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Abstract

Tractable Quantification of Metastability

for Robust Bipedal Locomotion

by

Cenk Oguz Saglam

This work develops tools to quantify and optimize performance metrics for bipedal

walking, toward enabling improved practical and autonomous operation of two-legged

robots in real-world environments. While speed and energy efficiency of legged locomo-

tion are both useful and straightforward to quantify, measuring robustness is arguably

more challenging and at least as critical for obtaining practical autonomy in variable or

otherwise uncertain environmental conditions, including rough terrain. The intuitive and

meaningful robustness quantification adopted in this thesis begins by stochastic model-

ing of disturbances such as terrain variations, and conservatively defining what a failure

is, for example falling down, slippage, scuffing, stance foot rotation, or a combination of

such events. After discretizing the disturbance and state sets by meshing, step-to-step

dynamics are studied to treat the system as a Markov chain. Then, failure rates can be

easily quantified by calculating the expected number of steps before failure. Once robust-

ness is measured, other performance metrics can also be easily incorporated into the cost

function for optimization.

For high performance and autonomous operation under variations, we adopt a ca-

pacious framework, exploiting a hierarchical control structure. The low-level controllers,

which use only proprioceptive (internal state) information, are optimized by a derivative-

free method without any constraints. For practicability of this process, developing an

algorithm for fast and accurate computation of our robustness metric was a crucial and
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necessary step. While the outcome of optimization depends on capabilities of the con-

troller scheme employed, the convenient and time-invariant parameterization presented

in this thesis ensures accommodating large terrain variations. In addition, given environ-

ment estimation and state information, the high-level control is a behavioral policy to

choose the right low-level controller at each step. In this thesis, optimal switching policies

are determined by applying dynamic programming tools on Markov decision processes

obtained through discretization. For desirable performance in practice from policies that

are formed using meshing-based approximation to the true dynamics, robustness of high-

level control to environment estimation and discretization errors are ensured by modeling

stochastic noise in the terrain information and belief state while solving for behavioral

policies.
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Chapter 1

Introduction

Over the past few decades, a variety of control methods have made robots quite reliable

in deterministic factory settings. One of the central challenges in robotics today is to

attain robust performance under the variations1 implied by real-world conditions. To

achieve robustness for reliable operation in less-structured environments, quantification

and optimization of relevant performance metrics are essential tasks. Ideally, a robot

should also utilize information about the environment and modify its motion accordingly

to maximize stability and autonomy.

Although the methods presented in this thesis are potentially applicable to autonomous

wheeled vehicles, robotic manipulators, and a broader class of hybrid dynamical systems

in general, the focus is on legged locomotion. In particular, we study two-legged under-

actuated robots walking on rough terrain, for which measuring and achieving stability is

still a major challenge.

While mobility is an undeniable necessity for various robotic applications, one motiva-

tion for bipedal robot walking is that this anthropomorphic approach provides powerful

1 As explained by [Smith, 2012], variations can be categorized as variability, which means “natural
variation in some quantity”, and uncertainty, which refers to “the degree of precision with which a
quantity is measured” [Belle, 2008].
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Introduction Chapter 1

means for negotiating intermittent or otherwise rough terrain, where wheels would be in-

effective. Bipeds have the capability of moving on steep slopes, climbing ladders, varying

their step width, passing narrow passages, easily turning corners, walking on a tightrope,

avoiding obstacles, and traversing with small footprints. Developments in bipedal locomo-

tion research will enable replacing humans in hazardous jobs, assisting people in difficult

or time consuming tasks, providing better prostheses for the disabled, and rehabilitating

the injured.

1.1 Stability Measurement for Bipedal Robots

Designing and comparing various robotic hardware and/or control schemes require

evaluation of performance using appropriate metrics. In particular, measuring success of

legged locomotion is essential toward developing more capable bipedal robots. Although

the performance of highly-dynamic walkers is often quantified by speed or energy con-

sumption [Hobbelen and Wisse, 2007], these qualities are tangentially meaningful if the

robot is likely to fall in several steps. For reliable operation, the stability of walking must

be measured and increased. Once a robot can walk in an unlikely-to-fall manner, other

metrics such as speed and energy efficiency can be easily incorporated. As an example ap-

plication, control can be optimized to maximize the probability of traversing a particular

terrain with a desired speed and given limited energy capability.

There are two mainstream approaches to bipedal robot design. One approach relies

heavily on ankle torque for balance. By using an appropriately large foot as a base of

support, such robots can be model as fully actuated under carefully controlled operating

conditions. The other approach deliberately uses an underactuated ankle. Without ankle

torque, balance control requires more careful planning, but it also enables more dynamic

gaits, with smaller footholds, better energy efficiency, and potentially greater capabilities

2



Introduction Chapter 1

in regimes where large perturbations to a robot would cause either approach to become

underactuated at the ground contact. The differences in these two approaches’ design

principles lead to qualitatively distinct walking motions and numerous metrics have been

proposed to quantify their stability [Pratt et al., 2001], [Santos et al., 2007], [Hobbelen

and Wisse, 2007], [Byl, 2008], some of which are summarized next.

1.1.1 Flat Footed Humanoids

Many well known and very capable humanoids, including the robots shown in Fig-

ure 1.1, are designed to have large feet to make locomotion task relatively easier. Although

humans roll their feet while walking for energy efficiency, these humanoids are often con-

trolled aiming to keep at least one foot flat on the ground at all times. In other words,

the objective is to prevent the foot on the ground from rotating to model robot as fully

actuated. Multiple methods are proposed to achieve such a balance. As [Sugihara, 2009]

explains, these balance criteria are often used to show stability. However, we will later

argue that distinguishing the two is an important step toward human-like walking robots.

The most elementary approach to balancing is ignoring the kinematics and dynamics

of the system and modeling the robot as a mass with a support polygon2 as shown

in Figure 1.2. In case the projection of this mass’ location to the ground surface is

within the support polygon, the robot is statically stable. Although this approach is

appealing because of its simplicity, given the dynamics of a walker, static stability is

neither necessary nor sufficient condition for keeping the foot flat or walking stably.

Static stability margin concept has been modified in various ways to consider the

kinematics and dynamics of the robot. One extension, which has lead to the most popular

stability metric overall today, focuses on the center of pressure (CoP) on the foot instead

2Convex hull formed by the contacts between the feet and the ground [Tedrake, 2004]. In the 2D case,
support polygon is a line, e.g., AB in Figure 1.2.
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(a) ASIMO (b) ATLAS (c) HUBO

(d) SURALP (e) NAO (f) Darwin

Figure 1.1: Some state-of-the-art bipedal robots with large feet. ASIMO, ATLAS,
HUBO and SURALP are human sized robots built for research purposes. NAO and
Darwin are smaller bipeds which are commercially available.
ASIMO and ATLAS images are permitted for non-commercial use by American Honda Motor Com-

pany and The Defense Advanced Research Projects Agency (DARPA) respectively. HUBO is manufac-

tured by Korea Advanced Institute of Science and Technology (KAIST) and its image is taken from

http://dailyscene.com/wp-content/uploads/2011/12/Hubo.jpg. Prof. Kemalettin Erbatur from Sabanci Uni-

versity of Turkey kindly permitted the use of SURALP image. Aldebaran Robotics is the manufacturer of

NAO and its image is obtained from http://hcr.mines.edu/images/NaoStand.png. Use of DARWIN image is

permitted by ROBOTIS Incorporation.
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BPA

CoM

(a) A statically stable object. Static stability mar-

gin is given by min(PA, PB), the minimum dis-

tance from P to the edges of the support polygon.

B PA

CoM

(b) A statically unstable object. Static stability

margin is given by -PB, minus the minimum dis-

tance from P to the edges of the support polygon.

Figure 1.2: Illustration of static stability in 2D. CoM denotes the center of mass.
P shows the projection of the CoM. AB, the line segment formed by points A and
B, corresponds to the support polygon. If P is in (outside) AB, then the object is
statically stable (unstable).

of the center of mass location [Vukobratovic and Borovac, 2004]. As shown in Figure 1.3,

if the CoP is strictly inside the footprint, then the foot does not rotate and the robot is

balanced. In this case CoP is equivalent to the zero moment point (ZMP).

