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Abstract—Consider the problem of optimizing a black-box
function under the assumption that the function is Hölder smooth
and has bounded norm in the reproducing kernel Hilbert space
associated with a given kernel. We propose the LP-GP-UCB
algorithm which augments a Gaussian process surrogate model
with local polynomial estimators of the function to construct
a multi-scale upper confidence bound to guide the search for
the optimizer. We provide high probability bounds on the
cumulative regret in terms of the maximum information gain
and smoothness parameters for the kernel. We then show that the
Hölder smoothness assumption is satisfied for several commonly
used and practically relevant kernels—the Matérn, rational-
quadratic, γ-exponential, and piecewise-polynomial kernels—and
obtain explicit regret bounds for them as a result. These regret
bounds establish the near-optimality of LP-GP-UCB for these
kernels and are also the first explicit bounds for many of them.
Finally, we demonstrate the practical benefits experimentally.

I. INTRODUCTION

Consider the problem of maximizing a black-box objective
function f : X 7→ R which can only be accessed through the
noisy observations yx = f(x)+ηx at query points x ∈ X . Our
goal is to design a query point selection strategy which uses
a finite query (or evaluation) budget of n to efficiently learn
about the maximizer x∗ of f and recommend a point once
the budget is exhausted. A performance metric we can use to
evaluate such a querying strategy is the cumulative regret Rn,
defined as Rn =

∑n
t=1 f(x

∗) − f(xt), where xt is the tth

query point.
This optimization task is uninteresting without any regu-

larity assumptions on the objective function f . In this paper,
we assume that f has a bounded norm in the reproducing
kernel Hilbert space (RKHS) associated with a given kernel.
This formulation is known as the kernelized continuous-
armed bandit problem in the literature [1–3]. We propose an
algorithm which exploits the existing smoothness properties of
functions in the RKHSs associated with many commonly used
kernels in order to obtain upper bounds on Rn. Our algorithm
is part of a family of algorithms for bandit optimization based
on the GP-UCB algorithm, where a Gaussian process (GP)
surrogate for f is used to derive an upper confidence bound
(UCB) on the prediction of f in order to guide the search for
the optimizer [4, 5].

We first introduce the notations used in this paper in Section
I-A. We then provide an overview of our contributions in
Section I-B and conclude the section with a discussion of
related work in Section I-C.

A. Preliminaries

The objective function f maps X = [0, 1]D to Y = R. The
function f can be accessed through noisy evaluations y =
f(x) + η, where x ∈ X and the additive noise η is assumed
to be σ2-sub-Gaussian.

We use the term cell to refer to subsets E of X of the form
E = {x ∈ X : ∥x − xE∥∞ ≤ rE/2}. The terms xE and rE
shall be referred to as the center and side-length of E. We let
D = {(xi, yi) : 1 ≤ i ≤ m} ⊂ X × Y denote a labelled
data set, and introduce DX := {x : ∃y ∈ Y, (x, y) ∈ D} and
DY := {y : ∃x ∈ X , (x, y) ∈ D}. For a cell E ⊂ X , we use
D(E) to denote those (xi, yi) pairs in D such that xi ∈ E. The
sets D(E)

X and D(E)
Y are also defined in an analogous manner.

For positive integers q and D, we use Pq
D to denote the

set of all polynomials in D variables of degree q. Given
g : X 7→ R and E ⊂ X , the smallest uniform approxi-
mation error of g with p ∈ Pq

D is denoted as Φq(g,E) :=
infp∈Pq

D
supx∈E |g(x)− p(x)|.

Given a positive-definite kernel K, we shall use the term
HK and ∥·∥K to denote the RKHS associated with K and the
corresponding RKHS norm. In particular, HK is the comple-
tion of the inner product space consisting of functions in the
linear span of K and the inner product defined by ⟨f, g⟩K =∑m1

i=1

∑m2

j=1 aibjK(xi, zj) for functions f =
∑m1

i=1 aiK(·, xi)
and g =

∑m2

j=1 bjK(·, zj). In this paper, we specialize our
findings to the case of several commonly used and practically
relevant kernels: Matérn with parameter ν, rational-quadratic,
γ-Exponential, and piecewise-polynomial kernels. We let Kν

be the Matérn kernel with parameter ν, and subscript K with
the abbreviated kernel name for other kernels, e.g. KRQ for
rational-quadratic kernel, etc.

