resumed connection that is a member of the restored session; applications will likely use this

value as the parameter to get_session() to recover the session itself. The second variable,

MIGRATE_PID, contains the process ID of the previous process. Applications may wish to

use the ID to communicate with orphaned children of the previous process, which presumably

assumed control of the process group of the previous process.

3) Resource Continuations: When file descriptors are passed into the Migrate daemon as

part of a continuation, Migrate considers generating resource-specific continuations to more

efficiently preserve them. The daemon determines what resources individual file descriptors

correspond to through the use of getsockname() and fstat(). Once aware of the resources

in question, the daemon can generate resource-specific continuations. One trivial continuation

is to close any redundant file descriptors (i.e., multiple file descriptors to the same resource).

Many interactive applications typically have three different file descriptors (stdin, stdout,

stderr) that correspond to the same resource (generally a tty). Similarly, depending on the

locking semantics in use (record, file, etc.), multiple file descriptors pointing to the same file

can often be collapsed into one. Closing the only file descriptor pointing to a particular resource

can be dangerous, depending on the semantics expected by the application. For example, closing

all references to a file may allow the file to be subsequently deleted or overwritten. In the case

of NFS, however, these operations can occur anyway, so Migrate could release all references

without affecting NFS semantics. In order to ensure the operating system semantics are never

affected, however, the current version of Migrate always keeps at least one file descriptor open

for each (non-network) resource contained in a continuation.

D. Session Control Protocol

As presented before, session migration generally consists of four parts: end point location,

authentication, rebinding (including any required port mapping), and connection synchronization.

Additionally, if the client elects to migrate to a new server, a fifth, validation stage is required to

March 19, 2008 DRAFT

SNOEREN ET AL. 27

ensure the replica server is capable of servicing the existing session. Migrate’s session control

protocol supports each of these five operations.

1) End Point Location: The main task of the protocol is to manage changes in network

attachment point. When either end point changes attachment point, Migrate must update the

remote end point of each open session with its new network attachment point. When an end

point moves, the selection of a new remote attachment point is governed by the lookup function

provided to Migrate as described above.

2) Authentication: The main difficulty with updating the remote end points is validating

the end points—ensuring that the end point requesting the update is the original end point.

Migrate relies on the application to authenticate the end points before session establishment.

Once authenticated, Migrate negotiates a shared symmetric key during session establishment

using a Diffie-Hellman key exchange [4]. The application-authenticated end point uses this shared

key to authenticate session updates after a migration event. We assume that all candidate replica

servers available to the client are both connected and trusted. Hence, in the event a replica server

receives a migration request from a client it was not previously serving, it can obtain the session

state including the keying material directly from the original server itself.

The details of the remaining stages of the session control protocol, including connection

rebinding and synchronization, vary depending upon the connection migration technology in

use, and are described in detail elsewhere [22], [23].

When resuming a session at the same host, the authentication process takes about four round-

trip times (RTTs): a TCP SYN/SYN-ACK exchange; a session resumption request; a challenge

and the corresponding response from the end point seeking resumption; and bidirectional mes-

sages to map any suspended connections (ports) to new ones. For migration of the session to a

different host, communication between the Migrate daemons between the old and new hosts is

needed to ensure synchronization and transfer of state information while resuming a suspended

session at a new host. The protocol consists of messages exchanged by the Migrate daemons on

all the hosts involved, as shown in the example in Figure 9. The figure illustrates the control

messages exchanged when client moves a single Migrate-enabled connection from the old server

to the new server.

Migration begins when the client queries a potential new server with a SESSION_TRANSFER_REQUEST

message which starts the first stage, client authentication. The message carries the server address

March 19, 2008 DRAFT

SNOEREN ET AL. 28

and the session id from the original session, which are used by the new server to look up the

old server and obtain the session authentication key over a secondary control channel. The key

is used by the new server to authenticate the client, upon success of which the new server sends

COMPATIBILITY_CHECK_REQUEST to the old server and proceeds to the next stage, Server

Dependency Verification.

After receiving the request, the old server freezes the original session and any dependent

sessions if they were still running, as a results generating the continuations and backing up the

attribute/value store. The dependency vector is extracted from the store, and transmitted to the

new server for the verification against the registry of compatibility parameters there, as explained

in Section V-A. The suspension of the session is necessary to to guarantee consistency of the

compatibility information with the current state of the application. The client is notified of the

result of the verification via the COMPAT_SUCCESS/FAILURE message, allowing it to decide,

in accordance to the local migration policy, whether to continue migration of the service to this

server. The daemon at the old server uses state information associated with the session to ensure

that only a single new server can proceed to session migration.

The next stage is initiated by the client sending a SERVICE_MIGRATE_REQUEST to the

new server. The new server, in response, starts transferring the state information for the main

session and any dependent sessions from the old session and the session at the old server

is closed. The state information consists of the application’s attribute/value storage file, the

file containing the continuations, as well as the state of the network connections saved by

Migrate. To reduce the state transfer latency, these files are compressed during transfer. After

transfer, the files are updated with server specific information, and a CLEAR_TO_MIGRATE

message is sent to the client. The client can then resume the session anytime by sending

a SESSION_RESUME_REQUEST, and in response the new server unfreezes the session and

executes the continuations. The Migrate daemon on the new server then resumes the session

locally, also translating the id of the of the migrated session (and updating the session-layer

library) in order to avoid collisions with existing sessions on this host. It then updates the

changes in the session information to the client with a SESSION_UPDATE message, which

completes the migration process.

March 19, 2008 DRAFT

SNOEREN ET AL. 29

Client
Server
OldNew

Server

Client Authentication

State Transfer

Session Migration

Verification
Server Dependency

Authentication Key Request

[Authentication Keys]

State Transfer Request

[Dependency Vector]

Clear To Migrate

[old server, old session id]

Session Transfer Request

Compatibility Check Request

& Continuation]
[Session State, Backup Store

Service Migration Request

Compat Success/Failure

Client Auth Response

Client Auth Challenge

Session Resume Request

Session Update

Fig. 9. Stages in Session Migrate Protocol

A sample Migrate policy file

monitor−policy {

score−interface * 1

score−interface eth* 10 5

score−interface eth0:1 1000

score−interface ppp* 5

on proto tcp {

on remote−ip 18.31.0.4/24 10

on port ssh

score−interface eth* 100

on l−port 3001−3010 {

score−interface eth* 200 ;

score−interface eth0:1 100 15

}

on port http, ftp

migrate never

}

} 20

Fig. 10. A sample Migrate policy file.

March 19, 2008 DRAFT

SNOEREN ET AL. 30

E. Policy Engine

Ideally, Migrate-aware applications would assist the user in managing mobility preferences and

coordinate them with Migrate through a policy API. Such an interface could allow for dynamic

adjustments to local policy based on the particular activity the application was engaged in at any

particular moment (i.e., support the suspension of important users’ sessions for longer periods

of time, etc.).