P

(a) ZMP criterion is met (center of pressure is

strictly within footprint). As a result, the foot does

not rotate.

P

(b) The foot is rotated and the robot touches the

ground only at a point. Then this point is where

the ZMP acts.

Figure 1.3: Zero moment point criterion. P denotes the center of pressure acting on
the foot. If P is strictly within footprint, then the ZMP criterion is satisfied and the
foot does not rotate. ZMP based controllers aim at keeping at least one foot flat on
the ground.

5
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[Goswami and Kallem, 2004] generalizes ZMP concept by proposing a criterion based

on angular momentum to preserve the balance. Algorithms based on linear and angular

momentum have shown to be useful in whole body motion planning and control [Ugurlu

and Kawamura, 2012] [Orin et al., 2013] [Kajita et al., 2003].

Although humanoids are typically controlled to preserve balance to establish stability,

one idea in this thesis is that stability is different than balance. In human-like walking,

each step is basically an intentional “fall” onto the next foot. Avoiding underactuation

for bipeds often results in energy inefficiency. Indeed, the cost of transport3 (CoT) is

estimated to be 0.2 for humans and 3.2 for the infamous humanoid ASIMO shown in

Figure 1.1a [Collins et al., 2005]. On the other hand, [Kuo, 2007] explains that serious

advances in control are necessary to achieve the high versatility of robots like ASIMO

while being as energy efficient as the walkers of next section.

1.1.2 Dynamic Walkers

Toward developing more energy efficient, dynamic, fast, agile and humanlike walk-

ing robots, Tad McGeer has been inspirational by showing that even passive bipeds

(two-legged walkers that have no motors) can walk downhill in a stable manner using

gravitational forces [McGeer, 1990]. A passive robot built by [Collins et al., 2001] is de-

picted in Figure 1.4a. A key and revolutionary aspect of these machines is that part of

their walking cycle is unbalanced, but the overall walking motion is stable. This prop-

erty, which is ambiguously termed as dynamic walking, has pioneered a major trend in

bipedal locomotion research, where one of the main goals is exploiting underactuation4

like humans rather than avoiding it as in flat footed walking.

3The non-dimensionalized energy expenditure per unit weight and unit distance [Tucker, 1975].
4lack of ability to control all degrees-of-freedom. Approximately, the robot in Figure 1.3a is fully

actuated, but it is underactuated in Figure 1.3b.
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Inspired by passive walkers, researchers have demonstrated a range of powered walk-

ers based on exploiting natural dynamics, and the approach has led to record-breaking

performance in walking with only onboard power (energetically autonomous) [Bhounsule

et al., 2014]. Figure 1.4b illustrates the Cornell powered biped designed by [Collins and

Ruina, 2005], which is as energy efficient as humans [Collins et al., 2005].

Although these walkers have been groundbreaking, robots that are designed dom-

inantly for energy efficiency are typically sensitive to perturbations, thus they do not

perform as well as flat footed robots like ASIMO on rough terrain. To close the gap,

various dynamic walkers have been designed for better rough terrain capabilities, three

of which are depicted in the bottom row of Figure 1.4. RABBIT has been a prominent

test bed for theory both in simulation and experiments [Chevallereau et al., 2003]. This

robot was later followed by MABEL, which proved to be a much more capable hardware

on rough terrain [Grizzle et al., 2009]. Using booms, these two robots were constrained

to walk in 2 dimensional space to tackle the problem of understanding underactuated

walking. A more recent point-footed walker is ATRIAS [Hurst, 2015a], which very re-

cently showed the ability to walk in 3D [Hurst, 2015b]. Notice that all three robots are

underactuated because they have point feet to emulate the foot rolling in human loco-

motion. Once the relatively more complicated task of robust walking with no real feet is

achieved, the addition of complex feet and ankle torque only helps toward making the

robot more stable and capable.

Under deterministic conditions, dynamic bipeds exhibit locally stable limit cycles

that repeat once per step. The stability under disturbances is then often studied by local

approximations on these limit cycles by investigating deviations from the trajectories

(gait sensitivity norm [Hobbelen and Wisse, 2007], H∞ cost [Morimioto et al., 2003], and

L2 gain [Dai and Tedrake, 2013]), or the speed of convergence back after such deviations

(using Floquet theory [Hurmuzlu and Basdogan, 1994], [McGeer, 1990]).
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(a) Passive walker (b) Cornell powered biped

(c) RABBIT (d) MABEL (e) ATRIAS

Figure 1.4: Some robots that do not maintain static stability while exhibiting stable
walking motion on deterministic terrain.
Professor Andy Ruina kindly allowed the use of the passive walker and Cornell powered biped images. RAB-

BIT was designed and constructed at the Control Department of GIPSA-Lab (CNRS), at Grenoble France.

Professor Carlos Canudas de Wit, Professor Jessy Grizzle, and Professor Jonathan Hurst permitted using

the images of RABBIT, MABEL, and ATRIAS respectively.
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Alternative, the largest single disturbance that the robot can handle without falling

can be measured deterministically [Pratt et al., 2001], [Hobbelen and Wisse, 2007],

[McGeer, 1990]. While this simple idea provides a good intuition for stability, we be-

lieve the expected number of steps before failure metric, described in the next section, is

more suitable for controller optimization, and the process in obtaining it also provides

valuable information to be exploited in Section 1.2.

1.1.3 Expected Number of Steps Before Failure

This thesis adopts and extends a very intuitive and meaningful stability metric intro-

duced by [Byl, 2008], which has been applied to dynamic walkers. It is also potentially

applicable to flat footed humanoids among many other hybrid dynamical systems. [Byl,

2008] presented a methodology to calculate the expected number of steps before failure

under stochastic disturbances, e.g., they assumed slopes ahead of the robot generate a

Gaussian distribution. This analysis can be interpreted either as estimation of failure

rates under disturbances or verification of robustness to these perturbations, depending

on the application.

The method, which is explained in detail in Chapter 2, was originally illustrated

on two and four dimensional systems [Byl and Tedrake, 2009]. Later [Chen and Byl,

2012] applied this machinery to a six dimensional walker. One of the contributions of

this thesis is avoiding the curse of dimensionality to show the applicability of this tool

to even higher dimensional systems by illustrating on a robot with a 10D state space.

The results indicate a clear promise in applications to even higher degrees-of-freedom

humanoids with complex feet walking in 3D.

In addition to calculating expected number of steps before failure, we also extend

the framework to calculate other performance measures under stochastic conditions, e.g.,

9
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expected speed or energy consumption per step under stochastic conditions, which are

different from the values associated with the limit cycle motion in deterministic environ-

ments. We can also compute metrics like expected distance or (continuous) time before

failure.

1.2 Autonomous Walking

To measure performance, the framework mentioned in Section 1.1.3 works by learning

the dynamics that govern the walking system. This process also provides convenient

means for designing high-level behavioral algorithms that utilize state information and

optional estimation of environmental parameters. Adopting such a hierarchical control

structure does not only increase the stability dramatically, but it also brings autonomy

to the robot. Exploiting this capability is one of the main contributions of this thesis.

High-level control proved to be greatly useful experimentally in [Park et al., 2012],

where a simple policy was employed: If the last step experienced a step-down of more

than 3 cm, “shock absorbing controller” was used. Otherwise the “baseline controller” was

activated. On the other hand, our framework provides a systemic way of obtaining more

complex and optimal policies in more general scenarios. These behavioral algorithms can

also optionally use look-ahead information regarding the terrain when available.

Robots can alternatively utilize information about their environment by kinodynamic

motion planning technique proposed in [Donald et al., 1993]. In comparison, our approach

falls broadly into the machine learning class instead. Once the high-level control policy

is obtained off-line, the only on-line calculation is to use this precomputed look-up ta-

ble at each step to pick the appropriate low-level controller, which makes the approach

compatible with dynamic walking.