For k ∈ N and 0 < α ≤ 1, we use Ck,α to denote the
Hölder space of order k and exponent α. In particular, Ck,α
contains functions for which the kth partial derivatives are
Hölder continuous with exponent α and the derivatives up to
and including order k are continuous.

We use Õ (·) to represent asymptotic upper bounds that hide
the poly-logarithmic factors.

B. Overview of Results

We first formally state the assumptions on the objective
function f and the observation noise.

Assumption 1. We make the following assumptions: (A1.1)
f ∈ HK for some known kernel K and ∥f∥K ≤ B for some



TABLE I: Summary of Regret Bounds for Continuous Bandit Algorithms

General Case Kν , ν ∈ (0, 1
2
] Kν , ν > 1

2
KRQ Kγ-Exp KPP

Lower Bound [6] DNE† Ω

(
n

ν+D
2ν+D

)
Ω

(
n

ν+D
2ν+D

)
DNE DNE

(I)GP-UCB [2, 5] Õ
(
γn

√
n
)

DNE Õ
(
n

ν+D(D+1)
2ν+D(D+1)

)
DNE DNE

GP-ThreDS et al. [7–9] Õ
(√

nγn
)

DNE Õ
(
n

ν+D
2ν+D

)
DNE DNE

LP-GP-UCB Theorem 1 Õ
(
n

ν+D
2ν+D

)
Õ

(
min

{
n

1
2
+

D(D+3)
4ν+D(D+5) , n

D+1
D+2

})
Õ

(
n

D+1
D+2

)
Õ

(
n

2D+1
2D+2

)
† DNE indicates that the explicit regret bounds do not exist for the corresponding method and function space.
†† The specific kernel bounds are assumed to be the minimum of the stated bound and the general one, if available.

known constant B > 0. (A1.2) f ∈ Ck,α for k ∈ N∪ {0} and
α ∈ (0, 1] with ∥f∥Ck,α ≤ L for some known L > 0. (A1.3)
the observation noise (ηt)t≥0 are i.i.d and σ2-sub-Gaussian
for some known constant σ2 > 0.

Next, we list the main contributions of our paper:

• We propose a new algorithm (LP-GP-UCB in Sec. II) for
the kernelized bandits problem that combines the global GP
surrogate model (as in the GP-UCB algorithm of [1]) with
local polynomial (LP) estimators to adaptively partition the
search space and guide the search for the optimizer of f .

• We analyze LP-GP-UCB under Assumption 1, and show
(Theorem 1 in Sec. III-A) that Rn can be bounded by the
minimum of two terms: one depending on the maximum in-
formation gain γn of the kernel K, and the other depending
on the smoothness parameters k and α.

• We then derive an embedding result (Proposition 1 in
Sec. III-A) which shows that several common kernels satisfy
Assumption 1. We use these results to specialize the regret
bounds of LP-GP-UCB in Theorem 1 and obtain bounds
that are the first known bounds explicit in n for the rational-
quadratic, γ-exponential, and piecewise-polynomial kernels.

C. Prior Work

The kernelized bandits formulation was first introduced in
[1], where the GP-UCB algorithm was proposed based on the
UCB strategy for multi-armed bandits [4]. More specifically,
given a positive-definite kernel K, the problem can be mapped
to a zero-mean GP surrogate with covariance function K.
An important quantity of interest associated with K is the
maximum information gain

γn := max
S⊂X ,|S|=n

I (yS ; f) , (1)

where I denotes the mutual information between the zero-
mean GP f with covariance K and a noisy observation vector
yS . The GP-UCB algorithm proceeds by selecting query points
(xt)t≥1 that maximize the UCB index µt(x)+βtσt(x), where
µt and σt are the mean and standard deviation predictions for f
based on evaluations prior to time t. GP-UCB and an improved
version introduced in [2], IGP-UCB, admit upper bounds on
Rn of the form Rn = Õ (

√
nγn) under Assumption 1.1.

For the Matérn kernel, this bound is always larger than the

information-theoretic lower bound of Ω(n
ν+D
2ν+D ) derived in [6].

