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Complex potential surface for the 2B, metastable state of the water anion

Daniel J. Haxton,"?* Zhiyong Zhang,?' C. William McCurdy,*? " and Thomas N. Rescigno®: }

"Department of Chemistry, University of California, Berkeley, California 94720
?Lawrence Berkeley National Laboratory, Computing Sciences, Berkeley, California 94720
?Department of Applied Science, University of California, Davis, California 95616

The potential energy surface corresponding the complex resonance energy of the B, Feshbach res-
onance state of the water anion is constructed in its full dimensionality. Complex Kohn variational
scattering calculations are used to compute the resonance width, while large-scale Configuration
Interaction calculations are used to compute the resonance energy. Near the equilibrium geome-
try, an accompanying ground state potential surface is constructed from Configuration Interaction
calculations that treat correlation at a level similar to that used in the calculations on the anion.

I. INTRODUCTION

At kinetic energies of less than about 15 eV, elec-
tron impacts with water molecules are capable of lead-
ing to the formation of resonance states that are dis-
sociative, or to the excitation of low-lying singlet and
triplet electronic states, many of which are also dissocia-
tive. Thus, collisions of low-energy electrons with water
can initiate chemical reactions involving both radical and
ionic fragments of the water molecule. While such pro-
cesses are certainly interesting on a purely theoretical
level, they gain additional relevance through their sus-
pected complicity in mechanisms of genome damage in
living organisms. In the presence of ionizing radiation in
the condensed phase, a shower of low-energy secondary
electrons results from essentially all primary ionization
events. Therefore dissociative attachment and dissocia-
tive excitation of water are candidates to play key roles
in the mechanism of radiation damage to biological sys-
tems.

In this paper we begin the investigation of dissocia-
tive attachment (DA) through the lowest energy Fesh-
bach resonance state of the water anion, which in the
Cay symmetry of the equilibrium geometry of the water
molecule has 2B; symmetry. Here we address the prob-
lem of constructing a complete potential energy surface
of this metastable state which determines the motion of
the nuclei during the dissociative attachment process. In
the following article, we will investigate the quantum dy-
namics of dissociative attachment on this surface. That
study will make use of the local complex potential model
for the nuclear dynamics, in which the nuclei move on
the complex potential surface

V =Er—il/2 , (1)

where Ep and —I'/2 are the real and imaginary parts, re-
spectively, of the well-defined complex resonance energy
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of the 2B, state.

Not surprisingly, negative ion formation has been the
subject of intense experimental and theoretical investi-
gation, starting as early as 1930 [1]. Early experiments
on negative ion formation by electron impact focused
mainly on the identification of the negative ion species
formed, the measurement of the total cross sections, and
the energy locations of the structures in the resonance
process [2]. Buchel’nikova [3] and Schultz [4] established
that the main products of dissociative electron attach-
ment in water are H- and O~ , with the production of
O~ being much smaller than that of H™ at lower ener-
gies, but with O~ dominating at higher electron-impact
energies.

Compton and Christophorou [5] carried out a compre-
hensive study of negative ion formation in water and
measured the total cross sections for negative ion pro-
duction in HyO. Three resonance peaks were observed.
H~ production was observed at approximately 6.5 eV
and 8.6 eV, with the second peak much less intense than
the first. O~ was observed in increasing intensities in
three peaks at 6.9 eV, 8.9 eV, and 11.4 eV, respectively,
the first two appearing at slightly higher energies than
the corresponding H™ resonance peaks. Isotopic effects
were also measured and discussed in detail in this study.
Trends similar to H=/H20 and O~ /HyO were observed
for the formation of D~ and O~ from D,0, although
some significant differences in peak heights and widths
were observed in the case of the deuterated target.

A series of measurements by Trajmar and Hall [6] and
Belic, Laudau, and Hall [7] revealed the energy and angu-
lar dependence of H~ production in dissociative electron
attachment to HoO. The angular distributions at the
three resonance peaks were judged to be consistent with
the assignment of the three resonances as having 2By,
2A1, and 2B, symmetries, respectively. These measure-
ments also gave detailed information about the vibra-
tional and rotational state distribution of the OH frag-
ments.

Compared with the large number of experimental
measurements, detailed theoretical work on dissociative
electron-water collisions has been relatively scarce and
there has been no previous ab initio work on dissociative
electron attachment to water. The paucity of theoreti-



cal work on DA stems from the fact that, in water, DA
proceeds, not through tunneling shape resonances, but
through Feshbach resonances that involve changes in the
electronic structure of the target. Early theoretical work
focused on the electronic structure [8] and configuration-
interaction [9] calculations on various states of HpO~
that are possible resonances. These calculations, to-
gether with experimental observations, formed the basis
of the assignment of the three Feshbach resonances that
are responsible for electron-impact dissociation of water
in the gas phase. Contemporary theoretical work has
included ab initio complex Kohn [10] and R-matrix [11]
calculations, at the equilibrium nuclear geometry, of the
resonances and excitation cross sections into low-lying
dissociative electronic states. More recently, Gorfinkiel,
Morgan, and Tennyson [12] carried out R-matrix calcu-
lations of dissociative excitation of water through four
low-lying excited states (the *B; and *1A; states). A
limited study of the effects of nuclear motion were in-
cluded in that work by increasing one of the OH bonds
while keeping the equilibrium HOH bond angle and the
other OH bond length constant. The only theoretical
work on the dynamical aspects of dissociative electron
attachment to water are earlier classical trajectory anal-
yses based on either repulsive [13] or attractive [14] model
resonace surfaces.