10
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1.3 Organization of Thesis

By focusing on a toy example, the next chapter explains the mathematical tools upon

which the rest of this thesis builds on. The potential curse of dimensionality problem in

using this tool is avoided in Chapter 3, where a powerful meshing method is introduced.

Chapter 4 optimizes and benchmarks control action using the stability metric mentioned

in Section 1.1.3. In addition, Chapter 5 adopts a hierarchical control structure to increase

the performance even more dramatically by optionally using the environmental informa-

tion for autonomous operation. Conclusions and potential future work are presented in

Chapter 6.
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Chapter 2

Metastable Walking

Metastable systems can be natural or human-made. They exist in a precarious state

of stability, appearing to be locally stable for long periods of time until an external

disturbance perturbs the system into a region of state space with a qualitatively different

local behavior. Since these systems are guaranteed to escape such locally well-behaved

regions with probability one given enough time, they cannot be classified as “stable”, but

it is also misleading to categorize them simply as “unstable”. Physicists have explored this

phenomenon in detail and have developed a number of tools for quantifying metastable

behaviors [Talkner et al., 1987], [Hanggi et al., 1990], [Muller et al., 1997], [Kampen,

2011]. Metastable processes have been observed in many other branches of science and

engineering including familiar systems such as crystalline structures [Larsen and Grier,

1997], flip-flops [Veendrick, 1980], and neuroscience [Fingelkurts and Fingelkurts, 2004].

While focusing on rough terrain walking, this thesis aims to deal with any metastable

system for which escape (fail or success) is guaranteed due to the variations in its environ-

ment. To elaborate, consider the energy profile in Figure 2.1. Assume we start in state-M

and the probability of moving to state-T goes to 1 in time due to the disturbances acting

in the system. Let’s name state-T as transition state, from which we either go back to

12
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state-M or fall to a stable lower energy state, namely state-S. In this setting, state-M is

not stable in the strict sense because disturbances may result in moving to state-S. How-

ever, if the transitions from state-M to state-T are rare, it is also misleading to categorize

state-M simply as unstable. Since it is “long-living, but destined to eventually end” [Byl,

2008], we classify state-M metastable.

M
T

S

State

E
n
er
gy

Metastable
state

Transition
state

Stable
state

rare

Figure 2.1: Cartoon explaining metastability. Under deterministic conditions, state-M
is a locally-stable equilibria in a potential. However, with sufficient noise in the model,
the particle is guaranteed to transition to lower energy state, namely state-S. If these
guaranteed transitions are extremely rare, states-M is metastable.
Figure is inspired from “Meta-stability” by Georg Wiora licensed under GFDL. See [Benallegue and Laumond,

2013] for an inspiring interpretation of metastable walking.

Figure 2.2 shows how states depicted in Figure 2.1 look in human walking. The

key point is to realize that even humans fail in walking from time to time for various

reasons. So, walking is the metastable state in bipedal locomotion, and the transition state

represents staggering or stumbling. In reality, failure to walk is not absorbing because

humans and robots get up after failing. It becomes clear later in the text how, for our

purposes, modeling the failure as a stable state does not ignore the ability to start walking

again.
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(a) Failure in human walking due to slippage

(b) Failure in human walking due to ground being lower than expected

(c) Failure in human walking due to tripping

(d) Failure in human walking due to bad infrastructure

Figure 2.2: Some common failure reasons in human walking. State-M, State-T and
State-S correspond to walking, stumbling and failure as depicted in Figure 2.1
Images are take from the following YouTube vidoes: https://www.youtube.com/watch?v=aQ99VULQRI4,

https://www.youtube.com/watch?v=oCEZRWZqX9w, and https://www.youtube.com/watch?v=R B1PkgA3kA.
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Before proceeding to mathematical formulation of the framework, we would like to

clarify the notation of state. In the representative image of Figure 2.1, walking is a state.

However, the state of the robot is actually a numeric value denoted by x which changes

while walking. The goal of this chapter is to represent a walking system in the format

shown in Figure 2.1.

2.1 Hybrid Model

Let x, γ, and ζ be the internal state, the randomness system experiences, and the

control action respectively. To illustrate, for a walking robot, x is the robot’s state, γ is

the random variable representing factors such as terrain variation and system noise, and

ζ is the control action which may be a function of x and γ. Define vector y := [x; γ; ζ] to

represent them all. Then, the general hybrid model is represented as

ẏ = f(y) y ∈ C,

y+ = g(y) y ∈ D.
(2.1)

C and D are flow and jump sets [Goebel et al., 2012]. This setting is compatible with

less general cases like continuous and discrete systems with/without a control action or

randomness.

2.2 Discretization for State Machine Representation

The first step in discretization precess is choosing a Poincaré-like section, noted by

S, such that if the system has not failed yet, it needs to keep passing through this

section. For example, the hybrid dynamics of walking systems are punctuated by discrete

impacts when a foot comes into contact with the ground. These impacts provide a natural

discretization of the robot motion.

15



Metastable Walking Chapter 2

Abuse the notation by letting x refer to the state when y ∈ S. Then, the next state is

a function of the current state x[n], the randomness experienced γ[n], and the controller

action during that step ζ[n], that is

x[n+ 1] = ρ(x[n], γ[n], ζ[n]). (2.2)

To obtain a (discrete) Markov decision process model, finite sets for control action,

randomness, and state are needed. The first one is rather easy, finitely many low-level

controllers are designed which form the controller set Z. The second (randomness),

is straightforward to handle when the number of noise sources is low. For instance,

{0, 1
k−1

, 2
k−1

, ..., 1} is a uniform discretization of [0, 1] with k elements. In this thesis we

study 1 dimensional disturbances and the density of the randomness set Γ is a function

of parameter dγ given by

Γ =

{
γ :

γ

dγ
∈ Z, γl ≤ γ ≤ γr

}
, (2.3)

where γl and γr determine the range of randomness set, which needs to be wide enough

to model the terrain of interest. Having a wider than needed randomness range has no

disadvantage, but too narrow range causes inaccuracy. In particular, the robot should

not be able to walk at the boundaries of the randomness set, otherwise we extend the

range.

Just like range, density of the randomness set can be chosen depending on the con-

trollers’ performance, and on the robot. Also, the randomness set does not have to be

evenly spaced in general, it may be denser around values of particular interest. As we

increase the density of the randomness set, we are able to capture the dynamics more

accurately at the expense of higher computational costs.

If the internal state x is also low-dimensional, the entire state space can potentially be

uniformly meshed to obtain state set X. However, as dimensionality increases this method

becomes intractable. This potential curse of dimensionality is handled in Chapter 3.
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Once control, randomness and state spaces are represented by finite sets, we simulate

ρ(x, γ, ζ) for each x ∈ X, γ ∈ Γ, and ζ ∈ Z to obtain the state-transition map, which

gives deterministic information about the dynamics. In case the resulting point is not

in the state set, i.e., ρ(x, γ, ζ) 6∈ X, we need to approximate the dynamics. The most

elementary approach is 0’th order approximation given by

x[n+ 1] ≈ c(ρ(x[n], γ[n], ζ[n]), X), (2.4)

where c(x̄, X) is the closest point x ∈ X to x̄ for the employed distance metric. Then the

deterministic state transition matrix can be written as

T dij(γ, ζ) =


1, if xj = c(ρ(xi, γ, ζ), X)

0, otherwise.

(2.5)

The nearest-neighbor approximation in (2.4) appears to work well in practice. More

sophisticated approximations result in transition matrices not just having one or zero

elements, but also fractional values in between [Abbel, 2012]. This increases memory and

computational costs while, to our experience, not providing much increase in accuracy.

The deterministic state transition matrix corresponds to a state machine similar to

Figure 2.3. In this figure, x[n] ∈ {xM , xS, xT}, γ[n] ∈ {γ1, γ2} and ζ[n] ∈ {ζ1, ζ2}, which

means there are three states possible, two actions (low-level control) available, and two

random outcomes. Note that given what the randomness is, the transition is deterministic

in this graph.

