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Abstract

Technological advances in the past decade, hardware and software alike, have made access to 

high-performance computing (HPC) easier than ever. We review these advances from a statistical 

computing perspective. Cloud computing makes access to supercomputers affordable. Deep 

learning software libraries make programming statistical algorithms easy and enable users to 

write code once and run it anywhere—from a laptop to a workstation with multiple graphics 

processing units (GPUs) or a supercomputer in a cloud. Highlighting how these developments 

benefit statisticians, we review recent optimization algorithms that are useful for high-dimensional 

models and can harness the power of HPC. Code snippets are provided to demonstrate the ease of 

programming. We also provide an easy-to-use distributed matrix data structure suitable for HPC. 

Employing this data structure, we illustrate various statistical applications including large-scale 

positron emission tomography and ℓ1-regularized Cox regression. Our examples easily scale up to 

an 8-GPU workstation and a 720-CPU-core cluster in a cloud. As a case in point, we analyze the 

onset of type-2 diabetes from the UK Biobank with 200,000 subjects and about 500,000 single 

nucleotide polymorphisms using the HPC ℓ1-regularized Cox regression. Fitting this half-million-

variate model takes less than 45 minutes and reconfirms known associations. To our knowledge, 

this is the first demonstration of the feasibility of penalized regression of survival outcomes at this 

scale.

wonj@stats.snu.ac.kr . 

SUPPLEMENTARY MATERIAL
Supplement to “High-Performance Statistical Computing in the Computing Environments of the 2020s” (DOI: 10.1214/21-
STS835SUPP; .pdf). Supplementary information.

HHS Public Access
Author manuscript
Stat Sci. Author manuscript; available in PMC 2023 May 09.

Published in final edited form as:
Stat Sci. 2022 November ; 37(4): 494–518. doi:10.1214/21-sts835.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key words and phrases:

High-performance statistical computing; graphics processing units (GPUs); cloud computing; deep 
learning; MM algorithms; ADMM; PDHG; Cox regression

1. INTRODUCTION

Clock speeds of the central processing units (CPUs) on the desktop and laptop computers hit 

the physical limit more than a decade ago, and there will likely be no major breakthrough 

until quantum computing becomes practical. Instead, the increase in computing power is 

now accomplished by using multiple cores within a processor chip. High-performance 

computing (HPC) means computations that are so large that their requirement on storage, 

main memory, and raw computational speed cannot be met by a single (desktop) computer 

(Hager and Wellein, 2010). Modern HPC machines are equipped with more than one CPU 

that can work on the same problem (Eijkhout, 2016). Often, special-purpose co-processors 

such as graphics processing units (GPUs) are attached to the CPU to improve the speed 

by orders of magnitude for certain tasks. First developed for rendering graphics on a 

computer screen, a GPU can be thought of a massively parallel matrix-vector multiplier 

and vector transformer on a data stream. With increasing needs to analyze petabyte-scale 

data, the success of large-scale statistical computing relies on efficiently engaging HPC in 

the statistical practice.

About a decade ago, the second author discussed the potential of GPUs in statistical 

computing: Zhou, Lange and Suchard (2010) predicted that “GPUs will fundamentally alter 

the landscape of computational statistics.” Yet, it does not appear that GPU computing, or 

HPC in general, has completely permeated the statistical community. Part of the reason for 

this may be attributed to the fear that parallel and distributed code is difficult to program, 

especially in R (R Core Team, 2021), the lingua franca of statisticians.1 On the other hand, 

the landscape of scientific computing in general, including so-called data science (Donoho, 

2017), has indeed substantially changed. Many high-level programming languages, such as 

Python (van Rossum, 1995) and Julia (Bezanson et al., 2017), support parallel computing by 

design or through standard libraries. Accordingly, many software tools have been developed 

in order to ease programming in and managing HPC environments. Last but not least, 

cloud computing (Fox, 2011) is getting rid of the necessity for purchasing expensive 

supercomputers and scales computation as needed.

Concurrently, easily parallelizable algorithms for fitting statistical models with hundreds of 

thousand parameters have also seen significant advances. Traditional Newton–Raphson or 

quasi-Newton type of algorithms face two major challenges in contemporary problems: 1) 

explosion of dimensionality renders storage and inversion of Hessian matrices prohibitive; 2) 

regularization of model complexity is almost essential in high-dimensional settings, which 

1Although there exist several R packages for high-performance computing (Eddelbuettel, 2021), their functionalities and usability 
appear not to match what is available in other languages. In particular, the authors were not able to come up with a simple 
implementation of the computational tasks presented in this paper without writing low-level C/C++ code or using an interface to 
Python.
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is often realized by nondifferentiable penalties; this leads to high-dimensional, nonsmooth 

optimization problems. For these reasons, nonsmooth first-order methods have been 

extensively studied during the past decade (Beck, 2017), since Hessian matrix inversion 

can be completely avoided. For relatively simple, decomposable penalties (Negahban et al., 

2012), the proximal gradient method (Beck and Teboulle, 2009, Combettes and Pesquet, 

2011, Parikh and Boyd, 2014, Polson, Scott and Willard, 2015) produces a family of easily 

parallelizable algorithms. For the prominent example of the Lasso (Tibshirani, 1996), this 

method contrasts to the highly efficient sequential coordinate descent method of Hastie 

and Tibshirani (1990) and smooth approximation approaches, for example, Hunter and 

Li (2005). Decomposability or separability of variables is often the key to parallel and 

distributed algorithms. The alternating direction method of multipliers (ADMM, Gabay 

and Mercier, 1976, Boyd et al., 2011) achieves this goal through variable splitting, while 

often resulting in nontrivial sub-problems to solve. As an alternative, the primal-dual hybrid 

gradient (PDHG) algorithm (Zhu and Chan, 2008, Esser, Zhang and Chan, 2010, Chambolle 

and Pock, 2011, Condat, 2013, Vũ, 2013) has a very low per-iteration complexity, useful 

for complex penalties such as the generalized lasso (Tibshirani and Taylor, 2011, Ko, Yu 

and Won, 2019, Ko and Won, 2019). Another route toward separability is the majorization-

minimization (MM) principle (Lange, Hunter and Yang, 2000, Hunter and Lange, 2004, 

Lange, 2016), which has been explored in Zhou, Lange and Suchard (2010). In fact, the 

proximal gradient method can be viewed as a realization of the MM principle. Recent 

developments in the application of this principle include distance majorization (Chi, Zhou 

and Lange, 2014) and proximal distance algorithms (Keys, Zhou and Lange, 2019). 

When the matrix to be inverted to solve the optimality condition has many independent 

components, nonsmooth Newton methods (Kummer, 1988, Qi and Sun, 1993) can be 

a viable option; see Huang et al. (2021) for recent applications to sparse regression. 

Nonsmooth Newton methods can also be combined with first-order methods for more 

complex nonsmooth penalties (Chu et al., 2020, Won, 2020).

The goal of this paper is to review the advances in parallel and distributed computing 

environments during the past decade and demonstrate how easy it has become to write 

code for large-scale, high-dimensional statistical models and run it on various distributed 

environments. In order to make the contrast clear, we deliberately take examples from 

Zhou, Lange and Suchard (2010), namely positron emission tomography (PET), nonnegative 

matrix factorization (NMF), and multidimensional scaling (MDS). The difference lies in 

the scale of the examples: our experiments deal with data of size at least 10, 000 × 

10, 000 and as large as 200, 000 × 200, 000 for dense data, and 810, 000 × 179, 700 

for sparse data. This contrasts with the size of at best 4096 × 2016 of Zhou, Lange 

and Suchard (2010). This level of scaling is possible because the use of multiple GPUs 

in a distributed fashion has become handy, as opposed to the single GPU, C-oriented 

programming environment of 2010. Furthermore, using the power of cloud computing and 

modern deep learning software, we show that exactly the same, easy-to-write code can 

run on multiple CPU cores and/or clusters of workstations. Thus, we bust the common 

misconception that deep learning software is dedicated to neural networks and heuristic 

model fitting. Wherever possible, we apply more recent algorithms in order to cope with 

the scale of the problems. In addition, a new example of large-scale proportional hazards 
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regression model is investigated. We demonstrate the potential of our approach through a 

single multivariate Cox regression model regularized by the ℓ1 penalty on the UK Biobank 

genomics data (with 200,000 subjects), featuring time-to-onset of Type 2 Diabetes (T2D) 

as outcome and 500,000 genomic loci harboring single nucleotide polymorphisms as 

covariates. To our knowledge, such a large-scale joint genome-wide association analysis 

has not been attempted. The reported Cox regression model retains a large proportion of 

bona fide genomic loci associated with T2D and recovers many loci near genes involved in 

insulin resistance and inflammation, which may have been missed in conventional univariate 

analysis with moderate statistical significance values.

The rest of this article is organized as follows. We review HPC systems and see how 

they have become easy to use in Section 2. In Section 3, we review software libraries 

employing the “write once, run everywhere” principle (especially deep learning software) 

and discuss how they can be employed for fitting high-dimensional statistical models on the 

HPC systems of Section 2. In Section 4, we review modern scalable optimization techniques 

well suited to HPC environments. We present how to distribute a large matrix over multiple 

devices in Section 5, and numerical examples in Section 6. The article is concluded in 

Section 7.

2. ACCESSIBLE HIGH-PERFORMANCE COMPUTING SYSTEMS

2.1 Preliminaries

Since modern HPC relies on parallel computing, in this section we review several concepts 

from parallel computing literature at a level minimally necessary for the subsequent 

discussions. Further details can be found in Nakano (2012) and Eijkhout (2016).

Data parallelism.—While parallelism can appear at various levels such as instruction-

level and task-level, what is most relevant to statistical computing is data-level parallelism 

or data parallelism. If data can be subdivided into several pieces that can be processed 

independently of each other, then we say there is data parallelism in the problem. 

Many operations such as scalar multiplication of a vector, matrix-vector multiplication, 

and summation of all elements in a vector can exploit data parallelism using parallel 

architectures, which will be discussed shortly.