This paper describes the construction of the complex
potential energy surface of the first dissociative attach-
ment resonance, the 2B; state near 6.5 eV, in its full
dimensionality. A potential energy surface for the neu-
tral molecule is also constructed at a corresponding level
of theory. The imaginary part of the potential surface
in Eq.(1) is constructed from calculations using the com-
plex Kohn variational method [15, 16], while the real part
of the potential surface, Eg in Eq.(1), is constructed
from large-scale configuration-interaction (CI) calcula-
tions. Within the local complex potential approxima-
tion [17-19], the complex anion surface and the ground-
state target surface are sufficient to describe the full dy-
namics of the dissociative attachment process via the 2B;
resonance.

We will refer to several different coordinate systems in
this paper. These are illustrated in Fig. 1. The valence-
bond coordinate system is comprised of the OH bond
lengths, r; and ry, and the H-O-H bond angle, 8. There
are also two different Jacobi coordinate systems; one in-
corporates an OH bond length, r, the distance between
that OH center of mass and the other H, denoted R, and
the angle between the r and R vectors, called v, such that
v = 0 indicates a collinear H-H-O geometry. The other
denotes the H-H separation by r, the distance between
the O and the H, center of mass by R, and the angle
between 7 and R by ~. Finally, the triangular coordinate
system is comprised of the three internuclear separations
r1, To, and rgg.

A subsequent paper will present the results of a study
of the full quantum dynamics of the dissociative attach-
ment process on this complex potential surface, which has

THH

FIG. 1: Coordinate systems to which we refer in this paper.
(a) Jacobi (r = rom); (b) Jacobi (r = rgm); (c) valence-bond,;
(d) triangular.

been carried out using a time-dependent version of the lo-
cal complex potential approximation for nuclear motion
of the anion. That paper will describe the use of the Mul-
ticonfiguration Time-Dependent Hartree method [20 22]
for nuclear dynamics to compute cross sections and vibra-
tional and rotational state distributions of the products.

II. ELECTRONIC STRUCTURE AND
ELECTRONIC STATES OF H,O

Near equilibrium geometry (r; = 1.81 bohr, 7o = 1.81
bohr, § = 104.5°), the ground state of HyO is well
described by a self-consistent field (SCF) wave func-
tion. The SCF orbitals, in order of increasing energy,
are labeled {1la;,2a1,1by,3a;,1b1} in Cyy symmetry or
{1a’,2a’ 3a’,4a’,1a"} in Cs symmetry. The 1by and 3a;
orbitals are the main bonding orbitals, while the 1b; or-
bital is nonbonding and contains the oxygen lone-pair
electrons, perpendicular to the molecular plane. Impor-
tant unoccupied orbitals include the 4a; (5a”) orbital,
which is the antibonding counterpart to the 3a; orbital,
and the 2by (6a’) orbital.

There are six low-lying dissociative electronic states of
water -13By, 13A;, and *B, - which, near equilibrium
geometry, are well described by promoting an occupied
1by, 3a1, or 1by electron into the anti-bonding 4a; orbital.
These states are the parents of three doubly excited anion
states with configurations 1bj4a?, 3a;4a?, and 1bsda?,
corresponding to the three main dissociative attachment
peaks. In addition, there are also 2:' A, excited states in
this energy range, of predominantly Rydberg character,
obtained by promoting a 1b; electron into the unoccupied
2bs orbital.

The lowest anion state, the 2B, state, is a Feshbach
resonance which becomes an electronically bound state



as the molecule dissociates and the anion energy drops
below the neutral ground state energy. In the region of
the potential surface where the 2B; state is a resonance it
is quite narrow and nearly parallels the ®B; state, which
is its parent.

In the asymptotic regions, the 2B, state correlates with
either OH(*TI) + H('S) or Hy("'X) + O~ (*P). The third
arrangement channel, H(?S) + OH ™ (*X), which has been
observed at each of the resonance peaks, is not a direct
product of dissociative attachment on the 2B; resonance
surface [23] and is in fact excluded by symmetry as long
as coupling to other surfaces is omitted.

III. CALCULATION OF THE RESONANCE
ENERGY AND WIDTH

There are two qualitatively different regions of nuclear
geometry in a dissociative attachment problem: the re-
gion near the equilibrium geometry of the neutral within
which the anion is a resonance, and the asymptotic region
in which the resonance becomes bound. In the resonance
region, the anion has a finite width or inverse lifetime,
which can be evaluated either by a direct method us-
ing “Fermi’s Golden Rule,” or by analyzing the results
of a fixed-nuclei scattering calculation. In the bound re-
gion, the anion can be described using modern electronic
structure techniques, e.g., a configuration-interaction cal-
culation.

Because the 2Bjresonance is so narrow (T' ~ 0.006 eV
at the equilibrium geometry of water), one can, in prac-
tice, use CI techniques to evaluate the real part of the 2B,
surface at all geometries of interest. This strategy allows
one to evaluate the real part of the resonance surface from
large-scale CI expansions that would be impossible to use
in any practical scattering calculation. Fixed-nuclei scat-
tering calculations, using the complex Kohn variational
method, were carried out, but over a more limited set
of geometries near the equilibrium position of the target,
for the purpose of obtaining the imaginary part of the
resonance energies.

