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Dexterous manipulation using multi-fingered robotic hands is a crucial area in robotics,

aimed at performing intricate tasks with various objects in everyday environments. However, this

field presents significant challenges. Modeling the complex contact patterns between a dexterous

hand and manipulated objects is difficult, hindering the effectiveness of model-based control

methods. Furthermore, the high number of Degrees of Freedom (DoF) in the hand’s joints,

dramatically increases the complexity of training data-driven policies for dexterous manipulation.

This dissertation addresses the challenging task of learning highly generalizable dexterous

manipulation skills applicable across diverse scenarios. We investigate two principal directions
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to enhance the learning capabilities of dexterous manipulation.

First, we leverage the inherent structural similarities between human and robotic hands,

employing human data to guide robot manipulation skills. This approach is motivated by

the bio-inspired design of dexterous hands, which offers a unique opportunity to learn from

human demonstrations. To facilitate efficient data collection, we develop AnyTeleop, a general

vision-based teleoperation system for dexterous robot arm-hand systems. AnyTeleop utilizes

readily available devices like web cameras to provide a versatile interface for teleoperating various

arm-hand systems. Furthermore, we introduce CyberDemo, a data augmentation technique that

expands the original human demonstrations, generating a dataset hundreds of times larger than

the initial set. This approach allows for training policies capable of handling a wider range of

scenarios without requiring additional human effort.

Second, we explore the potential of using vast amounts of simulated data to learn dexterous

manipulation policies. The primary challenge in this direction lies in bridging the domain gap

between simulation and the real world, encompassing both dynamics and visual discrepancies.

This sim2real gap is particularly pronounced for high DoF dexterous hands. To address this, we

propose a sim-to-real reinforcement learning framework, DexPoint, that leverages point cloud

and proprioceptive data. This framework integrates multi-modal sensory information into a

unified 3D space, preserving the spatial relationships between robot components, sensors, and

manipulated objects. This unified representation enables faster policy learning in simulation and

smoother transfer to real-world applications.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Generalizable Dexterous Manipulation

Dexterous manipulation is one of the most challenging and important problems in

robotics. It aims to enable robots to perform intricate tasks with various objects in everyday

environments [99, 21, 2, 26, 29, 8]. Multi-fingered robotic hands, designed to emulate the

remarkable capabilities of the human hand, play a pivotal role in achieving this goal [119, 127,

134, 120, 130]. However, the complexity of dexterous manipulation poses significant challenges

in both modeling and control.

One of the primary challenges in dexterous manipulation is modeling the intricate contact

patterns between the robotic hand and manipulated objects. The high number of contact points and

the dynamic nature of these interactions make it difficult to develop accurate and computationally

efficient models [20, 23, 70, 91]. Consequently, model-based control methods often struggle to

achieve the desired level of dexterity and adaptability.

Another major challenge stems from the high-dimensional action spaces associated

with multi-fingered hands. A large number of Degrees of Freedom (DoF) in the hand’s

joints dramatically increases the complexity of training data-driven policies for dexterous

manipulation [13, 100, 21]. This complexity hinders the learning process and makes it challenging

to develop policies that can generalize across diverse tasks and environments.
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1.1.2 Overview of Techniques and Contributions

This dissertation aims to address the challenge of learning highly generalizable dexterous

manipulation skills that can be applied across a wide range of scenarios. The main objectives of

this research are:

1. To leverage the structural similarities between human and robotic hands, employing human

data to guide robot manipulation skills.

2. To explore the potential of using vast amounts of simulated data to learn dexterous

manipulation policies while bridging the domain gap between simulation and the real

world.

By pursuing these objectives, we seek to develop novel approaches that enhance the

learning capabilities of dexterous manipulation systems, enabling them to perform complex tasks

with increased efficiency and adaptability.

Human-Inspired Learning for Dexterous Manipulation

The bio-inspired design of dexterous robotic hands offers a unique opportunity to learn

from human demonstrations. By leveraging the inherent structural similarities between human

and robotic hands, we can guide the development of robot manipulation skills using human data.

AnyTeleop: A General Vision-Based Teleoperation System To facilitate efficient

data collection for human-inspired learning, we introduce AnyTeleop, a versatile vision-based

teleoperation system for dexterous robot arm-hand systems. AnyTeleop utilizes readily available

devices, such as web cameras, to provide an intuitive interface for teleoperating various arm-hand

systems. This approach eliminates the need for specialized hardware and enables the collection

of diverse human demonstration data across different environments and tasks.

CyberDemo: Data Augmentation for Human Demonstrations While human demon-

strations provide valuable insights into dexterous manipulation strategies, collecting large amounts
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of human data can be time-consuming and resource-intensive. To address this challenge, we

propose CyberDemo, a data augmentation technique that expands the original human demonstra-

tions. By applying various transformations and perturbations to the collected data, CyberDemo

generates a dataset that is hundreds of times larger than the initial set. This augmented dataset

enables the training of policies that can handle a wider range of scenarios without requiring

additional human effort.

Simulator-Based Learning for Dexterous Manipulation

In addition to human-inspired learning, we explore the potential of using vast amounts

of simulated data to learn dexterous manipulation policies. Simulated environments offer the

advantage of generating large-scale datasets without the constraints and costs associated with

real-world data collection. However, the primary challenge in this approach lies in bridging the

domain gap between simulation and the real world.

The Sim2Real Gap in Dexterous Manipulation The domain gap between simulation

and the real world, known as the sim2real gap, poses a significant challenge in learning dexterous

manipulation policies. This gap encompasses both dynamics and visual discrepancies, which

are particularly pronounced for high DoF dexterous hands [161, 163, 26]. The complex contact

dynamics and the intricate interactions between the hand and objects are difficult to model

accurately in simulation, leading to discrepancies in the learned policies when transferred to the

real world.

DexPoint: A Sim-to-Real Reinforcement Learning Framework To address the sim2real

gap, we propose DexPoint, a sim-to-real reinforcement learning framework that leverages point

cloud and proprioceptive data. DexPoint integrates multi-modal sensory information into a

unified 3D space, preserving the spatial relationships between robot components, sensors, and

manipulated objects. By representing the environment in this unified manner, DexPoint enables

faster policy learning in simulation and smoother transfer to real-world applications.
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1.1.3 Contributions and Organization

The main contributions of this dissertation are:

1. The development of AnyTeleop, a general vision-based teleoperation system for efficient

human demonstration data collection.

2. The introduction of CyberDemo, a data augmentation technique that significantly expands

human demonstration datasets for improved policy learning.

3. The proposal of DexPoint, a sim-to-real reinforcement learning framework that leverages

point cloud and proprioceptive data to bridge the domain gap between simulation and the

real world.

The remainder of this dissertation is organized as follows: Chapter 2 presents AnyTeleop,

detailing the system design, data collection process, and experimental results. Chapter 3

introduces CyberDemo, a novel approach to robotic imitation learning that capitalizes on

simulated human demonstrations to master real-world tasks. Chapter 4 presents DexPoint,

describing the framework architecture, policy learning approach, and evaluation in both simulated

and real-world environments. Finally, Chapter 5 discusses the implications of the research

findings, highlights potential future directions, and concludes the dissertation.

Through the development and evaluation of these novel approaches, this dissertation

contributes to advancing the field of dexterous manipulation in robotics, paving the way for more

adaptable, efficient, and generalizable robotic systems capable of performing complex tasks in

everyday environments.
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Chapter 2

Collecting Dexterous Manipulation Data
with Human Teleoperation

The quest to endow robots with human-like dexterity hinges critically on the quality and

diversity of the data used to train them. Dexterous manipulation, involving nuanced interactions

between robotic hands and a variety of objects, requires comprehensive datasets that capture a wide

range of motions, tactile sensations, and object manipulations under different conditions. However,

collecting such detailed and multifaceted data presents significant challenges, particularly when

using dexterous robotic hands that mimic the complexity of human hands. Teleoperation systems,

which enable human operators to control robots remotely, offer a promising avenue for data

collection but often struggle with issues of latency, precision, and the fidelity of sensory feedback,

complicating the task of capturing realistic, high-quality manipulation data.

Vision-based teleoperation has emerged as a transformative approach in robotics, enabling

systems to mimic human-level dexterity and intelligence in physical interactions with diverse

environments. This capability is primarily facilitated by inexpensive camera sensors, making

sophisticated robotic manipulation more accessible. Despite these advances, the current landscape

of vision-based teleoperation systems faces significant limitations. Most systems are intricately

tailored to specific robot models and deployment environments. This customization results

in poor scalability, becoming increasingly impractical as the diversity of robot models and

operational contexts continues to grow.
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In this chapter, we introduce AnyTeleop, a novel teleoperation system characterized by its

universality and versatility. AnyTeleop is designed to seamlessly support a wide array of robotic

arms, hands, realities (both simulated and real), and camera configurations within a singular,

cohesive framework. This system is not only flexible in accommodating various simulators and

real hardware but also demonstrates robust performance across these platforms. In real-world

applications, AnyTeleop surpasses the capabilities of prior systems engineered for specific robot

hardware, achieving higher success rates with the same robotic setups. Additionally, in simulated

environments, AnyTeleop outperforms specialized systems, leading to enhanced outcomes

in imitation learning tasks. Through these advancements, AnyTeleop sets a new standard

for adaptable, high-performance vision-based teleoperation systems, promising significant

contributions to the field of robotic manipulation.

SAPIEN
Simulator

IsaacGym
Simulator

Real
World

Figure 2.1. AnyTeleop Overview. We present AnyTeleop, a vision-based teleoperation system
for a variety of scenarios to solve a wide range of manipulation tasks. AnyTeleop can be used
for various robot arms with different robot hands. It also supports teleoperation within different
realities, such as IsaacGym simulator (top row), SAPIEN simulator (middle row), and real-world
(bottom rows).
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2.1 Introduction

A grand goal of robotics is to endow robots with human-level intelligence to phys-

ically interact with the environment. Teleoperation [98], as a direct means to acquire hu-

man demonstrations for teaching robots, has been a powerful paradigm to approach this

goal [65, 40, 171, 53, 85, 25, 60, 7, 94, 133, 159]. Compared to gripper-based manipulators,

teleoperating dexterous hand-arm systems poses unprecedented challenges and often requires

specialized apparatus that comes with high costs and setup efforts, such as Virtual Reality

(VR) devices [5, 53, 45], wearable gloves [76, 77], handheld controller [115, 116, 64], haptic

sensors [42, 69, 123, 139], or motion capture trackers [174]. Fortunately, recent developments in

vision-based teleoperation [3, 73, 49, 72, 109, 74, 66, 65, 4] have provided a low-cost and more

generalizable alternative for teleoperating dexterous robot systems.

Despite the progress, the current paradigm of vision-based teleoperation systems still

falls short when it comes to scaling up data collection for robot teaching. First, prior systems are

often designed and engineered toward a particular robot model or deployment environment. For

example, some systems rely on vision-based hand tracking models trained on datasets collected

in the deployed studio [73, 49], and some rely on human-robot retargeting models [170, 43]

or collision avoidance models [138] trained for the particular robot at use. These systems will

scale poorly as the pool of robot models expands and the variety of operating environments

increases. Second, each system is created and coupled with one specific “reality”, either only in

the real world or with a particular choice of simulators. For example, the HAPTIX [69] motion

capture system is only developed for teleoperation in MuJoCo-based environments [147]. To

facilitate large-scale data collection with simulation as well as closing sim-to-real gaps, we need

teleoperation systems to operate both in virtual (with arbitrary choices of simulators) and in

the real world. Finally, existing teleoperation systems are often tailored for single-operator and

single-robot settings. To teach robots how to collaborate with other robot agents as well as with

human agents, a teleoperation system should be designed to support multiple pilot-robot partners
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where the robots can physically interact with each other in a shared environment.

In this dissertation, we aim to set the foundation for scaling up data collection with

vision-based dexterous teleoperation, by filling in the aforementioned gaps. To this end, we

propose AnyTeleop, a unified and general teleoperation system (Fig. 2.1), which can be used for:

• Diverse robot arm and dexterous hand models;

• Diverse realities, i.e. different choices of simulators or the real world;

• Teleoperation from diverse geographic locations, via a browser-based web visualizer

developed for remote visual feedback;

• Diverse camera configurations, e.g. RGB camera with or without depth, single or multiple

cameras;

• Diverse operator-robot partnerships, e.g. two operators separately piloting two robots to

collaboratively solve a manipulation task.