Memory models.—In any computing system, processors (CPUs or GPUs) need to access 

data residing in the memory. While physical computer memory uses complex hierarchies 

(L1, L2, and L3 caches; bus- and network-connected, etc.), systems employ abstraction to 

provide programmers an appearance of transparent memory access. Such logical memory 

models can be categorized into the shared memory model and the distributed memory 

model. In the shared memory model, all processors share the address space of the system’s 

memory even if it is physically distributed. For example, when two processors refer to a 

variable x, the variable is stored in the same memory address. Hence, if one processor 

alters the variable, then the other processor is affected by the modified value. Modern CPUs 

that have several cores within a processor chip fall into this category. On the other hand, 

in the distributed memory model, the system has memory both physically and logically 

distributed. Processors have their own memory address spaces and cannot see each other’s 
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memory directly. If two processors refer to a variable x, then there are two separate 

memory locations, each of which belongs to each processor under the same name. Hence, 

the memory does appear distributed to programmers, and some explicit communication 

mechanism is required in order for processors to exchange data with each other. The 

advantage at the cost of this complication is scalability—the number of processors that 

can work in a tightly coupled fashion is much greater in distributed memory systems (say 

100,000) than shared memory systems (say four, as many recent laptops are equipped with a 

CPU chip with four cores). Hybrids of the two memory models are also possible. A typical 

computer cluster consists of multiple nodes interconnected in a variety of network topology. 

A node is a workstation that can run standalone, with its main memory shared by several 

processors installed on the motherboard. Hence within a node, it is a shared memory system, 

whereas across the nodes the cluster is a distributed memory system.

Parallel programming models.—For shared-memory systems, programming models 

based on threads are most popular. A thread is a stream of machine language instructions 

that can be created and run in parallel during the execution of a single program. OpenMP is 

a widely used extension to the C and Fortran programming languages based on threads. 

It achieves data parallelism by letting the compiler know what part of the sequential 

program is parallelizable by creating multiple threads. Simply put, each processor core 

can run a thread operating on a different partition of the data. In distributed-memory 

systems, parallelism is difficult to achieve via a simple modification of sequential code. The 

programmer needs to coordinate communications between processors not sharing memory. 

A de facto standard for such processor-to-processor communication is the message passing 

interface (MPI). MPI routines mainly consist of point-to-point communication calls that 

send and receive data between two processors, and collective communication calls that all 

processors in a group participate in. Typical collective communication calls include:

• Scatter: one processor has a data array, and each other processor receives a 

partition of the array;

• Gather: one processor collects data from all the processors to construct an array;

• Broadcast: one processor sends its data to all other devices;

• Reduce: gather data and produce a combined output on a root process based on 

an associative binary operator, such as sum or maximum of all the elements.

There are also all-gather and all-reduce, where the output is shared by all processors. 

At a higher abstraction level, MapReduce (Dean and Ghemawat, 2008), a functional 

programming model in which a “map” function transforms each datum into a key-

value pair, and a “reduce” function aggregates the results, is a popular distributed data 

processing model. While basic implementations are provided in base R, both the map 

and reduce operations are easy to parallelize. Distributed implementations such as Hadoop 

(Apache Software Foundation, 2021) handle communications between nodes implicitly. This 

programming model is inherently one-pass and stateless, and iterations on Hadoop require 

frequent accesses to external storage (hard disks), hence slow. Apache Spark (Zaharia et 

al., 2010) is an implementation that substitutes external storage with memory caching, yet 
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iterative algorithms are an order of magnitude slower than their MPI counterparts (Jha et al., 

2014, Reyes-Ortiz, Oneto and Anguita, 2015, Gittens et al., 2016).

Parallel architectures.—To realize the above models, a computer architecture that 

allows simultaneous execution of multiple machine language instructions is needed. Single 

instruction, multiple data (SIMD) architecture has multiple processors that execute the same 

instruction on different parts of the data. The GPU falls into this category of architectures, 

as its massive number of cores can run a large number of threads sharing memory. Multiple 

instruction, multiple data (MIMD), or single program, multiple data (SPMD) architecture 

has multiple CPUs that execute independent parts of program instructions on their own data 

partition. Most computer clusters fall into this category.

2.2 Multiple CPU Nodes: Clusters, Supercomputers, and Clouds

Computing on multiple nodes can be utilized in many different scales. For mid-sized data, 

one may build his/her own cluster with a few nodes. This requires determining the topology 

and purchasing all the required hardware, along with resources to maintain it. This is 

certainly not an expertise of virtually all statisticians. Another option may be using a 

well-maintained supercomputer in a nearby HPC center. A user can take advantage of the 

facility with up to hundreds of thousand cores. The computing jobs on these facilities are 

often controlled by a job scheduler, such as Sun Grid Engine (Gentzsch, 2001), Slurm (Yoo, 

Jette and Grondona, 2003), and Torque (Staples, 2006). However, access to supercomputers 

is almost always limited. Even when the user has access to them, he/she often has to wait in 

a very long queue until the requested computation job is started by the scheduler.

In recent years, cloud computing, which refers to both the applications delivered as services 

over the Internet, and the hardware and systems software in the data centers that provide 

these services (Armbrust et al., 2010), has emerged as a third option. Information technology 

giants such as Amazon, Microsoft, and Google lend their practically infinite computing 

resources to users on demand by wrapping the resources as “virtual machines,” which 

are charged per CPU hours and storage. Users basically pay utility bills for their use of 

computing resources. An important implication of this infrastructure to end-users is that 

the cost of using 1000 virtual machines for one hour is almost the same as using a single 

virtual machine for 1000 hours. Therefore a user can build his/her own virtual cluster “on 

the fly,” increasing the size of the cluster as the size of the problem to solve grows. A 

catch here is that a cluster does not necessarily possess the power of HPC as suggested 

in Section 2.1: a requirement for high performance is that all the machines should run 

in tight lockstep when working on a problem (Fox, 2011). However, early cloud services 

were more focused on web applications that do not involve frequent data transmissions 

between computing instances, and less optimized for HPC, yielding discouraging results 

(Evangelinos and Hill, 2008, Walker, 2008). For instance, “serverless computing” services 

such as AWS Lambda, Google Cloud Functions, and Azure Functions allow users to run a 

function on a large amount of data, in much the same fashion as supplying it to lapply() 

in base R. These services offer reasonable scalability on a simple map-reduce-type jobs such 

as image featurization, word count, and sorting. Nevertheless, their restrictions on resources 

(e.g., single core and 300 seconds of runtime in AWS Lambda) and the statelessness of 
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the functional programming approach result in high latency for iterative algorithms, such as 

consensus ADMM (Aytekin and Johansson, 2019).

Eventually, many improvements have been made at hardware and software levels to make 

HPC on clouds feasible. At hardware level, cloud service providers now support CPU 

instances such as c4, c5, and c5n instances of Amazon Web Services (AWS), with up to 

48 physical cores of higher clock speed of up to 3.4 GHz along with support for accelerated 

SIMD computation. If network bandwidth is critical, the user may choose instances with 

faster networking (such as c5n instances in AWS), allowing up to 100 Gbps of network 

bandwidth. At the software level, these providers support tools that manage resources 

efficiently for scientific computing applications, such as ParallelCluster (Services, 2021) 

and ElastiCluster (University of Zurich, 2021). These tools are designed to run programs in 

clouds in a similar manner to proprietary clusters through a job scheduler. In contrast to a 

physical cluster in an HPC center, a virtual cluster on a cloud is exclusively created for the 

user; there is no need for waiting in a long queue. Consequently, over 10 percent of all HPC 

jobs are running in clouds, and over 70 percent of HPC centers run some jobs in a cloud as 

of June 2019; the latter is up from just 13 percent in 2011 (Hyperion Research, 2019).

In short, cloud computing is now a cost-effective option for statisticians who demand high 

performance, without a steep learning curve.

2.3 Multi-GPU Node

In some cases, HPC is achieved by installing multiple GPUs on a single node. A key 

feature of GPUs is their ability to apply a mapping to a large array of floating-point 

numbers simultaneously. The mapping (called a kernel) can be programmed by the user. 

This feature is enabled by integrating a massive number of simple compute cores in a single 

processor chip, forming a SIMD architecture. While this architecture of GPUs was created 

for high-quality video games to generate a large number of pixels in a hard time limit, the 

programmability and high throughput soon gained attention from the scientific computing 

community. Matrix-vector multiplication and elementwise nonlinear transformation of a 

vector can be computed several orders of magnitude faster on GPU than on CPU. 

Early applications of general-purpose GPU programming include physics simulations, 

signal processing, and geometric computing (Owens et al., 2007). Technologically savvy 

statisticians demonstrated its potential in Bayesian simulation (O’Hara and Sillanpää, 2009, 

Suchard et al., 2010) and high-dimensional optimization (Zhou, Lange and Suchard, 2010, 

Yu et al., 2015). Over time, the number of cores has increased from 240 (Nvidia GTX 

285, early 2009) to 4608 (Nvidia Titan RTX, late 2018) and more local memory—separated 

from CPU’s main memory—has been added (from 1GB of GTX 285 to 24GB for Titan 

RTX). GPUs could only use single-precision for their floating-point operations, but they 

now support double- and half-precisions. More sophisticated operations such as tensor 

multiplication are also supported. High-end GPUs are now being designed specifically 

for scientific computing purposes, sometimes with fault-tolerance features such as error 

correction.

Major drawbacks of GPUs are smaller memory size, compared to CPU, and data transfer 

overhead between CPU and GPU. These limitations can be addressed by using multiple 
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GPUs: recent GPUs can be installed on a single node and communicate with each other 

without the meddling of CPU; this effectively increases the local memory of a collection of 

GPUs.2 It is relatively inexpensive to construct a node with 4–8 desktop GPUs compared 

to a cluster of CPU nodes with a similar computing power (if the main computing tasks are 

well suited for the SIMD model), and the gain is much larger than the cost. A good example 

would be linear algebra operations that frequently occur in high-dimensional optimization.