Unfortunately, most applications currently lack direct interfaces to allow users to describe

mobility handling preferences. Therefore, Migrate provides for an optional rule-based user policy

file in which users can express their preferences in terms of which local network attachment

point to use for particular applications. Migrate currently requires users to specify sessions based

on the transport-layer ports. For example, if a user wished to specify policy for Web browsing,

she would insert a policy rule for the TCP protocol on the well-known HTTP server port (80).

Migrate consults the policy file at every mobility event: the creation of a session, a change in

the set of available local attachment points, or change in the connectivity status of a particular

session end point (tracked as described in the following section). In each case, the policy file

answers the question, “Which local attachment point, if any, is best suited for a particular

session?” Each session is considered in turn. The input for each invocation is a description of

the network connections comprising the session in question—their protocols and current remote

and local attachment points, including ports. The file directs Migrate to take one of two actions:

either migrate the session to a new interface, or leave it alone. For each available attachment

point, a score is computed; the attachment point with the highest score for a particular session

is selected, provided the score is sufficiently higher than that awarded to the current attachment

point.

Figure 10 shows a sample Migrate policy file. In this example, eth0 is preferred to other

eth interfaces, which are preferred to ppp interfaces, which are preferred to all others. Sessions

containing TCP SSH connections to remote attachment points with IP addresses in the 18.31.0/24

subnet have an increased affinity for eth interfaces, and TCP connections on local ports 3001–

3010 actually prefer eth0 less than other eth interfaces. Finally, sessions containing TCP

connections to HTTP or FTP server ports are never migrated.

Connectivity monitors can function at various levels of the protocol stack. For example,

March 19, 2008 DRAFT

SNOEREN ET AL. 31

Migrate’s physical layer monitors glean connectivity information from network interfaces (i.e.,

whether the cable is plugged in, whether the physical device is operating properly, etc.). At the

other extreme, applications themselves may gather connectivity information, perhaps by passively

monitoring their connectivity, or through active probing (e.g., keep-alive probes).

The network and transport layers can provide especially useful connectivity information. For

example, Migrate provides a connectivity monitor that uses TCP retransmission timer status

to assess the connectivity of sessions containing TCP connections. If an outstanding byte is

not acknowledged, TCP will attempt to retransmit it after a period of time known as the

retransmission timeout (RTO).2 The lack of a response to subsequent retransmissions leads to

an exponential increase in the RTO. Hence, the “health” of a TCP connection can be described

by the value of a connection’s RTO—the larger the value, the greater the connection’s distress.

VI. EVALUATION

In this section, we present results of our experimental evaluation of the proposed system for

suspending and resuming network applications. We evaluate continuation-based application mi-

gration along four dimensions. First, we discuss the complexity of the code changes necessary to

the applications to enable continuation-based session migration. Then, we study the performance

of session continuation as the building block to enable efficient application migration. We next

discuss the overheads associated in enabling the migration functionality. Finally, we evaluate

scalability of the proposed session migration techniques.

In our experiments, we evaluate a C/C++-based Migrate implementation running on various

versions of Linux. We evaluate our proposed system by extending two very popular session-

based Internet server applications, OpenSSH 3.0.2p1 [26] and the Icecast streaming media

server v1.3.10 [8]. In addition, we use a simple client-server benchmark program for some

of the experiments to evaluate performance without any application-related overhead. For our

experimental test-bed, we used two machines with similar configuration (2.8-GHz Pentium4 with

256 MB of memory) connected by a 100 Mbps Ethernet link for our performance testing. The

measured round-trip latency between the two servers is 0.17 ms. We timed Migrate using its

2In fact, a TCP sender may attempt an earlier retransmission in response to a duplicate ACK. The RTO is a persistent,

timer-based retry mechanism used as a fail-safe.

March 19, 2008 DRAFT

SNOEREN ET AL. 32

built-in TCP virtualization support; the TCP migration options were not supported by either

kernel.

A. Code Complexity

Application Original LoC Same-host LoC Overhead (%) Separate-host LoC Total Migrate LoC Overhead (%)

OpenSSH 38,885 459 1.18 201 660 1.69

Icecast 18,676 43 0.23 60 103 0.51

TABLE II

CODE MODIFICATIONS REQUIRED TO ENABLE APPLICATION MIGRATION USING THE MIGRATE TOOLKIT.

While the brief code snippets in figures 7 and 8 can provide some visibility into the modifi-

cations required, they cannot accurately convey the scope or complexity of the complete set of

modifications required. Indeed, quantitative evaluation of coding complexity is quite problematic.

For lack of other better measure, we present the lines of code (LoC) added in order to enable

the migrate functionality.

Table II presents the lines of code added for SSHD and Icecast applications for same-host

resumption as well as separate-host resumption. For comparison, we also report the total LoC

for each application. It is observed that for same-host migration, the SSHD application required

an overhead of 459 lines of code, while Icecast requires only 43 lines of change. While the

difference is partly due to the difference in the complexity of the applications, it is also due

to the fact that SSHD generates a complete continuation while Icecast generates an internal

continuation. Also out of 459 lines of code for the SSH-migration, 226 lines are for ensuring all

dependent channels (such as X11, TCP/IP, and agent forwarding) are resumed/stored accordingly,

which is not required if only one ssh-session needs to be migrated. Separate-host migration

needs additional code modifications to generate appropriate continuation for local resources and

steps to reallocate resources at the destination server. In this case, the additional overhead is

proportionately much less for SSHD (201/459) than Icecast (60/43) since less additional state

needs to saved/transferred.

In general, the majority of the code modification is for marshalling and unmarshalling the

session state through the Migrate attribute/value store. Only 80 lines of code deal with the

March 19, 2008 DRAFT

SNOEREN ET AL. 33

control flow related to service migration. The marshaling code is highly stylized and could be

considerably optimized through judicious use of macros to expunge repetitive code. We have

not, however, made any attempt to optimize code size. Instead, we present measurements of the

modifications as they were first implemented in an attempt to provide a more accurate view of

programmer effort. In contrast, the level of code modification required for Icecast is considerably

less, adding only 103 lines of code of which 60 lines are devoted to operations required to resume

the thread at the destination server.

While the lines of code represents one part of the code complexity, the time for code mod-

ification depends on the familiarity and expertise of the code base for the service application.

In our experience, it was much easier to introduce the migrate functionality to Icecast server

as compared to the SSHD server because of the low complexity of the server, threaded design,

and clean abstraction of code for easier instrumentation. For reference, we note that the size

of our code modifications compare favorably with existing mobility toolkits such as service

continuations [25], which required more than three times the number of changes to Icecast

(350 LoC), and Rover [10], which reported requiring changes to between 10 and 15% of an

application’s code base.