In the following sections we will describe the two types
of calculations we performed to construct the entire com-
plex potential surface for the 2B; state, turning first
to the electron-molecule scattering calculations necessary
for computing the width.

A. The complex Kohn variational method

The complex Kohn variational method makes use of a
trial wave function that is expanded in terms of square-
integrable (Cartesian Gaussian) and continuum basis
functions that incorporate the correct asymptotic bound-
ary conditions. Detailed descriptions of the method have
been given elsewhere (see, for instance, refs. [15, 16]),
so here we will limit ourselves to a very brief summary

to establish the terminology we will use to describe our
numerical calculations.

The physics of a calculation using the complex Kohn
variational method is exhibited in the trial function,
which, for a target containing N electrons, has the form

v = > A [Xr(rl ---rN)Fé})o (rn+1)
T

(2)
+ Z d£0®u(r1"'rN+1)
I

The first sum in Eq. (2) is over target states explicitly
included in a close-coupling expansion, which may be
energetically open or closed, and for which xpr(r;...rn)
denotes the corresponding electronic state of the target
molecule. The antisymmetrizer is denoted by A, and the
scattering orbital (channel eigenfunction) associated with
channel T is

Fl—(‘j]:)o (I‘) = Z C;’rocpi (I‘)
i

+ Z [f1,m (kr7)00,10Om,mo Or 1 (3)
lm
+ Tt (57| Yo ()7
for incoming boundary conditions in channel T'g. In
Eq. (3) ¢; denotes a Gaussian molecular orbital, and

fi.m(krr) and gl(;)(kpr) denote continuum functions
which are regular at the origin and whose asymptotic
forms correspond to Ricatti-Bessel and outgoing Ricatti-

Hankel functions, respectively:

fhm(k?]“T‘) rjo ]l(krr)/m (4)
gi D er) — n (ko) [ 5)

With each of these continuum functions is associated a
channel momentum, kp

kl/2=E — Er . (6)

The second sum in Eq.(2) is over square integrable
(N+1)-electron terms (configuration state functions) con-
structed from Gaussian molecular orbitals and incor-
porates correlation effects not described by the close-
coupling expansion of the first sum. For convenience we
refer to the (N+1)-electron configurations, ©,,, in the sec-
ond sum as the “Q-space” and to the square-integrable
(N+1)-electron configurations involving target configu-
rations and the orbitals ¢; generated by the antisym-
metrizer in the first sum as the “P-space” of the calcula-
tion.

Inserting the trial wave function into the variational
principle

TrTo — e _ g / " (H — E)U drydey g (7)



yields a set of linear equations for the coefficients cf’r“7

dzo, and the T-matrix, whose elements are denoted as

r,r .
T, I . o The cross sections can be constructed from the

T-matrix, and in the present case the width and position
of the 2B, resonance are extracted from its eigenphases.

A description of a complex Kohn calculation there-
fore requires the specification of the approximate target
states xr, the correlating configurations ©,, and, for the
expansion of the channel eigenfunctions, the Gaussian
molecular orbitals ¢; and the [, m pairs included in the
asymptotic partial wave expansion.

B. Target states and basis set of the complex Kohn
variational calculations

The square integrable portion of the basis used to con-
struct the Kohn trial function consisted of the Gaussian
basis set of Gil et al. [10], augmented with additional dif-
fuse orbitals. On the oxygen, we added an s function
with exponent 0.0316 and a p function with exponent
0.0254; on each of the hydrogens, we added s functions
with exponents 0.08 and 0.0333, and p functions with ex-
ponents 0.2 and 0.05. With these additions, our basis set
included a total of 77 functions.

The orbital space spanned by this basis set was
divided into sets of “target orbitals” and “scatter-
ing orbitals.” The target orbitals were the set
{1ay,2ay,1bo, 3a;,1by,4a:,2by,5a;}, which were ob-
tained from natural orbital calculations on the ground
state and on the resonance, as described below. The
scattering orbitals were the orthogonal complement of
the target orbitals.

At each geometry, the first five target orbitals were
obtained from a multi-reference plus all single excita-
tions configuration-interaction calculation on the neutral
ground state. The orbital basis for these calculations con-
sisted of the five occupied SCF orbitals along with a set of
“improved virtual orbitals” calculated in the field of the
(N-1)-electron Hamiltonian obtained by singly occupy-
ing the highest occupied molecular orbital. (This orbital
was almost always the 1b; / 1a” orbital.) We performed
complete active space (CAS) CI calculations in this ba-
sis, doubly occupying the 1a; orbital and distributing the
eight remaining electrons over all possible configurations
that could be generated from the set of actve orbitals
{2a;1,1bs, 3a1,1by,4as,2bs}. We also included all sin-
gle excitations obtained by placing seven electrons in the
active space and the remaining electron in an IVO or-
bital. This generated a CI expansion of ~15,000 terms.
The first five “target” orbitals used in the complex Kohn
trial function were the natural orbitals obtained by di-
agonalizing the ground state density matrix from this CI
calculation.