To achieve this goal, we first develop a general and high-performance motion retargeting

library to translate human motion to robot motion in real time without learned models. Our

collision avoidance module is also learning-free and powered by CUDA-based geometry queries.

They can adapt to new robots given only the kinematic model, i.e., URDF files. Second, we

develop a web-based viewer compatible with standard browsers, to achieve simulator-agnostic

visualization and enable remote teleoperation across the internet. Third, we define a general

software interface for visual-based teleoperation, which standardizes and decouples each module

inside the teleoperation system. It enables smooth deployment on different simulators or real

hardware.

While being very general to support many settings with a single system, our system can

still achieve great performance in the experiments. For real-world teleoperation, AnyTeleop

can outperform a previous system [138] designed for specific robot hardware with higher
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Table 2.1. Comparison of Vision-Based Teleoperation System. We compare AnyTeleop’s
capabilities with related visual teleoperation systems for multi-fingered dexterous robots. “Calib
free” means extrinsic calibration is not needed, “No Arm” in the column of “Multiple Arms”
means this system can only control hand motion but not arm-hand systems.

Sensor Robot Comminication

Calib Contact Multi Multi Collision Remote Colab
Free Free Arms Hands Free Teleop Teleop

DexPilot [49] ✓ ✓
Holo-Dex [5] ✓ ✓ No Arm ✓

DIME [7] ✓ No Arm ✓
TeachNet [73] ✓ ✓ No Arm

Telekinesis [138] ✓ ✓ ✓
Qin et al. [109] ✓ ✓ No Arm ✓ ✓

MVP-Real [113] No Arm ✓
Transteleop [72] ✓ ✓

Mosbach et al. [92] ✓
AnyTeleop ✓ ✓ ✓ ✓ ✓ ✓ ✓

success rates on 8 out of 10 tasks proposed in the previous method, using the same robot as

[138]. For simulated environment teleportation, the smoother and collision-free demonstrations

collected by AnyTeleop can bring better imitation learning results with higher success rates on

5 out of 6 tasks proposed in their paper, compared with a previous system [109] specifically

designed for that simulator. Finally, we demonstrate that AnyTeleop can be extended to support

collaborative manipulation, which to our best knowledge has neither been achieved in the literature

of vision-based teleoperation nor on dexterous hands.

Our system is also packaged to be easily deployable. The containerized design makes

installation easy and frees users from handling software dependencies.

2.2 Teleoperation System Overview

Fig. 2.2 illustrates our proposed paradigms of vision-based teleoperation systems. Below

we introduce the features and designs of our system which realize the paradigms.
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Figure 2.2. Vision-based Teleoperation. Paradigms of vision-based teleoperation systems in
independent and collaborative settings. The system should support any arm-hand models, existed
in either virtual or the real world, can operate with flexible camera configurations, provide visual
feedback for both local or remote presence, and support multiple robots piloted in a shared space.

2.2.1 System Features

1. Any arm-hand. As shown in Fig. 2.1, AnyTeleop is designed for arbitrary dexterous

arm-hand systems that are not limited to any specific robot type.

2. Any reality. AnyTeleop is decoupled from specific hardware drivers or physics simulators.

It can support different realities as visualized in Fig. 2.1.

3. Anywhere remote teleoperation. AnyTeleop provides a web-based visualizer to monitor

the teleoperation and simulation in standard web browsers, e.g. Chrome.

4. Any camera configuration. AnyTeleop can consume data from both RGB and RGB-D

cameras, and from either single or multiple cameras. Most importantly, it does not require

extrinsic calibration as in most previous systems. This allows more flexible camera

configurations and lower deployment overhead.

5. Any number of operator-robot partnerships. AnyTeleop supports collaborative settings

where operators separately pilot two robots to collaboratively solve a manipulation task.
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6. Simple deployment. AnyTeleop and all libraries are encapsulated as a docker image that

can be downloaded and deployed on any Linux machine, which frees users from handling

troublesome dependencies.

We compare AnyTeleop with other vision-based dexterous teleoperation systems. We

compare the systems in three dimensions: (i) sensor requirements; (ii) robot-related support; (iii)

afforded use cases. Among all these teleoperation systems, AnyTeleop is the only one which can

support different robot arms and enable collaborative teleoperation. It is also one of the only two

systems that can support different dexterous hands.

2.2.2 System Design

The architecture of the teleoperation system is shown in Fig. 2.3. The teleoperation

server (Section 2.3) receives the camera stream from the driver, detects the hand pose, and

then converts it to joint control commands. The client receives these commands via network

communication and uses them to control a simulated or real robot. The system is designed with

three key principles: modularity, communication-focused, and containerization. Modularity

is achieved by implementing well-defined input-output interfaces for each sub-component,

allowing for wide applicability to different robot arms, dexterous hands, cameras, and realities.

Communication-focused design allows for remote and collaborative teleoperation and reduces

computation requirements on the operator’s side by deploying heavy computations on a powerful

server. Finally, the containerized design makes installation and deployment easier compared to

other robotics systems with heavy software dependencies.

2.3 Teleoperation Server

The teleoperation server, outlined in Section 2.2, utilizes the RGB or RGB-D data from

one or multiple cameras and generates smooth and collision-free control commands for the robot

arm and dexterous hand. It consists of four modules: (i) the hand pose detection module, which
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Figure 2.3. System Architecture. AnyTeleop is composed of four components: (i) camera
driver, which captures the human hand pose in RGB or RGB-D format; (ii) teleportation server,
the core component in our system, which performs hand pose detection and converts detection
results to robot control commands; (iii) teleoperated robot, which is either a real robot or a
simulated robot in a virtual environment; (iv) web visualizer, which enables remote visualization
across the internet.

predicts hand wrist and finger poses from the camera stream, (ii) the detection fusion module,

which integrates the results from multiple cameras, (iii) the hand pose retargeting module, which

maps human hand poses to the dexterous robot hand, and (iv) the motion generation module,

which produces high-frequency control signals for the robot arm. A standardized software

interface is defined for all four modules to facilitate flexibility and generalizability in AnyTeleop .

2.3.1 Hand Pose Detection

The hand pose detection module offers a unique feature to utilize input from various

camera configurations, including RGB or RGB-D cameras, and single or multiple cameras. The

design principle is to leverage more information, such as depth, and additional cameras, to

improve performance when available. But it can also perform the task with minimal input, i.e. a

single RGB camera. The detection module has two outputs: local finger keypoint positions in the

wrist frame and global 6D wrist pose in the camera frame. The finger keypoint detection only

requires RGB data while the wrist pose detection can optionally use depth information to achieve

better results.

Finger Keypoint Detection. Our finger keypoint detection utilizes MediaPipe [169],

a lightweight, RGB-based hand detection tool that can operate in real-time on a CPU. The

MediaPipe detector can accurately locate 3D keypoints of 21 hand-knuckle coordinates in the
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wrist frame and 2D keypoints on the image.

Wrist Pose Detection from RGB-D. We use the pixel positions of the detected keypoints

to retrieve the corresponding depth values from the depth image. Then, utilizing known intrinsic

camera parameters, we compute the 3D positions of the keypoints in the camera frame. The

alignment of the RGB and depth images is handled by the camera driver. With the 3D keypoint

positions in both the local wrist frame and global camera frame, we can estimate the wrist pose

using the Perspective-n-Point (PnP) algorithm.

Wrist Pose Detection from RGB only. The orientation of the hand can be computed

analytically from the local positions of the detected keypoints. However, determining the wrist

position in the camera frame can be challenging without explicit 3D information. To enhance

MediaPipe for global wrist pose estimation, we adopt the approach used in FrankMocap [121] by

incorporating an additional neural network that predicts the weak perspective transformation

scale of the hand. The weak perspective transformation approximates the original perspective

camera model by assuming that the observed object is farther from the camera than its size.

Together with intrinsic parameters, this scale factor can be used to approximate the 3D position

of the hand. The wrist position computed this way has a larger error than depth camera, but it is

still sufficient for many downstream teleoperation tasks.

Visualization of Hand Pose Detection We visualize the hand pose detection results in

Figure 2.4. We showcase five typical cases, which include: (i) a hand spreading out the fingers

for teleoperation initialization, (ii) fingers facing downwards in preparation for a top-down grasp,

(iii) a precision grasp using the thumb and index finger, (iv) a power grasp using all five fingers,

and (v) a failure case where the hand is positioned vertically relative to the camera plane.

2.3.2 Detection Fusion

The detection fusion module integrates multiple camera detection results. Self-occlusion

can be a problem when performing hand pose detection, especially when the hand is perpendicular

to the camera plane. Using multiple cameras can alleviate this problem by providing additional
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Figure 2.4. Hand Pose Detection Visualization. This figure visualizes the hand detection
results, with the white bounding box highlighting the predicted area and red points marking the
identified finger key points. The hand skeleton is represented by the grey lines connecting the
key points. Additionally, the small grey points depict the 2D projection of 3D vertices from the
SMPL-X hand model. The figure showcases five diverse cases, from left to right: (i) a hand
spreading out the fingers to initiate teleoperation, (ii) fingers facing downwards in preparation for
a top-down grasp, (iii) a precision grasp using the thumb and index finger, (iv) a power grasp
using all five fingers, and (v) a failure scenario where the hand is positioned vertically relative to
the camera plane.

views. However, there are two main challenges in fusing multiple detection results: (i) each

camera can only estimate the hand pose in its own frame and (ii) there is no straightforward

metric to quantify the confidence of each detection result.

To overcome the first challenge, we perform an auto-calibration process using the human

hand as a natural marker. We use the first 𝑁 frames of hand detection results from multiple

cameras to calculate the relative rotation between each camera, expressed in 𝑆𝑂 (3). We find

that although the absolute position of detected hand pose is not so accurate in RGB-only setting,

the relative motion between consecutive frames is more robust. With orientation between each

camera, we can transform the detected relative motion from different cameras into a single frame.

To address the second challenge, we use the SMPL-X [103] hand shape parameters

predicted from the detection module, as inspired by Qin et al. [109]. During teleoperation, the

true shape parameters should remain constant for a given operator, but the predicted values can

contain errors during self-occlusion. We observe that larger shape parameter prediction errors

often correspond to larger pose errors. To approximate the confidence score, we take the mean

of the estimated shape parameters in the first 𝑁 frames as a reference and compute the error

between the predicted shape parameters and the reference. Implementation-wise, we require the
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Figure 2.5. Real Robot Teleoperation Tasks. We replicate the ten manipulation tasks proposed
in Sivakumar et al. [138] using same or similar objects. Top row, left to right: Pickup Box Object,
Pickup Fabric Toy, Box Rotation, Scissor Pickup, Cup Stack. Bottom row, left to right: Two Cup
Stacking, Pouring Cubes onto Plate, Cup Into Plate, Open Drawer and Open Drawer and Pickup
Cup.

operator to spread their fingers during the first 𝑁 frames to ensure an accurate reference value of

shape parameters. The fusion module then selects the relative motion captured by the camera

with the highest confidence score and forwards it to the next module. In implementation, we

choose 𝑁 = 50.

2.3.3 Hand Pose Retargeting

The hand pose retargeting module maps the human hand pose data obtained from

perception algorithms into joint positions of the teleoperated robot hand. This process is often

formulated as an optimization problem [110, 49], where the difference between the keypoint

vectors of the human and robot hand is minimized. The optimization can be defined as follows:

min
𝑞𝑡

𝑁∑︁
𝑖=0

| |𝛼𝑣𝑖𝑡 − 𝑓𝑖 (𝑞𝑡) | |2 + 𝛽 | |𝑞𝑡 − 𝑞𝑡−1 | |2

s.t. 𝑞𝑙 ≤ 𝑞𝑡 ≤ 𝑞𝑢,

(2.1)
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where 𝑞𝑡 represents the joint positions of the robot hand at time step 𝑡, 𝑣𝑖𝑡 is the 𝑖-th keypoint

vector for human hand computed from the detected finger key points, 𝑓𝑖 (𝑞𝑡) is the 𝑖-th forward

kinematics function which takes the robot hand joint positions 𝑞𝑡 as input and computes the 𝑖-th

keypoint vector for the robot hand, 𝑞𝑙 and 𝑞𝑢 are the lower and upper limits of the joint position,

𝛼 is a scaling factor to account for hand size difference. An additional penalty term with weight

𝛽 is included to improve temporal smoothness. When retargeting to a different morphology, such

as a Dclaw in Figure 2.1, we need to specify the key point vectors mapping between the robot

and human fingers manually. It is worth noting that this module only considers the robot hand.