To derive the Markov chain model we then need to determine a policy π, which is

the high-level control picking the right low-level control action at each step. Chapter 5

is devoted to deriving optimal and robust policies. Let the decided policy for the state
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STM 1

(ζ1, γ1) or (ζ2, γ2)

(ζ1, γ1)

(ζ1, γ2)

(ζ1, γ2)

or (ζ2, γ1)

or (ζ2, γ2)

(ζ2, γ1)

Figure 2.3: A state machine with three states (xM , xT , xS), two available actions
(ζ1, ζ2), and two possible randomness (γ1, γ2). Many hybrid systems can be treated as
a finite-state machine. In case the dynamics are not discrete already, they need to be
discretized with a Poincaré section. In addition, if the randomness and state sets are
continuous, they should be meshed for finite randomness and state sets.

machine in Figure 2.3 be

π(x[n], γ[n]) =



ζ2 if x[n] = xM and γ[n] = γ1,

ζ1 if x[n] = xM and γ[n] = γ2,

ζ1 if x[n] = xT and γ[n] = γ1,

ζ2 if x[n] = xT and γ[n] = γ2.

(2.6)

Notice that policy does not determine a control action for state xS since nothing can be

done differently at an absorbing state. When ζ[n] = π(x[n], γ[n]) is used, (2.2) becomes

x[n+ 1] = ρ(x[n], γ[n], π(x[n], γ[n])), (2.7)

which is a function of the state and randomness only. The result is illustrated in Fig-

ure 2.4.

Although in this chapter we assume perfect state information and randomness esti-

mation are available to the high-level control, in Chapter 5 we study the more general

case.
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STM 1

γ1

γ2

γ2
γ1

Figure 2.4: A state machine with three states (xM , xT , xS) and two possible random-
ness (γ1, γ2), which can be obtained from the finite-state machine of Figure 2.3 after
applying policy π defined in (2.6). Alternatively, this figure is what the model would
look like if there was a single low-level controller too. The policy in that case would
be using the only available controller.

2.3 Stochasticity for Markov Decision Process

Given deterministic state transition matrix, the last step before obtaining a Markov

chain is to assume a distribution for randomness formulated as

PΓ(γ) := Pr(γ[n] = γ). (2.8)

Then the stochastic state-transition matrix

Tij := Pr(x[n+ 1] = xj | x[n] = xi), (2.9)

which represents the corresponding Markov Chain, can be calculated by

T =
∑
γ∈Γ

PΓ(γ) T d(γ, ζ). (2.10)

In case ζ[n] = π(x[n], γ[n]), the stochastic matrix becomes

T =
∑
γ∈Γ

PΓ(γ) T d(γ, π(x, γ)). (2.11)

This last equation will be updated when we consider noise in state information and

randomness estimation in Chapter 5 .
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For Figure 2.4, let Pr(γ1) = p, which means the probability of γ[n] being γ1 is p. The

result is the Markov chain shown in Figure 2.5. More complicated systems end up being

surprisingly similar to this figure. Note that in case p=1, only state-M observed if this

was the initial state. So, the walking would be stable. However, no matter how close to

1, if p does not equal to 1, the probability of moving to the stable state goes to 1 in time.

STM 1p

p

1− p

1− p

Figure 2.5: Markov chain obtained from the finite-state machine in Figure 2.4 by
assuming Pr(γ1) = p. Note that State-S is absorbing. Moreover, State-M is metastable
if p is close to but smaller than 1. This graph also looks like the following coin-flip
game. Consider tossing an unfair coin, for which the probability of having tails is p.
When the number of flips before two heads in a row is of interest, three states are
possible: (S) Heads-heads, (M) Tails in the last flip (including ‘not-flipped yet’), (T)
Tails-Heads (including ‘flipped once and it was heads’).

At this point, it is important to note that when a policy is not yet determined, but

stochasticity is added, instead of a Markov chain, we obtain a Markov decision process.

The reason why we preferred to add stochasticity at the last step to obtain a Markov

chain becomes clear in Chapter 4. In summary, this order clarifies the following property.

By discretization, say the true dynamics of the system are approximated as a finite-state

machine that is similar to Figure 2.4. Then, we can easily and very quickly compute the

expected number of steps before failure for different stochasticities in the disturbance.

Also, we wanted to emphasize that the discretization process is deterministic.
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2.4 Eigenanalysis for Stability Metric Development

Treating the system as a Markov chain lends itself to a straightforward reliability

measurement. Let λ1 and λ2 be the largest two eigenvalues of the transition matrix

associated with the Markov chain in consideration. Since all failure modes are modeled

to be an absorbing state, λ1 = 1 and the corresponding state distribution, which is called

stationary distribution, has all the probability mass at the failure state.

As explained in detail in Appendix A, after taking several steps without failing, the

robot’s state distribution typically almost converges to metastable distribution. Then, as

shown in Figure 2.6, the robot is able to take the next step successfully with probability

λ2 and it fails otherwise. This allows very easy quantification of stability by

Expected Number of Steps Before Failure =
1

1− λ2

. (2.12)

In this calculation we also count the step leading to failure. So, the expected number of

steps before failure is larger than or equal to 1.

SM 1λ2

1-λ2

Figure 2.6: Metastable dynamics. As explained in detail in Appendix A, after taking
several steps without failing, the robot’s state distribution typically almost converges
to metastable distribution, which is represented by the green ball on the left. The robot
is able to take the next step successfully with probability λ2, which implies mapping
back to the metastable distribution. Otherwise the robot transitions to failure state,
which is represented by the red ball on the right. Then, the stability of walking on
rough terrain can be easily quantified by (2.12).
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2.5 Toy Example: Rimless Wheel

As a toy example, in this section we study the system shown in Figure 2.7, where the

slope may change at each step1. After the introduction of passive dynamic walking in

[McGeer, 1990] over two decades ago, the rimless wheel has become very popular in loco-

motion research because this uncomplicated walker keeps many of the essential properties

of dynamic walking robots [Bhounsule, 2014]. For simplicity, we focus on forward walk-

ing only and assume the mass is lumped to the center of the robot and equals m=1 kg,

length of each leg is given by l=1 m, number of legs is 8, gravitational acceleration is

κ=9.81 m/s2, and legs never slip, i.e., the friction is always enough. For a more general

and detailed approach to the rimless wheel compared to this section refer to [Saglam

et al., 2014].

2α
l

m−γ

θ

κ

Figure 2.7: The rimless wheel as depicted in [Byl and Tedrake, 2009]. We define for-
ward direction to be to the right (i.e., clockwise). The state for this walker is two
dimensional, consisting of the angle θ and velocity ω = θ̇. Negative γ values corre-
spond to downhill.

The single support phase is when only one leg is in contact with the ground. This

phase has continuous pendulum dynamics given by θ̈ = κ sin(θ). The leg in contact with

the ground is referred to as the stance leg. On the other hand, double support phase is

1See Appendix C for terrain modeling.
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when two legs contact the ground, which is well described as an instantaneous impact

event. The jump map is obtained using conservation of momentum as ω+ = cos(2α)ω,

where ω = θ̇ is the angular velocity [McGeer, 1990]. Thus, the rimless wheel is a hybrid

dynamical system which can be expressed in the form of (2.1). Walking is single and

double support phases following one another. A step occurs between two consecutive

impacts and includes one of these impacts. In this thesis, we arbitrarily define it to

include the first of the two impacts. Failure refers to not being able to take another step.

For the rimless wheel example, let’s take a Poincaré section at θ = 0. Then, given

ω[n] > 0 and ω[n+ 1] ≥ 0, the next velocity of the robot (when θ = 0) is given by

ω[n+ 1] =
√

cos2(2α)(ω2[n] + 2κ(1− cos(γ[n] + α)))− 2κ(1− cos(γ[n]− α)), (2.13)

which can be easily verified using the conservation of energy during the flows and con-

servation of angular momentum at the impacts. If the argument of the square root in

the equation above turns out to be negative, then the robot did not actually intersect

the Poincaré section again which means failure. Note that (2.13) is a special case of (2.2)

with no control action.