We then performed similar calculations for the anion
state, beginning with a set of occupied orbitals from a
symmetry-restricted SCF calculation on the 2B; reso-
nance state. We carried out a CI calculation in 2B,

TABLE I: H>O target energies at equilibrium geometry. Com-
plex Kohn values are compared with results of van Harrevelt
and van Hemert [24]. Energies from this work are calculated
at 1 = r» = 1.81 bohr, § = 105°. Energies from Ref. [24]
were calculated at r; = ro = 1.8 bohr, § = 104.5°.

State Energy (hartree) Excitation Energy (electron volts)

complex Kohn complex Kohn Ref. [24]
TA, -76.0581 0.0 0.0
’B, -75.7795 7.582
'B, -75.7666 7.932 7.63
SA, -75.7086 9.511
A, -75.7049 9.611 9.60
SA, -75.6933 9.926
A, -75.6710 10.534 9.95

symmetry, keeping the 1a?2a?1b33a?1b! occupancy of
the five inner orbitals fixed, and allowing two elec-
trons to occupy any of the remaining a; and/or bs
orbitals. The 4a;, 2by, and b5a; orbitals were ob-
tained by diagonalizing the density matrix of the low-
est energy root. We found that we could improve this
set of natural orbitals via an iterative scheme where
each iteration consisted of a symmetry-restricted, multi-
reference plus all singles CI calculation where the ref-
erence space was obtained by distributing eleven elec-
trons over the {la;,2a;, 1by, 3a;, 1by,4ay, 2by, 5a;} nat-
ural orbitals, with the constraint that the la; and 1by
orbitals be doubly and singly occupied, respectively, in
each configuration. The size of the configuration space
for these last calculations was ~13000 in Cy, symmetry
and ~25000 in Cy symmetry. Four iterations were per-
formed.

The final set of eight target orbitals used in the com-
plex Kohn trial funnction consisted of the five natural or-
bitals with the highest occupation numbers — invariably,
the orbitals {la;,2a;,2bs,3a;,1b1} — from the neutral
ground state calculations, combined with the 4a;, 2bs,
and 5a; natural orbitals from the anion calculations, the
latter Schmidt orthogonalized to the former. The re-
maining unoccupied orbitals — the scattering orbitals, ¢;
in Eq. (3) were also taken from the anion calculations
and Schmidt orthogonalized to the five natural orbitals
from the ground state calculations.

Seven states yr were explicitly included in the P-
space portion of the Kohn trial function in Eq.(2).
These states were defined as the roots of a complete
active space CI within the space of the target orbitals
{2a1, 1bs, 3ay, 1by, 4a1,2bs, 5a1 }, with the 1a; orbital al-
ways doubly occupied. For energetically closed channels,
only L% functions ¢; were included in the expansion of
Flg})o in Eq.(3). At each nuclear geometry, the seven tar-
get states with the lowest energy were chosen. Near the
equilibrium geometry, this included the 'A; ground state
and the 3By, A,, and !"*A; excited states. The target
energies at the equilibrium geometry of water are listed
in Table 1.
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FIG. 2: Eigenphase sums, in radians. r; is fixed at 1.81, 6 at
105°, and rs is varied. Distances in bohr.

The Q-space terms ©,, were comprised of all configura-
tions that could be generated by placing eleven electrons
within the space of target orbitals, subject to the con-
straint that the 1a; orbital be doubly occupied. These so-
called “penetration” terms contain the dominant configu-
rations that describe the Feshbach resonances, as well as
terms that relax any constraints imposed on the channel
eigenfunctions that arise from the orthogonality among
the scattering orbitals, continuum orbitals, and target
orbitals [15].

The expansion of the continuum functions Fr(})o in
Eq.(3) included Y ,,’s spanning the range I = 0 to 4,
with all values of m included for each target state con-
sistent with overall 2By or A” symmetry.

C. Calculation of the resonance widths

The complex Kohn calculations were performed over a
grid in valence coordinates on which the OH bond lengths
took on values r ={1.51, 1.81, 2.11, 2.41, 2.71, 3.01, 3.61
bohr} and the angles were 6 ={15, 30, 45, 60, 75, 90,
105, 120, 135, 150, 165°}. Geometries at § ={15, 30}
which are energetically inaccessible to the dissociative
attachment process were not included.

To facilitate locating the resonance position at each
geometry, we first diagonalized the energy-independent
portion of the Kohn Hamiltonian, constructed from
square-integrable basis functions, and inspected the low-
lying eigenvalues and eigenvectors to locate the resonance
root. The full scattering calculation was then performed
at ten energies around the resonance location and the
corresponding eigenphase sums were tabulated and fit-
ted to a Briet-Wigner form with a linear background to
extract the resonance positions and widths. Eigenphase
sums for several representative geometries are shown in
Fig. 2.

The complex Kohn calculations produce a narrow 2B

resonance that lies close to — and generally below — its
3B, parent state. At several geometries, however, the
resonance pole appeared slightly (~ .1 eV) above its ?By
parent state. Unfortunately, we were unable to reliably
perform the Kohn calculation at energies close enough
to threshold to get meaningful Breit-Wigner fits in these
cases. The imaginary part of our interpolated resonance
surface was therefore constructed under the assumption
that the 2B; resonance always lies below its parent. We
will have more to say about this below.