We demonstrate the results of hand pose retargeting in Figure 2.11. The figure displays

seven gestures being performed using four different dexterous hands.

2.3.4 Motion Generation

Given the detected wrist and hand pose, our goal is to generate smooth and collision-free

motion of robot arm to reach the target Cartesian end-effector pose. Real-time motion generation

methods are required to have a smooth teleoperation experience. In the prior work of [49], the

robot motion is driven by Riemannian Motion Policies (RMPs) [118, 32] that can calculate

acceleration fields in real-time. However, accelerations towards a particular end-effector pose do

not guarantee natural trajectories. In this work, we adopt CuRobo [144], a highly parallelized

collision-free robot motion generation library accelerated by GPUs, to generate natural and

reactive robot motion in real-time. In AnyTeleop, the motion generation module receives the

Cartesian pose of the end-effector at a low frequency (25 Hz) from the hand detection and

retargeting modules, and generates collision-free joint-space trajectories within joint limits at a

higher frequency (120 Hz). The generated trajectories are ready for safe execution by impedance

controllers on either a simulated or real robot.
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2.4 Web-based Teleoperation Viewer

To better support the teleoperation tasks, we implement a web-based visualization module

to facilitate remote and collaborative teleoperation, especially for teleoperation in simulated

environments. It has the following features: (i) browser-based viewer, which makes it easily

accessible remotely; (ii) synchronized visualization, i.e. two operators working on the same

collaborative task should see the same scene synchronously from their own local viewports.

The viewer is developed based upon the meshcat [37] library and utilizes Three.js [36] for

rendering. The visualization server ports the simulation results onto the browser after each

simulation iteration. Operators can get visual feedback from the browser window and move their

hands to control the corresponding robot.

2.4.1 Web-based Teleoperation Viewer

In this section, we demonstrate how the web-based visualizer provides accessibility and

multi-view support for teleoperation through its lightweight rendering and capability to run in

multiple browser windows. Figure 2.6 shows screenshots of the web-based visualizer when it is

used to visualize the five IsaacGym tasks depicted in Figure 2.1.

Lightweight Rendering vs High Visual Quality. The design of our web-based viewer

prioritizes accessibility and convenience, as it can be used on any device with a browser and

provides minimal but sufficient rendering capabilities for teleoperation. Although the rendering

quality may not be as advanced as the original simulator viewer, simulation states can be saved

for offline rendering to produce high-quality visual data. For example, in visual reinforcement

learning tasks using RGB images as inputs, the rendered data can be generated using a more

powerful engine such as a ray tracer after the teleoperation is completed.

Multi-View Support for Teleoperation. In teleoperation, human operators often require

a clear understanding of the spatial relationships between objects and robots to make informed

decisions. This information can be provided through multi-view rendering, which is a widely
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Figure 2.6. Web-based Viewer. The visualization of the teleoperation process can be performed
in the web-based viewer, which features the five tasks from the IsaacGym tasks shown in
Figure 2.1. The viewer utilizes the three.js library for real-time rendering through a web browser.

Figure 2.7. Multi-view Support with More Browser Windows. The web-based viewer offers
multiple views to enhance the operator’s understanding of the 3D object relationships. Additional
views can be accessed by simply opening more browser windows.

used technique in previous teleoperation works [72, 109, 153]. Our web-based viewer offers

multi-view support to the operator by simply opening multiple browser windows. As shown

in Figure 2.7, an example of the operator using two views to perform a manipulation task is

displayed. The operator is able to open as many windows as needed to enhance their teleoperation

experience.
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Relocate Flip Mug Open Door

Figure 2.8. Imitation Learning Experiments in SAPIEN Environments. The figure visualizes
the three tasks we use for both teleoperation data collection and imitation learning. The transparent
object represents the goal of the task while the black arrow represents the steps of the task.

Table 2.2. Profiling Results. We profile different modules inside the teleoperation server on
both desktop and laptop. The time is measured when all teleoperation modules are run on the
same computer simultaneously.

HardWare
Desktop Laptop

GPU RTX 3090 RTX 2070
CPU i9-10980XE i7-8750

Memory 32GB 32GB

Profiling

Modules Time (ms) Time (ms)

Hand Pose (RGB) 26 ± 5 34 ± 5
Hand Pose (RGB-D) 27 ± 5 35 ± 5

Fusion 1 ± 0 1 ± 0
Retargeting 9 ± 7 10 ± 9

Motion 8 ± 3 11 ± 5

2.5 System Evaluation

2.5.1 Profiling Analysis

We perform profiling on modules mentioned in Section 2.3 on a desktop and a laptop. As

shown in Table 2.2, the most time-consuming module is hand pose detection, which runs on a

GPU for real-time inference. The designed maximum frequency for hand pose detection is 25Hz,

so both the desktop and laptop can meet the requirement. Both the retargeting module and the

fusion module run at the same frequency as the hand detection module due to the publisher and
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Table 2.3. Real Robot Teleoperation Results. We replicate the experiment settings and tasks in
[138] and compare with [138]. For the baseline method, we use the success rate reported in their
paper [138]

Task AnyTeleop Telekinesis [138]

Pickup Box Object 1.0 0.9
Pickup Fabric Toy 1.0 0.9

Box Rotation 0.6 0.6
Scissor Pickup 0.8 0.7

Cup Stack 0.9 0.6
Two Cup Stacking 0.7 0.3

Pouring Cubes onto Plate 0.7 0.7
Cup Into Plate 1.0 0.8
Open Drawer 1.0 0.9

Open Drawer and Pickup Object 0.9 0.6

subscriber logic. For best performance, the motion generation module should run at 120Hz but

can still work with a lower frequency. Notably, we found it difficult to achieve this throughput

when running all these modules on the same computer. Luckily, with our communication-oriented

design, we can run the control modules on a separate machine to achieve the best performance.

2.5.2 Real Robot Teleoperation

In this section, we will test our AnyTeleop system across a wide range of real-world tasks

that covers diverse objects and manipulation skills. Besides, we will compare our teleoperation

performance of AnyTeleop with a similar teleoperation system. A fair comparison of real-robot

tasks is often very challenging due to the difficulty in replicating the baseline methods delicately.

To ensure a more fair comparison, we replicate the ten manipulation tasks proposed in Robotic

Telekinesis [138] with the same XArm6 robot, Allegro hand, and similar objects. A trained

operator attempts to solve these tasks using AnyTeleop system. The ten tasks are visualized

in Fig. 2.5. Same as [138], we run each task ten times for AnyTeleop and use a single Intel

RealSense camera. For the baseline method, we directly use the results reported in their paper.

As shown in Table 2.3, AnyTeleop can get a higher success rate of 8/10 tasks and the

same success rate on 2/10 compared with the baseline. Although AnyTeleop is designed to be
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Table 2.4. Comparison of Camera Configurations. We evaluate the teleoperation performance
on the Play Piano task with different camera configurations.

Camera Configuration Completion Time Error Percentage (%)

Single RGB 109𝑠 28.1%
Single RGB-D 87𝑠 21.8%
Two RGB-D 74s 12.5%

more general, it can still outperform the baseline system that was specifically designed for the

XArm6-Allegro hardware. We find that the major advantage of our system is the capability

to handle objects with thin-walled structures, such as the cup-stack, two-cup-stacking, and

cup-into-plate tasks. Our optimization-based retargeting module can close the distance between

fingertips, which makes grasping the cup more stable. However, network-based retargeting can

hardly translate the fine-grained precision grasp from human to robot, which leads to a lower

success rate.

2.5.3 System Evaluation on Camera Configurations

In this section, we examine the impact of different camera configurations on the teleopera-

tion performance of our system, AnyTeleop, which is capable of supporting diverse configurations

including RGB, RGB-D, and single or multiple cameras. Even with a minimal configuration,

i.e. a single RGB camera, the system can still perform effectively. Additionally, by adding more

resources, such as multiple cameras, our system can achieve better performance.

We use the Play Piano task implemented in IsaacGym [80] as the evaluation scenario,

which requires the robot hand to press piano keys in a specific order. The task is shown in

Figure 2.1. To quantify performance, we introduce two task metrics: (i) completion time, i.e. the

elapsed time from start to finish, and (ii) the percentage of incorrect key presses, which measures

the number of incorrectly pressed keys relative to the total number of keys.

A trained operator performs the task ten times for each camera configuration. As reported

in Table 2.4, with additional information, such as depth, and an increasing number of cameras,
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the task can be completed faster and with fewer errors, which demonstrates that our system allows

users to easily trade-off between efficiency and system cost based on their use case.

2.6 Applications

2.6.1 Imitation Learning

The most important application of the proposed system is imitation learning from

demonstration. We can first collect demonstrations on several dexterous manipulation tasks and

then use the data to train imitation learning algorithms. In this experiment, we will show that

the teleoperation data collected using our AnyTeleop can better support downstream imitation

learning tasks. In the following subsection, we will first introduce the experiment setting and

baseline and then discuss the experimental results.

Baseline and Comparison. To fairly compare with previous teleoperation systems, we

need to align both the task setting and robot configuration precisely. It is often challenging for

real-robot hardware but much easier for a simulated environment. Thus, we choose a recent

vision-based teleoperation work [109] that can be used for simulated robots as our baseline. It

is worth noting that we are comparing two teleoperation systems via the demonstration data

collected by each system. Thus, we compared with the baseline by training the same learning

algorithm on different demonstration data collected via the baseline system and our teleoperation

system. We follow [109] to choose Demo Augmented Policy Gradient (DAPG) [114] as the

imitation algorithm. We also compare it with a pure reinforcement learning (RL) based algorithm

from [108] which does not utilize demonstrations. We provide the same dense reward for RL

training as previous work [109].

Manipulation Tasks. We directly use the manipulation tasks proposed by the baseline

work [109] for comparison, which include three tasks: (i) Relocate, where the robot picks an

object on the table and moves it to the target position; (ii) Flip Mug, where the robot needs to

rotate the mug for 90 degrees to flip it back; (iii) Open Door, where the robot needs to first
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Robot 1 
Controlled by Operator #1

On Computer #1

Robot 2
Controlled by Operator #2

On Computer #2

Figure 2.9. Collaborative Teleoperation for Handover Task. Operator #1 act as the UR10-
Schunk robot and operator #2 acts as the Kuka-Shadow robot. In this task, the operator #2 needs
to pick up an object on the table and handoverit to operator #1.

rotate the lever to unlock the door, and then pull it to open the door. The manipulated objects in

all three tasks are randomly initialized and the target position is also randomized in Relocate.

Each manipulation task has two variants: the floating-hand variant and the arm-hand variant.

The floating-hand is a dexterous hand without a robot arm that can move freely in space. The

arm-hand means the hand is mounted on a robot arm with a fixed base, which is a more realistic

setting.

Demonstration Details. For the baseline teleoperation system [109], we directly use

the demonstration collected by the original authors with 50 demonstration trajectories for each

task. The baseline system only utilizes a single RGB-D camera. For fairness, we also collect

50 trajectories for each task using the single camera setup. The baseline system can only

handle floating hands and they propose a demonstration translation pipeline to convert the
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Figure 2.10. Collaborative Teleoperation System. Our system can be extended to collaborative
manipulation tasks even when operators are not in the same physical location. Each operator
can use a local computer with camera to detect the hand pose and send the detection results to
a central server. Meanwhile, they can use the web browser to visualize the current simulation
environment, including the robot controlled by other operators.

demonstration with floating hands to demonstrations with arm-hand. For our AnyTeleop , we

collect demonstrations using the arm-hand setting and convert the demonstration to floating hand

so that the demonstration can be used by both the floating-hand variant and arm-hand variant.

Results and Discussion. For each method on each task, we train policies with three

different random seeds. For each policy, we evaluate it on 100 trials. More details about the

success metrics can be found in [109]. As shown in Table, the imitation learning algorithm

trained on demonstration collected by AnyTeleop can outperform baseline and RL on most tasks

with one exception. Compared with the demonstration collected via the baseline system, our

system has two benefits that contribute to better performance in imitation learning: (i) The

collected trajectory is more smooth, which means that the state-action pairs are more consistent
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and easier to be consumed by the network. (ii) Different from the baseline, our system explicitly

supports teleoperation with arm-hand system and guarantees no self-collision. On the contrary,

the baseline system utilizes retargeting to generate joint trajectory for robot arm, which may

lead to several self-collision for robot arm. Thus we can observe significant performance gain

of our system for manipulation tasks with arm-hand. For the flip mug task, the difficulty of

collecting demonstration with arm is much larger than with a floating hand, which influences the

demonstration quality.