Programming environments for GPU computing have been notoriously hostile to 

programmers for a long time. The major hurdle is that a programmer needs to write two suits 

of code, the host code that runs on a CPU and kernel functions that run on GPU cores. Data 

transfer between CPU and GPU(s) also has to be taken care of. Moreover, kernel functions 

need to be written in special extensions of C, C++, or Fortran, for example, the Compute 

Unified Device Architecture (CUDA, Kirk, 2007) or Open Computing Language (OpenCL, 

Munshi, 2009). Combinations of these technical barriers prevented casual programmers, 

especially statisticians, from writing GPU code despite its computational gains. There 

were efforts to sugar-coat these hostile environments with a high-level language such as 

R (Buckner et al., 2009) or Python (Tieleman, 2010, Klöckner et al., 2012, Lam, Pitrou 

and Seibert, 2015), but these attempts struggled to garner large enough user base since the 

functionalities were often limited and inherently hard to extend.

Fortunately, GPU programming environments have been revolutionized since deep 

learning (LeCun, Bengio and Hinton, 2015) brought sensation to many machine learning 

applications. Deep learning is almost synonymous to deep neural networks, which refer 

to a repeated (“layered”) application of an affine transformation of the input followed 

by identical elementwise transformations through a nonlinear link function, or “activation 

function.” Fitting a deep learning model is almost always conducted via (approximate) 

minimization of the specified loss function through a clever application of the chain rule 

to the gradient descent method, called “backpropagation” (Rumelhart, Hinton and Williams, 

1986). These computational features fit well to the SIMD architecture of GPUs, use of 

which dramatically reduces the training time of this highly overparameterized family of 

models with a huge amount of training data (Raina, Madhavan and Ng, 2009). Consequently, 

many efforts have been made to ease GPU programming for deep learning, resulting in 

easy-to-use software libraries. Since the sizes of neural networks get ever larger, more 

HPC capabilities, for example, support for multiple GPUs and CPU clusters, have been 

developed. As we review in the next section, programming with those libraries gets rid of 

many hassles with GPUs, close to the level of conventional programming.

3. EASY-TO-USE SOFTWARE LIBRARIES FOR HPC

3.1 Deep Learning Libraries and HPC

As of revising this article (summer 2020), the two most popular deep learning software 

libraries are TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019). There are 

two common features of these libraries. One is the computation graph that automates the 

evaluation of the loss function and its differentiation required for backpropagation. The other 

2Lee et al. (2017b) explored this possibility in image-based regression.
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feature, more relevant to statistical computing, is an efficient and user-friendly interface 

to linear algebra and convolution routines that work on both CPU and GPU in a unified 

fashion. A typical pattern of using these libraries is to specify the model and describe how 

to fit the model to the training data in a high-level scripting language (mostly Python). 

The system on which the model is fitted can be programmed. If the target system is a 

CPU node, then the software can be configured to utilize the OpenBLAS (Zhang, Wang 

and Chothia, 2021) or Intel Math Kernel Library (Wang et al., 2014), which are optimized 

implementations of the Basic Linear Algebra Library (BLAS, Blackford et al., 2002) for 

shared-memory systems. If the target system is a workstation with a GPU, then the same 

script can employ a pair of host and kernel code that may make use of cuBLAS (NVIDIA, 

2021a), a GPU version of BLAS, and cuSPARSE (NVIDIA, 2021b), GPU-oriented sparse 

linear algebra routines. A slight change in the option for device selection—usually a line or 

two in the script—can control whether to run the model on a CPU or GPU. From the last 

paragraph of the previous section, we see that this “write once, run everywhere” feature of 

deep learning libraries can make GPU programming easier for statistical computing as well.

TensorFlow is a successor of Theano (Theano Development Team, 2016), one of the first 

libraries to support automatic differentiation based on computational graphs. Unlike Theano, 

which generates GPU code on the fly, TensorFlow is equipped with precompiled GPU code 

for a large class of predefined operations. PyTorch inherits Torch (Collobert, Kavukcuoglu 

and Farabet, 2011), an early machine learning library written in a functional programming 

language called Lua, and Caffe (Jia et al., 2014), a Python-based deep learning library. 

PyTorch (and Torch) can also manage GPU memory efficiently. As a result, it is known to be 

faster than other deep learning libraries (Bahrampour et al., 2016).

Both libraries support multi-GPU and multi-node computing.3 In TensorFlow, multi-GPU 

computation is supported natively on a single node. If data are distributed in multiple GPUs 

and one needs data from the other, the GPUs communicate with each other implicitly and 

the user does not need to interfere. For multi-node communication, it is recommended to use 

MPI through the library called Horovod (Sergeev and Del Balso, 2018) for tightly-coupled 

HPC environments. In PyTorch, both multi-GPU and multi-node computing are enabled by 

using the interface torch.distributed. This interface defines MPI-style (but simplified) 

communication primitives (see Section 2.1). Implementations include the bona fide MPI, 

Nvidia Collective Communications Library (NCCL), and Gloo (Incubator, 2021). Recent 

MPI implementations can map multi-GPU communication to the MPI standard as well as 

traditional multi-node communication. While NCCL is useful for a multi-GPU node, Gloo is 

useful with multiple CPU with Ethernet interconnect.

3.2 Automatic Differentiation

The automatic differentiation (AD) feature of deep learning software deserves separate 

attention. AD refers to a collection of techniques that evaluate the derivatives of a 

function specified by a computer program accurately (Griewank and Walther, 2008, 

3There are other deep learning software libraries with similar HPC supports: Apache MxNet (Chen et al., 2015) supports multi-node 
computation via Horovod; multi-GPU computing is also supported at the interface level. Microsoft Cognitive Toolkit (CNTK, Seide 
and Agarwal, 2016) supports parallel stochastic gradient algorithms through MPI.
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Baydin et al., 2017). Based on AD, complex deep models can be trained with stochastic 

approximation (see the next section) on huge data within a hundreds of lines of code 

and approximate a rich class of functions efficiently; see Schmidt-Hieber (2020), Bauer 

and Kohler (2019), Imaizumi and Fukumizu (2019), Suzuki (2019), Ohn and Kim (2019) 

for recent theoretical developments. Most AD techniques rely on decomposition of the 

target function into elementary functions (primitives) whose derivatives are known, and 

the computational graph, either explicitly or implicitly, that describes the dependency 

among the primitives. Figure 1 illustrates the computational graph for the bivariate function 

f x1, x2 = log x1 + x2 − x2
2. The internal nodes represent intermediate variables corresponding 

to the primitives: z−1 = x1, z0 = x2, z1 = z−1 + z0, z2 = logz1, z3 = z0
2, and z4 = z2 − z3; y = z4.

There are two modes of AD, depending on the order of applying the chain rule. Forward-

mode AD applies the rule from right to left (or from input to output), hence it is 

straightforward to implement. In Figure 1, if we want to evaluate the partial derivative 
∂f
∂x2

 at (3, 2), then by denoting żi ≡ ∂zi
∂x2

 we see that ż−1 = ẋ1 = 0, ż0 = ẋ2 = 1, ż1 = ż0 + ż1 = 1, 

ż2 = ż1/z1 = 1/5, ż3 = 2z0ż0 = (2)(2)(1) = 4, ż4 = ż2 − ż3 = 1/5 − 4, and finally ẏ = ż4 = − 3.8. 

While this computation can be conducted in a single pass with evaluation of the original 

function f, computing another derivative ∂f
∂x1

 requires a separate pass. Thus, forward mode 

is inefficient if the whole gradient of a function with many input variables is needed, 

for example, the loss function of a high-dimensional model. Reverse-mode AD applies 

the chain rule in the opposite direction. In the first pass, the original function and the 

associated intermediate variables zi are evaluated from input to output. In the second pass, 

the “adjoint” variables zi ≡ ∂y
∂zi

 are initialized to zero and updated fr, om output to input. 

In Figure 1, z4 + = ∂y
∂z4

= 1, z3 + = z4
∂z4
∂z3

= − 1, z2 + = z4
∂z4
∂z2

= 1, z0 + = z3
∂z3
∂z0

= z3 2z0 = − 4, 

z1 + = z2
∂z2
∂z1

= z2
z2

= 1/5, z0 + = z1
∂z1
∂z0

= 1/5 and z−1 + = z1
∂z1
∂z−1

= 1/5. Here, the ‘+=’ is the 

C-style increment operator, employed in order to observe the rule of total derivatives. (Note 

z0 is updated twice.) Finally, ∂f
∂x1

= x1 = z−1 = 0.2 and ∂f
∂x2

= x2 = z0 = − 3.8. Hence, reverse-

mode AD generalizes the backpropagation algorithm and computes the whole gradient ∇f in 

a single backward pass, at the expense of keeping intermediate variables.

Deep learning software can be categorized by the way they build computational graphs. 

In Theano and TensorFlow, the user needs to construct a static computational graph 

using a specialized mini-language before executing the model fitting process, and the 

graph cannot be modified throughout the execution. This static approach has performance 

advantage since there is room for optimizing the graph structure. Its disadvantage is the 

limited expressiveness of computational graphs and AD. On the other hand, PyTorch 

employs dynamic computational graphs, for which the user describes the model as a 

regular program for (forward) evaluation of the loss function. Intermediate values and 

computation trace are recorded in the forward pass, and the gradient is computed by parsing 

the recorded computation backwards. The advantage of this dynamic graph construction 

is the expressiveness of the model: in particular, recursion is allowed in the loss function 

definition. For example, recursive models such as f(x) = f(x/2) if x > 1 and x otherwise 
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are difficult to describe using a static graph but easy with a dynamic one. The downside is 

slower evaluation due to function call overheads.

3.3 Case Study: PyTorch Versus TensorFlow

In this section, we illustrate how simple it is to write a statistical computing code on 

multi-device HPC environments using modern deep learning libraries. We compare PyTorch 

and TensorFlow code written in Python, which computes a Monte Carlo estimate of the 

constant π. The emphasis is on readability and flexibility, that is, how small a modification 

is needed to run the code written for a single-CPU node on a multi-GPU node and a 

multi-node system.