As mentioned, the method of this chapter requires finite and discrete slope and state

sets. For the state set we use

Ω =
{
ω :

ω

0.01
∈ Z, 0 < w ≤ 2.5

}
, (2.14)

And the slope set is

Γ =
{
γ :

γ

0.1
∈ Z, 0 ≤ γ ≤ 16

}
, (2.15)

Both sets can be made denser for higher accuracy or coarser for faster computation.

Because of low dimensionality, computation time is very small (less than a second). Also,

the accuracy gained while calculating the expected number of steps with denser sets is

negligible.
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After determining the slope and state sets, we calculate ω[n+ 1] for each ω ∈ Ω and

γ ∈ Γ using (2.13) and form the deterministic state transition matrix as explained in

Section 2.2. To obtain Markov chain representation we assume the slopes are normally

distributed with mean µγ and standard deviation σγ, i.e., γ[n] ∼ N (µγ, σ
2
γ). The Markov

chain obtained and, as a result, the expected number of steps before failure calculated

using (2.12) depends on the distribution of slopes as depicted in Figure 2.8.
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Figure 2.8: Expected number of steps before failure for rimless wheel as a function of
stochasticity. Slopes ahead of the robot are assumed to be normally distributed with
mean µγ and standard deviation σγ . When µγ is small enough for constant rolling,
smaller σγ implies higher expected number of steps before failure.
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Chapter 3

Discretization of High-Dimensional

States

In applying the tool of Chapter 2, one of the steps was meshing the state space to represent

it with finitely many elements, e.g., {0, 1
k−1

, 2
k−1

, ..., 1} is a uniform discretization of [0, 1]

with k elements. However, uniformly meshing the entire state space becomes intractable

for high dimensional systems. Thus, as mentioned in Section 2.2, there is potentially

a curse of dimensionality for high degrees-of-freedom robots. However, if the intrinsic

dimension of the reachable state space is low, meshing can still be achieved for systems

with high-dimensional states as explained in this chapter.

3.1 Avoiding the Curse of Dimensionality

The critical observation toward avoiding the curse of dimensionality is the fact that

only the reachable state space under the given control law needs to be meshed instead of

the entire state space. Let us illustrate with the simple biped model shown in Figure 3.1.

This walker has two massless legs and one actuator which controls the inter-leg angle.
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Assuming second order dynamics, the state space is 4 dimensional for this walker, con-

sisting of 2 angles and 2 velocities. To begin with, assume that immediately after each

impact, the controller ensures q = 2α and q̇ = 0. In this case, this walker is identical to

the rimless wheel we studied in Section 2.5 where 2α corresponds to the fixed inter-leg

angle. Note that although this simple biped has a 4D state, the reachable state space

under the mentioned control law is only 2 dimensional.

q

l

mγ

θ

κ

Figure 3.1: Illustration of a very simple biped model. The legs are massless and the
only actuator controls the inter-leg angle q. Assuming that immediately after each
impact the controller ensures q = 2α and q̇ = 0, then this biped behaves like the
rimless wheel in Figure 2.7.

In reality, the controller may not be able to reach its references before every impact.

To maximize the allowed time for converge, we take the Poincaré section just before

impacts instead of θ = 0 as in Section 2.5. However, even after this choice, the controller

may not be able to perfectly convergence in some cases, so the reachable state space

typically turns out to be a quasi -2D manifold. Note that the rimless wheel has 1 degree-

of-freedom (DOF) but no actuators, and the massless legged biped has 2 DOF and 1

actuator. So, both these walkers are underactuated by 1 DOF. Similarly, the 5-link biped

modeled in Appendix B is also underactuated by 1 DOF, because it has 5 links and 4

actuators. As a result, the reachable state space under a given control law turns out to

be a quasi-2D manifold for the 5-link biped also [Saglam and Byl, 2013a].
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We note that the reachable state space being a lower dimensional manifold is not an

intrinsic requirement for our meshing technique, which is presented next. This section

is rather an explanation why the following method does not explode and instead stays

tractable when applied to high DOF robots.

3.2 Explored Meshing

Determining the state set is difficult because we are studying high dimensional sys-

tems, e.g., the 5-link walker has a 10 dimensional state (i.e., positions and velocities).

So, it is not feasible to uniformly and densely cover a hypercube that includes the reach-

able state space. However, meshing the reachable state space can be achieved by starting

from an initial state set Xi with very small number of points (one “good” state, such as

the fixed point under mean disturbance, is enough) and deterministically expanding by

iteratively simulating.

Our algorithm works as follows. We initially start by setting X = {x ∈ Xi : x 6= x1}1,

which corresponds to all non-failure states that are not simulated yet. Then we start the

following iteration: As long as there is a state x ∈ X, simulate to find all possible ρ(x, γ, ζ)

and remove x from X. For the points newly found, check their distance to the other states

in X. If the distance is larger than some threshold dthr, i.e., the point is far enough from

all existing mesh points, then add that point to X and X. We call the mesh obtained by

this method explored-mesh and present the pseudocode in Algorithm 1.

Using the right distance metric is crucial in ensuring that X has a small number

of states while accurately covering the reachable state space. Standardized (normalized)

Euclidean distance turned out to be extremely useful as it dynamically adjusts the weights

for each dimension according to its standard deviation at any mesh iteration. The distance

1As explained in Appendix A, without loss of generality x1 represents all the failures no matter how
robot failed.
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Algorithm 1 Explored meshing algorithm

Input: Initial set of states Xi, Randomness set Γ, Controller set Z, and threshold dis-

tance dthr
Output: Final set of states X, and state-transition map

1: X ← Xi (except x1)

2: X ← Xi

3: while X is non-empty do

4: X2 ← X

5: empty X

6: for each state x ∈ X2 do

7: for each slope γ ∈ Γ do

8: for each controller ζ ∈ Z do

9: Simulate a single step to get the final state x when initial state is x,

slope ahead is γ, and controller ζ is used (Calculate x = ρ(x, γ, ζ)).

Store this information in the state-transition map

10: if robot did not fall (x 6= x1) and d(x,X) > dthr then

11: add x to X

12: add x to X

13: end if

14: end for

15: end for

16: end for

17: end while
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of a vector x̄ from X is calculated as

d(x̄, X) := min
x∈X

{∑
i

(
x̄i − xi
ri

)2
}
, (3.1)

where ri is the standard deviation of i’th dimension of all existing points in set X. In

addition, the closest point in X to x is given by

c(x̄, X) := argmin
x∈X

{∑
i

(
x̄i − xi
ri

)2
}
. (3.2)

Our algorithm allows us to increase the accuracy of the final mesh at the expense of

producing a higher number of states (larger X) by decreasing threshold distance dthr for

states and discretization length dγ used for randomness set in (2.3).

While meshing the whole 10D state space for the 5-link walker we study in this thesis

is infeasible, this method is able to avoid the curse of dimensionality because the reachable

state space is actually a quasi-2D manifold as explained in the first section.

For the rimless wheel, Figure 3.2 shows the explored mesh obtained using dthr = 0.025

and dγ = 0.5. Points in this figure correspond to possible states just before impacts. The

probability of being at each state is shown with color. Convex hulls of states that cover

the 0.9, 0.99, 0.999, and 0.9999 of the state probability distribution are also drawn.

In Section 2.5 the state mesh was only 1 dimensional because we took a Poincaré

section at θ = 0. As we focus on the states just before the impact in this chapter, the

reachable state space is rather 2 dimensional. However, we obtain similar results using

both methods. In particular, let’s consider uniformly distributed slope changes with mean

µγ = 7◦ and standard deviation σγ = 1◦ for the rimless wheel. Under these circumstances,

we calculated the expected number of steps to be 1.79×107 and 2.1×107 in the previous

chapter and using explored mesh of Figure 3.2 respectively.
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Figure 3.2: Explored meshing method applied on the rimless wheel in Figure 2.7.
Threshold distance dthr = 0.025 and slope set discretization length dγ = 0.5 were
used to obtain a mesh with 252 states shown in this figure. Colored bar depicts the
probability of being at a state at the end of a step while walking. Convex hulls cover
0.9, 0.99, 0.999, and 0.9999 of the state probability distribution. The expected number
of steps is calculated to be 2.1× 107 using this mesh.