2.6.2 Collaborative Manipulation

Collaborative manipulation is a key technology for the development of human-robot

systems [149]. Collecting demonstration data for collaborative manipulation tasks has been

a challenging task since it requires multiple operators to work together seamlessly. With our

modularized and extensible system design and web-based visualization, our system enables

convenient data collection on collaborative tasks, even if operators are not in the same physical

location. In this section, we show that our teleoperation system can be extended to a collaborative

setting where multiple operators coordinate together to perform manipulation tasks. We choose

human-to-robot handover as an example as shown in Fig. 2.9. In this setting, operator #1 control

a robot hand, and operator #2 control a human hand.

Collaborative Teleoperation System Design. Fig. 2.10 illustrates the system architecture

for multi-operator collaboration, which includes two components. (i) Teleoperation Units: It

is composed of a computer that is connected to at least one camera and a human operator. In

each teleoperation unit, the human operator will watch the real-time visualization on a web

browser and move the hand accordingly to perform manipulation tasks. (ii) Central Server: it

runs the physical simulation and the web visualization server. The detection results from multiple

teleoperation units are sent to the server and converted into robot control commands based on the

pipeline in Section 2.3. Meanwhile, the web visualizer server will keep synchronized with the

simulated environment and maintain the visualization resources as described in Section 2.4.
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Figure 2.11. Visualization of Hand Pose Retargeting. The figure presents the results of hand
pose retargeting for seven gestures and four different dexterous robot hands. The four hands are
displayed in order from left to right: (i) Schunk SVH hand; (ii) Shadow Hand; (iii) DLR Hand;
(iv) Allegro Hand.
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Chapter 3

Augmenting Human Teleoperation Demon-
stration for Real-World Robot Manipula-
tion

In this chapter, we present CyberDemo, an innovative approach to robotic imitation learn-

ing that capitalizes on simulated human demonstrations to master real-world tasks. CyberDemo

represents a significant advancement in leveraging virtual environments for the training of robotic

systems, employing extensive data augmentation techniques to bridge the gap between simulated

training and real-world application. This method demonstrates superior performance compared

to traditional in-domain real-world demonstrations, adeptly handling a diverse array of physical

and visual conditions during task execution.

The affordability and convenience of data collection in simulated environments do not

compromise the effectiveness of CyberDemo. On the contrary, it achieves higher success rates

across a variety of tasks compared to baseline methods and exhibits remarkable generalizability,

even with objects that were not included in the initial training set. For instance, CyberDemo

effectively manipulates novel tetra-valve and penta-valve objects, despite the training demonstra-

tions exclusively involving tri-valves. This capability underscores the robustness of the approach

and its potential to generalize well beyond the training data.

Through the development and evaluation of CyberDemo, this chapter underscores the

transformative potential of simulated human demonstrations in enhancing the capabilities of
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robots to perform dexterous manipulation tasks in real-world settings. Our findings indicate

that by effectively harnessing the power of simulation for training purposes, we can significantly

expand the operational range and effectiveness of robotic systems in handling complex and varied

tasks that they might encounter in everyday environments.
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Figure 3.1. CyberDemo Overview. CyberDemo is a novel pipeline for learning real-world
dexterous manipulation by using simulation data. First, we collect human demos in a simulated
environment (blue region), followed by extensive data augmentation within the simulator (yellow
region). Then, the imitation learning model, trained on augmented data and fine-tuned on a few
real data, can be deployed on a real robot.

3.1 Introduction

Imitation learning has been a promising approach in robot manipulation, facilitating the

acquisition of complex skills from human demonstration. However, the effectiveness of this

approach is critically dependent on the availability of high-quality demonstration data, which

often necessitates substantial human effort for data collection [16, 101, 12]. This challenge is

further amplified in the context of manipulation with a multi-finger dexterous hand, where the

complexity and intricacy of the tasks require highly detailed and precise demonstrations.

In imitation learning, in-domain demonstrations, which refer to the data collected directly

from the deployment environment, are commonly used for robot manipulation tasks [86]. It is
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generally believed that the most effective way to solve a specific task is to collect demonstrations

directly from the real robot on that task. This belief has been upheld as the gold standard, but

we wish to challenge it. We argue that collecting human demonstrations in simulation can

yield superior results for real-world tasks, not only because it does not require real hardware

and can be executed remotely and in parallel, but also due to its potential to enhance final task

performance by employing simulator-only data augmentation [87, 62, 124, 71, 109, 84]. This

allows the generation of a dataset that is hundreds of times larger than the initial demonstration

set. However, while existing studies employ the generated dataset to train in-domain policies

within the simulation, the sim2real challenge of transferring policies to the real world remains an

unresolved problem.

In this dissertation, we study the problem of how to utilize simulated human demos for

real-world robot manipulation tasks. We introduce CyberDemo, a novel framework designed for

robotic imitation learning from visual observations, leveraging simulated human demos. We first

collect a modest amount of human demonstration data via teleoperation using low-cost devices in

a simulated environment. Then, CyberDemo incorporates extensive data augmentation into the

original human demonstration. (i) Image-level augmentation, utilizing common techniques such

as color jitter and random crop. (ii) Scene-level augmentation, where we randomize the visual

materials, light conditions, and camera viewpoint in the simulated scene, then replay the original

demonstration to render new images. (iii) Kinematics-level augmentation, where we randomize

the pose of the robot and objects, including some out-of-distribution states, and recalculate the

robot action for these states using inverse kinematics.

The augmented set covers a broad spectrum of visual and physical conditions not

encountered during data collection, thereby enhancing the robustness of the trained policy

against these variations. These augmentation techniques are also designed with the downstream

sim2real transfer in mind. We employ a unique curriculum learning strategy to train the policy

on the augmented dataset, then fine-tune it using a few real-world demos (3-minute trajectories),

facilitating effective transfer to real-world conditions. Surprisingly, when transferred to the
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real world, this policy outperforms those trained on in-domain demonstrations collected under

identical real-world settings. While policies trained on only real-world demonstrations may suffer

from variations in lighting conditions, object geometry, and object initial pose, our policy is

capable of handling these without the need for additional human effort.

Our system, which utilizes a low-cost motion capture device for teleoperation (i.e.,

RealSense camera) and demands minimal human effort (i.e., a 30-minute demo trajectory), can

learn a robust imitation learning policy. Despite its affordability and minimal human effort

requirements, CyberDemo can still achieve better performance on the real robot. Compared

with pre-trained policies, e.g. R3M [95] fine-tuned on real-world demonstrations, CyberDemo

achieves a success rate that is 35% higher for quasi-static pick and place tasks, and 20% higher for

non-quasi-static rotate tasks. In the generalization test, while baseline methods struggle to handle

unseen objects during testing, our method can rotate novel tetra-valve and penta-valve with 42.5%

success rate, even though human demonstrations only cover tri-valve (second row of Figure 3.1).

Our method can also manage significant light disturbances (last column of Figure 3.1). In our

ablation study, we observe that the use of data augmentation, coupled with an increased number

of demonstrations in the simulator, results in superior performance compared to an equivalent

increase in real-world demonstrations. To foster further research, we will make our code and

human demonstration dataset publicly available.

To summarize, the main contributions of our work are as follows:

1. We introduce a novel pipeline for imitation learning from human demonstration collected

in the simulator.

2. We propose a collection of demo augmentation methods in the simulator that enhances the

robustness and generalizability of learned policy.

3. We show that collecting simulated human demonstrations can also be super beneficial to

real-world robotics, even for complex dexterous manipulation tasks.
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This work demonstrates that human demonstrations collected in a simulator offer

substantial advantages over traditional real-world teleoperation for robot manipulation learning.

Simulated demonstrations are not only safer and easier to collect, eliminating the need for physical

hardware and enabling remote, parallel data acquisition, but also exhibit superior effectiveness in

training manipulation policies for real-world deployment. While direct teleoperation in the real

world remains a common practice, our findings highlight the significant cost and effectiveness

benefits of leveraging simulated environments for demonstration collection in robotic imitation

learning.

3.2 Related Work

Data for Learning Robot Manipulation. Imitation learning has been proven to be

an effective approach to robotic manipulation, enabling policy training with a collection of

demonstrations. Many works have focused on building large datasets using pre-programmed

policies [59, 168, 35, 47, 61], alternative data sources such as language [57, 140, 137, 136]

and human video [110, 133, 97, 11, 132] or extensive real-world robot teleoperation [16,

101, 6, 8, 12, 60, 41, 79, 86]. However, such works predominantly targeted parallel grippers.

Collecting large-scale demonstration datasets for high-DoF dexterous hands continues to be a

significant challenge. Meanwhile, data augmentation presents a viable strategy to improve policy

generalization by increasing the diversity of data distribution. Previous studies have applied

augmentation in low-level visual space [117, 54, 34, 135], such as color jitter, blurring, and

cropping, while more recent works propose semantic-aware data augmentation with generative

models [162, 82, 30, 14, 31, 177]. However, these augmentations operate at the image level and

are not grounded in physical reality. CyberDemo extends data augmentation to the trajectory

level using a physical simulator, accounting for both visual and physical variations. Concurrent to

our work, MimicGen [84] proposes a system to synthesize demonstrations for long-horizon tasks

by integrating multiple human trajectories. However, it confines demonstrations to in-domain
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learning, i.e., it only trains simulation policies with simulated demos without transferring to real

robots. In contrast, our work aims to harness simulation for real-world problem-solving. We

exploit the convenience of simulators for collecting robot demonstrations and employ a sim2real

approach to transfer these demos to a dexterous robot equipped with a multi-finger humanoid

hand. Our research emphasizes a general framework that leverages simulated demonstrations for

real-world robot manipulation.

Pre-trained Visual Representation for Robotics Recent progress in large-scale Self-Supervised

Learning [51, 18, 50] has enabled the development of visual representations that are advantageous

for downstream robotic tasks [131, 167, 164]. Several studies have focused on pretraining on non-

robotic datasets, such as ImageNet [38] and Ego4D [46], and utilizing the static representations

for downstream robot control [95, 102, 157]. Other research has focused on pre-training

visual representations on robot datasets, using action-supervised self-learning objectives that

depend on actions [133, 128], or utilizing the temporal consistency of video as a learning

objective [160, 125, 141, 129]. These investigations primarily aimed to learn features for effective

training of vision-based robotic manipulation. In addition to training visual representations

on offline datasets, some researchers have also explored learning the reward function to be

used in reinforcement learning [166, 9, 88, 83, 68]. Unlike prior studies, our work diverges

by utilizing simulation data for pre-training rather than employing Self-Supervised Learning

for representation learning. This not only enhances the learning of image representations but

also incorporates task priors into the neural network through the use of action information. By

pre-training in simulated environments, the manipulation policy can better generalize to new

objects with novel geometries and contact patterns.

Sim2Real Transfer The challenge of transferring skills from simulation to real-world scenarios,

known as sim2real transfer, has been a key focus in robot learning. Some approaches have

employed system identification to build a mathematical model of real systems and identify

physical parameters [63, 55, 26, 106, 75, 152]. Instead of calibrating real-world dynamics,

domain randomization [146, 104] generates simulated environments with randomized properties
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and trains a model function across all of them. Subsequent research demonstrated that the

selection of randomization parameters could be automated [48, 1, 165, 22]. However, due to

the extensive sample requirements to learn robust policies, domain randomization is typically

used with RL involving millions of interaction samples. Domain adaptation (DA) refers to a

set of transfer learning strategies developed to align the data distribution between sim and real.

Common techniques include domain adversarial training [44, 148] and the use of generative

models to make simulated images resemble real ones [54, 15]. Most of these DA approaches

focus on bridging the visual gap. However, the challenge of addressing the dynamics gap remains

significant. The sim2real gap becomes even more pronounced for dexterous robotic hands that

have high-DoF actuation and complex interaction patterns [48, 161, 105, 163]. In this work, we

extend the concept of domain randomization to human demonstration collected in the simulator

and focus on data augmentation techniques that can effectively utilize the simulation for transfer

to a real robot. We demonstrate that there can be a significant benefit in collecting human

demonstration in the simulator, despite the sim2real gap, instead of solely relying on real data.