Listing 1 shows the code for Monte Carlo estimation of π using PyTorch. Even for those 

who are not familiar with Python, the code should be quite readable. The main workhorse is 

function mc_pi() (Lines 14–21), which generates a sample of size n from the uniform 

distribution on the unit square [0, 1]2 and compute the proportion of the points that 

fall inside the quarter circle of unit radius centered at the origin. Listing 1 is a fully 

executable program. It uses torch.distributed interface with an MPI backend (Line 

3). An instance of the program of Listing 1 is attached to a device and is executed as a 

“process.” Each process is given its identifier (rank), which is retrieved in Line 6. The total 

number of processes is known to each process via Line 7. After the proportion of the points 

in the quarter-circle is computed in Line 22, each process gathers the sum of the means 

computed from all the processes in Line 25 (this is called the all-reduce operation; see 

Section 2.1). Line 27 divides the sum by the number of processes, yielding a Monte Carlo 

estimate of π based on the sample size of n × (number of processes).

We have been deliberately ambiguous about the “devices.” Here, a CPU core or a GPU 

is referred to as a device. Listing 1 assumes the environment is a workstation with one 

or more GPUs, and the backend MPI is CUDA-aware. A CUDA-aware MPI, for example, 

Open-MPI (Gabriel et al., 2004), allows data to be sent directly from a GPU to another GPU 

through the MPI protocols. Data transfer between modern GPUs does not go through CPU 

(Lee et al., 2017b). Lines 9–10 specify that the devices to use in the program are GPUs. 

For example, suppose the workstation has four GPUs, say device 0 through 3. A likely 

scenario for carrying out the all-reduce operation in Line 25 is to transfer the estimated 

π in device 1 (computed in Line 22, which is parallelized) to device 0, where the two 

estimates are added. At the same time, the estimate in device 3 is passed to device 2 and 

then added with another estimate there. After this step, the sum in device 2 is sent to device 

0 to compute the final sum. This sum is broadcast to all the other devices to replace the 

local estimates. (The actual behavior may be slightly different from this scenario depending 

on the specific implementation of MPI.) If the environment is a cluster with multiple CPU 

nodes (or even a single node), then communication between nodes or CPU cores through 

high-speed interconnect replaces the inter-GPU communication. At the code level, all we 

need to do is change Line 10 to device = ‘cpu’. The resulting code runs on a cluster 

seamlessly as long as the MPI for the cluster is properly installed.

In TensorFlow, however, a separate treatment of multi-GPU and cluster settings is almost 

necessary. The code for multi-GPU setting is similar to Listing 1 and is given in Appendix 
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C (Ko et al., 2022). In a cluster setting, unfortunately, it is extremely difficult to reuse 

the multi-GPU code. If direct access to individual compute nodes is available, that 

information can be used to run the code distributedly, albeit not intuitively. However, in 

HPC environments where computing jobs are managed by job schedulers, we often do 

not have direct access to the compute nodes. The National Energy Research Scientific 

Computing Center (NERSC), the home of the 16th most powerful supercomputers in the 

world (as of June 2020), advises that gRPC, the default inter-node communication method 

of TensorFlow, is very slow on tightly-coupled nodes, thus recommends a direct use of MPI 

(NERSC, 2021). Using MPI with TensorFlow requires an external library called Horovod 

and a substantial modification of the code, as shown in Listing 2. This is a sharp contrast 

to Listing 1, where essentially the same PyTorch code can be used in both multi-GPU and 

multi-node settings.

Due to the reasons stated in Section 3.2, we employ PyTorch in the sequel to implement 

the highly parallelizable algorithms of Section 4 in a multi-GPU node and a cluster on a 

cloud, as it allows simpler code that runs on various HPC environments with a minimal 

modification. (In fact, this modification can be made automatic through a command line 

argument.)

4. HIGHLY PARALLELIZABLE ALGORITHMS

In this section, we discuss some easily parallelizable optimization algorithms useful for 

fitting high-dimensional statistical models, assuming that data are so large that they have 

to be stored distributedly. These algorithms can benefit from the distributed-memory 

environment by using relatively straightforward operations, via distributed matrix-vector 

multiplication and independent update of variables.

4.1 MM Algorithms

The MM principle (Lange, Hunter and Yang, 2000, Lange, 2016), where “MM” stands 

for either majorization-minimization or minorization-maximization, is a useful tool for 

constructing parallelizable optimization algorithms. In minimizing an objective function 

f (x) iteratively, for each iterate we consider a surrogate function g x |xn  satisfying 

two conditions: the tangency condition f xn = g xn |xn  and the domination condition 

f x ≤ g x|xn  for all x. Updating xn + 1 = arg   minxg x |xn  guarantees that f xn  is a 

nonincreasing sequence:

f xn + 1 ≤ g xn + 1 xn ≤ g xn xn = f xn .

In fact, full minimization of g x |xn  is not necessary for the descent property to hold; merely 

decreasing it is sufficient. For instance, it can be shown that the EM algorithm (Dempster, 

Laird and Rubin, 1977) is obtained by applying the MM principle to to the observed-data 

log likelihood and Jensen’s inequality. (See Wu and Lange (2010) for more details about the 

relation betweenMMand EM.)
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MM updates are usually designed to make a nondifferentiable objective function smooth, 

linearize the problem, or avoid matrix inversions by a proper choice of a surrogate function. 

MM is naturally well-suited for parallel computing environments, as we can choose 

a separable surrogate function and update variables independently. For example, when 

maximizing loglikelihoods, a term involving summation inside the logarithm log ∑i = 1
p ui , 

ui > 0, often arises. By using Jensen's inequality, this term can be minorized and separated as

log ∑
i = 1

p
ui ≥ ∑

i = 1

p ui
n

∑j = 1
p uj

n log ∑j = 1
p uj

n

ui
n ui

= ∑
i = 1

p ui
n

∑j = 1
p uj

n logui + cn,

where ui
n’s are constants and cn is a constant only depending on ui

n’s. Parallelization of MM 

algorithms on a single GPU using separable surrogate functions is extensively discussed in 

Zhou, Lange and Suchard (2010). Separable surrogate functions are especially important in 

distributed HPC environments, for example, multi-GPU systems.

4.2 Proximal Gradient Method

The proximal gradient method extends the gradient descent method, and deals with 

minimization of sum of two extended real-valued convex functions, that is,

min
x

f x + g x . (1)

Function f is possibly nondifferentiable, while g is continuously differentiable.

We first define the proximity operator of f:

proxλf y = arg   min
x

f x + 1
2λ ∥ x − y ∥2

2 , λ > 0.

For many functions their proximity operators take closed forms. We call such functions 

"proximable." For example, consider the 0/∞ indicator function δC x  of a closed convex set 

C, that is, δC x = 0 if x ∈ C, and +∞ otherwise. The corresponding proximity operator is 

the Euclidean projection onto C:PC y = arg minx ∈ C ∥ y − x ∥2. For many sets, for example, 

nonnegative orthant, PC is simple to compute. Also note that the proximity operator of the 

ℓ1-norm λ ∥ ⋅ ∥1 is the soft-thresholding operator: Sλ y i: = sign yi yi − λ +.

Now we proceed with the proximal gradient method for minimization of ℎ x = f x + g x . 

Assume g is convex and has an L-Lipschitz gradient, that is, ∇g x − ∇g y 2 ≤ L x − y 2

for all x, y in the interior of its domain, and f is lower-semicontinuous, convex, and 

proximable. The L-Lipschitz gradients naturally result in the following surrogate function 

that majorizes h:

Ko et al. Page 13

Stat Sci. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℎ x ≤ f x + g xn + ∇g xn , x − xn + L
2 x − xn

2
2

= f x + g xn + L
2 x − xn + 1

L ∇g xn
2

2

− 1
2L ∇g xn

2
2

= : p x xn .

Minimizing p x |xn  with respect to x results in the iteration

xn + 1 = proxγnf xn − γn ∇g xn ,
γn ∈ (0, 1/L] .

(2)

If f ≡ 0, then iteration (2) reduces to the conventional gradient descent. This iteration 

guarantees a nonincreasing sequence of ℎ xn  by the MM principle. Proximal gradient 

method also has an interpretation of forward-backward operator splitting, and the step size 

γn ∈ 0, 2/L  guarantees convergence (Combettes and Pesquet, 2011, Combettes, 2018). If 

f(x) = δC(x), then the corresponding algorithm is called the projected gradient method. If 

f x = λ ∥ x ∥1, then it is the iterative shrinkage-thresholding algorithm (ISTA, Beck and 

Teboulle, 2009).

For many functions f, the update (2) is simple and easily parallelized, thus the algorithm is 

suitable for HPC. For example, in the soft-thresholding operator above all the elements are 

independent. If f x = − a   log   x, then

proxγf y = y + y2 + 4γa /2, (3)

which is useful for the PET example in Section 6. The gradient ∇g in update (2) can 

also be computed in parallel. In many models the fitting problem takes the form of (1) 

with g x = 1
m ∑i = 1

m ℓ ai
Tx , where ℓ is a loss function and ai ∈ ℝp is the ith observation. 

Collect the latter into a data matrix A ∈ ℝm × p. If m ≫ p, then split it by the row as 

A = A 1
T , A 2

T , …, A d
T T , where blocks A k  are distributed over d devices. If the current iterate 

of the parameter xn is known to each device, then the local gradient ∇gi xn = ℓ′ ai
Tx ai can 

be computed from A k  independently. The full gradient ∇g xn  can be computed then by 

averaging ∇gi xn . In the MPI terminology of Section 2.1, a distributed-memory proximal 

gradient update consists of the following steps: 1) broadcast xn; 2) compute the local 

gradient ∇gi xn  in each device; 3 ) reduce the local gradients to compute the full gradient 

∇g xn  in the master device; 4) update xn + 1. If g is not separable in observations, splitting 

the data matrix by column may be useful (Section 6.3).

See Parikh and Boyd (2014) for a thorough review and distributed-memory 

implementations, and Polson, Scott and Willard (2015) for a statistically oriented review.
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4.3. Primal-Dual Methods

Primal-dual methods introduce an additional dual variable y (where x is the primal 

variable) in order to deal with a larger class of problems. Consider the problems 

of the form ℎ x = f Kx + g x , where K ∈ ℝl × p. We further assume that f and g 
are lower semicontinuous, convex, and proper (i.e., not always ∞) functions. Even 

if f is proximable, the proximity operator for f K ⋅  is not easy to compute. The 

conjugate of f is defined as f * (y) = supx x, y − f(x). It is known that f ∗ ∗ = f, so 

f(Kx) = f * * (Kx) = supy Kx, y − f * (y). Then the minimization problem infxf(Kx) + g(x) is 

equivalent to the saddle-point problem

inf
x

sup
y

Kx, y + g(x) − f * (y),

for which a solution (x, y) exists under mild conditions.