This is true for other extensions of GP-UCB as well [10–15].
In the special case of finite |X |, KernelUCB [7], RIPS

[8], and GP-ThreDS [9] are shown to admit a tighter regret
bound of Õ

(√
nγn

)
. Furthermore, as shown in [3, 9, 16],

this improved bound can also be achieved in the continuous
case if the kernel satisfies the additional smoothness constraint
of Assumption 1.2. This includes Matérn kernels which we
will show in Prop. 1 to satisfy Assumption 1.2. Recently, [17]
explicitly characterized information gain of γn = Õ

(
n

D
2ν+D

)
for the Matérn-ν kernel with ν > 1

2 , indicating that these
algorithms achieve the information theoretic lower bound of
Ω(n

ν+D
2ν+D ) for ν > 1

2 .
From an algorithmic point of view, LP-GP-UCB relies

on two key ideas: (i) it adaptively constructs and updates a
non-uniform partition of the domain X , and (ii) it augments
the global GP surrogate for f with local polynomial (LP)
estimators on the elements of the partition. The first idea, i.e,
adaptive non-uniform discretization of the domain X , has been
used for GP bandits [3, 18] and GP level-set estimation [19]
and is known to be particularly suitable in high dimensions
(the non-adaptive discretization proposed in [3, 16] makes the
algorithms impractical when D is large). We note that the
choice of LP estimators, which play a key role in both the
query point selection strategy as well as in the refinement of
the partition of X , is uniquely motivated by our embedding
results (Prop. 1) for several kernels of practical interest. The
joint design of the local estimators and the partitioning scheme
allows the LP-GP-UCB algorithm to zoom into successively
smaller neighborhoods of the optimizer x∗, and consequently
leads to a cumulative regret that is bounded, under Assump-
tion 1, by the minimum of two terms: one depending on the
maximum information gain of the form Õ (

√
nγn), and the

other depending on the smoothness parameters k and α. This
bound is specialized for specific kernels as summarized in
Table I, providing the first bounds explicit in n for rational-
quadratic, γ-exponential, and piecewise polynomial kernels.
Furthermore, for Matérn kernels, the algorithm is shown to
have competitive (and in some regimes, near-optimal) regret.

II. LP-GP-UCB ALGORITHM

We now describe the steps of our proposed algorithm,
LP-GP-UCB (Algorithm 1).



Algorithm 1: LP-GP-UCB
Input: n, K, B, (q, α), L, δ, ρ0.

1 Initialize: t = 1, ne = 0, Pt = {X}, u(0)
X = +∞,

Dt = ∅;
2 while ne < n do
3 for E ∈ Pt do
4 Draw xt,E ∼ Unif(E)

5 Ut,E = min{u(0)
E , u

(1)
t,E , u

(2)
t,E}

6 end
7 Et ∈ argmaxE∈Pt

Ut,E , xt = xt,Et

8 Q1 = Q2 = {Et}
9 if βnσt(xt) < L(

√
DrE)

α1 AND rEt
≥ ρ0 then

10 Q2 = Partition(Et, rEt/2)

11 for F ∈ Q2 do u
(0)
F = u

(1)
t,Et

;

12 else if bt(Et) ≤ L(
√
DrE)

α1 AND rEt ≥ ρ0 then
13 Q2 = Partition(Et, rEt/2)

14 for F ∈ Q2 do u
(0)
F = u

(2)
t,Et

;

15 else if bt(Et) ≤ L(
√
DrE)

q+α AND rEt ∈ [ 1n , ρ0)
then

16 ϵ = MaxErr(Et,Dt,K,B, q, δ, σ)

17 r̃ = min
{

rEt

2 , 1√
D

(
ϵ
L

)1/α1
}

18 Q2 = Partition(Et, r̃)

19 f̂ = LocalPoly(F,Dt, xF )

20 for F ∈ Q2 do u
(0)
F = f̂ + 2ϵ;

21 else
22 Observe yt = f(xt) + ηt, Update µt, σt,
23 ne ← ne + 1, Dt ← Dt ∪ {(xt, yt)}
24 end
25 Pt ← (Pt \ Q1) ∪Q2, t = t+ 1
26 end

Output: zn using Recommend function.

Inputs. LP-GP-UCB takes in as inputs the evaluation
budget n, the kernel K, the RKHS norm bound B, the noise
parameter σ, an integer q, an α ∈ (0, 1], the Hölder space norm
bound L, a confidence parameter δ ∈ [0, 1], and a real-number
ρ0. It defines α1 := max{α,min{1, q}}.