3.3 CyberDemo

In CyberDemo, we initially gather human demonstrations of the same task in a simulator

through teleoperation (Section 3.3.1). Taking advantage of the simulator’s sampling capabil-

ities and oracle state information, we enhance the simulated demonstration in various ways,

increasing its visual, kinematic, and geometric diversity, thereby enriching the simulated dataset

(Section 3.3.2). With this augmented dataset, we train a manipulation policy with Automatic

Curriculum Learning and Action Aggregation (Section 3.3.3).

3.3.1 Collecting Human Teleoperation Data

For each dexterous manipulation task in this work, we collect human demonstrations

using teleoperation in both simulated and real-world environments. For real-world data, we utilize

the low-cost teleoperation system referenced in [111]. This vision-based teleoperation system
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Figure 3.2. CyberDemo Pipeline. First, we collect both simulated and real demonstrations via
vision-based teleoperation. Following this, we train the policy on simulated data, incorporating
the proposed data augmentation techniques. During training, we apply automatic curriculum
learning, which incrementally enhances the randomness scale based on task performance. Finally,
the policy is fine-tuned with a few real demos before being deployed to the real world.

solely needs a camera to capture human hand motions as input, which are then translated into

real-time motor commands for the robot arm and the dexterous hand. We record the observation

(RGB image, robot proprioception) and the action (6D Cartesian velocity of robot end effector,

finger joint position control target) for each frame at a rate of 30Hz. For this work, we collect

only three minutes of robot trajectories for each task on the real robot.

For data in simulation, we build the real-world task environments within the SAPIEN [156]

simulator to replicate the tables and objects used in real scenarios. It is worth noting that, for

teleoperation, there is no requirement of reward design and observation spaces as in reinforcement

learning settings, making the process of setting up new tasks in the simulator relatively simple.

We employ the same teleoperation system [111] to collect human demonstrations in the simulator.
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Figure 3.3. Data Augmentation. Our dataset augmentation encompasses four dimensions: (a)
random camera views, (b) diverse objects, (c) random object pose, (d) random light and texture.

3.3.2 Augmenting Human Demo in Simulator

Unlike real-world data collection, where we are limited to recording observations of

physical sensors, such as camera RGB images and robot proprioception, the simulation system

enables us to record the ground-truth state and contact information within the virtual environment.

This unique benefit of simulation provides a more comprehensive data format for the simulated

demonstrations compared to its real-world counterparts. Thus, we can take advantage of

demonstration replay techniques on these simulated demonstrations, which are not feasible with

real-world data.

When developing data augmentation techniques in the simulator, it is essential to keep
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in mind that the ultimate goal is to deploy the trained policy to a real robot. The augmentation

should accordingly focus on the visual and dynamical variations that are likely to be encountered

in the real world. Moreover, we aim for the manipulation policy to generalize to novel objects not

encountered during the data collection process. For example, manipulating the tetra-valve when

collecting data only on the tri-valve in Figure 3.3. Specifically, we chose to augment the lighting

conditions, camera views, and object textures to enhance the policy’s robustness against visual

variations. In addition, we modified the geometric shape of the objects and the initial poses of

the robot and objects to improve the policy’s robustness against dynamical variations as follows:

Randomize Camera Views. Precisely aligning camera views between demo collection and

final evaluation, not to mention between simulation and reality, poses a significant challenge.

To solve this problem, we randomize the camera pose during training and replay the internal

state of the simulator to render image sequences from new camera views. Unlike standard image

augmentation techniques such as cropping and shifting, our method respects the perspective

projection in a physically realistic manner.

Random Light and Texture. To facilitate sim2real transfer and improve the policy’s robustness

against visual variations, we randomize the visual properties of both lights and objects (Figure 3.3,

lower right). Light properties include directions, colors, shadow characteristics, and ambient

illumination. Object properties include specularity, roughness, metallicity, and texture. Similar

to camera view randomization, we can simply replay the simulation state to render new image

sequences.

Add Diverse Objects. In this approach, we replace the manipulated object in the original demos

with novel objects (Figure 3.3 upper right). However, directly replaying the same trajectory

would not work as the object shape is different. Instead, we perturb the action sequence from

the original demo with Gaussian noises to generate new trajectories. These trajectories provide

reasonable manipulation strategies but are slightly different from the original one. With the

highly cost-effective sampling in the simulator, we can enumerate the perturbation until it is

successful. It is important to note that this technique is feasible with real-world demonstrations.
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Randomize Object Pose. A common approach in reinforcement learning to enhance gener-

alizability involves randomizing the object pose during reset. Augmenting imitation learning

data to achieve a similar outcome, however, is less intuitive. Denote 𝑇𝐵
𝐴
∈ 𝑆𝐸 (3) as the pose

of frame 𝐵 relative to frame 𝐴. The original object pose is 𝑇𝑂𝑜𝑙𝑑

𝑊
, the newly randomized object

pose is 𝑇𝑂𝑛𝑒𝑤

𝑊
, and the original end effector pose is 𝑇𝑅𝑜𝑙𝑑

𝑊
. The objective is to handle the object

pose change 𝑇𝑂𝑛𝑒𝑤

𝑊
(𝑇𝑂𝑜𝑙𝑑

𝑊
)−1. A simple strategy can be first moving the robot end effector to a

new initial pose, 𝑇𝑅𝑛𝑒𝑤

𝑊
= 𝑇

𝑂𝑛𝑒𝑤

𝑊
(𝑇𝑂𝑜𝑙𝑑

𝑊
)−1𝑇𝑅𝑜𝑙𝑑

𝑊
. Then, the relative pose between the robot and

the object aligns with the original demonstration, enabling us to replay the same action sequence

to accomplish the task. Although this method succeeds in generating new trajectories, it offers

minimal assistance for downstream imitation learning. The new trajectory is always composed

of two segments: a computed reaching trajectory to the new end effector pose 𝑇𝑅𝑛𝑒𝑤

𝑊
, and the

original trajectory. Given that different augmented trajectories often share a significant portion

of redundancy, they fail to provide substantial new information to learning algorithms.

To address this, we propose Sensitivity-Aware Kinematics Augmentation to randomize

object poses for human demonstrations. Instead of appending a new trajectory ahead of the

original one, this method amends the action for each step in the original demo to accommodate

the change in object pose 𝑇𝑂𝑛𝑒𝑤

𝑊
(𝑇𝑂𝑜𝑙𝑑

𝑊
)−1. The method includes two steps: (i) Divide the entire

trajectory into several segments and compute the sensitivity of each segment; (ii) Modify the end

effector pose trajectory based on the sensitivity to compute the new action.

(i) Sensitivity Analysis for Trajectory Segments. Sensitivity pertains to the robustness

against action noise. For example, a pre-grasp state, when the hand is close to the object, has

higher sensitivity compared to a state where the hand is far away. The critical insight is that it

is simpler to modify the action of those states with lower sensitivity to handle the object pose

variation Δ𝑇 = 𝑇
𝑂𝑛𝑒𝑤

𝑊
(𝑇𝑂𝑜𝑙𝑑

𝑊
)−1. The robustness (the multiplicative inverse of sensitivity) of a
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trajectory segment 𝜓 can be mathematically defined as follows:

𝜓𝑠𝑒𝑔 = exp(max𝛿𝑎) s.t. eval(𝜏′) = 1

𝜏′ = {𝑎1, 𝑎2, ..., 𝑎
′
𝑛, ..., 𝑎

′
𝑛+𝐾−1, ..., 𝑎𝑁 }

∀𝑖 ∈ 𝑠𝑒𝑔 𝑎′𝑖 = 𝑎𝑖 + 𝛿𝑎𝜖𝑖, 𝜖𝑖 ∼ N(0, 1)

(3.1)

In this equation, we divide the original action trajectory 𝜏 with length 𝑁 into 𝑀 segments, each

segment with size 𝐾 = 𝑁/𝑀. Then we perturb the action within a segment 𝑠𝑒𝑔 by adding

Gaussian noise of scale 𝛿𝑎 to the original action {𝑎𝑚, 𝑎𝑛+1, ..., 𝑎𝑛+𝑘−1} while keeping all the

actions outside of this segment unchanged to generate perturbed trajectory 𝜏′. We assume the

action space is already normalized to [−1, 1] and eval is a binary function indicating whether an

action trajectory can successfully solve the task. Intuitively, a demonstration segment is more

sensitive if a smaller perturbation can cause it to fail. This sensitivity guides us on how to adjust

the action to handle a new object pose. In practice, we incrementally escalate the noise scale 𝛿𝑎

applied to the original action trajectory until the task fails to determine max 𝛿𝑎

(ii) New End Effector Pose Trajectory. To accommodate the new object pose, the total

pose change of the end effector should be the same as the change in the object pose Δ𝑇 . Each

action contributes a small part to this change. We distribute this ”task” to each step based on

sensitivity:

𝜓𝑠𝑒𝑔 𝑗 =
𝜓𝑠𝑒𝑔 𝑗∑𝑀
𝑗=1 𝜓𝑠𝑒𝑔 𝑗

, ∀𝑠𝑒𝑔 𝑗

Δ𝑇𝑗 = 𝑒𝑥𝑝(𝜓𝑠𝑒𝑔 𝑗 log(Δ𝑇)/𝐾)

𝑎𝑛𝑒𝑤𝑖 = 𝑎𝑖 𝑓𝑖 (Δ𝑇𝑗 )

(3.2)

In this equation, 𝜓𝑠𝑒𝑔 𝑗 is the normalized robustness, Δ𝑇𝑗 represents the pose modification for each

step, with all states in the same segment being responsible for the same amount of modification

”task” to compute new action 𝑎𝑛𝑒𝑤
𝑖

. 𝑓𝑖 is a similarity transformation in 𝑆𝐸 (3) space that converts
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the motion from the world frame to the current end effector frame. Intuitively, segments with

higher robustness are tasked with more significant changes.

Please note that all the actions discussed above pertain solely to the 6D delta pose of

the end effector and do not include the finger motion of the dexterous hand. For tasks such as

pick-and-place or pouring, which also involve a target pose (e.g., the plate pose in pick-and-place

or the bowl pose in pouring), we can apply the same augmentation strategy to the target pose (as

illustrated in Level 3 of Fig. 3.2).

3.3.3 Learning Sim2Real Policy

Given an augmented simulation dataset, we train a visual manipulation policy that takes

images and robot proprioception as input to predict the robot’s actions. In human teleoperation

demonstrations, robot movements are neither Moravian nor temporally correlated. To deal with

this issue, our policy is trained to predict action chunks rather than per-step actions, using Action

Chunking with Transformers(ACT) [173]. This approach produces smoother trajectories and

reduces compounding errors.

Despite our data augmentation’s capacity to accommodate diverse visual and dynamic

conditions, a sim2real gap remains for the robot controller. This gap becomes more challenging

in our tasks, where the end effector is a high-DoF multi-finger dexterous hand. This controller

gap can significantly impact non-quasi-static tasks like rotating a valve, as shown in the second

row of Figure 3.1. To close this gap, we fine-tune our network using a small set of real-world

demonstrations (3-minute trajectory). However, due to the discrepancies in data collection

patterns of human demos between simulation and reality, direct fine-tuning on real data risks

overfitting. To ensure a smoother sim2real transfer, we employ several techniques, which will be

discussed subsequently.

Automatic Curriculum Learning. Curriculum learning and data augmentation techniques are

often used together to provide a smoother training process. Following the spirit of curriculum

design in previous reinforcement learning work [1, 48], we devise a curriculum learning strategy
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applicable to our imitation learning context. Prior to training, we group the augmentations in

Section 3.3.2 into four levels of increasing complexity, as depicted in Figure 3.2. We begin

training from the simplest level, 𝐿 = 0, signifying no augmentation, and then evaluate the task

success rate after several steps of training. The evaluation difficulty aligns with the current level

of 𝐿. When the success rate surpasses a pre-defined threshold, we advance to the next level,

which brings greater augmentation and harder evaluation. If the success rate fails to reach the

threshold, we create additional augmented training data and stays at the current level. We continue

this iterative process until all levels are completed. To prevent endless training, we introduce a

fail-safe 𝑁𝑚𝑎𝑥: if the policy repeatedly fails during evaluation for 𝑁𝑚𝑎𝑥 times, we also progress

to the next level. This curriculum learning approach significantly depends on data augmentation

techniques to generate training data dynamically with suitable levels of randomization. This

concept stands in contrast to typical supervised learning scenarios, where data is pre-established

prior to training. This on-demand data generation and customization highlights the advantage of

simulation data over real-world demonstrations.