A widely known method for solving this saddle-point problem in the statistical literature is 

the ADMM (Xue, Ma and Zou, 2012, Ramdas and Tibshirani, 2016, Zhu, 2017, Lee et al., 

2017b, Gu et al., 2018), whose update is given by

xn + 1 = argmin
x

g(x)

+ t/2 Kx − xn + 1/t yn
2

2
,

(4a)

xn + 1 = prox(1/t)f Kxn + 1 + (1/t)yn , (4b)

yn + 1 = yn + t Kxn + 1 − xn + 1 . (4c)

If g is separable, that is, g(x) = ∑k = 1
d gk(x), then consensus optimization (Boyd et al., 

2011, Chapter 7) applies ADMM to distributed copies of variables xk = x to minimize 

ℎ(x) = f(z) + ∑k = 1
d gk xk  subject to xk = x and Kxk = z for each k:

xk
n + 1 = argmin

xk

gk xk + t
2 Kxk − xn + 1

t yk
n

2

2

+ t
2 xk − xn + 1

t wk
n

2

2

,
(5a)

xn + 1 = prox(dt)−1f
1
d ∑

k = 1

d
Kxk

n + 1 + 1
t yk

n , (5b)
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yk
n + 1 = yk

n + t Kxk
n + 1 − xn + 1 ,

wk
n + 1 = wk

n + t xk
n + 1 − xn + 1 .

(5c)

distributed-memory implementation will iterate the following steps: 1) for each device k, 

solve (5a) in parallel; 2) gather local solutions xk
n in the master device; 3) compute (5b); 4) 

broadcast xn + 1; 5) compute (5c).

Nonetheless, neither update (4a) nor (5a) results in a proximity operator, since the quadratic 

term is not spherical. This inner optimization problem is often nontrivial to solve. In the 

simplest case of linear regression, g is quadratic and (4a) involves solving a (large) linear 

system whose time complexity is cubic in the dimension p of the primal variable x.

PDHG avoids inner optimization via the following iteration:

yn + 1 = proxσf * yn + σKxn , (6a)

xn + 1 = proxτg xn − τKTyn + 1 , (6b)

xn + 1 = 2xn + 1 − xn, (6c)

where σ and τ are step sizes. If f is proximable, so is f *, since 

proxγf *(x) = x − γ proxγ−1f γ−1x  by Moreau’s decomposition. This method has been analyzed 

using monotone operator theory (Condat, 2013, Vũ, 2013, Ko, Yu and Won, 2019). 

Convergence of iteration (6) is guaranteed if στ K 2
2 < 1, where M 2 is the spectral norm of 

matrix M. If g has an L-Lipschitz gradient, then the proximal step (6b) can be replaced by a 

gradient step

xn + 1 = xn − τ ∇g xn + KTyn + 1 .

PDHG algorithms are also highly parallelizable as long as the involved proximity operators 

are easy to compute and separable. No inner optimization is involved in iteration (6) 

and only matrix-vector multiplications appear. The distributed computation of gradient in 

Section 4.2 can be used for the gradient step. A hybrid of PDHG and ADMM has recently 

been proposed (Ryu, Ko and Won, 2020).

4.4 Parallel Coordinate Descent and Stochastic Approximation

Coordinate descent methods apply vector-to-scalar maps 

T i:ℝp ℝ:x = x1, …, xi, …, xp argminxi′ℎ x1, …, xi
′, …, xp  defined for each coordinate i 

successively to minimize h(x). The most well-known variant is the cyclic or Gauss–Seidel 

version. If we denote the jth elementary unit vector in ℝp by ej, then the update rule is 

xn + 1 = ∑j ≠ i xj
nej + T i(x)ei where i = (n − 1modp) + 1, which possesses the descent property. 

Ko et al. Page 16

Stat Sci. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The parallel or Jacobi update reads xn + 1 = ∑j = 1
p T j(x)ej. Obviously, if h is separable in 

variables, that is, ℎ x = ∑j = 1
p ℎj xj , this minimization strategy will succeed. Other variants 

are also possible, such as randomizing the cyclic order, or updating a subset of coordinates 

in parallel at a time. The “argmin” map Ti can also be relaxed, for example, by a prox-linear 

map x argminxi′
∂g
∂xi

|xi , xi
′ − xi + 1

2γi
xi

′ − xi 2
2 + f(x) if h has a structure of ℎ = f + g and only 

g is differentiable (Tseng and Yun, 2009). See Wright (2015) for a recent review.

If p is much larger than τ , the number of devices, then choosing a subset of coordinates 

with size comparable to τ would reduce the complexity of an iteration. Richtárik 

and Takáč (2016a), Richtárik and Takáč (2016b) consider sampling a random subset 

and study the effect of the sampling distribution on the performance of parallel prox-

linear updates, deriving optimal distributions for certain cases. In particular, the gain of 

parallelization is roughly proportional to the degree of separability p/ω, where ω = maxJ ∈ J J
if ℎ(x) = ∑J ∈ J ℎJ(x) for a finite collection of nonempty subsets of 1, …, p  and hJ depends 

only on coordinates i ∈ J. For example, if A = a1
T, …, am

T T ∈ ℝm × p is the data matrix for 

ordinary least squares, then ω equals to the maximum number of nonzero elements in the 

rows, or equivalently ω = maxi = 1, …, n ai 0.

For gradient-descent type methods, stochastic approximation (Robbins and Monro, 1951; 

see Lai and Yuan, 2021, for a recent review) has gained wide popularity under the name 

of stochastic gradient descent or SGD. The main idea is to replace the gradient of the 

expected loss by its unbiased estimator. For instance, as in the penultimate paragraph of 

Section 4.2, if g(x) = 1
m ∑i = 1

m ℓ ai
Tx , and f ≡ 0, then ℓ′ ai

Tx ai is an unbiased estimator of 

∇g(x) under the uniform distribution on the sample indices 1, …, m . The update rule is 

then xn + 1 = xn − γn ℓ′ ai
Txn ai for some randomly chosen i. SGD and its variants (Defazio, 

Bach and Lacoste-Julien, 2014, Johnson and Zhang, 2013) are main training methods in 

most deep learning software, since the sample size m needs to be extremely large to properly 

train deep neural networks. The idea of using an unbiased estimator of the gradient has been 

extended to the proximal gradient (Nitanda, 2014, Xiao and Zhang, 2014, Atchadé, Fort 

and Moulines, 2017, Rosasco, Villa and Vũ, 2020) and PDHG (Chen, Lan and Ouyang, 

2014, Ko, Yu and Won, 2019, Ko and Won, 2019) methods. In practice, it is standard to 

use a minibatch or a random subset of the sample for each iteration, and the arbitrary 

sampling paradigm of Richtárik and Takáč (2016a), Richtárik and Takáč (2016b) for parallel 

coordinate descent has been extended to minibatch SGD (Gower et al., 2019, Qian, Qu and 

Richtárik, 2019) and PDHG (Chambolle et al., 2018).

5. DISTRIBUTED MATRIX DATA STRUCTURE FOR PYTORCH

For the forthcoming examples and potential future uses in statistical computing, we propose 

the package dist_stat built on PyTorch. It consists of two submodules, distmat and 

application. The submodule distmat implements a simple distributed matrix data 

structure, and the submodule application includes the code for the examples in Section 

6 using distmat. In the data structure distmat, each process, enumerated by its rank, 

holds a contiguous block of the full data matrix by rows or columns, which may be sparse. 
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If multiple GPUs are involved, each process controls the GPU whose index matches the 

process rank. The blocks are assumed to have equal sizes. For notational simplicity, we 

indicate the dimension to split by a pair of square brackets: if a [100] × 100 matrix is 

split over four processes, the rank-0 process keeps the first 25 rows of the matrix, the 

rank-1 process takes the next 25 rows, and so on. For the sake of simplicity, we always 

assume that the dimension to split is a multiple of the number of processes. The code for 

dist_stat is available at https://github.com/kose-y/dist_stat. A proper backend setup for a 

cloud environment is explained in Appendix B.

In distmat, unary elementwise operations such as exponentiation, square root, absolute 

value, and logarithm of matrix entries are implemented in an obvious manner. 

Binary elementwise operations such as addition, subtraction, multiplication, division are 

implemented in a similar manner to R’s vector recycling: if two matrices of different 

dimensions are to be added together, say one is 3 × 4 and the other is 4 × 1, the latter matrix 

is expanded to a 3 × 4 matrix with the column repeated four times. Another example is 

adding a 1 × 4 matrix and a 4 × 1 matrix. The former is expanded to a 4 × 3 matrix by 

repeating the row four times, and the latter to a 4 × 3 matrix by repeating the column three 

times. Application of this recycling rule is in accordance with the broadcast semantics of 

PyTorch.

Distributed matrix multiplication requires some care. Suppose we multiply a p × r matrix A 

and an r × q matrix B. If matrix B is tall and split by row into B[1], …, B[T ]
T  and distributed 

among T processes, where B[t] is the tth row block of B. If matrix A is split in the same 

manner, a natural way to compute the product AB is for each process t to gather (see Section 

2.1) all B[1], …, B[T ] to create a copy of B and compute the row block A[t]B of AB. On the 

other hand, if matrix A is wide and split by column into A[1], …, A[T ] , where A[t] is the 

t th column block of A, then each process will compute the local multiplication A[t]B[t]. 

The product AB = ∑t = 1
T A[t]B[t] is computed by a reduce or all-reduce operation of Section 

2.1. These operations are parallelized as outlined in Section 3.3. The distribution scenarios 

considered in distmat are collected in Table 1. Each matrix can be either broadcast (p 
× r for A), row-distributed ([p] × r), or column-distributed (p × [r]). Since broadcasting 

both matrices does not require any distributed treatment in multiplication, there remain eight 

possible combinations of the input. For each combination, the output may involve more than 

one configurations. If an outer dimension (either p or q but not both) is distributed, the p ×q 
output AB is distributed along that dimension (scenarios 4, 8, 11). If both dimensions are 

split, then there are two possibilities of [p] × q and p × [q] (scenarios 2, 3). Splitting of the 

inner dimension r does not affect the distribution of the output unless it is distributed in both 

A and B (scenarios 1, 9, 10). Otherwise, we consider all the possible combinations in the 

output: broadcast, split by rows, and split by columns (Scenarios 5, 6, 7).