Algorithm Outline. LP-GP-UCB maintains a partition, Pt,
of the domain X at any time t, and to each cell E ∈ Pt, it
assigns a UCB u

(0)
E on the maximum value of f in the cell,

calculated using local estimates based on prior observations.
At t = 1, Pt is initialized as {X} and u

(0)
X is set to +∞. As

new cells E are added to Pt, the value of u(0)
E is determined

by the cell sizes and confidence interval widths.
For every t ≥ 1, the LP-GP-UCB algorithm loops through

all the cells in Pt, and constructs a UCB denoted by Ut,E =

min{u(0)
E , u

(1)
E , u

(2)
E }, with u

(1)
t,E and u

(2)
t,E defined as

u
(1)
t,E = µt(xt,E) + βnσt(xt,E) + L(

√
DrE)

α1

u
(2)
t,E = µ̂t(E) + bt(E) + L(

√
DrE)

α1 ,

where xt,E is a point drawn uniformly from E, µt and

σt are the posterior mean and variance of the surrogate GP
regressor model, βt is a confidence width multiplier which
we set to βt = B + σ

√
2(γt + 1 + log(1/δ)), µ̂t(E) =

1

|D(E)
Y |

∑
y∈D(E)

Y
y is the empirical estimate of f̃E (the average

value of f in the cell E), bt(E) = σ
√

2 log((nDπ2t2)/2δ)/nt,E is
the length of the confidence interval for f̃E , and L(

√
DrE)

α1

is an upper bound on the function variation across the cell.
Then, the algorithm selects a candidate cell Et and the

corresponding point xt with the largest value of Ut,E , and
decides to either expand the partition or evaluate the function
at the point xt.

When the budget n is exhausted, the algorithm recommends
the point zn which is either the evaluation xt with the smallest
confidence interval width or the center of the smallest cell
depending on whether the function variation in the smallest
cell or the confidence interval width for xt is smaller. This
selection is described in the following definition:

Definition 1 (Recommend). Suppose the algorithm stops in
round tn and let T denote the set of times at which function
evaluations were performed. Define En ∈ argminE∈Ptn

rE ,
and τ := argmint∈T βtσt(xt). If L(

√
DrEn)

α1 ≤ βτστ (xτ ),
then return zn = xEn . Else, return zn = xτ .

A. Partition and Local Polynomial Construction

Updates to the partition Pt using the Partition function
occur when the cell that maximizes the UCB index has a small
confidence interval width.

Definition 2 (Partition). Given a cell E =×D

i=1
[ai, bi] ⊂

X , the function call Partition(E, r) for some r < rE
returns a partition of E of cardinality ⌈rE/r⌉D, consisting
of sets of the form F =×D

i=1
[ãi,min{ãi + r, bi}], where

ãi = ai + lr for l ∈ {0, 1, . . . , ⌊rE/r⌋}.

In particular, when the cell size is sufficiently large and
the corresponding confidence interval is small relative to the
function variation in the cell (lines 9 and 12), we split the cell
boundaries in half, creating 2D new cells. When the cell size
is small enough and the empirical confidence interval width
is smaller than the maximum polynomial approximation error
(line 15), we compute a local polynomial (LP) approximation
of the function and the associated maximum error to guide the
partition sizing and UCB computation. We next describe the
construction of the LP estimators.

Given a cell E ⊂ X and a point z ∈ E, we define the
LP estimator at z as f̂E(z, w⃗) =

∑
x∈D(E) wxyx, where the

‘interpolation weights’ w⃗ = {wx : x ∈ D(E)
X } are defined as

the solution to the following problem [20, Eq. (1.36)]:

w⃗ = argmin
v⃗={vx : x∈D(E)

X }

∑
x∈D(E)

X

|vx|2

s.t. p(z) =
∑

x∈D(E)
X

vxp(x) ∀p ∈ Pq
D.

(LP)

If the number of data points in the cell E, |D(E)
X |, is larger

than (q + 2)D, then (LP) is solvable and its optimal solution



is unique [20, Lem. 1.3.1]. Accordingly, we approximate
the function using LocalPoly and bound the error using
MaxErr as we describe next.

Definition 3 (LocalPoly). Given a cell E and a point x ∈
E, the function LocalPoly returns the estimated function
value f̂E(x, w⃗) at x, calculated according to the formula stated
above. If nE := |D(E)| > (q + 2)D, then w⃗ is the unique
solution to (LP), while if nE < (q+ 2)D, the weights are set
as wx = 1/nE for all x ∈ D(E)

X .