Action Aggregation for Small Motion. Human demonstrations often include noise, especially

during operations involving a dexterous hand. For example, minor shaking and unintentional

halting can occur within the demonstration trajectory, potentially undermining the training

process. To solve this, we aggregate steps characterized by small motions, merging these actions

into a single action. In practice, we set thresholds for both end-effector and finger motions to

discern whether a given motion qualifies as small. Through the aggregation process, we can

eliminate small operational noises from human actions, enabling the imitation learning policy to

extract meaningful information from the state-action trajectory.

3.4 Experiment Setups

Our experimental design aims to address the following key queries:

(i) How does simulation-based data augmentation compare to learning from real demon-
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Table 3.1. Main Comparison on Real Robot for Pick and Place Task. In our study, we
compare the performance across four distinct tasks: (a) Pick and Place Bottle, and (b) Pick and
Place Can (exploring different grasping approaches). We perform evaluations of the models in
four levels of real-world scenarios. These levels included: (a) Level 1: In Domain, (b) Level 2:
Out of Position, (c) Level 3: Random Light, and (d) Level 4: Out of Position and Random Light.

Pick and Place
Mustard Bottle
(Single Object)

Pick and Place
Tomato Soup Can

(Single Object)
Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4

R3M 2 / 20 0 / 20 0 / 20 0 / 20 7 / 20 3 / 20 4 / 20 0 / 20
PVR 4 / 20 0 / 20 0 / 20 0 / 20 4 / 20 0 / 20 3 / 20 0 / 20
MVP 2 / 20 0 / 20 3 / 20 1 / 20 7 / 20 2 / 20 4 / 20 2 / 20
Ours 7 / 20 6 / 20 8 / 20 5 / 20 14 / 20 11 / 20 13 / 20 13 / 20

Table 3.2. Main Comparison on Real Robot for Rotating and Pouring Tasks. In our study,
we compare the performance across four distinct tasks: (a) Pouring (grasping a bottle and pouring
its contents into a bowl), and (b) Rotating the tri-valve. We perform evaluations of the models in
four levels of real-world scenarios. These levels included: (a) Level 1: In Domain, (b) Level 2:
Out of Position, (c) Level 3: Random Light, and (d) Level 4: Out of Position and Random Light.

Pouring Rotating
Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4

R3M 3 / 20 0 / 20 0 / 20 0 / 20 11 / 20 2 / 20 6 / 20 2 / 20
PVR 2 / 20 0 / 20 1 / 20 0 / 20 8 / 20 3 / 20 5 / 20 1 / 20
MVP 1 / 20 1 / 20 3 / 20 2 / 20 8 / 20 4 / 20 10 / 20 6 / 20
Ours 9 / 20 4 / 20 10 / 20 7 / 20 15 / 20 10 / 20 17 / 20 13 / 20

strations in terms of both robustness and generalizability?

(ii) How does our automatic curriculum learning contribute to improved policy learning?

(iii) What is the ideal ratio between simulated and real data to train an effective policy for

a real-world robot?

3.4.1 Dexterous Manipulation Tasks

We have designed three types of manipulation tasks in both real-world and simulated

environments, including two quasi-static tasks (pick and place, pour) and one non-quasi-static

task (rotate). For the experiments, we utilize an Allegro hand attached to an XArm6. The action

space comprises a 6-dim delta end effector pose of the robot arm and a 16-dim finger joint
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position of the dexterous hand, with PD control employed for both arm and hand.

Pick and Place. This task requires the robot to lift an object from the table and position

it on a plate (first row of Figure 3.1). Success is achieved when the object is properly placed

onto the red plate. We select two objects during data collection and testing on multiple different

objects.

Rotate. This task requires the robot to rotate a valve on the table (second row of Figure 3.1).

The valve is constructed with a fixed base and a moving valve geometry, connected via a revolute

joint. The task is successful when the robot rotates the valve to 720 degrees. We use a tri-valve

in data collection and test on tetra-valves and penta-valves.

Pour. This task requires the robot to pour small boxes from a bottle into a bowl (third

row of Figure 3.1). It involves three steps: (i) Lift the bottle; (ii) Move it close to the bowl; (iii)

Rotate the bottle to dispense the small boxes into the bowl. Success is achieved when all four

boxes have been poured into the bowl.

For each task, we have designed levels for both data augmentation ( Section 3.3.2) and

curriculum learning (Section 3.3.3).

3.4.2 Baselines

Our approach can be interpreted as an initial pretraining phase using augmented simulation

demonstrations followed by fine-tuning with a limited set of real data. It is natural to compare

our method with other pre-training models for robotic manipulation. We have chosen three

representative vision pre-training models. For all of them, we utilize the pre-trained model

provided by the author and then fine-tune it using our real-world demonstration dataset.

PVR is built on MoCo-v2 [28], using a ResNet50 backbone [52] trained on ImageNet [122].

MVP employs self-supervised learning from a Masked Autoencoder [50] to train visual represen-

tation on individual frames from an extensive human interaction dataset compiled from multiple

existing datasets. MVP integrates a Vision Transformer [39] backbone that segments frames into

16x16 patches.
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Table 3.3. Ablation on Data Augmentation. We evaluated the benefits of data augmentation
using auto-curriculum learning across various levels of difficulty. ”Original” represents the
training distribution, ”Light” introduces random light noise, and ”Position” adds position
augmentation during evaluation. We conducted 200 simulations and 20 real-world tests to assess
performance in both simulated and practical settings.

Test in Sim Test in Real

Levels / Demos L1 L2 L3 L4 Original Light Position Position
+ Light

[1] / 100 78% 0% 0% 0% 20% 5% 0% 0%
[1, 2] / 330 73% 75% 10.5% 7.5% 15% 25% 0% 0%

[1,2,3] / 550 58% 66.5% 43.5% 21% 15% 15% 5% 15%
[1,2,3,4] / 810 92.5% 81% 63% 49% 35% 30% 30% 40%

R3M proposes a pre-training approach where a ResNet50 backbone is trained using a mix of

time-contrastive learning, video-language alignment, and L1 regularization. This model is trained

on a large-scale human interaction videos dataset from Ego4D [46].

3.5 Results

3.5.1 Main Comparison

Augmented simulation data markedly boosts real-world dexterous manipulation.

As depicted in Table 3.1 and Table 3.2, our methodology outperforms the baselines trained

exclusively on real data in the in-domain setting (Level 1), exhibiting an average performance

boost of 31.67% averaged on all tasks. Additionally, in other settings like random lighting (Level

2), out of position (Level 3), combined random lighting and out of position (Level 3) R3M, and

MVP, the baselines exhibit a significant drop in success rates. In contrast, our method shows

resilience to these variations, underscoring the efficacy of simulation data augmentation. Not

only does this approach bridge the sim2real gap and amplify performance in in-domain real-world

tasks, but it also significantly improves manipulations in out-of-domain real-world scenarios.

By integrating augmentation for both visual and dynamic variations, our method successfully

navigates challenges and delivers impressive results.
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Figure 3.4. Generalization to Novel Objects for Pick and Place. We compare our approach
with the baselines in scenarios involving novel objects, random light disturbances, and random
object positions.

3.5.2 Generalization to Novel Objects

By incorporating data augmentation techniques, such as including diverse objects in

simulation, our model can effectively manipulate unfamiliar objects, even when transitioning to a

real-world context. As shown in Figure 3.4 and 3.5, the baseline methods grapple with more

complex real-world situations. In the most challenging scenario, rotating novel objects under

random light conditions and new object positions, only one baseline method manages to solve it

by chance with a 2.5% success rate. In contrast, our method still accomplishes the task with a

success rate of 30%.
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Figure 3.5. Generalization to Novel Objects for Rotating. The experimental setup for this task
mirrors that of the ”Generalization to Novel Objects for Pick and Place” experiments.

3.5.3 Ablation on Data Augmentation

To evaluate the effectiveness of the data augmentation techniques, we perform an ablation

study where our policy is trained with four levels of augmentation. As depicted in Table 3.3,

the policy performs better in both the simulation and real-world settings with increased data

augmentation, and the policy trained on all four levels excels in all metrics. Interestingly,

the policy manages to solve simpler settings more effectively even in simulation when more

randomness is introduced in the training data. These experiments underscore the importance of

simulator-based data augmentation.
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Table 3.4. Ablation on Auto-Curriculum Learning. We compare three different settings:
(1) Auto Curriculum Learning based on the success rate. (2) Auto Curriculum Learning based
on Data Generation Rate(the ratio of successfully generated trajectories to the total number of
attempts). (3) Automatic Domain Randomization only based on Data Generation Rate.

Test in Sim Test in Real

Method Level 1 Level 2 Level 3 Level 4 Out of Position + Random Light
ACL (Task) 80% 61% 43.5% 57% 35%
ACL (Data) 19.5% 30% 75% 66% 20%

ACL wo CL(Data) 20% 22% 32.5% 15% 5%

3.5.4 Ablation on Auto-Curriculum Learning

In this experiment, we evaluate the policy’s effectiveness by testing it 200 times in

simulations and conducting 20 real-world tests. As shown in Table 3.4, employing curriculum

learning with auto-domain randomization solely based on the data generation rate yields inferior

results compared to the approach based on model performance.
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Chapter 4

Generalizable Dexterous Manipulation
from Visual Sim2Real

In this chapter, we introduce a sophisticated sim-to-real framework designed to enhance

the capabilities of robotic systems in performing dexterous manipulation with a high degree

of generalization to new objects within the same category. Central to our framework is the

innovative use of point cloud inputs and dexterous robotic hands to train the manipulation policy.

This approach is augmented by two novel techniques aimed at bolstering the learning process

and ensuring effective sim-to-real transfer.

Firstly, we employ imagined hand point clouds as augmented inputs, enriching the training

data and providing a more comprehensive learning experience. Secondly, we have developed

novel contact-based rewards that specifically encourage successful interaction between the robot’s

dexterous hands and the objects being manipulated. These rewards are designed to enhance

the tactile feedback essential for delicate manipulation tasks, thereby improving the robot’s

performance in real-world scenarios.

We conduct a thorough empirical evaluation of our method using the Allegro Hand,

a sophisticated robotic hand designed for complex manipulation tasks. Our tests involve

grasping novel objects in both simulated environments and real-world settings, demonstrating

the framework’s robustness and versatility. To the best of our knowledge, this chapter describes

the first policy learning-based framework that achieves such notable generalization results with
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dexterous hands.

Through detailed analysis and testing, this chapter highlights the potential of our sim-

to-real framework to significantly advance the field of robotic dexterous manipulation. The

techniques developed here pave the way for more adaptive, efficient, and skilled robotic systems

capable of handling a diverse range of manipulation tasks in real-world applications.

Grasp 
Novel 
Object

Door
Opening 

Grasp 
Known 
Object

Door
Opening 

Figure 4.1. DexPoint Overview. We introduce a reinforcement learning method that takes the
point cloud as input for two manipulation tasks: grasping and door opening. By introducing
several techniques in the policy learning process, our point cloud-based policy trained purely in
simulation can successfully generalize to novel objects and transfer to real world without any
real-world data.

4.1 Introduction

Dexterous manipulation has remained to be one of the most challenging problems in

robotics [2]. While multi-finger hands create ample opportunities for robots to flexibly manipulate

objects in our daily life, the nature of the high degree of freedom and high-dimensional action
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space creates significant optimization challenges for both search-based planning algorithms

and policy learning algorithms. Recent efforts using model-free Reinforcement Learning have

achieved encouraging results on complex manipulation tasks [2, 175]. However, it still faces

many challenges in generalizing to diverse objects and being deployed on multi-finger hands in

the real world.