The distmat.mm() function implements the 11 scenarios of Table 1 using the 

PyTorch function torch.mm() for within-process matrix multiplication and the collective 

communication directives (Section 2.1). Scenarios 3, 6, 8, 10, and 11 are implemented using 

the transpositions of input and output matrices for Scenarios 2, 7, 1, 9, and 4, respectively. 

Transposition costs only a short constant time, as it only ‘tags’ to the original matrix that it 
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is transposed. The data layout remains intact. A scenario is automatically selected depending 

on the distribution of the input matrices. The class distmat has an attribute for determining 

if the matrix is distributed by row or column. For Scenarios 2, 3; 5, 6, and 7, which share 

the same input structure, additional keyword parameters are supplied to distinguish them and 

determine the shape of the output matrix. The type of collective communication operation 

and the involved matrix block sizes roughly determine the communication cost of the 

computation. For example, an all-reduce is more expensive than a reduce. The actual cost 

depends on the network latency, number of MPI messages sent, and sizes of the messages 

sent between processes, which are all system dependent.

Listing 3 demonstrates an example usage of distmat. We assume that this program is run 

with four processes (size in Line 6 is 4). Line 8 determines the device to use. If multiple 

GPUs are involved, the code selects one based on the rank of the process. Line 9 selects 

the GPU to use with PyTorch. This code runs on a system in which PyTorch is installed 

with a CUDA-aware MPI implementation. The number of processes to be used can be 

supplied by a command-line argument (see Appendix B). Line 11 selects the data type and 

the device used for matrices. The TType (for “tensor type”) of torch.cuda.FloatTensor 

indicates that single-precision GPU arrays are used, while DoubleTensor employs double-

precision CPU arrays. Then Line 12 creates a distributed [4] × 4 matrix and initializes it to 

uniform (0, 1) random numbers. This matrix is created once and initialized locally, and then 

distributed to all processes. (For large matrices, distmat supports another creation mode 

that assembles matrix blocks from distributed processes.) Line 14 multiplies the two such 

matrices A and B to form a distributed matrix of size [4] × 2. Scenario 1 in Table 1 is 

chosen by distmat to create the output AB. Line 18 computes an elementwise logarithm of 

1 + AB, in an elementwise fashion according to the recycling rule. The local block of data 

residing in each process can be accessed by appending .chunk to the name of the distributed 

matrix, as in Lines 17 and 21.4

Although the present implementation only deals with matrices, distmat can be easily 

extended to tensor multiplication, as long as the distributed multiplication scenarios are 

carefully examined as in Table 1. Creating communication-efficient parallel strategies 

that minimize the amount of communication between computing units is an active area 

of research (Geijn and Watts, 1997, Ballard et al., 2011, Koanantakool et al., 2016). 

Communication-avoiding sparse matrix multiplication has been utilized for sparse inverse 

covariance estimation (Koanantakool et al., 2018).

6. EXAMPLES

In this section, we compare the performance of the optimization algorithms of Section 4 

on various HPC environments for the following four statistical computing examples using 

distmat: nonnegative matrix factorization (NMF), positron emission tomography (PET), 

multi-dimensional scaling (MDS), all of which were considered in Zhou, Lange and Suchard 

(2010), and ℓ1-regularized Cox proportional hazards regression for survival analysis. For the 

former three examples the focus is on scaling up the size of feasible problems from those 

4Lines 17 and 21 do not guarantee printing in order (of ranks). They are printed on a first come, first served basis.
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about a decade ago. For the last example, we focus on analyzing a real-world geonomic 

dataset of size approximately equal to 200,000 × 500,000.

6.1 Setup

We employed a local multi-GPU workstation and a virtual cluster consisted of multiple 

AWS EC2 instances for computing. Table 2 shows the setting of our HPC systems used for 

the experiments. For virtual cluster experiments, we utilized 1 to 20 of AWS c5.18xlarge 

instances with 36 physical cores with AVX-512 (512-bit advanced vector extension to the 

x86 instruction set) enabled in each instance through the CfnCluster resource manager. 

Network bandwidth of each c5.18xlarge instance was 25GB/s. A separate c5.18xlarge 

instance served as the “master” instance, which did not participate in computation by itself 

but managed the computing jobs over the 1 to 20 “worker” instances. Data and software for 

the experiments were stored in an Amazon Elastic Block Store (EBS) volume attached to 

this instance and shared among the worker instances via the network file system. Further 

details are given in Appendix B. For GPU experiments, we used a local machine with two 

CPUs (10 cores per CPU) and eight Nvidia GTX 1080 GPUs. These are desktop GPUs, not 

optimized for double-precision. All the experiments were conducted using PyTorch version 

0.4 built on the Intel Math Kernel Library (MKL); the released code works for the versions 

up to 1.6.

We evaluated the objective function once per 100 iterations. For the comparison of 

execution time, the iteration was run for a fixed number of iterations, regardless of 

convergence. For comparison of different algorithms for the same problem, we iterated until 

f θn − f θn − 100

f θn + 1
< 10−5.

For all the experiments, single-precision computation results on GPU agreed with double-

precision ones up to six significant digits, except for ℓ1-regularized Cox regression, where 

the PyTorch implementation of the necessary cumulative sum operation caused numerical 

instability in some cases. Therefore all the experiments for Cox regression were carried 

out in double-precision. Extra efforts for writing a multi-device code were modest with 

distmat. Given around 1000 lines of code to implement basic operations for multi-device 

configuration in distmat, additional code for our four examples was less than 30 lines for 

each.

6.2 Scaling up Examples in Zhou, Lange and Suchard (2010)

Nonnegative matrix factorization.—NMF is a procedure that approximates a 

nonnegative data matrix X ∈ ℝm × p by a product of two low-rank nonnegative matrices, 

V ∈ ℝm × r and W ∈ ℝr × p. In a simple setting, NMF minimizes f V , W = X − V W F
2, 

where ⋅ F  denotes the Frobenius norm. Applying the MM principle to recover the 

famous multiplicative algorithm due to Lee and Seung (1999), Lee and Seung (2001) is 

discussed in Zhou, Lange and Suchard (2010, Section 3.1). Alternatively, the alternating 

projected gradient (APG) method (Lin, 2007) introduces ridge penalties to minimize 

f V , W ; ϵ = X − V W F
2 + ϵ

2 V F
2 + ϵ

2 W F
2. Then the APG iteration is given by
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V n + 1 = P+ 1 − σnϵ V n

−σn V nW n W n T − X W n T ,

W n + 1 = P+ 1 − τnϵ W n

− τn V n + 1 TV n + 1W n − V n + 1 TX ,

wher P+ denotes the projection onto the nonnegative orthant; σn and τn are 

step sizes. Convergence is guaranteed if ϵ > 0, σn ≤ 1/ 2 W n W n T + ϵI F

2

, and 

τn ≤ 1/ 2 V n TV n + ϵI F

2

. APG has an additional advantage of avoiding creation of 

subnormal numbers over the multiplicative algorithm (see Appendix D). Table 3 compares 

the performance of APG between single-machine multi-GPU and multi-instance virtual 

cluster settings. Synthetic datasets of sizes [10,000] × 10,000 and [200,000] × 200,000 were 

created and distributed. For reference, the dimension used in Zhou, Lange and Suchard 

(2010) is 2429 × 361. Multi-GPU setting achieved up to 4.14x-speedup over a single CPU 

instance if the dataset was small, but could not run the larger dataset. The cluster in a cloud 

was scalable with data, running faster with more instances, yielding up to 4.10x-speedup 

over the two-instance cluster.

Positron emission tomography.—PET reconstruction is essentially a deconvolution 

problem of estimating the intensities of radioactive biomarkers from their 

line integrals, which can be posed as maximizing the Poisson loglikelihood 

L(λ) = ∑i = 1
d yilog ∑j = 1

p eijλj − ∑j = 1
p eijλj . Here yi is the observed count of photons arrived 

coincidentally at detector pair i. Emission intensities λ = λ1, …, λp  are to be estimated, and 

eij is the probability that detector pair i detects an emission form pixel location j, which 

depends on the geometry of the detector configuration. We consider a circular geometry 

for two-dimensional imaging. Adding a ridge-type penalty of −(μ/2) Dλ 2
2 to enhance 

spatial contrast and solving the resulting optimization problem by an MM algorithm is 

considered in Zhou, Lange and Suchard (2010, Section 3.2). Here D is the finite difference 

matrix on the pixel grid. To promote sharper contrast, we employ the anisotropy total 

variation (TV) penalty (Rudin, Osher and Fatemi, 1992) and minimize −L(λ) + ρ Dλ 1. 

Write E = eij . Then the PDHG algorithm (Section 4.3) can be applied. Put K = ET , DT T
, 

f(z, w) = ∑i −yilogzi + ρ w 1, and g(λ) = 1TEλ + δ+(λ), 1 is the all-one vector and δ+ is the 

0/∞ indicator function for the nonnegative orthant. Since f(z, w) is separable in z and w, 

applying iteration (6) using the proximity operator (3), we obtain the following iteration:
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zi
n + 1 = 1

2 zi
n + σ Eλn

i

− zi
n + σ Eλn

i

2
+ 4σyi

1/2
,

i = 1, …, d,

wn + 1 = P [ − ρ, ρ] wn + σDλn ,

λn + 1 = P+ λn − τ ETzn + 1 + DTwn + 1 + ET1 ,

λn + 1 = 2λn + 1 − λn,

where P [ − ρ, ρ] is elementwise projection to the interval [ − ρ, ρ]. Convergence is guaranteed 

if στ < 1/ ET DT
2

2
. Scalability experiments were carried out with large Roland–Varadhan–

Frangakis phantoms (Roland, Varadhan and Frangakis, 2007) using grid sizes p = 300 × 300, 

400 × 400, and 900 × 900, with number of detector pairs d = 179,700. Timing per 1000 

iterations is reported in Table 4. Both matrices E and D were distributed along the columns. 