Definition 4 (MaxErr). The function MaxErr takes E, D,
K, B, q, δ and σ as inputs, and returns ϵ defined as

ϵ := max
x∈E

(1+ ∥w⃗E,x∥1)L(
√
DrE)

q+α+σ∥w⃗E,x∥2

√
2 log

2

δ
,

where w⃗E,x denotes the solution to (LP) at x.

Remark 1. Recall that the smallest uniform approximation
error Φq(f,E) depends on how well polynomials in Pq

D ap-
proximate elements ofHK . For functions f with ∥f∥Cq,α ≤ L,
we know Φk(f,E) ≤ L(

√
DrE)

q+α. We use this fact and an
upper bound on the estimation error between f̂E(x, w⃗) and
f(x) from [20, Prop. 1.3.1] to define the MaxErr function.

This concludes our description of LP-GP-UCB .

III. REGRET ANALYSIS OF LP-GP-UCB

We now state the main result of this section which provides
high-probability regret bounds for LP-GP-UCB and leads to
the bounds presented in Table I. Recall first that Õ (·) hides the
poly-logarithmic factors, and that α1 = max{α, min{1, q}}.
Theorem 1. Suppose Assumption 1 holds, and Algorithm 1
is run with a budget n, q = k, and inputs as described in
Section II. Then with probability at least 1 − δ for a given
δ ∈ (0, 1):

Rn = Õ
(
γn

√
n
)
. (2)

In addition, the following smoothness-dependent bounds hold
for sufficiently large n:

Rn = Õ
(
n

2(k+α)−α1+D
2(k+α)+D

)
, if γn = Ω(

√
n), (3)

Rn = Õ
(
n

α1+D
2α1+D

)
, otherwise. (4)

For the full proof of this statement, the reader is referred to
the arXiv preprint of this work [21, App. C].

Remark 2. Since the bounds given in (2) and one of (3) or (4)
hold simultaneously under the 1 − δ probability event, the
bound resulting by taking their minimum is always as good
as existing algorithms with regret Õ (γn

√
n).

In the next section, we specialize the results of Theorem 1
to specific kernels of significant theoretical and practical value.

A. Regret Bounds for Specific Kernels

We begin the analysis with a key embedding result which
says that we can identify elements of the RKHSs associated
with the Matérn, square-exponential (SE), rational-quadratic

(RQ), γ-exponential (γ-Exp), and piecewise-polynomial ker-
nels with elements of certain Hölder spaces. Details on these
kernels may be found in [22, Ch. 4].

Proposition 1. If f is in the RKHS HK associated to a kernel
K ∈ {Kν , KSE, KRQ, Kγ-Exp, KPP}, then there exists a
constant CK ∈ (0,∞), k ∈ N, and α ∈ (0, 1], such that

∥f∥Ck,α ≤ CK∥f∥K . (5)

The proof of this statement relies on the reproducing prop-
erty of HK and the norm-equivalence of RKHSs with certain
fractional Sobolev spaces as described in [21, App. B].

Remark 3. For the Matérn kernel, (5) can be shown to hold
for (k, α) = (⌈ν⌉−1, ν−k). For the RQ kernel, (5) holds for
(k, α) = (0, 1

2 ), and for the γ-Exp and PP kernels it holds for
(k, α) = (0, 1). A bound on CK can be computed in terms of
the parameters for these kernels [21, App. B].

For simplicity, we make the following assumption and then
state the regret bounds for the Matérn, SE, RQ, γ-Exp, and
PP kernels as a special case of Theorem 1.

Assumption 2. We assume that for K = Kν , n is large
enough to ensure that CK ≤ ĈK log(n), where CK is
the constant introduced in Proposition 1, and ĈK can be
computed explicitly in terms of the kernel parameters.

Proposition 2. Suppose Assumptions 1.1 and 2 hold, and
that Algorithm 1 is run with a budget n, kernel K ∈
{Kν , KSE, KRQ, Kγ-Exp, KPP}, q = k and α according to
Prop. 1, L = BCK , and other inputs as described in Sec. II.
Then with probability at least 1− δ, the following holds:

Rn = Õ
(
min

{√
nγn, n

D+α
D+2α

})
.

Remark 4. The above result follows from a combination of
Theorem 1 and the embedding results of Proposition 1, and
employs the bounds on γn derived in [1]. The explicit regret
bounds for these kernels are displayed in Table I.