For example, the dexterous manipulation framework proposed by OpenAI et al. [2] can

solve in-hand manipulation of Rubik’s Cube with RL and transfer to the real robot hand. However,

the policy is only trained with one particular object and it is not able to generalize to diverse

objects. To achieve cross-object generalization, recent efforts proposed to learn robust 3D point

cloud representations [27, 155, 56, 93] with diverse objects using RL in simulation. While point

cloud input has also been shown easier for Sim2Real transfer [172] given its focus on geometry

instead of texture, the assumption on the access of complete object point clouds and ground

truth states limit the transferability of above methods to the real robot deployment. Among

these works, Chen et al. [27] showed that cross-object generalization is achievable in simulation

without knowing the shape of the object to grasp, but its requirement of real-time access to

the object states is itself a very challenging robot perception problem, especially under large

occlusions during hand object interaction.

In this dissertation, we provide a sim-to-real reinforcement learning framework for

generalizable dexterous manipulation, using two tasks with the Allegro Hand[119]: (i) object

grasping where the test objects have not been seen during training; (ii) door opening where the

test doors have levers of novel shape that has not been used in training. The tasks are visualized

in Figure 4.1.

We perform our studies by training a point cloud-based reinforcement learning policy in

the grasping and door-opening task. With this approach, we list the three key discoveries of our

framework for learning generalizable point cloud policy below:

(i) We justified that it is possible to achieve direct sim-to-real transfer for a dexterous

manipulation policy with category-level generalizability when we use point cloud as the data
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representation.

(ii) Raw point clouds captured by sensors often come with heavy occlusions and noise:

only a very small portion of the points from the observation represent the robot fingers. We

propose to imagine the complete robot finger point clouds according to the robot kinematic model

and use them to augment the occluded real point cloud observations. We find that explicitly

augmenting the input by imagined points can help achieve better robustness and sample efficiency

for reinforcement learning.

(iii) Different from existing works that add contact information to the input of RL, we

design a novel reward using contact pair information without adding contact to the observation.

This practice remarkably improves sample efficiency as well as learning stability and avoids the

dependency on contact sensors that are often unavailable for real robot models.

4.2 Approach

Our objective is to train a generalizable point cloud policy on a dexterous robot hand-arm

system that is able to grasp a wide range of objects or open a closed door with RL. We aims at

Sim-to-Real transfer without any real-world training or data. During testing, the robot can only

access the single-viewed point cloud and the robot’s proprioception data. As is discussed before,

training such a policy comes with numerous technical challenges, including reward design and

imperfect point cloud information. In this work, we propose a novel reward design technique

based on contact and imagined point cloud model to deal with these challenges.

Preliminaries: We model the dexterous manipulation problem as a Partially Observable

Markov Decision Process (POMDP) M = (O,S,A,R,T ,U). Here, O is the observation space,

S is the underlying state space, A is the action space, R is the reward function, T is the transition

dynamics, and U generates agent’s observation. At timestep 𝑡, the environment is at the state

𝑠𝑡 ∈ S. The agent observes 𝑜𝑡 ∼ U(·|𝑠𝑡) ∈ O. The agent takes action 𝑎𝑡 and receives reward

𝑟𝑡 = R(𝑠𝑡 , 𝑎𝑡). The environment state at timestep 𝑡 + 1 then transit to 𝑠𝑡+1 ∼ T (𝑠𝑡 , 𝑎𝑡). The
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Figure 4.2. Real-experiment Setup. We use an Allegro Hand attached to an XArm6 and a
RealSense D435 camera facing forward the robot.

objective of the agent is to maximize the return
∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡 , where 𝛾 is a discount factor.

System Setup: Many previous works on learning-based dexterous manipulation attach

the hand to a fixed platform to simplify the experiment environment in the real world. In this

work, we create a more flexible and powerful dexterous manipulation system that includes both

the robotic hand and the arm (Figure 4.2). Concretely, we attach the Allegro Hand to an XArm6

robot. Allegro Hand is a 16-DoF anthropomorphic hand with four fingers and XArm6 is a 6-DoF

robot arm. We place a RealSense D435 camera at the right front of the robot to capture the point

cloud. This setup brings additional challenges to RL exploration and Sim2Real deployment.

We use SAPIEN [156] platform which uses a full-physics simulator to build the environment of

the whole system. The simulation time step is 0.005𝑠 to ensure stable contact simulation. Each

control step lasts for 0.05𝑠.

Tasks and Objects: We expect our robot to perform the grasping task over a diverse set

of objects and to open a locked door by rotating the lever. In the grasping task, we first select a
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random object from an object dataset and place it on the table. The robot is then required to move

it to a target pose. Moreover, the robot should be able to generalize to different initial states, so

we randomize both the initial pose and the goal pose for each trial. In simulation experiments,

we use bottles and cans from both ShapeNet [19] dataset and YCB [17] dataset. In real-world

experiments, we use novel unseen objects to test the policy. In the door opening task, the robot

hand is required first to rotate the lever to unlock the door latch and then pull the lever in a circular

motion. We use three doors to test the policies both in the simulation and the real world, only

one is used for training and the other two are unseen doors. We also randomize the initial pose

for each trial.

Observation Space: The observation contains both visual and proprioceptive information

with four modalities: (1) Observed point cloud provided by the camera; (2) Proprioception signals

of the robot including joint positions and end-effector position; (3) Imagined hand point cloud

proposed in Sec. 4.2.2; (4) Object goal position provided in each trial. All the information is

accessible on the real robot. The dimension of each observation modality is shown in Figure 4.3.

Action Space: The action is responsible for controlling both the 6-DOF robot arm and

the 16-DOF hand. It has 6 + 16 = 22 dimension in total. The robot arm is parametrized by the

6D translation and rotation of the end-effector relative to a reference pose. We use the damped

least square inverse kinematics solver with a damping constant 𝜆 = 0.05 to compute the joint

motion. Each finger joint of the Allegro hand is controlled by a position controller. Both robot

arm and hand are controlled by PD controllers.

Network Architecture: The network architecture is visualized in Figure 4.3,

4.2.1 Reward Design with Oracle Contact

Since we aim to solve the dexterous manipulation problem with pure RL, the reward

design is central to the method. We need a good reward function to ensure proper interaction

between the robotic hand and the object. The whole interaction process consists of two phases.

The first phase is to simply reach the object. The second phase is to grasp the object and move it
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to the target, which is more challenging. For the first phase, we encourage reaching the following

reaching rewards:

𝑟reach =
∑︁

finger

1
𝜖𝑟 + 𝑑 (xfinger, xobj)

. (4.1)

Here, xfinger and xobj are the Cartesian position of each fingertip and the target object. Note

that xobj is available when we perform training in simulation. However, using this reward alone

cannot ensure proper contact for grasping. For example, the robot can touch the object with the

back of the hand rather than the palm and then get stuck in this local minimum. Therefore, we

introduce a novel contact reward to guarantee meaningful contact behavior:

𝑟contact = IsContact(thumb, object) AND ©­«
∑︁

finger
IsContact(finger, object) ≥ 2ª®¬ . (4.2)

This contact reward function outputs a boolean value in {0, 1}. It outputs 1 only if the thumb is in

contact with the object and there is more than one finger in contact with the object. Intuitively, it

encourages the robot to cage the object within its fingers. In this case, the robot can quickly find

out stable grasping and lift the object to the target location. The lifting behavior is encouraged by

𝑟lift = 𝑟contactLift(xobj, xtarget). (4.3)

The Lift function is basically in the form of Equation 4.1 and the main difference is that it will

return a large reward value upon task completion. The overall reward function is a weighted

combination of the terms above plus a control penalty:

R = 𝑤reach𝑟reach + 𝑤contact𝑟contact + 𝑤lift𝑟lift + 𝑤penalty𝑟penalty. (4.4)
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Figure 4.3. Network Architecture. Our feature extractor takes the observed point cloud,
imagined point cloud, robot proprioception, and goal pose as input to output a feature embedding.
Both actor and critic take the same feature to predict action and value. The red point represented
the imaged point cloud of the robot hand. Note that our network does not require RGB information.

4.2.2 Imagined Hand Point Cloud

The usage of point cloud comes with two challenges. The first challenge is occlusion,

which may occur to both the object under manipulation and the hand itself. When the robot

hand is interacting with an object, the fingers may be occluded by the object. Since we do not

assume tactile sensors in this work, this occlusion problem can be serious. The second challenge

is the low point cloud resolution during RL training, where we can only use a limited number of

points due to the memory limit. In this case, the number of points from the hand finger may not

be adequate to precisely capture the spatial relationship between the robot and the object. We

propose a simple yet effective method to handle both issues in a unified manner. Our idea is to

use an imagined hand point cloud in the observation to help the robot to see the interaction.

We provide one example in Figure 4.3. Black points indicate the point cloud captured

by the camera, in which some important details of fingers are missing. These missing details

provide crucial information about the interaction. Though such interaction information can also

be inferred by combining the information from both the proprioception and visual input, we find

that the best way is to synthesize these missing details. Concretely, we can compute the pose
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Figure 4.4. Training Curves. The first two plots show the single-object and multi-object
training curve of (a) bottle category and (b) can category. The right three plots show the ablation
results on the (c) grasping bottle (d) grasping can and (e) door opening. The x-axis is the training
iterations and the y-axis is the normalized episodic return. The shaded area indicates standard
error and the performance is evaluated on five random seeds.

for each finger link via forward kinematics given the joint position from the robot joint encoder

and the robot kinematics model. Then, we synthesize the imagined point cloud (blue points in

Figure 4.3) by sampling the points from the mesh of each finger link. This process is possible in

both simulation and the real world.

4.2.3 Training

We adopt Proximal Policy Optimization (PPO) [126] to train the agent in simulation,

and then deploy to real without real-world fine-tuning. The network architecture is illustrated in

Figure 4.3. Both value and policy networks share the same visual feature extraction backbone.

We concatenate the observed point cloud with the imagined hand point cloud together as the

input to the feature extractor. We also attach a one-hot encoding to each point which indicates

whether it is observed or an imagined point.

4.3 Experiments

4.3.1 Experimental Setup

Point Cloud Pre-processing: To enable smooth transfer from simulation to real-world,

we apply the same data preprocessing procedure to the point cloud captured by the camera. It

involves four steps: (i) Crop the point cloud to the work region with a manually-defined bounding-

box; (ii) Down-sample the point cloud uniformly to 512 points; (iii) Add a distance-dependent
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Table 4.1. Experiment on Multi-object Training. We evaluate the policy trained with single
and multiple objects on the bottle (upper two rows) and can (bottom two rows) categories with
point cloud input. We test them on both known or novel objects. The success rate is reported on
5 seeds.

Settings
Bottle Can

Known Obj. Novel Obj. Known Obj. Novel Obj.
Single Obj. Training 0.81 ± 0.09 0.60 ± 0.06 0.96 ± 0.04 0.63 ± 0.18
Multi Obj. Training 0.83 ± 0.16 0.81 ± 0.15 0.93 ± 0.07 0.68 ± 0.09

Gaussian noise to the simulated point cloud to improve the sim2real robustness; (iv) Transform

point cloud from the camera frame to the robot base frame using camera pose. In simulation,

we use the ground-truth camera pose with multiplicative noise for frame transformation. In the

real-world, we perform hand-eye calibration to get the camera extrinsic parameters.

Evaluation Criterion: We evaluate the performance of a policy by its success rate. For

grasping tasks, a task is considered a success if 𝑑𝑜𝑡 < 0.05𝑚 in simulation, where 𝑑 is the distance

between object position and goal position. In real world, the task is considered as success if the

XY position of the object is within 5cm from the target position and the height of the object is at

least 15cm from table top. For the door opening, the task is considered as success if the door is

opened to at least around 45 degrees.

EigenGrasp Baseline: We choose the EigenGrasp [33] as the grasp representation.

Given an object mesh model, we use the GraspIt [89] to search valid grasp for Allegro Hand.

Then, we use the RRTConnect [67] motion planner implemented in OMPL [143] to plan a joint

trajectory to the pre-grasp pose and then plan a screw motion from pre-grasp pose to the grasp

pose. Finally, we close all fingers based on searched grasp pose and lift the object to the target.

Note that different from our approach, the baseline method requires complete object model to

search for grasps and ground-truth object pose to align the grasp pose in the robot frame.

To evaluate the performance of baseline on novel objects, we first build a grasp database on

ShapeNet bottle and can categories using GraspIt. Given the sensory data of a new object, we

search for the most similar objects in the dataset and use the query grasps for the novel object.
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Here we compare the performance of our method with baselines in the real-world.