For reference, Zhou, Lange and Suchard (2010) use a 64 × 64 grid with d = 2016. The total 

elapsed time decreases with more GPUs or nodes. The multi-GPU node could not run the p 
= 810,000 dataset, however, since the data size was too big to fit in the GPU memory. Figure 

2 illustrates TV reconstructions of a p = 128 × 128 extended cardiac-torso (XCAT) phantom 

with d = 8128 (Lim, Dewaraja and Fessler, 2018, Ryu, Ko and Won, 2020). Results by a 

stochastic version of PDHG (Chambolle et al., 2018) are also provided. Each reconstruction 

was run for 20,000 iterations, which were sufficient for both algorithms to reach similar 

objective values. Those iterations took 20 to 35 seconds on a single GPU.

Multi-dimensional scaling.—The version of MDS considered in Zhou, 

Lange and Suchard (2010, Section 3.3) minimizes the stress function 

f(θ) = ∑i = 1
q ∑j ≠ i wij × yij − θi − θj 2

2 to map dissimilarity measures yij between data point 

pairs (i, j) to points θ = θ1, …, θq
T  in an Euclidean space of low dimension p, where the wij 

are the weights. Zhou, Lange and Suchard (2010) derive a parallel MM iteration

θik
n + 1 = ∑

j ≠ i

yij

θi
n − θj

n
2

θik
n − θjk

n + θik
n + θjk

n

/ 2 ∑
j ≠ i

m
wij

for i = 1, …, q and k = 1, …, p. We generated a [10,000] × 10,000 and a [100,000] × 100,000 

pairwise dissimilarity matrices from samples of the 1000-dimensional standard normal 
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distribution. For reference, the dimension of the dissimilarity matrix used in Zhou, Lange 

and Suchard (2010) is 401 × 401. Elapsed time is reported in Table 5. For p = 20, the 

eight-GPU setting achieved a 5.32x-speedup compared to the single 36-core CPU AWS 

instance and a 6.13x-speedup compared to single GPU. The larger experiment involved 

storing a distance matrix of size [100,000] × 100,000, which took 74.5 GB of memory. 

The multi-GPU node did not scale to run this experiment due to the memory limit. On the 

other hand, we observed a 3.78x-speedup with 20 instances (720 cores) with respect to four 

instances (144 cores) of CPU nodes.

Appendix D contains further details on the experiments of this subsection.

6.3 ℓ1-Regularized Cox Proportional Hazards Regression

We apply the proximal gradient method to ℓ1-regularized Cox proportional hazards 

regression (Cox, 1972). In this problem, we are given a covariate matrix X ∈ ℝm × p, time-

to-event t1, …, tm  and right-censoring Time c1, …, cm  for individual i = 1, …, m as data. The 

“response” is defined by yi = min ti, ci  for each indivuali i, and whether this individual is 

censored is indicated by δi = I ti ≤ ci . The log partial likelihood of the Cox model is then

L β = ∑
i = 1

m
δi βTxi − log ∑

j:yj ≥ yi

exp βTxj .

Coordinate–descent-type approaches to this model are proposed by Suchard et al. (2013) and 

Mittal et al. (2014).

To obtain a proximal gradient iteration, we need the gradient ∇L(β) and its Lipschitz 

constant. The gradient of the log partial likelihood is

∇L(β) = XT(I − P)δ, δ = δ1, …, δm
T ,

where we define the matrix P = πij  with πij = I yi ≥ yj wi/W j; wi = exp xi
Tβ , W j = ∑i:yi ≥ yj wi. 

Lipschitz constant of ∇L(β) can be found by finding an upper bound of the Hessian of L(β):

∇2L(β) = XT P diag(δ)PT − diag(Pδ) X .

Note P 2 ≤ 1, since the sum of each row of P is 1. It follows that ∇2L(β) 2 ≤ 2 X 2
2, and 

X 2 can be quickly computed by using the power iteration (Golub and Van Loan, 2013).

We introduce an ℓ1-penalty to the log partial likelihood in order to enforce sparsity in 

the regression coefficients and use the proximal gradient descent to estimate β by putting 

g(β) = − L(β), f(β) = λ β 1. Then the iteration is:

wi
n + 1 = exp xi

Tβ ; W j
n + 1 = ∑

i:yi ≥ yj

wi
n + 1,
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πij
n + 1 = I ti ≥ tj wi

n + 1/W j
n + 1,

Δn + 1 = XT I − Pn + 1 δ, where Pn + 1 = πij
n + 1 , 

βn + 1 = Sλ βn + σΔn + 1 .

If the data are sorted in descending order of yi, the W j
n can be computed by cumulative 

summing w1, …, wm  in the proper order. A CUDA kernel for this operation is readily 

available in PyTorch. The soft-thresholding operator Sλ(x) is also implemented in PyTorch. 

We can write a simple proximal gradient descent routine for the Cox regression as in Listing 

4, assuming no ties in yi’s.

A synthetic data matrix X ∈ ℝm × [p], distributed along the columns, was sampled from the 

standard normal distribution. The algorithm was designed to keep a copy of the estimand β 
in every device. All the numerical experiments were carried out with double precision even 

for GPUs, for the following reason. For a very small value of λ (we used λ = 10−5), when 

single precision was used in GPUs, the estimate quickly tended to “not a number (NaN)”s 

due to numerical instability of the CUDA kernel. Double-precision did not generate such a 

problem. Although desktop GPU models such as Nvidia GTX and Titan X are not optimized 

for double precision floating-point operations and is known to be 32 times slower for double 

precision operations than single precision operations, this does not necessarily mean that the 

total computation time is 32 times slower, since latency takes a significant portion of the 

total computation time in GPU computing.

In order to demonstrate the scalability of our approach, elapsed times for 10,000 × [10,000] 

and 100,000 × [200,000] simulated data are reported in Table 6. We can see 3.92x speedup 

from 4 nodes to 20 nodes in the virtual cluster. Even with double-precision arithmetics, eight 

GPUs could achieve a 6.30x-speedup over the single 36-core CPU instance. As expected, 

virtual clusters in a cloud exhibited better scalability.

6.4 Genome-Wide Survival Analysis of the UK Biobank Dataset

We demonstrate a real-world application of ℓ1-regularized Cox proportional hazards 

regression to genome-wide survival analysis for Type 2 Diabetes (T2D). We used a UK 

Biobank dataset (Sudlow et al., 2015) that contains information on approximately 800,000 

single nucleotide polymorphisms (SNPs) of 500,000 individual subjects recruited from the 

United Kingdom. After filtering SNPs for quality control and subjects for the exclusion of 

Type 1 Diabetes patients, 402,297 subjects including 17,994 T2D patients and 470,189 SNPs 

remained. We randomly sampled 200,000 subjects including 8,995 T2D patients for our 

analysis. Any missing genotype was imputed with the column mean. Along with the SNPs, 

sex and top ten principal components were included as unpenalized covariates to adjust for 

population-specific variations. The resulting dataset was 701 GB with double-precision.

Ko et al. Page 24

Stat Sci. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The analysis for this large-scale genome-wide dataset was conducted as follows. Incidence 

of T2D was used as the event δi = 1  and the age of onset was used as survival time yi. For 

non-T2D subjects δi = 0 , age at the last visit was used as yi. We chose 63 different values 

of the regularization parameter λ in the range 0.7 × 10−9, 1.6 × 10−8 , with which 0 to 111 

SNPs were selected. For each value of λ, the ℓ1-regularized Cox regression model of Section 

6.3 was fitted. Every run converged after at most 2080 iterations that took less than 2800 

seconds using 20 c5.18xlarge instances from AWS EC2.

The SNPs were ranked based on the largest value of λ with which a SNP is selected. 

(No variables were removed once selected within the range of λ used. The regularization 

path and the full list of the selected SNPs are available in Appendix E.) Among the 111 

SNPs selected, three of the top four selections were located on TCF7L2, whose association 

with T2D is well known (Scott et al., 2007, The Wellcome Trust Case Control Consortium, 

2007). Also prominently selected were SNPs from genes SLC45A2 and HERC2, whose 

variants are known to be associated with skin, eye, and hair pigmentation (Cook et al., 

2009). This is possibly due to the dominantly European population in the UK Biobank study. 

Mapped genes for 24 SNPs out of the selected 111 were also reported in Mahajan et al. 

(2018), a meta-analysis of 32 genome-wide association studies (GWAS) for about 898,130 

individuals of European ancestry; see Tables E.1 and E.2 for details. We then conducted 

an unpenalized Cox regression analysis using the 111 selected SNPs. The nine SNPs with 

p-values less than 0.01 are listed in Table 7. The locations in Table 7 are with respect to 

the reference genome GRCh37 (Church et al., 2011), and mapped genes were predicted 

by the Ensembl Variant Effect Predictor (McLaren et al., 2016). Among these nine SNPs, 

three of them were directly shown to be associated with T2D (The Wellcome Trust Case 

Control Consortium (2007) and Dupuis et al. (2010) for rs4506565, Voight et al. (2010) for 

rs8042680, Ng et al. (2014) for rs343092). Three other SNPs have mapped genes reported 

to be associated with T2D in Mahajan et al. (2018): rs12243326 on TCF7L2, rs343092 on 

HMGA2, and rs231354 on KCNQ1.

Although the interpretation of the results requires additional sub-analysis, the result shows 

the promise of joint association analysis using multiple regression models. In GWAS it is 

customary to analyze the data on SNP-by-SNP basis. Among the mapped genes harboring 

the 111 SNPs selected by our half-million-variate regression analysis are CPLX3 and 

CACNA1A, associated with regulation of insulin secretion, and SEMA7A and HLA-DRA 

involved with inflammatory responses (based on DAVID (Huang, Sherman and Lempicki, 

2009a, 2009b)). These genes might have been missed in conventional univariate analysis of 

T2D due to nominally moderate statistical significance. Joint GWAS may overcome such a 

limitation and is possible by combining the computing power of modern HPC and scalable 

algorithms.