D. CI calculation for real part of resonance surface

In the asymptotic regions where the anion is electron-
ically bound, we can use electronic structure methods to
compute the anion potential surface. As we stated ear-
lier, the resonance widths are so narrow in this case that
we can use these same techniques at all geometries of in-
terest. This strategy allows us to use large-scale CI tech-
niques to compute the real part of the resonance surface
at all geometries. It also spares us the difficulties that
would be encountered in trying to match the energy sur-
face obtained from scattering cqalculations in one region
with the asymptotic portions of the surface obtained by
a different method.

The real part of the resonance surface was ap-
proximated by large-scale, multi-reference configuration-
interaction calculations with single and double excita-
tions. For these calculations, we used the augmented,
correlation-consistent, polarized valence triple-zeta basis
set developed by Dunning and coworkers [25]. Molecu-
lar orbitals were first obtained via a symmetry-restricted
SCF calculation on the 2By resonance. The CI reference
space included the 1bs, 3a;, 1bq, 4a;, 5a;, and 2b, or-
bitals in Cs, symmetries, which correspond to 3a’, 4a’,
la”, 5a’, 6a’ and 7a' orbitals in Cg; symmetries. The 4
electrons occuping the la; and 2a; orbitals, which are
comprised of mainly the oxygen 1s and 2s orbitals, were
fixed with double occupation and not correlated in these
calculations. The 1by and 3a; orbitals describe the two
OH bonds, while the 1b; orbital is a non-bonding orbital
that describes the oxygen lone pair. The 4a; (5a’) orbital,
which is the resonance orbital near equilibrium geometry,
becomes the 1s orbital of the H™ anion in the OH + H™
arrangement. Inclusion of the 2by and 5a; orbitals is im-
portant for describing correlation effects in the resonant
state and permits the proper dissociation of the molecule.
Configurations corresponding to all possible distributions
of 7 electrons in the CI reference space were included in
the CI Hamiltonian along with all single and double ex-
citations from that reference space. The total number of
configurations in these calculations was ~900,000.

For this calculation, we defined a full grid of ry, ry =
{1.45, 1.55, 1.65, 1.75, 1.85, 1.95, 2, 2.25, 2.5, 2.6, 2.8,
3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.6,
5.8, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 bohr}, 6={1,
2,3,4,5,6,7,8,9,10, 11, 12, 14, 15, 16, 17, 18, 20, 22,
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FIG. 3: 2B; resonance and 2B; neutral energies, from CI
calculations, along the cut in valence-bond coordinates with
r1 = 1.81 and # = 105°: resonance energy (solid curve), neu-
tral energy (dashed curve).

24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 85, 100, 120,
140, 160, 175 degrees}. This 33 x 33 x 37 grid includes
40293 points. But of these, on only 6025 appropriately
chosen points were the CI calculations performed; as de-
scribed below, the energies at the remainder were defined
by interpolation among the calculated points. For none
of the 6025 points did the resonance location exceed an
absolute value of -75.8 hartree.

The CI calculations, just like the complex Kohn calcu-
lations, showed that for certain geometries the resonance
state lies energetically slightly above its neutral parent.
This is illustrated in Fig. 3. This was generally found
to occur at geometries where one OH bond distance was
close to its equilibrium value and the other was stretched
by 1-2 bohr. These are geometries where H™ begins to
overlap OH and it becomes difficult to maintain a consis-
tent description of correlation in the neutral and anion
states. It is also possible that we are looking at small
basis set superposition errors at these geometries. In any
case, we believe this is unlikely to be a physically correct
result and therefore, as we observed above, the imagi-
nary part of our interpolated resonance surface was con-
structed under the assumption that the ?B; resonance
always lies below its parent. This issue will prove to be
important in the discussion of experimentally observed
isotope effects presented in the subsequent paper.

E. CI calculation for the ground state potential
surface

For the calculation of the neutral potential surface, we
followed a prescription similar to that used in generating
the resonance surface. The number of orbitals used to
define the active space was the same, with the difference

1 1 1 & 3.0
: - 2.6
N B 22 rz
. - 1.8
& / - 1.4
14 1.8 2.2 2.6 3.0
r

FIG. 4: Calculated ground state potential surface for =
104.5° with contours every 0.25 eV. Bond lengths in bohr.

that six, not seven, electrons occupy the reference space
of 1bs, 3ay, 1by, 4a1,5a; and 2by orbitals.

For the neutral, the full grid was specified by ry, 2 =
{1.55, 1.6, 1.65, 1.7, 1.72, 1.74, 1.76, 1.78, 1.8098, 1.82,
1.84, 1.86, 1.88, 1.9, 1.92, 2, 2.25, 2.5, 2.75, 3.0 bohr},
and 6={20, 40, 60, 80, 100, 120, 140, 160, 175 degrees}.
The CI calculation was performed on each point on this
grid.

The neutral surface was represented by a three-
dimensional cubic spline fit using the full grid of points
obtained from the CI calculation described above. It is
convenient to have a representation of the potential far
into the classically forbidden region, and to that end the
potential was extrapolated beyond the end of the com-
puted grid using a quadratic representation. The ground
state potential surface is shown in Fig.4. This potential
surface yields energies for the first few bound rovibra-
tional states in good agreement with the spectroscopi-
cally accurate surface of Polyansky et al. [26]

IV. FITTING THE RESONANCE POTENTIAL
ENERGY SURFACE

A. Real part of the resonance energy

To construct a complete representation of the real part
of the resonance surface, a reference potential was first
subtracted from the computed points and the remainder
was fit with three-dimensional cubic splines. The ref-
erence potential is a sum of two-body terms consisting
of three Morse potentials in the rog and rggy coordi-
nates. The reference potential plus the splined residual
comprises the global fit of the surface which coincides
exactly with the calculated points.