3.2.1 Two Tricks

Two important tricks to make the explored meshing algorithm run faster are as fol-

lows. First, the randomness set allows a natural cluster analysis. The distance comparison

for a new point can be made only with the points that are associated with the same slope.

This might result in more points in the final mesh, but it speeds up the meshing and

later calculations significantly. Secondly, fix a controller ζ and a state x. Then we can

simulate ρ(x,min(Γ), ζ) and then potentially extract ρ(x, γ, ζ) for all γ ∈ Γ. To illustrate,

in order for the robot to experience an impact at −30 degree, it has to pass through all

the possible impact points with higher degrees, and we can extract all impact cases from

a single simulation.
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Chapter 4

Low-Level Control Action

Performance of highly-dynamic walkers is often quantified by speed or energy consump-

tion under deterministic conditions [Hobbelen and Wisse, 2007]. However, legged robots

need “good” disturbance rejection to operate reliably in real-world environments, and

achieving this goal requires quantifying robustness. Out of the small number of metrics

proposed for measuring robustness of dynamic walkers, the L2 gain calculation in [Dai

and Tedrake, 2013] was successfully extended and implemented on a real robot in [Grif-

fin and Grizzle, 2015]. Alternatively, largest terrain disturbance was maximized in [Pratt

et al., 2001] and trajectories were optimized to replicate human-walking data in [Ames,

2012]. Instead, this thesis adopts the metric explained in Chapter 2, which is used to opti-

mize and benchmark control action in this chapter. We argue that this approach provides

better performance on rough terrain and it is more powerful for benchmarking purposes.

Mostly, we study the particular control strategy formulated in Appendix D as a case

demonstration. However, two other control schemes are also optimized for benchmarking

purposes. The first one is the now-familiar hybrid zero dynamics approach [Westervelt

et al., 2003] and the other is a method using piece-wise reference trajectories with a

sliding mode control [Saglam and Byl, 2013b].
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For optimization, we employ the “fminsearch” in MATLAB R©, which uses the derivative-

free method proposed by [Lagarias et al., 1998] to find the unconstrained minimum. In

case we impose constraints, we use the extended version provided by [Oldenhuis, 2009]

instead.

4.1 Optimization of a Given Controller

As mentioned, control action is often designed to minimize energy consumption or

maximize speed. For the first one, Cost of Transport (COT) gives the non-dimensionalized

energy expenditure per unit weight and unit distance [Tucker, 1975]. It is defined as the

total mechanical energy spent, divided by weight times distance, i.e.,

COT =
W

mgd
, (4.1)

where m is the mass, g is the gravitational constant, and d is the distance traveled. In

this paper we use the conservative definition of “energy spent” by regarding negative

work is also done by the robot, i.e.

W = |Wpositive|+ |Wnegative| = Wpositive −Wnegative (4.2)

so that both acceleration and breaking require power, but there is no regenerative break-

ing. Compared to energy efficiency, measuring speed under deterministic conditions is

even more straightforward.

To evaluate the stability obtained by optimizing for these metrics, we consider nor-

mally changing the slopes in front of the robot as in Figure C.1a. We fix the long-term

mean slope to be µγ = 0 and vary the standard deviation σγ to calculate resulting

expected number of steps before failure depicted in Figure 4.1. The results reveal that

optimizing for these metrics results in sensitivity to perturbations, thus performing poorly

on rough terrain as expected.
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On the other hand, now we have a mathematical formulation for the expected number

of steps before failure, we can finally optimize for it using

maximize
controller

parameters

{the number of steps} = maximize
controller

parameters

{
1

1− λ2

}
, (4.3)

where the right hand side comes from (2.12). To calculate this number we assume slopes

are normally distributed with zero mean and standard deviation σγ = 5◦. Noting that

y-axis is in logarithmic scale, Figure 4.1 demonstrates that optimizing for stability using

(4.3) provides extreme improvements in rough terrain walking performance. For σγ = 5◦,

while the other two are expected to take less than 1.5 steps, controller optimized for

stability is expected to take around 10 thousand steps. The difference is even more

dramatic for smaller but nonzero terrain roughness.
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Figure 4.1: Optimization of low-level control action using different metrics. Noting
that the y-axis is in logarithmic scale, figure reveals that optimizing for stability
using (4.3) provides extreme improvements in rough terrain walking performance.
This figure shows expected number of steps before falling calculated using (2.12)
versus σγ . Slopes ahead of the robot are assumed to be normally distributed with
µγ = 0. Numerical limit at 1014 is due to machine precision, and it corresponds to a
million tours around the world for a human-sized robot with half a meter step length.
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Note that the number of points in the final mesh, and the accuracy obtained from

(2.12) with this mesh, are inversely related to parameters dthr and dγ, where dthr is the

threshold distance in Algorithm 1 and dγ is the discretization length in (2.3). We claim

that, as dγ → 0 and dthr → 0, the mesh captures the true, hybrid dynamic system

dynamics, and as a result, the expected number of steps before failure for the controllers,

converges. To test the accuracy of our calculations, we evaluate the performance of the top

controller in Figure 4.1 using (dthr, dγ) ∈ {(2, 2.5), (1, 1), (0.5, 0.5)}. The fine mesh, which

is obtained using (dthr, dγ) = (0.5, 0.5), has 77,329 states, and the coarse mesh, which is

a result of using (dthr, dγ) = (2, 2.5), consists of only 372 states. Figure 4.2 demonstrates

the convergence of performance quantification with indistinguishable curves.
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Figure 4.2: Verification of performance quantification. The fine mesh is obtained using
(dthr, dγ) = (0.5, 0.5), and the coarse mesh is a result of using (dthr, dγ) = (2, 2.5).
Closely matching curves and data points indicate our performance quantification is
accurate. This figure shows expected number of steps before falling calculated using
(2.12) versus σγ . Slopes ahead of the robot are assumed to be normally distributed
with µγ = 0. Numerical limit at 1014 is due to machine precision, and it corresponds
to a million tours around the world for a human-sized robot with half a meter step
length.
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For further verification of our results, we also carry Monte Carlo simulations for σ ∈

{7◦, 8◦, 9◦, 10◦}. For each case we simulate 104 times until failure. The average number of

steps are also provided in Figure 4.2. Closely matching results validates our approach once

again. At this point we would like to clarify some clear advantages of our methodology

over Monte Carlo simulations. While obtaining a single point in Figure 4.2 required

“104×average number of steps” simulations for Monte Carlo method, all of the curve

associated with the coarse mesh was obtained by 372 simulations only! So, with far fewer

simulations we were able to create a whole curve instead of getting a single data point.

This is because once the system is discretized, addition of stochasticity and calculation

of λ2 are fast operations. Note that Monte Carlo simulations become quickly intractable

as the number of steps increases, whereas the numerical limit in our method is very high

and can be enlarged by increasing the machine precision when necessary. Furthermore,

calculating the curve is just one of the outcomes in our methodology. This complete tool,

for example, also provides invaluable information for high-level control design as we will

see in the next chapter.

[Benallegue and Laumond, 2013] presents a method based on Monte Carlo simulations

to compute the expected number of steps before failure when it is very high. The method

relies on the property that for a fixed controller dynamic walkers return very close to

their limit-cycle over and over again as they keep walking. In a future work, this method

will be used to verify the curves in Figure 4.2 also for low σγ values.

4.2 Benchmarking Controller Schemes

In addition to optimization capabilities, benchmarking is a powerful use of our math-

ematical tool, which we already employed to present Figure 4.1 and 4.2. In this section,

we look at how different controller schemes optimized for stability compare. The first one
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is the now-familiar hybrid zero dynamics (HZD) approach [Westervelt et al., 2003]. The

second is a method using piece-wise reference trajectories with a sliding mode control

(PC-SMC) [Saglam and Byl, 2013b]. Finally, extended hybrid zero dynamics (EHZD)

controller is the scheme adopted throughout this paper, which is explained in detail in

Appendix D. We optimize all three controller schemes using (4.3). Figure 4.3 demon-

strates EHZD is a more capable controller algorithm compared to the other two. As a

future work, we are extremely interested in adding more controller schemes to this figure,

such as time-varying controllers, ZMP-based algorithms (when applicable), and central

pattern generators [Brown, 1914], [Kuo, 2002]. We also encourage other researchers to use

our methods to demonstrate capabilities of the controllers they designed or optimized.