7. DISCUSSION

Abstractions of highly complex computing operations have rapidly evolved over the last 

decade. In this article, we have explained how statisticians can benefit from this evolution. 

We have seen how deep learning technology is relevant to high-performance statistical 
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computing. We have also demonstrated that many useful tools for incorporating accelerators 

and computing clusters have been created. Unfortunately, such developments have been 

mainly made in languages other than R, particularly in Python, with which statisticians 

may not be familiar with. Although there are libraries that deal with simple parallel 

computation in R, there are common issues with these libraries. First, the libraries do not 

easily incorporate GPUs that might significantly speed up computation. Second, it is hard to 

write more full-fledged parallel programs without directly writing code in C or C++. This 

two-language problem calls for statisticians to take a second look at Python. Fortunately, this 

language is not hard to learn, and younger generations are quite familiar with it. A remedy 

from the R side may be either developing more user-friendly interfaces for the distributed-

memory environment, with help from those who are engaged in computer engineering, or 

writing a good wrapper for the important Python libraries. A Python interface to R may be a 

good starting point. For example, R package reticulate (Ushey, Allaire and Tang, 2021) 

is a basis of other interfaces packages to PyTorch (rTorch, Reyes, 2021) and TensorFlow 

(also called tensorflow, RStudio, 2021).

By making use of multiple CPU nodes or a multi-GPU workstation, the methods discussed 

in the current article can be applied efficiently even when the dataset exceeds several tens 

of gigabytes. The advantages of engaging multiple compute devices are two-fold. First, 

we can take advantage of data parallelism with more computing cores, accelerating the 

computation. Second, we can push the limit of the size of the dataset to analyze. As cloud 

providers now support virtual clusters better suited for HPC, statisticians can deal with 

bigger problems utilizing such services, using up to several thousand cores easily. When the 

data do not fit into the GPU memory (e.g., the UK Biobank example), it is still possible to 

carry out computation by moving partitions of the data in and out of GPUs. However, this is 

impractical because of slow communication between the main and GPU memories. On the 

other hand, virtual clusters are scalable with this size of data.

Loss of accuracy due to the default single precision of GPU arithmetic, prominent in our 

proportional hazards regression example, can be solved by purchasing scientifically-oriented 

GPUs with better double precision supports. Another option is migrating to the cloud: for 

example, the P2 and P3 instances in AWS support scientific GPUs. Nevertheless, desktop 

GPUs with double precision arithmetic turned on could achieve more than 10-fold speedup 

over CPU, even though double precision floating-point operations are 32 times slower than 

single precision.

Most of the highly parallelizable algorithms considered in Section 4 require no more than 

the first-order derivative information, and this feature contributes to their low per-iteration 

complexity and parallelizability. As mentioned in Section 1, some second-order methods 

for sparse regression (Li, Sun and Toh, 2018, Huang et al., 2018, Huang et al., 2021) 

maintain the set of active variables (of nonzero coefficients), and only these are involved 

in the Newton–Raphson step. Thus if the solution is sparse, the cost of solving the relevant 

linear system is moderate. With distributed matrix computation exemplified with distmat, 

residual and gradients can be computed in a distributed fashion and the linear system can be 

solved after gathering active variables into the master device.
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A major weakness of the present approach is that its effectiveness can be degraded by the 

communication cost between the nodes and devices. One way to avoid this issue is by 

using high-speed interconnection between the nodes and devices. In multi-CPU clusters, this 

can be realized by a high-speed interconnection technology such as InfiniBand. Even when 

such an environment is not affordable, we may still use relatively high-speed connection 

equipped with instances from a cloud. The network bandwidth of 25Gbps supported for 

c5.18xlarge instances of AWS was quite effective in our experiments. Reducing the 

number of communication rounds and iterations with theoretical guarantees, for example, 

by one-shot averaging (Zhang, Duchi and Wainwright, 2013, Duchi et al., 2014, Lee et al., 

2017a), by using global first-order information and local higher-order information (Wang et 

al., 2017, Jordan, Lee and Yang, 2019, Fan, Guo and Wang, 2019), or by quantization (Tang 

et al., 2019, Liu et al., 2020), is an active area of current research.

Although PyTorch has been advocated throughout this article, it is not the only path 

towards easy-to-use programming models in shared- and distributed-memory programming 

environments. A possible alternative is Julia (Bezanson et al., 2017), in which data can 

reside in a wide variety of environments, such as GPUs (Besard, Foket and De Sutter, 2019) 

and multiple CPU nodes implementing the distributed memory model (JuliaParallel Team, 

2021, Janssens, 2021). While its long-term support release of version 1.0.5 in September 

2019 is still fresh, Julia has the potential to be a powerful tool for statistical HPC once the 

platforms and user community mature.
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FIG. 1. 
Computational graph for evaluating function f x1, x2 = log x1 + x2 − x2

2. Dashed arrows 

indicate the direction of backpropagation evaluating ∇f x1, x2 .
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FIG. 2. 
Reconstruction of the XCAT phantom with a TV penalty with regularization parameter ρ, 

using deterministic (top row) and stochastic (bottom) PDHG.
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TABLE 4

Runtime (in seconds) comparison of 1000 iterations of TV-penalized PET. We exploited sparse structures of E 

and D. The number of detector pairs d was fixed at 179,700

Configuration p = 90,000 p = 160,000 p = 810,000

GPUs

1 × × ×

2 21 35 ×

4 19 31 ×

8 18 28 ×

AWS EC2 c5.18xlarge instances

4 36 49 210

5 36 45 188

8 33 39 178

10 38 37 153

20 26 28 131
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TABLE 6

Runtime comparison of ℓ1-regularized Cox regression over multi-node virtual cluster on AWS EC2. Elapsed 

time (in seconds) after 1000 iterations

Configuration 10,000 × [10,000]
10,000 iterations

100,000 × [200,000]
1000 iterations

GPUs

1 386 ×

2 204 ×

4 123 ×

8 92 ×

AWS EC2 c5.18xlarge instances

1 580 ×

2 309 ×

4 217 1507

5 170 1535

8 145 775

10 132 617

20 148 384

Stat Sci. Author manuscript; available in PMC 2023 May 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ko et al. Page 47

TA
B

L
E

 7

SN
Ps

 w
ith

 p
-v

al
ue

s 
of

 le
ss

 th
an

 0
.0

1 
on

 u
np

en
al

iz
ed

 C
ox

 r
eg

re
ss

io
n 

w
ith

 v
ar

ia
bl

es
 s

el
ec

te
d 

by
 ℓ 1

-p
en

al
iz

ed
 C

ox
 r

eg
re

ss
io

n

SN
P

 I
D

C
hr

.
L

oc
at

io
n

A
1A

A
2B

M
A

F
C

M
ap

pe
d 

G
en

e
C

oe
ff

ic
ie

nt
p-

va
lu

e

rs
45

06
56

5
10

11
47

56
04

1
A

T
0.

23
8

T
C

F7
L

2
2.

81
0e

−
1

<2
e−

16

rs
12

24
33

26
10

11
47

88
81

5
C

T
0.

24
9

T
C

F7
L

2
1.

96
3e

−
1

0.
00

34
67

rs
80

42
68

0
15

91
52

13
37

A
C

0.
27

7
PR

C
1

2.
66

7e
−

1
0.

00
50

52

rs
34

30
92

12
66

25
09

40
T

G
0.

46
3

H
M

G
A

2
−

7.
20

4e
−

2
0.

00
04

00

rs
78

99
13

7
10

76
66

84
62

A
C

0.
28

9
K

A
T

6B
−

4.
77

6e
−

2
0.

00
21

66

rs
81

80
89

7
8

12
16

99
90

7
A

G
0.

44
5

SN
T

B
1

6.
36

1e
−

2
0.

00
01

49

rs
10

41
67

17
19

13
52

15
28

A
G

0.
47

0
C

A
C

N
A

1A
5.

96
5e

−
2

0.
00

94
74

rs
23

13
54

11
27

06
35

1
C

T
0.

32
9

K
C

N
Q

1
4.

86
1e

−
2

0.
00

16
04

rs
92

68
64

4
6

32
40

80
44

C
A

0.
28

2
H

L
A

-D
R

A
6.

58
9e

−
2

2.
11

e−
5

A
M

in
or

 a
lle

le

B
M

aj
or

 a
lle

le

C
M

in
or

 a
lle

le
 f

re
qu

en
cy

.

T
he

 b
ol

df
ac

e 
in

di
ca

te
s 

th
e 

ri
sk

 a
lle

le
 d

et
er

m
in

ed
 b

y 
th

e 
re

fe
re

nc
e 

al
le

le
 a

nd
 th

e 
si

gn
 o

f 
th

e 
re

gr
es

si
on

 c
oe

ff
ic

ie
nt

.

Stat Sci. Author manuscript; available in PMC 2023 May 09.


	Abstract
	INTRODUCTION
	ACCESSIBLE HIGH-PERFORMANCE COMPUTING SYSTEMS
	Preliminaries
	Data parallelism.
	Memory models.
	Parallel programming models.
	Parallel architectures.

	Multiple CPU Nodes: Clusters, Supercomputers, and Clouds
	Multi-GPU Node

	EASY-TO-USE SOFTWARE LIBRARIES FOR HPC
	Deep Learning Libraries and HPC
	Automatic Differentiation
	Case Study: PyTorch Versus TensorFlow

	HIGHLY PARALLELIZABLE ALGORITHMS
	MM Algorithms
	Proximal Gradient Method
	Primal-Dual Methods
	Parallel Coordinate Descent and Stochastic Approximation

	DISTRIBUTED MATRIX DATA STRUCTURE FOR PYTORCH
	EXAMPLES
	Setup
	Scaling up Examples in Zhou, Lange and Suchard (2010)
	Nonnegative matrix factorization.
	Positron emission tomography.
	Multi-dimensional scaling.

	ℓ1-Regularized Cox Proportional Hazards Regression
	Genome-Wide Survival Analysis of the UK Biobank Dataset

	DISCUSSION
	References
	FIG. 1.
	FIG. 2.
	Listing 1:
	Listing 2:
	Listing 3:
	Listing 4:
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7