The Morse potentials were optimized for the asymp-
totic regions, one for each atom-diatom arrangement.



Thus,

V(ri,r2,0) =Vs(ri,r2,0)+
Vou(r1) + Vou(r2) + Vau (rum)

in which Vg is the splined residual, and g is a function
of the other three coordinates. The OH Morse poten-
tial was obtained by fitting the 124 most exterior points,
yielding the fitted function (in atomic units)

Vor(r) = 0.1534(1 — exp(1.344(1.809 — r)))*  (9)

with rms error 0.0032. The HH Morse potential was fit
using 69 points at large Ho + O~ separations which si-
multaneously satisfied the conditions that ry,ry > 8 and
rag < 4, yielding

Vg (r) = 0.1827(1 — exp(1.098(1.406 — r)))*  (10)

with rms error 0.0029. These fits are certainly not spec-
troscopic there are three-body interactions still present
for many geometries at the exterior of our grid, and the
fits above only represent the best two-body fits to the
exterior regions of the full three-body potential.

The difference between the reference potential and the
calculated values is therefore a combination of small cor-
rections to the three two-body interaction potentials,
plus the entire three-body interaction potential. This
difference is the quantity which was fit with cubic splines
to obtain Vg(ry,ry,8) above.

The splining proceedure was performed in the valence-
bond coordinate system using the calculated CI points.
Since we did not calculate the full grid of points, a multi-
step splining proceedure was required. First, a series of
one-dimensional splines, in the € direction and then along
the r; and ry directions, was performed to obtain the
surface at the remaining grid points. Second, the full grid
of points thus constructed was fit to three-dimensional
cubic splines.

Fig. 5 illustrates how the combination of an analyt-
ical reference potential and a splined residual produces
a better representation of the full potential surface than
what would be obtained with a direct three-dimensional
spline fit of the calculated points. That advantage is par-
ticularly important in the Hy + O~ arrangement. The
exiting well in this arrangement lies diagonally in the
valence-bond coordinate system upon which our grid of
calculated points is based. Our grid is also sparse in this
asymptotic region. Thus, obtaining a reliable fit from
a spline proceedure alone would be impossible. This is
because the Ho + O™ potential energy surface and in
particular, the highly repulsive part at small H-H sepa-
rations — is not easily described by the third-degree poly-
nomials comprising the spline functions. To illustrate,
consider the geometries (1) {ry = 7,7, = 7,60 = 1°} and
(2) {r1 = 7,79 = 8,60 = 1°}, which are adjacent in our
grid of points. Point (1) is high upon the repulsive wall
of the H-H potential, whereas point (2) is closer to the
H-H equilibrium separation. A pure spline would rep-
resent the behavior of the potential between these two
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FIG. 5: H-H potential energy well in Jacobi (r = rgm) coor-
dinates, at v = 0 (left) and v = 90° (right). The top panels
represent a direct splined fit of the full surface; the bottom
panels combine a reference two-body potential with a splined
fit of the residual. Distances (r and R) in bohr; contours every
0.25eV.

points with a third-degree polynomial, which is a poor
substitute for the behavior of the true potential (which
is better approximated by an exponential or by 1/r12).
The improvement, gained by subtracting the analytic ref-
erence potential before fitting with splines is substantial,
as shown in Fig. 5.

Even with the improvement afforded by this technique,
however, the Hy + O~ well is not represented with suffi-
cient accuracy to afford reliable rotational or vibrational
analyses for this rearrangement channel. Irregularities of
approximately 0.25eV persist at linear O-H-H geometry.
Fortunately, these irregularities are far removed from the
H~ + OH well and therefore do not affect dynamics lead-
ing to that arrangement.

B. The width of the resonance

The calculated values of the width were tabulated and
the square root of the width was then fit in the valence-
bond coordinate system to a basis set expansion of 60
symmetrized Gaussian functions of the form,

2 27k /2
ije(r1,72,0) = (1 + Pij) [(r1/c:)” + (r2/c;)’]
exp [=(r1/ei)” = (ra/c;)?] cos(kB)
(11)

where P;; is an operator which permutes indices ¢ and
j. The coefficients ¢; are {1.2,1.4,1.6,1.8,2.0} and the
integer k runs from 0 to 3 inclusive. This basis set was
used in a least-squares fit of the square root of the width
using the method of singular value decomposition [27].
The rank of the singular value decomposition matrix was
25 and the root-mean-square error of the width function
thereby constructed was 0.00075eV. In Fig.6 we show
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FIG. 6: Fitted width function in valence-bond coordinates at § = 105 degrees; r» = 1.81 bohr; and in Cj, geometry. 6 in

radians; r1 and 72 in bohr; contours every 0.0005eV.

three cuts of our fitted width function in valence bond
coordinates.

The interested reader can access the data files and com-
puter codes needed to generate the complex resonance
energy at any desired geometry. These electronic files
can be retrieved from the EPAPS archive [28].