B. Migration Performance

Having discussed the code modifications required for enabling continuation based migration,

in this subsection, we evaluate the performance of migration in terms of resource conservation

and the latency of migration.

1) Resource Conservation: Session continuations allow hosts to conserve scarce resources

during periods of disconnection. Conserving system memory and file descriptors is especially

important for servers that are designed to handle a large number of concurrent sessions, because

a significant number of the current sessions may in fact be suspended.

Figure 11 shows the memory footprints of processes serving active SSH and Icecast sessions.

These values are obtained using gcc version 3.2 with the -O2 option on a Linux 2.4.20 system

with 1 GB of RAM and 1 GB of swap. For comparison, the processes are shown with our Migrate-

extensions and without. The Tesla stub required for Migrate support increases the memory usage

of both applications. The Icecast process has a smaller increase because it already loads many

of the libraries required by the Tesla stub. During suspend, in case of SSH the process is closed

March 19, 2008 DRAFT

SNOEREN ET AL. 34

SSH Icecast

0

1000

2000

3000

 M
e
m

o
ry

 u
s
a
g
e
 (

K
B

)

Shared pages

Non-shared resident pages

Swapped pages

Fig. 11. The memory footprints of sample Migrate-aware servers. For each application, the first column represents the unmodified

application and the middle corresponds to the Migrate-aware version, and the last for suspended state of application.

SSH Icecast

0

100

200

300

 M
e

m
o

ry
 u

s
a

g
e

 (
K

B
)

Session state

Connection buffers

Compressed

Fig. 12. Complete continuation sizes in KBytes. The sizes reported here include persistent application state, buffered network

connection data, and all associated Migrate control data necessary to invoke the communication.

leading to a lot of memory conservation. On the other hand, the memory save for Icecast is less

as the application is kept alive while conserving the memory consumption by the client session

being suspended.

In both cases, the complete continuations generated upon disconnection are 3.6 KB and 195

KB, respectively. The difference in the size of the continuations is due to the much larger con-

nection buffers required by the Icecast session, as shown in Figure 12. The Icecast continuation

also includes the name and properties of the stream, the user identity information etc. The

SSH continuation includes the session keys and any unsent data in the encryption buffers. For

each application, an uncompressed continuation is shown on the left, the compressed version

on the right. Moreover, because the suspended SSH session had just started up, its connection

buffers were largely unused, resulting in much more effective compression. The Icecast session’s

connection buffers were filled with less-easily compressed file data (compressed audio files),

resulting in a substantially larger continuation.

Table III shows the number of file descriptors required for an individual session in each

March 19, 2008 DRAFT

SNOEREN ET AL. 35

Name Native w/Migrate Conns Suspended Comp.

OpenSSH 9 12 1 8 3

Icecast 17 20 2 2 16

TABLE III

THE FILE DESCRIPTOR USAGE OF SSH AND FTP SERVERS

application for same-host migration. The SSH session in this example is logged in to a command

shell, while the Icecast session is in the middle of streaming audio to two clients. The first

two columns indicate the number of file descriptors used by an active session before and after

enabling Migrate support. The third column shows the number of these descriptors corresponding

to active network connections. The last two columns present the number of file descriptors

required for sessions suspended through a continuation. The “Suspended” column indicates the

number of descriptors included within the continuation, and the “Compressed” column shows the

actual number held open by Migrate during disconnection after generating all available resource

continuations.

Migrate generates simple resource continuations for these applications by closing redundant

descriptors and leaving only one descriptor pointing to a particular resource. This reduces the

number of descriptors used in the suspended state to three and sixteen, respectively, as shown

in the last column of the Table III. The three descriptors for SSH correspond to the connection

to the user’s shell, its pseudo-tty, and the /dev/ptmx device.3 In the case of Icecast, most of

the file descriptors remain open since the process remains active serving other clients or waiting

for new clients to attach. The active file descriptors of Icecast include connections to all media

sources, files opened for collecting statistics, a console terminal, and connections to server other

existing clients. The file descriptors related to the client session being suspended is included in

the continuation. The savings in file descriptors can be very high when the number of suspended

client sessions is large. Note that, in case of separate-host migration, all the non-network file

descriptors are closed and appropriate continuation is generated to resume them at the destination

server.

3/dev/ptmx is a device used to control the allocation of pseudo-ttys on Linux.

March 19, 2008 DRAFT

SNOEREN ET AL. 36

Migration Latency (ms)

STAGE Same host Different host

benchmark SSHD SSHD w/fwd Icecast benchmark SSHD SSHD w/fwd Icecast

Appl. Suspend 0.27 0.35 0.47 61-99 0.25 0.35 0.51 61-99

Serv. Authentication 0.88 0.81 0.86 0.80

Dependency Check 0.21 0.47

State Transfer 9.93 10.88 18.94 54.01

Cli. Authentication 0.85 0.75 0.75 0.62 0.48 0.48 0.48 0.49

Migration 0.52 0.34 0.34 0.39 0.48 0.66 0.66 0.60

Appl. Notification 54.23 56.66 114.92 2.31 56.23 56.25 112.73 67.11

Appl. Service Delay 0.02 1.38 1.40 88-170 0.01 1.38 1.38 13-206

Appl. Continuation 1.21 1.23 1.16 0.86 1.01 1.38 1.53 2.93

(Appl. Resume)

End-to-End Latency 57 61 119-274 153 69 72 137 200-331

(Suspend+Resume)

TABLE IV

SESSION MIGRATION MICRO-BENCHMARKS FOR SSHD, SSHD WITH FORWARDED TCP CONNECTION, AND ICECAST. THE

VARIATION IN THE LATENCY FOR ICECAST IS DUE TO APPLICATION DATA BUFFER SIZE AND VARYING APPLICATION

STARTUP TIME FOR ICECAST.

2) Migration Latency: In this subsection, we present experimental evaluation of migration

latency for three applications, i.e. simple client-server benchmark, SSHD, and Icecast. In addition

to using two well known network applications, we implemented a simple client-server benchmark

application to minimize application-related complexities. In this application, the server sends

periodic updates with index numbers and the client prints the index of the update. In this example,

at the suspension time the server needs to remember only the index of the update so that it

can resume from the point it left. Note that the suspension of the server generates a complete

continuation.

Table IV presents micro-benchmarks of the time spent in different stages of the migration

operation when a server session of each application is resumed at the same-host as well as

migrated to a separate host. The reported values are based on five runs for each test case. In our

tests, the delay experienced during service migration is quite small leading to a seamless user

experience. The client-server benchmark takes 57ms and 69ms for same-host and separate-host

March 19, 2008 DRAFT

SNOEREN ET AL. 37

migration respectively. The full SSHD migration takes 61 ms where as migration of SSHD with

one TCP forwarding takes 119ms. The standard deviation of the measured latency for SSHD

is within 3% of the mean. However, we observed a high variation across multiple runs in the

migration latency for Icecast. For better understanding, we report the range of time spent for

the stages that have a standard deviation of more than 5% of the mean; otherwise, report the

average time. We will explain the reason for this variation later in this subsection.