Since n-dependent bounds on γn are not known for
KRQ, Kγ-Exp, KPP, the result of Proposition 2 provides us
with the first regret bounds that are explicit in n. However,
as there do not exist any algorithm-independent lower bounds
for these kernels, it is not clear how sub-optimal these bounds
are.

For the Matérn kernel, when ν ∈ (0, 1] we set α = ν,
and so our bound matches the lower bound given in [6] up to
poly-log factors. Since γn-based bounds are known only for
ν > 1

2 , our results provide the first explicit and near-optimal
regret bounds for Matérn kernels in the regime ν ∈ (0, 1

2 ],
which includes, for example, the absolute exponential kernel.

IV. EMPIRICAL RESULTS

In this section, we empirically illustrate our finding on
benchmark functions as well as a hyperparameter tuning task.
In all the experiments, we use the Matérn kernel Kν with
ν = 2.5, and set B = 1, L =

√
2, σ = 0.1 and δ = 0.001.

Algorithms. We consider the following algorithms: (1) LP0:
This is the simplest version of our LP-GP-UCB algorithm,



Fig. 1: Average maximum values obtained from 30 trials of optimization of synthetic 8-dimensional Branin (left) and Goldstein (right)
functions with underlying low-dimensional structure.

which uses q = 0 and α = 1, (2) LP1, the first-order version
of LP-GP-UCB with q = 1 and α = 1, (3) IGP-UCB,
the improved GP-UCB algorithm of [2], (4) EI, Expected
Improvement, and (5) PI, Probability of Improvement.

Expt. 1: Benchmark functions. The goal of the first
experiment is to test if the algorithms can detect underlying
structure in the objective functions. In particular, we construct
an 8-dimensional function f : R8 7→ R by additively
extending a 2-dimensional benchmark function g as follows:
f(x) =

∑t
i=1 cig(x[2i−1 : 2i]) where c1 = 1 and ci = 0.1 for

i = 2, 3, 4. For the 2-dimensional benchmark function g, we
use the standard Branin and Goldstein functions [23]. Figure 1
plots the maximum value suggested by each algorithm against
the number of evaluations or samples used. The figure shows
the average maximum values over 30 trials as well as the
standard deviation of the values. As we can see, the adaptive
partitioning approach allows the LP-GP-UCB algorithm to
better exploit the simple structure in the objective function
and find higher value points. The use of first-order polynomial
approximations in LP1 allows the algorithm to sample and
partition more effectively than LP0 and converges to the
maximum with fewer samples than LP0 as a consequence.

Expt 2: Hyperparameter Tuning. In this experiment,
we use LP0 and the other optimization algorithms to select
the best hyperparameters of a convolutional neural network
(CNN) with two convolutional layers and two fully con-
nected layers. The hyperparameters to be optimized were
batch_size, the learning_rate, the kernel_size
of the two convolutional layers and the hidden_nodes in
the first fully-connected layer. The objective to be maximized
was the accuracy on the test set. The mean accuracy of the
point recommended by the algorithms over 10 trials (each
with a budget of n = 50 evaluations) is shown in Table II.
As indicated by the values, LP0 achieves high classification
accuracy with relatively small variability.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new algorithm, LP-GP-UCB,
for kernelized bandits and obtained high probability bounds
on its cumulative regret. For the Matérn family of ker-

TABLE II: Performance on hyperparameter tuning task over 10 trials
with 50 iterations each.

Method Mean Accuracy Std. Deviation

LP0 90.117 1.479

IGP-UCB 85.027 10.981

EI 88.892 1.679

PI 86.692 2.966

nels (Kν)ν>0, we derived regret bounds which are novel
or near-optimal in certain ranges of ν. We also obtained
the first explicit regret bounds, to our knowledge, for some
important kernels such as rational-quadratic, γ-exponential,
and piecewise-polynomial kernels. Experimental evaluation on
some benchmark functions as well as on a hyperparameter
tuning task suggest that the proposed multi-scale partitioning
approach may be adapted for practical problems.

Our work opens several interesting directions for future
research: (1) improving the cubic computational complexity
associated with the exact GP inference in our implementations
by using techniques such as adaptive sketching [24], (2)
extension of the algorithmic techniques of this paper to related
topics such as contextual GP bandits, GP level set estimation,
and parallel GP bandits. Since the existing theoretical results
for these problems also depend on γn, the methods of our
paper may potentially lead to significant improvements in these
problems as well.
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