0 2 4 6 8 10
10

0

10
5

10
10

10
14

Terrain Roughness (    ) (degrees)

E
xp

ec
te

d 
N

um
be

r 
of

 S
te

ps
 B

ef
or

e 
F

ai
lu

re

 

 

Machine Precision−1

EHZD
PC−SMC
HZD

σγ

Figure 4.3: Benchmarking various controller schemes. Extended hybrid zero dynamics
controller turns out to be more capable in rough terrain walking. However, the goal of
this figure is to show benchmarking capability of our mathematical tool. This figure
shows expected number of steps before falling calculated using (2.12) versus σγ . Slopes
ahead of the robot are assumed to be normally distributed with µγ = 0. Numerical
limit at 1014 is due to machine precision, and it corresponds to a million tours around
the world for a human-sized robot with half a meter step length.
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4.3 Comparison to Other Work

We finally compare our results with the state-of-the-art. Like this thesis, [Dai and

Tedrake, 2013] adopts the RABBIT robot model provided in Appendix B. However,

instead of using normal distributions as we have done so far, they uniformly distribute

the slopes ahead of the robot. Then, they optimize a time-varying control structure for

the L2 gain to minimize deviations due to ground variations. To test their resulting

controller, they assume the slopes ahead of the robot is normally distributed between

-2 and +2 degrees and simulate 40 times until failure. The robot takes 20.325 steps

on average as depicted in Figure 4.4, where our controller greatly outperforms in terms

of stability. Note that to obtain the curve for our controller, we did not discretize the
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Figure 4.4: First comparison with the state-of-the-art. Our controller outperforms
the [Dai and Tedrake, 2013] and we were able to present our results with more data
points using fewer simulations. This figure shows expected number of steps before
falling calculated using (2.12) versus a. Slopes ahead of the robot are assumed to be
uniformly distributed between ±a degrees. Numerical limit at 1014 is due to machine
precision, and it corresponds to a million tours around the world for a human-sized
robot with half a meter step length.
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dynamics again. We simply used our discretization from the previous section and added

a different form of stochasticity. The computation took only several seconds.

We would like to explain why there is a sudden fall in expected number of steps around

σγ = 14◦ in Figure 4.4 unlike the previous 2 figures, where we used normal distributions.

Say the slopes are normally distributed between ±a degrees. Imagine a robot which can

walk in a stable manner when a = 14 degrees. Assume the robot falls in two steps beyond

this limit. Now, if we look at a = 12.5◦, then we should expect to hit the numerical limit

in Figure 4.4. However, if a = 15◦, then there is around 1/152 ≈ 0.00444 chance the robot

will fail after the following two steps, which corresponds to only 225 steps on average.

On the other hand, when we employ normal distributions we consider a very wide range

of slopes possible with finite probabilities for all, which might be extremely small at the

tails. But this gives us smooth transitions and allows calculating any σγ value, whereas

calculations for a values outside slope set are not always trustable. That’s why Figure 4.4

only uses the data points shown to form the curve, while the previous two figures uses a

much denser standard deviation set, so each data point are not shown to avoid clutter.

In addition to Figure 4.4, we also followed the method in [Dai and Tedrake, 2013]

and simulated 40 times until failure independent from the discretization process. Instead

of limiting slopes between -2 and +2 degrees, where our robot seems unlikely to fall, we

used -17.5 and +17.5 degrees to take 77.525 steps on average as listed in Table 4.1.

Table 4.1: First comparison with the state-of-the-art. Slopes ahead of the robot are
changing uniformly. Simulations are carried 40 times until failure.

Terrain Average
Roughness Number of Steps

Hongkai Dai and Russ Tedrake, 2013 [−2◦, 2◦] 20.325

Cenk Oguz Saglam and Katie Byl, 2015 [−17.5◦, 17.5◦] 77.525
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In another state-of-the-art work, [Griffin and Grizzle, 2015] again uses uniform dis-

tribution, but this time instead of slopes ahead of the robot, step heights change as

illustrated in Figure C.1b. They simulate 50 times until failure, but they limit each it-

eration to 104 steps to reduce computational cost. They report that their controller was

able finish 4 of the 50 trials when step heights are uniformly distributed between ±4 cm.

On average the robot takes 4,616 as shown in Figure 4.5. In comparison, although our

0 2 4 6 8 10
10

0

10
5

10
10

10
14

Terrain Roughness (    ) (cm)

E
xp

ec
te

d 
N

um
be

r 
of

 S
te

ps
 B

ef
or

e 
F

ai
lu

re

 

 

Machine Precision−1

Saglam and Byl ’15
Griffin and Grizzle ’15

a

Figure 4.5: Second comparison with the state-of-the-art. Our controller also outper-
forms the [Griffin and Grizzle, 2015] and we were able to present our results with more
data points using fewer simulations. This figure shows expected number of steps before
falling calculated using (2.12) versus a. Step heights ahead of the robot are assumed
to be uniformly distributed between ±a. Numerical limit at 1014 is due to machine
precision, and it corresponds to a million tours around the world for a human-sized
robot with half a meter step length.

controller was optimized for a normally distributed sloped terrain, it outperforms on a

uniformly distributed step terrain as shown in Figure 4.5. Independently from this figure,

we also simulated 50 times when step heights are uniformly distributed between ±4 cm,

and our robot was able to complete all trials as listed in Table 4.2. We should also note

that while we and [Dai and Tedrake, 2013] are working on RABBIT shown in Figure 1.4c,

39



Low-Level Control Action Chapter 4

[Griffin and Grizzle, 2015] use a model for ATRIAS pictured in Figure 1.4e.

Table 4.2: Second comparison with the state-of-the-art. Step heights ahead of the robot
are changing uniformly. Simulations are carried 50 times until failure or reaching the
limit at 104 steps.

Terrain Finished
Roughness Trials

Brent Griffin and Jessy Grizzle, 2015 [−4, 4] cm 4/50

Cenk Oguz Saglam and Katie Byl, 2015 [−4, 4] cm 50/50

4.4 Incorporating Secondary Metrics

Finally, once stability is quantified, it is straightforward to incorporate other met-

rics. To illustrate, the controller parameters obtained using (4.3) turns out to produce a

relatively slow walking motion as shown in Table 4.3. However, if we allow extra room

for the optimization to also consider other metrics, we obtain walking gaits that are

faster and more energy efficient as the table demonstrates. The cost function given by

2×COT−speed was empirically chosen and the potential trade-off can be easily adjusted

depending on the application.

The fact that optimal controller depends on what the objective (or cost) function is

motivates adopting the hierarchical control structure of the next chapter. In particular,

section 5.3 studies the advantages of switching between the two controllers listed in

Table 4.3.
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Table 4.3: Incorporating secondary metrics on low-level control design. The second
column gives the expected number of steps before failure when slopes are normally
distributed with zero mean and standard deviation equals 5 degrees.