Table IV reports latency of the different stages in the suspension and resumption of a server

process, starting from suspending process till resuming operation after migration. The first step

shown is the Application Suspend, which takes a small time for the single simple client-server

application as well as SSH process, increasing marginally when a dependent session for the

forwarded connection needs to be suspended. However, the time needed for Icecast is large,

because here the suspension is for one thread out of several which are processed together. The

delay observed depends on how long after the suspend is triggered the application gets around

to handling that thread, which depends on the initial state of the application when the migration

is triggered.

The remaining stages are for migration and resumption, out of which the initial stages apply

only for migration to a separate host. The first stage, Server Authentication, consists of the

initial message exchange to request migration and the necessary authentication step. Next,

the compatibility check stage, Dependency Check, validates the feasibility of resuming the

service at the destination location; hence, the time spent in this stage changes depending on

the particular dependency requirements of the service under test. The current implementation

has basic compatibility checks, but this is likely to change depending on the service requirements.

The next stage, State Transfer, refers to the transfer of the session continuation and state

files across the network from the original server to the new server. The duration of this stage

strongly depends on the size of each of these state files as well as the round-trip delay between

the servers. The size of the attribute/value store varies depending on the minimum amount of

application state information to be stored so that the service can be resumed appropriately. Of our

applications, SSHD needs to save substantially more application state information than Icecast.

For instance, the compressed size (Migrate automatically compresses the attribute/value store

using gzip) of SSHD’s store is 3.9 KB where as Icecast’s is only 1.6 KB. Similarly, the size

of the resource continuation depends on the amount information that needs to be preserved per

March 19, 2008 DRAFT

SNOEREN ET AL. 38

network connection including the TCP buffers, the state of the connections. Icecast tries to buffer

a large amount of data for future playback in the TCP buffers, hence takes a long time to transfer

the resource continuation (94 ms). The situation can be improved further by ignoring storage

of buffers while suspending the connection, especially if the new server is going to move the

client directly to the live portion of the feed or has historical feeds available directly.

The steps following the state transfer are common to both same-host and separate-host migra-

tion. The first amongst these is the Client Authentication, during which the migrate daemon on

the host initiating the migration connects to the daemon on the host where the continuation is to

be executed, and authenticates itself. Authentication is followed by Migration, which corresponds

to the local Migrate daemon’s internal bookkeeping involving multiple sessions’ state transfer

from the previous Migrate daemon. Hence, depending on the number of sessions to be transferred

(depending on the session dependencies) the latency would change for this stage.

The initial phase of session continuation, Application Notification, involves resuming applica-

tion’s session related information, synchronization with the local migrate daemon, and restarting

the application process in case of complete continuation. It can be observed from the table that

application resumption time is less for Icecast (2.31ms) as compared to the SSHD (56.66) because

in the case of SSHD the server process is restarted at the destination whereas Icecast need only

contact a thread upon migration. Moreover, the time spent in this stage also depends on the

complexity of the service such as number of sessions, resource continuation issues like the size

of the TCP buffers sizes dumped before suspension, and any session dependencies. For instance,

the Application Notification for SSHD with TCP/IP forwarding takes longer (114.9ms) than base

SSHD resumption, since it involves resumptions of two dependent sessions. The time needed

for resumption at a different host is almost same for SSH which is resumed from complete

continuations. However, the time required for resuming Icecast because of modifications that

need to be made in the Tesla data structures when the migrated session is attached to an existing

process.

The next phase (Application Service Delay) is the time between application is notified (or

resumed) till it reaches the quiescent point to start the application’s continuation. It strongly

depends on the structure of the program and the decision of quiescent point. It can be noticed

that the Icecast has a large variation in the latency in this stage. The primary reason is the

structure of source loop in Icecast and the choice of quiescent point. In Icecast, as we decide

March 19, 2008 DRAFT

SNOEREN ET AL. 39

to check for new clients at the beginning of source service loop, where the delay between two

checks is a function of current number of clients to service, and latency of one chunk of data

read from the source server. Additionally, due to a bug in the pthread implementation in Red

Hat Linux, individual threads cannot be signaled. Hence in our implementation, we receive

asynchronous events in one thread, and set a flag for the source thread to check later which may

add overhead and variation in the time Application Service Delay. The last phase, Application

Continuation, executes the session continuation.

C. Performance Overheads

We study the impact Migrate has on TCP connection establishment latency, measure Migrate’s

session migration latency, and measure the bulk transfer throughput of Migrate-enabled TCP

connections.

1) Computation overhead: Migrate increases the processing latency for a TCP connection

by a small amount. We measured the processing latency as the elapsed time between the

issuance of a blocking connect() system call and its return for a connection on the loopback

interface. We give the results for three different types of connections on a 600 MHz Intel

P3 running Linux 2.4.1: a native TCP connection, the first virtualized TCP connection of a

Migrate session, and a subsequent virtualized TCP connection on a Migrate-enabled session.

The median latencies observed over 100 independent runs were 0.16 ms, 3.3 ms, and 0.43

ms, respectively. As expected, the initial connection establishment on a Migrate session is

significantly slower than subsequent connections, which are marginally slower than native TCP

connections due to the Tesla IPC overhead. Cryptographic operations account for the vast

majority of the session establishment overhead, requiring almost 3 ms in this configuration. The

sessions in this experiment were secured using a 128-bit key negotiated using Diffie-Hellman,

whose latency increases with key length. In practice, however, for wide-area Internet connections

the connection establishment latency will continue to be dominated by round-trip propagation

time, which is large compared to the additional latency introduced by Migrate.

Session migration consists of four parts: end-point location, authentication, rebinding (includ-

ing connection port mapping), and connection synchronization. Because the delay associated

with end-point location depends on the naming system selected by the application, we assume

here that the location of the remote end point is known—which is the case unless both end points

March 19, 2008 DRAFT

SNOEREN ET AL. 40

move simultaneously. The cost of connection synchronization depends on the transport protocol

in use and the loss rate experienced at the previous attachment point. The synchronization

performance of both the TCP Migrate options and Migrate’s TCP virtualization mechanism

have been reported previously [23]. Here, we quantify the expense of the other two operations—

authentication and rebinding—by measuring the migration latencies of sessions containing a

variable number of connections. We define session migration latency, measured at the migrating

end point, as the time between the attempted reestablishment the session control connection and

the actual reestablishment of all of the associated network connections.

We first examine session migration latencies over a loopback interface to ignore the effects

of network latency. We find that the latency to migrate n connections on an 850-MHz Intel

P3 running Migrate on Linux 2.4.2 is (1.6 + 0.55n) ms. End-point authentication takes about

1.6 ms, independent of the number of connections, and migrating each connection adds about

0.55 ms of delay. The per-connection delay variation increases with the number of connections

because of the increased likelihood of context switching at one or both of the end points between

the independently-sent connection mapping messages.