Training: We train RL in two settings for grasping: (i) training on a single object (ii)

training on multiple objects jointly. For the single object grasping, we perform experiments on

both “tomato soup can” and “mustard bottle” from YCB. For the multi-object training, we choose

10 objects from the can or bottle categories of ShapetNet. We randomly choose one object to

train for each episode in the multi-object training. Here, we use can and bottle as experimental

subjects since they represent two different basic grasping patterns [96] for anthropomorphic hand:

precision grasp and power grasp. For door opening, we only train the policy on the door with

fixed lever geometry.

4.3.2 Comparison of Single-object and Multi-object Training

We plot the training curve of RL in Figure 4.4 (a) and (b). In general, our method can

learn to grasp and move the object to the goal pose within 600 iterations, where each iteration

contains 20K environment steps. Then we evaluate the policy trained on both known and novel

objects, and the results are shown in Table 4.1. We run 100 trials to compute the average success

rate. On grasping known objects, we find that agent trained on single-object outperforms the

agent trained on multi-object by a small margin, for both learning efficiency and final success

rate. However, agent trained on multi-objects does much better at grasping novel objects. Our

results suggest that using multiple object during training is important, and is of great importance

for novel object generalization.

4.3.3 Ablation Results in Simulation

We ablate two key innovations of the work: the reward design with oracle contact and

the imaged hand point cloud. We perform experiments on four different variants: (i) without

imagined point cloud; (ii) without contact-based reward design; (iii) without both imagined point

cloud and contact-based reward design; (iv) our standard approach with both techniques. Note

that the variant (iii) is an approximation of [27] in our environments and tasks. We compare both
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Figure 4.5. Real-experiment: We evaluate our point cloud policy on various unseen objects.

Table 4.2. Ablation Study: We investigate the influence of contact-based reward design and
imaged point cloud. We evaluate the success rate on both known and novel objects under four
settings: (i) without imaged point cloud; (ii) without contact reward; (iii) without both; and (iv)
with both.

Settings Bottle Can Door
Known Obj. Novel Obj. Known Obj. Novel Obj. Known Obj. Novel Obj

w/o Imagined PC. 0.60 ± 0.46 0.56 ± 0.51 0.91 ± 0.17 0.63 ± 0.07 0.14 ± 0.28 0.11 ± 0.27
w/o Contact Rew. 0.00 ± 0.00 0.00 ± 0.00 0.06 ± 0.08 0.03 ± 0.06 0.21 ± 0.26 0.20 ± 0.25
w/o Both 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Ours 0.83 ± 0.16 0.81 ± 0.15 0.93 ± 0.07 0.68 ± 0.09 0.92 ± 0.06 0.79 ± 0.11

the learning curve and the evaluation success rate of these four variants. For the grasping task,

Figure 4.4 (c) and (d) show the results on bottle and can categories, and Table 4.2 shows the

success rate. Our findings can be summarized as follows.

First, we find that contact reward information is of vital importance for training the point

cloud RL policy on the multi-finger robot hand. Without using contact reward, the agent can

hardly learn anything (red and green curve in the figure) and get nearly zero success rate during

evaluation for both bottle and can categories. By encouraging contact between fingers and objects,

the RL agent can avoid getting stuck in local minimums and learn meaningful manipulation

behavior.

Second, the imagined point cloud can also improve the training and test performance for

both categories, though it is not so important as the contact reward. As is shown in the learning

curves of Figure 4.4 (c) and (d), the policy utilizing the imagined point cloud as input can learn
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Table 4.3. Real-World Grasping Experiment. This experiment consists of 3 categories, which
incorporate 26 objects: 10 bottles, 6 cans, and 10 other objects in multiple mixed categories.

Method Bottle Can Mixed Category
EigenGrasp Oracle 0.66 0.45 𝑁/𝐴
EigenGrasp 0.50 0.41 𝑁/𝐴
Single Obj. Train 0.75 ± 0.06 0.75 ± 0.08 𝑁/𝐴
Multi Obj. Train 0.87 ± 0.03 0.83 ± 0.13 0.73 ± 0.12

Table 4.4. Real-World Door Opening Experiment. This experiment consists of 3 different
doors, the first one on the left is used for training and the other two are for testing.

Settings Original Door Novel Door 1 Novel Door 2
Single Door Train 0.72 ± 0.07 0.60 ± 0.03 0.67 ± 0.01

faster in the early stage of the training and show much smaller variances. An interesting fact is

that the imagined point cloud is more beneficial for the bottle category than the can category.

One possible reason is that grasping a bottle requires multi-finger coordination to perform a

power grasp. Such coordination is highly dependent on the detailed finger information provided

by the imagined point cloud. The imagined point cloud can help the agent to better see the fingers

even if they are occluded by the object, e.g., fingers behind the object.

The experiments on the Door Opening task also support these findings. As shown

in Figure 4.4 (e), the policy trained with contact-based reward and imaged hand point cloud

outperforms other ablation methods, which also demonstrates the effectiveness of our two key

designs. Compared with the grasping experiments, we can observe larger variations during policy

training. One possible reason is that door opening suffers from heavier occlusion than grasping

when the door lever is grasped by the robot hand, which influences the temporal consistency of

the PointNet feature.

4.3.4 Real-World Evaluation

We perform sim2real experiments to evaluate the performance of our method in the real

world. As is shown in Figure 4.2, we attached an Allegro hand onto a XArm-6 robot arm to grasp

the object on the front table. We apply the same data-preprocessing steps for both simulated
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Figure 4.6. Objects Sets for Real World Experiments. The objects within each category for
real-world evaluation. The bottle, can and mixed objects are used for grasping while the doors
are used for door opening.

environment and real-world as mentioned in Sec.4.3.1.

The task execution sequence is visualized on the bottom row of Figure 4.1. Both Single

Obj. Training and Multi Obj. Training will be evaluated in the corresponding category, while

policies training with multiple objects even evaluated in the Mixed category with unseen objects.

We run 10 independent trials seeds for each object-policy pair.

The real-world evaluation results are shown in Table 4.3 and Table 4.4. The policy trained

in the simulator with point cloud input can directly transfer to the real-world without fine-tuning.

For both two tasks, our policy can even deploy on objects that have never been seen during the

training. Moreover, We find that for grasping, training on multiple objects can ensure better
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performance than single-object training. Compared with the EigenGrasp baseline shown in

Table 4.3, our policies trained on both single-object and multi-object performs better, even if the

EigenGrasp baseline use the object model information. Since EigenGrasp + motion planning is a

open-loop manipulation policy, small error in object and scene modeling, e.g. initial object pose

or object geometry, can lead to a failure in final grasp results. In contrast, our methods works in a

closed-loop fashion with point cloud observation, which does not require privilege knowledge

about the object.

4.4 Simulation Environment Details

This section details the simulation environment and training procedures used in our

experiments.

4.4.1 Object Set.

For single-object experiments, we utilize object models from the YCB dataset [17]. For

multi-object experiments, we curate a dataset of 50 objects from the ShapeNet dataset [19], using

10 for training and 40 for testing in simulation. The test objects used in real-world experiments

are visualized in Figure 4.6.

Object Pre-processing. To ensure compatibility with the simulation environment and

physical plausibility, we preprocess all object models using the following steps:

Scaling: ShapeNet objects lack real-world scale information. We address this by scaling

each object based on its bounding box diagonal length, ensuring consistency within object

categories.

Convex Decomposition: We decompose both YCB and ShapeNet objects into convex

parts using V-HACD [81] with default parameters. This facilitates stable and efficient physical

simulation. Objects with more than 40 convex parts are excluded.
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4.4.2 Reward.

As described in Section 4.2.1, the reward function for our manipulation task comprises

four components:

R = 𝑤reach𝑟reach + 𝑤contact𝑟contact + 𝑤lift𝑟lift + 𝑤penalty𝑟penalty. (4.5)

Reach Reward (𝑟reach): Encourages the robot hand to approach both the object and the

target location.

Contact Reward (𝑟contact): Rewards establishing and maintaining stable contact with the

object.

Lift Reward (𝑟lift): Rewards lifting the object, calculated as the difference between

the object’s current and initial height (ℎcurrent − ℎinit). This reward is active only when the

contact reward is non-zero, ensuring proper grasping before lifting. Action Penalty (𝑟penalty):

Discourages large control actions and promotes smooth movements (−||𝑎 | |22).

4.5 Reinforcement Learning Details

This section details the reinforcement learning algorithm and network architecture used

in our experiments.

4.5.1 RL Training.

We utilize Proximal Policy Optimization (PPO) for training our point cloud-based

manipulation policy. Table 4.5 summarizes the PPO hyperparameters. We use an on-policy

training setup for all experiments except for the policy distillation experiments.

4.5.2 Network Architecture

Our RL agent employs a PointNet-based architecture for processing point cloud inputs.

Figure 4.3 illustrates the network structure. We concatenate visual features extracted by PointNet
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Table 4.5. DexPoint Hyper-parameters of PPO reinforcement learning training.

Parameter Mini-Batch Size Learning Rate Clip Range Horizon Epoch Steps
Value 500 3e-4 0.8 200 10 10

Table 4.6. DexPoint Network Architecture of PPO Reinforcement Learning Training.

Module Architecture Output Dim

Visual Feature Extractor PointNet Local Channel: (64, 128, 256) 256
PointNet Global Channel: (256, ) 256

State Feature Extractor MLP: (64, 64) 64
Actor MLP: (64, 64) 64
Critic MLP: (64, 64) 64

with proprioceptive features processed by a Multi-Layer Perceptron (MLP). This combined

feature representation is then shared by both the value and policy networks for predicting state

values and actions, respectively. Table 4.6 provides details of the network architecture.
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Chapter 5

Finale

In conclusion, my research endeavors in the complex field of dexterous robotic manip-

ulation surpass mere technological advancement, aiming to bridge the gap between robotic

functionality and human-like subtlety. The methodologies we’ve developed, grounded in learning

from direct human teleoperation, extracting nuanced maneuvers from human videos, and the

innovative implementation of visuotactile integration, tackle the multifaceted challenges inherent

in robotic manipulation. This work does not only strive to solve the intricate technical issues

but also significantly reduces the gap between simulations and the ever-unpredictable real-world

scenarios.

The journey thus far has been enlightening, revealing both expected and unforeseen

challenges. Our approach has centered on creating systems that can adapt and learn in conditions

that closely mimic human interaction environments. The use of human teleoperation data

has provided a direct pathway to understanding and replicating human-like dexterity in robots,

offering an immediate and impactful avenue for robotic teaching. Meanwhile, the analysis of

human manipulation videos has unlocked a treasure trove of data, enabling our robots to learn

from a vast array of human actions without the need for direct interaction or intervention.

The integration of visuotactile feedback within these systems is particularly promising.

By combining tactile sensations with visual inputs, we have started to see robots that can perform

tasks with a sensitivity and adaptability that were previously unattainable. This breakthrough is
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pivotal in our quest to minimize the discrepancies between simulated training and real-world

application, ensuring that the skills acquired by robots are not only robust but also universally

applicable.

Looking ahead, the potential expansions of this research are vast and varied. I am

particularly excited about further leveraging the rich data provided by human demonstrations to

enhance the generalizability of robotic manipulation policies. There is an untapped potential in

extending the use of human motion priors, which could allow robots to adapt their movements

and strategies across a wider range of objects and scenarios, effectively bridging the gap between

different realities, such as transitioning from simulated environments to the tangible world.

Moreover, the concept of assistive neural teleoperation is set to revolutionize the way we

interact with and utilize robots. By embedding goal-conditioned policies within teleoperation

systems, we can significantly refine how robots interpret and execute human commands. This

advancement could lead to more efficient, effective, and intuitive robotic systems, capable of

performing complex tasks with minimal human oversight.

As we continue to push the boundaries of what robotic systems can achieve, the

implications of this research extend far beyond the confines of laboratories and test environments.

The practical applications in industries such as manufacturing, healthcare, and domestic service

are profound. Robots equipped with the ability to perform complex, delicate tasks reliably and

safely could transform numerous aspects of everyday life and work.

In essence, the core of my research lies in its steadfast dedication to transforming robotic

manipulation into a domain where robots are not merely tools but are partners and collaborators,

enhancing human capabilities and taking on roles that complement and augment human efforts.

The road ahead is fraught with challenges, yet it is replete with immense potential. I remain

committed to exploring these opportunities with the utmost rigor and creativity, driven by the

vision of creating robotic systems that not only emulate human dexterity but also surpass human

limitations in precision, consistency, and adaptability.
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