C. Comparison with other calculations

Gorfinkiel, Morgan and Tennyson [12] have performed
R-matrix calculations on one portion of this potential
surface. They fixed one OH distance and the bond an-
gle to be those of the ground state of water, and treated
dissociation in one dimension along the other OH dis-
tance, ro in our notation. In Fig. 7 we compare our
calculated widths and our fit of them with those of the
R-matrix calculation. Our widths are uniformly larger
than those of the R-matrix calculation. The behavior of
the widths from our calculation is similar to that from the
R-matrix calculation in that both show a maximum or
a plateau around equilbrium ground-state neutral H, O
geometry, though the R-matrix values fall off somewhat
more quickly with increasing rs.

In Fig. 8 we compare the real part of the resonance
potential energy surface calculated in the CI calculations
described above with the R-matrix calculations of refer-
ence [12]. In this figure the resonance energies are shown
relative to the energy of the ground state at equilibrium
geometry in the corresponding calculation. Our CI cal-
culations agree very well, both in shape and magnitude,
with the R-matrix results for values of ro inward of the
equilibrium value. For larger values of r» the CI potential
surface is flatter in this cut than is the R-matrix surface.

Fig. 8 also shows the resonance energy from the com-
plex Kohn calculations. In this one-dimensional cut of
the full potential surface one can see that in the vicin-
ity of the equilibrium geometry its shape is similar to
that of the CI calculation, but its behavior for large r9
differs. The large-scale CI calculations should be signifi-
cantly more reliable in this limit because they have been
designed to treat the dissociative limits correctly.
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FIG. 7. Calculated width values (solid squares) and fitted
width function (dark solid line) along the cut in valence-bond
coordinates with 71 = 1.81 bohr and § = 105° together with
values from Gorfinkiel et al. [12] at § = 104.5° (light solid
line). r2 in bohr.

Fig. 9 compares the resonance energies from the com-
plex Kohn and CI calculations at geometries where the
OH bond distances are held fixed and the HOH bond an-
gle is varied. Once again the shapes of the two curves
are found to be very similar.

V. CHARACTERIZATION OF THE SURFACE

Several qualitative remarks about the expected shape
of the 2B; resonance surface may be helpful before we de-
scribe the specific features of the potential energy surface
we have constructed in these calculations.

First, the 2B, state is formed by the promotion of an
electron from a nonbonding orbital to an antibonding or-
bital and the capture of a continuum electron into the
same antibonding orbital. Thus, a superficial character-
ization of this state would indicate a bond order of 1,
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FIG. 8: Resonance energy along the cut in valence-bond co-
ordinates with r; = 1.81 bohr and # = 105°: complex Kohn
calculations (solid dots connected by chained curve), present
CI calculations (dark solid line) and calculations of Gorfinkiel
et al. [12] at § = 104.5° (dotted line). r2 in bohr.
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FIG. 9: Resonance energy as a function of # with r; and
ry fixed at 1.81 bohr: complex Kohn calculations (dots con-
nected by chained curve), present CI calculations (solid line).

and therefore an overall dissociative shape of the poten-
tial energy surface near equilibrium ground-state HoO
geometry.

A second elementary expectation is that the anion sur-
face should vary less with bending angle than does the
ground state surface. The splitting of the energies of the
3a; and 4a; orbitals is enhanced by the s — p hybridiza-
tion afforded by bent geometries; that effect is one ex-
planation of the origin of the molecule’s bent equilibrium
geometry, as HoO in its ground state has two electrons in
the 3a; but none in the 4a; orbital. In the 2B; state both

3a; and 4a, orbitals are doubly occupied. As the bending
angle is increased from its equilibrium value, the increase
in the 3a; orbital energy is accompanied by a decrease in
the 4a; orbital energy and the 2B; state is thus expected
to have a potential energy surface which is relatively flat
with bending angle.

The entire potential surface is surveyed in Fig. 10 in
valence bond coordinates. Cuts are given that vary in
the bond angle, 6, from 0° to 180°. From these cuts we
can see some of the expected features. O~ + Hs is visible
in the cut at # = 0° as two narrow channels for which
|ri1 — ra] = 1.4 bohr. In the valence-bond coordinate
system, this channel has the shape of a tube, a higher
part of which can be seen in the next cut at § = 15°.

As the bond angle is increased we see more clearly the
wells corresponding to the arrangement OH + H™. As
can be seen in the top panel of the right column of Fig.
10, at the equilibrium geometry of neutral H, O the gradi-
ent of the surface is quite steep in the symmetric stretch
direction. At § = 104.5°, the surface posesses a saddle
point at 71 = ro & 2.1, and then increases in energy
as the symmetric stretch coordinate is further increased.
On either side of this saddle, the OH + H~ wells form
quickly and the gradient in the ry or ro direction is large.
Relative to its rapid variation in r; or ry, the variation
of the surface with respect to € is generally small in the
vicinity of the equilibrium geometry of the neutral.

Although it does not affect the dissociation dynam-
ics because autodetachment is negligible immediately be-
yond the Franck-Condon region, it is nevertheless inter-
esting to see where the resonance state becomes electron-
ically bound, ie. where it crosses the ground-state surface
of neutral water. To locate these crossings, which lie well
outside the range of geometries where we needed to com-
pute the neutral target surface, we used the spectroscopi-
cally accurate potential energy surface of water computed
by Polyansky, Jensen and Tennyson [26], shifted to co-
incide with the minimum of our calculated CI surface.
The points at which the resonance and neutral surfaces
cross are plotted in Fig.10. Since the surface of Polyan-
sky et al. is a spectroscopic fit and thus not expected to
represent the dissociative limits correctly, the crossings
depicted in Fig. 10 should be considered to be estimates,
especially for cuts such as that at =105 degrees, in which
the crossing occurs at relatively large bond lengths.