We also measured the median time required to migrate a session containing one virtualized

TCP connection to an attachment point with a varying RTT between itself and the remote end

point. Because session migration is an end-to-end operation, the delay depends mainly on the RTT

between the attachment points used by the two end points. The measured latency is roughly equal

to four RTTs. For n concurrent connections, the resuming host initiates resumption negotiations

in parallel, so the overall session migration latency would be (4 RTT + 1.6 + 0.55n) ms.

2) Networking overhead: Migrate uses the TCP Migrate options if they are available in the

communicating stacks, in which case there is no throughput degradation compared to standard

TCP. To evaluate the impact of Migrate’s connection virtualization on network communication,

we measure the throughput of a virtualized TCP connection that is part of a Migrate session

using the popular ttcp utility. Figure 13 shows the connection throughput for a native TCP

connection and for a Migrate-enabled connection as a function of the block size of the write

call done at the sender. This connection runs over a 11 Mbps shared 802.11b wireless LAN.

Migrate introduces a noticeable overhead at small block sizes. The overhead is due to several

factors including the additional context switch and system call overhead imposed by Tesla and the

memory copy operations required by Migrate to virtualize TCP connections. Once the bottleneck

March 19, 2008 DRAFT

SNOEREN ET AL. 41

2.5

3

3.5

4

4.5

5

5.5

1 10 100 1000 10000

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Block size (bytes)

Native
Migrate

Fig. 13. Mean TCP throughput with and without Migrate on a shared 802.11b wireless LAN, as measured with ttcp. The

receiver is an IBM ThinkPad T21 (600-MHz P3) running Linux 2.4.16 while the sender is an Intel 2.26-GHz P4 running Linux

2.4.18. Each point represents the average of at least sixteen runs; error bars represent one standard deviation.

becomes the available network bandwidth, the throughput reduction is less than 2%. For a similar

throughput experiment over loopback we find that the throughput of a Migrate-enabled TCP using

user-level virtualization is 350 Mbps on the measured platform.

Somewhat surprisingly, Migrate outperforms standard TCP connections for small block sizes.

This is because of the interactions with Tesla; data flows through a Tesla process that runs

in a loop that reads up to 8 KBytes at a time from the application independent of the actual

application write size, and writes it to the network as one block, thereby not sending small

packets on the network.

The larger throughput variability of Migrate-enabled transfers is due to the increased impact of

context switching, cache replacement policies, and other scheduling vagaries on both sender and

receiver. This scheduling effect impacts all Migrate operations, including data transfer, connection

establishment, and session migration. Since all network I/O handled by Tesla must pass through

a separate process, performance depends on how the application and corresponding process are

interleaved. If this variance became a serious concern, it could be greatly reduced by invoking

the Migrate handler as a co-routine or part of the system call itself.

D. Scalability

In this subsection we present results from our experiments to evaluate the scalability of

the proposed system for resuming suspended sessions at the same host or at a separate host.

We evaluate scalability for three applications: a simple client-server application, OpenSSH and

March 19, 2008 DRAFT

SNOEREN ET AL. 42

Icecast. In our experiments, we suspend and resume a number of sessions simultaneously, and

observe the latency of suspension and resumption for each session. We use the average latency

of suspension/resumption for sessions as the metric of scalability.

To understand the latency variation in depth, we also observe time consumed in different steps

of migration. It is important to note that the time consumed in each step depends on the inherent

computational/communication load of the step as well as the load on the Migrate daemon by

other simultaneous migration requests at the moment. For resuming session at the same host, we

report Appl. Suspend (application suspension time), Authentication (time consumed in authenti-

cating the migration request), Migration (time consumed in the session to become established

after migration) and Appl. Resume (when application is ready after complete migration). For

resuming sessions at a separate host, we report the time consumed in two additional steps, i.e.

Ser. Authentication (time spent in authenticating target server) and State Transfer (latency in

transferring required state information to resume service at the new server). Each experiment is

repeated 3 times, and we report latency averaged over three runs unless otherwise mentioned

explicitly. We modified the code of Migrate daemon and the applications to compute the latency

in each step of suspension/migration using gettimeofday() APIs.

1) Base case: Simple Client-Server Application: We use a simple client-server based micro-

benchmark application to understand the overhead of the migration/continuation process when

the amount of state information associated with the application is minimal. Figures 14(a) and

14(b) show the increase in suspension latency and resumption latency as the number of simulta-

neous suspend/migrate requests increase from 2 to 64. Figures 15(a)-15(d) present the variation

observed in the latency across different sessions under observation. We will show variability for

one test-case as the variability in latency experienced for other applications is similar to the

sample client-server application.

First of all, it can be observed that the average application suspension time is very minimal

(maximum of 9ms for 64 suspensions) and does not increase very rapidly as the number of

simultaneous suspension requests increase. Figure 15(a) shows the variation observed in the

application suspension stage. The variation in the suspension time is observed to be small.

In resuming session at the same host, the client authentication is the first step. It can be seen

from Figure 14(a) that the average time consumed in authentication step increases with number

of simultaneous suspensions. This is due to the fact that as the number of requests increase the

March 19, 2008 DRAFT

SNOEREN ET AL. 43

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

D
e
la

y
 (

m
s
)

No of Simultaneous Migration

Appl. Resume
Migration(C)

Authentication
Appl.Suspend

(a) Resuming at same host

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70

D
e
la

y
 (

m
s
)

No of Simultaneous Migration

Appl. Resume
Migration

Cli. Authentication
State Transfer

Ser. Authentication
Appl.Suspend

(b) Resuming session at a separate host

Fig. 14. Session Migration Latency for Simple Client-Server

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

D
e
la

y
 (

m
s
e
c
)

No of simultaneous Requests

(a) Application Suspend

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

D
e
la

y
(m

s
e
c
)

No of simultaneous requests

(b) Authentication

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70

D
e
la

y
(m

s
e
c
)

No of simultaneous requests

(c) Migration

50

100

150

200

250

300

350

400

450

500

550

0 10 20 30 40 50 60 70

D
e
la

y
(m

s
e
c
)

No of simultaneous requests

(d) Application Resume

Fig. 15. Latency Variation for Same Host Migration Simple Client-Server in Application Suspension, Authentication, Migration

and Application Resumption. We report cumulative latency for each stage computed from the start of suspension/resumption.

Each point represents average latency across all session and error bars represent one standard deviation

March 19, 2008 DRAFT

SNOEREN ET AL. 44

computational load on migrate daemon associated with the authentication (encryption) increases,

affecting the response time for other incoming authentication requests. Additionally, it can be

observed from Figure 15(b) that the latency of authentication increases rapidly as the number

of simultaneous requests increase. This is due to the fact that as the initial requests are being

processed with computationally heavy encryption task, the later requests have to wait before

being processed.

After authentication step is over, two steps occur simultaneously, i.e. application resumption

using the continuation information and the migration of sessions to the ESTABLISHED state.

It is important to note that the application is ready to resume operation when both of the above

steps is complete. It can be seen from the figure that the latency of application resumption

is less than the migration for less number of simultaneous resumptions where the application

resumption time dominates for higher number of resumptions affected by the inherent overhead

of simultaneous process creation. Note that the total server latency increases linearly to the

number of simultaneous session requests, hence does not show any inherent capacity/scalability

bottleneck due to migrate.

Figures 15(c) and 15(d) present latency variation to complete the migration as well as appli-

cation resumption. Please note that the variation observed in these stages are dominated by the

variation observed in the previous stage, i.e. authentication. Additionally, the process creation

also introduces additional variability for simultaneously resuming the application.

For separate-host migration, two other important steps to note are State Transfer and Ser.

Authentication. As mentioned earlier, the time consumed in state transfer is going to be affected

by the size of application continuation and migration state files. We use standard compression

techniques to reduce the volume of the state transfer, however leads to increase in the load on

migrate daemon. Hence there is a perceived increase in the time spent in State Transfer though

the application continuation size is very small. The time consumed in this step can be further

optimized by selectively deciding to use compression thereby reduce the load and the average

delay experienced in this step.

We observe that the time consumed in the server authentication process is similar to the

client authentication step; however is dependent on the round-trip-delay between the old-server

and new-server which is minimal in our setup. Another observation is that the average time

consumed in client authentication while doing a separate-host migration is very high compared

March 19, 2008 DRAFT

SNOEREN ET AL. 45

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

D
e
la

y
 (

m
s
)

No of Simultaneous Migration

Appl. Resume
Migration

Authentication
Appl.Suspend

(a) Resuming at same host

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70

D
e
la

y
 (

m
s
)

No of Simultaneous Migration

Appl. Resume
Migration

Cli. Authentication
State Transfer

Ser. Authentication
Appl.Suspend

(b) Resuming at different host

Fig. 16. Session Migration Latency for OpenSSH

to doing it on the same host. This is due to the fact that at the time of client authentication

the migrate daemon might be loaded with authentication tasks of other sessions delaying the

response time for client authentication requests. Similar to the client continuation, it can be seen

that the overall latency of resumption varies linearly with respect to the number of simultaneous

session resumption requests.

2) OpenSSH: We conducted similar capacity analysis for OpenSSH application. Figures 16(a)

and 16(b) present results of the experiments. The latency observed in same-host migration is

very similar to the sample client-server application presented above except for the application

resumption time. The application resumption time is slightly higher than that of simple client-

server application. The application resumption time consists of starting new processes, reading

from the continuation file and resuming the application using continuation. While creating new

process would be similar to the simple client-server application, the other two steps potentially

are more complex for SSHD decided by the amount of continuation information stored and

continuation steps to resume. For migration of OpenSSH to a separate host, the trends observed

in time spent in different steps are similar to the micro-benchmark as expected. In summary, it

can be seen that we can support 64 simultaneous SSH continuation within 1.5sec and the service

resumption latency varies linearly with respect to the number of servers.

3) Icecast: For evaluating Icecast continuation scalability, we set up two Icecast servers at

two different servers and tried to suspend/resume multiple player sessions (using mplayer) at

the same server as well as at a different server. We varied the number of simultaneous session

suspension/resumption from 1 to 24. We could not perform experiments beyond 24 simultaneous

March 19, 2008 DRAFT

SNOEREN ET AL. 46

0

500

1000

1500

2000

2500

0 5 10 15 20 25

D
e
la

y
 (

m
s
)

No. of Simultaneous Migration

Appl. Resume
Migration

Authentication
Appl. Suspend

(a) Icecast

0

500

1000

1500

2000

2500

0 5 10 15 20 25

D
e
la

y
 (

m
s
)

No of Simultaneous Migration

Appl. Resume
Migration

Authentication
Appl.Suspend

(b) Icecast without buffers

Fig. 17. Icecast: Same-host migration

sessions as the Icecast implementation leads to capacity related audio quality degradation and

at times closure of the playback session under normal operation.

Figure 17(a) shows the average time spent in each stage of suspension and continuation with

number of simultaneous sessions varying from 1 to 24. It is easy to observe that the application

resumption time for Icecast sessions is very high compared to other applications. This is due to

the inherent structure of the Icecast program and the flow continuation.

In the current modified Icecast implementation, the request for application suspension is

serviced when the corresponding client is selected to be serviced. Hence, as the number of active

play sessions increase, the average waiting time for selecting each client for transport increases

thus affect our application suspension time. Similarly, new migrated clients are included for re-

sponse once after every current client is serviced once (according to the Icecast implementation).

This increases the overall latency of application resumption also. This high resumption latency

is not caused by the Migrate service. The Icecast server without migration support would have

had similar type of delay to introduce new clients under current implementation.

The time consumed in different stages of server migration for Icecast application are shown

in 18(a). Apart of the application related overhead inherent in the Icecast application, the state

transfer takes a significant time compared to the overall service latency. This is due to the fact that

while a client session is suspended, the data buffer for that client is saved and transfered to the

new location for playback. However, since Icecast is a real-time streaming service, the old data

might not be useful at all. Hence, one way to reduce the service latency is by selectively storing

the application data. Figures 17(b) and 18(b) show the latency when the client buffer data is not

March 19, 2008 DRAFT

SNOEREN ET AL. 47

0

500

1000

1500

2000

2500

0 5 10 15 20 25

D
e
la

y
 (

m
s
)

No of Simultaneous Migration

Appl. Resume
Migration

Cli. Authentication
State Transfer

Ser. Authentication
Appl.Suspend

(a) Icecast

0

500

1000

1500

2000

2500

0 5 10 15 20 25

D
e
la

y
 (

m
s
)

No of Simultaneous Migration

Appl. Resume
Migration

Cli. Authentication
State Transfer

Ser. Authentication
Appl. Suspend

(b) Icecast without buffers

Fig. 18. Icecast: Different-host migration

stored as part of the continuation. You can notice that the overall latency reduces significantly

when the old data is not transfered to the new location. Finally, for client continuation as well

as service continuation, the latency observed varies linearly with the number of simultaneous

session suspension/resumption.

From all these experimental results, we conclude that the proposed migration-based con-

tinuation system does not introduce significant overhead limiting the scalability in terms of

simultaneous resumption/suspension requests supported. It is also observed that the overall

service latency depends on the application state information and can be reduced by judiciously

selecting data to store in the continuation.

E. Discussion

We believe that continuation-based session migration and resumption is a powerful concept

for enabling computing where communication connectivity is semi-permanent. Though it is used

in this paper only to address the issue of network connectivity, the concept of continuation can

be further exploited to account for semi-permanent availability of some other resources as well.