Although Fig. 10 in principle gives a complete view
of the surface, some features are easier to see in other
coordinate systems. For example, the O~ + Hy channel
is more easily seen in the triangular coordinates used in
Fig. 11 and sketched in Fig. 1. There is a local Cy, min-
imum on the surface in linear geometry at ry = ry = 2.4,
which can be found in the upper left part of Fig. 11
on the boundary line that denotes linear configurations.
In a time-dependent view of the dissociative attachment
dynamics, which we will use in the following paper, the
initial wave packet starts out with (rgmx) = 2.91 and
(romr) = 1.83. This geometry places it a significant dis-
tance away from the Hy + O~ well, as can be seen in
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FIG. 10: Real part of the surface in valence-bond coordinates. Left column, top to bottom: 6 = 0°, § = 15°, § = 35°,
6 = 70°. Right column, top to bottom: § = 104.5°, § = 125°, § = 150°, § = 180°. Black dot for # = 104.5° denotes ground
state equilibrium position. r; and r2 in bohr; contours every 0.25eV. Thick curve on each panel denotes geometries where the

resonance state crosses the neutral ground state (see text).
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FIG. 11: Real part of the surface in Cy, symmetry in trian-
gular coordinates. Distances in bohr; contours every 0.25eV.

Fig. 11 . In the cut in this figure, the Hy + O~ well
appears dissociative throughout. However, as Cy, geom-
etry is broken, there develops a very weak, broad global
minimum of the surface in the Hy + O~ well at r; ~ 5.5,
ro & 4, § = 0°. This well can be interpreted as a polar-
izable Hy bound to the O.

The Feshbach resonances relevant to dissociative at-
tachment in water can be characterized as an extra elec-
tron weakly bound to the corresponding parent states.
Thus, at least in the region where this state is a reso-
nance, we expect the shape of the 2B; potential energy
surface to closely parallel that of its parent ®B; state.
In the asymptotic region, where the resonance becomes
bound, the electronic energy of the resonance drops sig-
nificantly below that of its parent as the electron affinity
of the fragments is recovered.

The potential surface of the ®B; neutral state is it-
self similar to that of the 'B; state. The latter is re-
sponsible for the photodissociation of water in its first
absorption band, which has been called “the most stud-
ied triatomic photochemical reaction” [29]. Numerous
calculations have been performed on this state, and it
is illuminating to compare its potential surface with the
present resonance surface.

For instance, van Harrevelt and van Hemert [24] have
constructed and used a potential energy surface for the
IB; state. They find a minimum in the symmetric stretch
direction near vy = ro = 2.05 bohr for § = 105°. In the
r1 or 1o directions, their potential is steeply dissociative
at neutral HoO equilibrium geometry, flattening out by
approximtely ry = 5 bohr. Their surface is reasonably
flat in 6, although they find a minimum in the 'B; po-
tential near § = 105° for 7y = ry = 1.8 bohr, which
is approximately 0.8eV lower than the energy at linear
H-O-H geometry at those bond lengths.

Some parallels with the ! B; state can be seen in the cut
of the 2B, surface shown in Fig. 12. We can see that the
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FIG. 12: Real part of the surface in Jacobi (r = rom) coor-
dinates at r = 1.81. R in bohr; v in radians; contours every
0.25eV.

surface is relatively flat in the Jacobi angle, v, though it
favors a bent geometry at small bond lengths and a linear
geometry at larger bond lengths. Interestingly, at r; =
ro = 1.8 bohr, the difference between the minimum in
energy at 105° and the energy at linear H-O-H geometry
is 0.807eV, very similar to that calculated for the 'B;
state of neutral water in ref. [24].

The relative accessibility of the H, + O~ and OH + H™
wells from equilibrium HyO geometry is relevant to the
branching ratios for this dissociative attachment process.
While the Hy + O~ exit well includes the lowest points
on the potential energy surface, it is not as immediately
accessible from ground-state equilibrium geometry as is
the OH + H™ well. The steepest descent path of the po-
tential energy surface does in fact lead from equilibrium
geometry into the O~ 4+ Hy well, but it does so only by
first stretching one OH bond from equilibrium geometry
to approximately r = 4, and then tracing a wide arc to
v = 0 across a relatively flat region of the potential en-
ergy surface, near the cut shown in Jacobi coordinates in
Fig. 12. The most direct route to this well proceeds with-
out breaking Cy, symmetry along the cut in Fig. 11, but
in doing so moves almost perpendicular to the steepest
descent path. In our dynamical studies we will see that a
wave packet originally located at the equilibrium geom-
etry has a strong tendency to bifurcate into the steeply
dissociative H™ + OH wells. Thus it is the shape of the
potential surface and not the overall energetics that con-
trols the branching ratio into the two possible arrange-
ment channels for dissociative attachment through this
resonance.



VI. CONCLUSION

We have calculated the potential energy surfaces nec-
essary for a description of dissociative eletron attachment
to HoO. In an accompanying article we examine the nu-
clear dynamics on this surface in an effort to obtain the
dissociative attachment cross section.
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