Generating the appropriate continuation is the central part of the proposed continuation-

based session migration. As mentioned earlier in the paper, the two most important parts of

generating appropriate continuation are: (1) finding out the location where the state of the

application can be described concisely, otherwise called quiescent point, and (2) generating

the appropriate continuation information for the used resources (network/file/terminal) so that

session/application can be resumed efficiently. For the examples considered, it was very easy

March 19, 2008 DRAFT

SNOEREN ET AL. 48

to find the quiescent point as both applications followed the generic template of non-blocking

select loops as a controlling location and a controlling thread to handle network events. We

believe this step is going to be relatively easy for a programmer familiar with the overall

architecture of the network application. However, generating appropriate continuation for non-

network dependencies/resources is relatively harder. For example, in the SSHD example, in order

to migrate sessions across hosts, appropriate information about the pseudo-terminals need to be

saved in the continuation for the resumption to create appropriate pseudo-terminals. Apart from

the resource dependencies, there are some application-specific dependencies which are difficult

to capture. For example, X-forwarding with SSH uses the DISPLAY environment variable to

tunnel X-related packets appropriately. When a session is moved to a different location, the

DISPLAY variable needs to be changed appropriately for the session migration to be successful.

Hence, in addition to using an inter-position agent to handle network related resource continuation

automatically, one needs to think about alternative and simple ways to provide solutions for other

resource-related continuation and application-dependencies. The application developer might be

the best person to handle application-dependencies; it might be difficult for any other person to

apprehend these dependencies.

The current version of Migrate using the TESLA wrapper is designed for non-threaded appli-

cations. In this system, we faced a few bottlenecks in enabling the session resumption/migration

support for threaded applications like Icecast. First of all, in Red Hat Linux’s thread imple-

mentation, we had a difficulty in using software interrupts to communicate events between

TESLA and the applications. The problem lies in the interrupt implementation for threaded

applications. We avoided the problem by putting all interrupt-related functionalities in one thread

of execution. Another difficulty was due to the non-threaded architecture of TESLA. In the

internal implementation of TESLA, process id and the file descriptor were being used as an

index which is not valid for a threaded application where each thread has an unique process

id. Additionally, the threaded design violated some of the assumptions made in TESLA about

sequential operation in a process. Hence, we had to modify the synchronization step using an

internal data structure to avoid the mismatch of access being made from different threads. It

would be possible to support the threaded applications more efficiently if the TESLA library

was redesigned to be thread-safe.

March 19, 2008 DRAFT

SNOEREN ET AL. 49

VII. RELATED WORK

Transparent approaches to handling mobility typically hide the disconnection or change in

network location from the application by introducing a level of indirection. Proposals have

suggested placing such indirection at various levels of the network protocol stack (including the

network [19], transport [15], [23], [27], and session [13] layers), the filesystem (e.g., Coda [16]),

or even external to the operating system through virtual machine technology [12], [18], [21].

We are not the first to observe that applications may wish to control mobility event handling.

Zhao [28] implemented a mechanism for individual applications to select among available

network interfaces and mobility management schemes, but the available schemes offered ei-

ther severely limited or entirely transparent mobility support. Collaborative system support for

variable network conditions was pioneered by Odyssey [17], which introduced the notion of

application-aware adaptation to bandwidth constraints.

A significant amount of research has focused on allowing mobile clients to continue to function

while disconnected. In particular, applications based on the Remote Procedure Call (RPC) model,

in which each communication is a request-reply exchange, have been successfully adapted for

disconnected operation using the Rover toolkit [10], which queues RPCs for later delivery.

Similar ideas were explored in Bayou [?], but both Bayou and Rover depart from the traditional,

connection-oriented programming model for networked applications. In particular, applications

are forced to deal with the notion of tentative transactions. Pervasive computing platforms like

One.world [7] similarly require a complete redesign of existing applications.

Unmodified applications are traditionally suspended by creating snapshots, or checkpoints, of

their process execution state, which can later be restored in order to resume process execution

from the same state. This technique has been applied to migrate applications from one host

to another or to restore applications after a system crash. A number of venerable research

operating systems provided support for general process migration, including Sprite [5], V [3].

Unfortunately, due to its extreme complexity, process migration has found little success in

commercial environments. Instead, user-level approaches have been proposed, most famously

in Condor [14]. More recently, Zap [18] uses a notion of pods to migrate groups of related

Linux processes between machines sharing an NFS file system. Unfortunately, many applications

handle several sessions inside of one process; traditional process-based check-pointing does not

March 19, 2008 DRAFT

SNOEREN ET AL. 50

allow individual sessions to be independently suspended or resumed.

Other researchers have addressed fine-grained management of individual sessions within a

process. A number of object migration systems [6], [7], [10], [11] have been proposed in the

research literature, but they generally require a complete redesign of the application structure.

For those applications well-suited to implementation in such a fashion, a number of commercial

options exist as well. For example, the Java Servlet Specification supports the notion of explicitly

storing application state inside session data structures, which can be individually encapsulated and

shuttled between replica servers using the native Java serialization and RMI mechanisms. Servlet

sessions include only application state, however, and do not reference any network connections

or system resources (e.g., files, locks, etc.) that may be needed.

A. Virtual machines

Recent proposals suggest suspending and resuming applications through a virtual machine

monitor like VMware [12], [21]. Unless both end points are suspended simultaneously, however,

an additional mechanism is necessary to preserve the session at the remote end point during

suspension. Further, sessions can only be suspended and resumed independently if they run in

separate VMs.

In comparison to session continuations, VM-based migration also suffers from a very long

migration latency. Recently proposed optimizations [21] can reduce the state that needs to be

transfered to resume the service, but it is still orders of magnitude larger than in our case. In

particular, assuming a configuration of 256 MB of RAM and a 1-GB HDD as in the servers used

for our evaluation, the latency of migration is of the order of 3 minutes, which is unbearable

for service migration, especially when Icecast is used to stream live video.

B. Service Continuations

Perhaps the most similar system to ours was recently proposed by Sultan et al. [25]. Service

continuations, as they are called, have similar aims, but the assumptions are different. For

example, the service continuation assumes availability of cooperating servers for service to be

migrated and migration policy is mostly implemented inside the operating system. In our system

we provide for service migration in response to client mobility, with possible disconnected

periods between suspend and resume. We assume the functionality of choosing the appropriate

March 19, 2008 DRAFT

SNOEREN ET AL. 51

server is better implemented outside the system using other lookup services available, hence

cannot be known a priori for the support of server migration. Additionally, our approach does

not assume any availability of services running currently to be able to migrate the server as long

as the services can be resumed at the destination location. While migrating a particular service,

the service may constitute many different network connections (especially in a gateway based

deployment of service) hence require all the dependent connections to be migrate simultaneously

for correct resumption of service. Migration of simultaneous connection migration efficiently can

be supported very well in our system.

While both of the systems try to store the state of the application for use at the time of

resumption, the state information is saved in our system on-demand based on disconnection

or explicit request for migration. In the service-continuation based approach the state storage

frequency needs to be higher, leading to a high overhead based on the amount of information

that needs to be stored for any application.

VIII. CONCLUSION

Migrate’s session continuations explicitly record all the state required for network applications

to suspend sessions upon disconnection, migrate them to replica servers if desired, and properly

resume them when connectivity is restored. Application programmers implement only a handler

that generates the application-specific part of the continuation. When Migrate detects that a

session has disconnected, it notifies the handler, which returns the corresponding continuation.

When Migrate detects that a session’s connectivity has been restored, it invokes the continuation

(after possibly moving to a replica server). The Migrate service also virtualizes network con-

nections to function across network address changes, verifies any host or system dependencies,

allows portions of a process to be suspended and securely resumed, spawns new application

processes if necessary, optimizes scarce system resources, and replicates any required system

resources on replica servers.

We evaluated the effectiveness of Migrate’s session continuation approach by studying how

SSH, and Icecast can be extended to implement a suspend/resume facility. The required source

code changes are small—between 0.5% and 1.75% of the total—and the generated continuations

are only between 1% and 5% of the process’ memory footprint. Migrate is also effective in

conserving resources of suspended sessions, such as open file descriptors. Finally, measurements

March 19, 2008 DRAFT

SNOEREN ET AL. 52

with Migrate’s implementation on Linux showed that session resumption times are a few hundred

milliseconds, i.e., small compared to typical disconnection durations.

These results together indicate that session continuations provide an easy-to-use and effective

abstraction for Internet servers that wish to migrate client sessions across replicas. Migrate’s

session continuations have the potential to improve the experience of mobile users by simplifying

the job of application designers. We believe that, in many cases, it may be easier for programmers

to use Migrate’s facilities rather than redesign their session-oriented application in a transactional

fashion. While our initial results with SSH and Icecast are promising, further study of additional

session-based applications—including those that have already been implemented in a stateless

manner—is necessary in order to verify this claim.

REFERENCES

[1] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion management architecture for Internet hosts. In Proc.

ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM),

pages 175–187, Cambridge, Massachusetts, Aug. 1999.

[3] D. R. Cheriton. The V distributed system. Communications of the ACM, 31(3):314–333, Mar. 1988.

[4] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, IT-11:644–654,

Nov. 1976.

[5] F. Douglis and J. Ousterhout. Transparent process migration: Design alternatives and the Sprite implementation. Software

- Practice and Experience, 21(8):757–785, Aug. 1991.

[6] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International Journal on Supercomputer

Applications, 11(2):115–128, 1997.

[7] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. Anderson, B. Bershad, G. Borriello, S. Gribble, and D. Wetherall.

System support for pervasive applications. ACM Transactions on Computer Systems, 2004. To appear.

[8] Icecast Project. Icecast streaming server. http://www.icecast.org.

[9] J. Inouye, J. Binkley, and J. Walpole. Dynamic network reconfiguration support for mobile computers. In Proc. 3rd Annual

ACM/IEEE International Conference on Mobile Computing and Networking, pages 13–22, Budapest, Hungary, Sept. 1997.

[10] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile computing with the Rover toolkit. IEEE Transactions on

Computers, 46(3):337–352, Mar. 1997.

[11] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald system. ACM Transactions on

Computer Systems, 6(1):109–133, Feb. 1988.

[12] M. A. Kozuch and M. Satyanarayanan. Internet suspend/resume. In Proc. IEEE WMCSA, pages 40–46, Callicoon, NY,

June 2002.

[13] B. Landfeldt, T. Larsson, Y. Ismailov, and A. Seneviratne. SLM, a framework for session layer mobility management. In

Proc. IEEE International Conference on Computer Communications and Networks, pages 452–456, Natick, Massachusetts,

Oct. 1999.

March 19, 2008 DRAFT

SNOEREN ET AL. 53

[14] M. Litzkow, M. Livny, and M. Mutka. Condor — A hunter of idle workstations. In Proc. 8th International Conference

on Distributed Computing Systems, pages 104–111, San Jose, California, June 1988.

[15] D. Maltz and P. Bhagwat. MSOCKS: An architecture for transport layer mobility. In Proc. IEEE Infocom, pages 1037–1045,

San Francisco, California, Mar. 1998.

[16] L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting weak connectivity for mobile file access. In Proc. 15th ACM

Symposium on Operating Systems Principles, pages 143–155, Copper Mountain, Colorado, Dec. 1995.

[17] B. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker. Agile application-aware adaptation

for mobility. In Proc. 16th ACM Symposium on Operating Systems Principles, pages 276–287, Saint Malo, France, Oct.

1997.

[18] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and implementation of Zap: A system for migrating computing

environments. In Proc. 5th USENIX Symposium on Operating Systems Design and Implementation, pages 361–376, Boston,

Massachusetts, Dec. 2002.

[19] C. E. Perkins. IP mobility support for IPv4. RFC 3220, Internet Engineering Task Force, Jan. 2002.

[20] J. C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation: An International Journal, 6:233–247,

1993.

[21] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosenblum. Optimizing the migration of virtual

computers. In Proc. 5th USENIX Symposium on Operating Systems Design and Implementation, pages 377–390, Boston,

Massachusetts, Dec. 2002.

[22] A. C. Snoeren. A Session-Based Approach to Internet Mobility. PhD thesis, Massachusetts Institute of Technology, Dec.

2002.

[23] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host mobility. In Proceedings of the ACM MOBICOM

Conference, pages 155–166, Boston, MA, Aug. 2000.

[24] G. Su and J. Nieh. Mobile communications with virtual network address translation. CUCS-003-02, Columbia University,

Feb. 2002.

[25] F. Sultan, A. Bohra, and L. Iftode. Service continuations: An operating system mechanism for dynamic migration of

Internet service sessions. In Proc. 22nd Symposium on Reliable Distributed Systems, Florence, Italy, Oct. 2003.

[26] T. Ylonen, T. Kivinen, T. J. Rinne, and S. Lehtinen. SSH protocol architecture. Internet Draft, Internet Engineering Task

Force, Jan. 2001. draft-ietf-secsh-architecture-12.txt (work in progress).

[27] V. C. Zandy and B. P. Miller. Reliable network connections. In Proc. 8th Annual ACM/IEEE International Conference on

Mobile Computing and Networking, pages 95–106, Atlanta, Georgia, Sept. 2002.

[28] X. Zhao, C. Castelluccia, and M. Baker. Flexible network support for mobile hosts. ACM Mobile Networks and Application

Journal, 6(2):137–149, Apr. 2001.

March 19, 2008 DRAFT