Expected Number of Steps Speed COT

maximize
controller

parameters

{
1

1− λ2

}
≈ 104 0.462 0.212

minimize
controller

parameters

{2× COT− speed}
≈ 102 0.7 0.185

subject to
1

1− λ2

≥ 102
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Chapter 5

High-Level Behavioral Policy

What is very intuitive but has lacked sufficient attention in the robotics community

is that humans do not walk the same way on every ground type. They modify their

walk depending on various conditions, such as whether the surface is pavement or clay,

whether the ground is triangular (slopes), or rectangular (stairs), whether it’s uphill

or downhill, and whether there are obstacles on the way, just to name some terrain

features. It is not possible or necessary to design a specific controller for each specific

case. However, if we have multiple controllers (potentially designed with different general

cases in mind) available, the robot may increase stability by appropriately switching

among controllers. While switching using only internal (proprioceptive) state information

(blind-walking) is advantageous [Park et al., 2012], [Saglam and Byl, 2014c], a dramatic

improvement is obtained with use of upcoming terrain information [Saglam and Byl,

2013b]. Instead, work to date has typically focused either on remaining robust when blind

to upcoming terrain [Raibert et al., 2008], [Park et al., 2013] or on achieving particular

footstep lengths [Hodgins and Raibert, 1991], without more generally addressing the issue

of planning on partly-known terrain. In this chapter we propose a systematic way to solve

this problem.
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Figure 5.1 displays the hierarchical control structure adopted in this thesis, which

features a high-level control picking one of the low-level controllers at each step. As

expressed in Chapter 2 when there are multiple low-level controllers available to the

robot, discretization yields a Markov decision process, which is solved to obtain a Markov

chain and to quantify reliability. In the general form, policies (high-level controllers)

are functions of the state estimation and noisy terrain information. Simpler policies are

special cases in this setting. The goal is to obtain robust, near-optimal control policies

for low-level controllers using dynamic programming tools [Bellman, 1957], [Saglam and

Byl, 2014c].

High-Level
Controller

State

Slope

T
or
qu
e

ζ−10 ζ−5 ζ5ζ0 ζ10
Low-Level
Controllers

Figure 5.1: Hierarchical control structure. At each step, the high-level controller picks
a low-level controller to use given state estimation and optional noisy terrain informa-
tion. In this figure there are five low-level controllers available. ζi denotes the low-level
control optimized for a normally distributed terrain with mean µγ = i degrees and
standard deviation σγ = 5◦ using Chapter 4’s method.
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Let ζi denote the low-level control optimized for a normally distributed terrain with

mean µγ = i degrees and standard deviation σγ = 5◦ using Chapter 4’s method. To begin

with, we use the controller set given by Z = {ζ−10, ζ−5, ζ0, ζ5, ζ10} and discretize the

dynamics using Algorithm 1 with dthr = 1 and dγ = 1◦. The resulting mesh has 59,804

states.

5.1 Optimal Policies

In this section we look at the benefits of using environment and state information to

switch between low-level controllers. Initially we assume none of these are available to

the robot, so the policy is to use one of the fixed controllers. Then we investigate the

improvements gained by using slope or state information only. In these cases the robot

is said to do visual or blind walking respectively. On the other hand, in general a policy

is a function of both slope and state estimation, so the policy is given by

ζ[n] = π(x[n], γ[n]), (5.1)

as used in Chapter 2. We refer to this choice as sighted walking.

5.1.1 Fixed Controllers

The simplest policy is to use just one controller, i.e.,

ζ[n] = ζi (5.2)

for fixed i. In this case T is calculated as in (2.10) for a given µγ and σγ. We then derive

the expected number of steps before failure using (2.12). To evaluate the performance of

the individual controllers in Z depending on the long-term mean slope, we fix σγ to be

5 degrees. The results are demonstrated in Figure 5.2, where the x-axis is µγ, and the

y-axis shows the expected number of steps before failure.
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We note that the optimal choice for using one of the fixed controllers in Z depends

on the long term mean slope. If the mean slope is close to 0 degrees, the fixed controller

policy needs to be using ζ0 for optimality.
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Figure 5.2: Performance of individual low-level controllers. Let ζi denote the low-level
control optimized for a normally distributed terrain with mean µγ = i degrees and
standard deviation σγ = 5◦ using Chapter 4’s method. The controllers shown in this
picture are ζ−10, ζ−5, ζ0, ζ5, and ζ10 from left to right. The expected numbers of steps
before falling are calculated using (2.12) versus µγ . Slopes ahead of the robot are
assumed to be normally distributed with σγ = 5 deg.
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5.1.2 Visual Walking

After seeing that the performance of the individual controllers depends significantly

on the mean slope ahead, we consider policies using only one-step lookahead (γ[n]) in-

formation, which are in the form of

ζ[n] = π(γ[n]). (5.3)

A trivial idea is to look at the slope ahead and using the controller which was opti-

mized for the nearest slope. In other words, π(γ[n]) = ζi and i = c(γ, {−10,−5, 0, 5, 10}),

where function c is as defined in (3.2). To illustrate, we use controller ζ0 when −2.5◦ ≤

γ ≤ 2.5◦. We present the performance of this trivial policy in Figure 5.3. It is rather sur-

prising to see how bad this intuitive policy turns out to be. To improve the performance,

we used genetic algorithm to obtain the visual policy given by

π(γ[n]) =



ζ−10, γ ≤ −28.5◦

ζ−5, −28.5◦ < γ ≤ −17.5◦

ζ0, −17.5◦ < γ ≤ 24.5◦

ζ5, 24.5◦ < γ ≤ 29.5◦

ζ10, 29.5◦ < γ,

(5.4)

which performs better when µγ = 0.

Although the improvements gained by using slope estimation seem to be small in

this specific case, we later discover in the following sections that single-step lookahead to

terrain is very useful when used together with state information.
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Figure 5.3: Performance of a two visual policies. The trivial high-level controller uses
π(γ[n]) = ζi and i = c(γ, {−10,−5, 0, 5, 10}), where function c is as defined in (3.2).
To illustrate, it picks ζ0 when −2.5◦ ≤ γ ≤ 2.5◦. Visual policy is defined in (5.4).
See Figure 5.2 to distinguish five fixed controllers shown in this picture. The expected
numbers of steps before falling are calculated using (2.12) versus µγ . Slopes ahead of
the robot are assumed to be normally distributed with σγ = 5 deg.
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5.1.3 Blind (to the terrain) Walking

In practice the robot knows its state and it is typical to assume policy to be a function

of the state in Markov Decision Processes, i.e.,

ζ[n] = π(x[n]). (5.5)

The optimal policy is commonly solved using value iteration [Bellman, 1957], which works

by recursively calculating

V (i) := max
ζ

{∑
j

Pij(ζ) (R(j) + α V (j))

}
, (5.6)

where V is the value, Pij(ζ) is the probability of transitioning from xi to xj when ζ is

used, R(j) is the reward for transitioning to xj, and α ∈ [0, 1] is the discount factor,

which is chosen to be 0.9. This equation is iterated until convergence to get the optimal

policy.

Remember that the failure state is x1. The value of the failure state is initially set to

zero, i.e.,

V (1) = 0, (5.7)

and it always stays as zero, because the reward for taking a successful step is one, while

falling is zero, i.e.,

R(j) =


0, j = 1,

1, otherwise.

(5.8)

Note that the reward function we use does not depend on the controller, slope ahead,

or current state. Use of more sophisticated reward functions (e.g., considering energy,

speed, step width) is a topic of Section 5.3 and [Saglam and Byl, 2014b]. However, our

initial focus is only on stability in this chapter. Substituting (5.7) and (5.8) into (5.6)

yields

V (i) := max
ζ

{∑
j 6=1

Pij(ζ) (1 + α V (j))

}
. (5.9)
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The probability of ‘transitioning from xi to xj when ζ is used’ is

Pij(ζ) =
∑
γ∈Γ

PΓ(γ) T dij(γ, ζ). (5.10)

So we can alternatively write the value iteration algorithm as

V (i) := max
ζ

{∑
γ∈Γ

PΓ(γ)
∑
j 6=1

T dij(γ, ζ) (1 + α V (j))

}
. (5.11)

Optimization results for µγ = 0 and σγ = 5 deg are shown in Figure 5.4. In the light of

this figure, we conclude that even blindly switching between the controllers may provide

dramatic improvements on the overall performance. However, it is also important to note

that we have not studied discretization errors yet. So, Figure 5.4 may be overselling the

improvements obtained by blind-to-the-terrain switching.
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Figure 5.4: Blind walking. The high-level controller knows the state but it is blind
to the environment. Value iteration is used to get the optimal policy. See Figure 5.2
to distinguish five fixed controllers shown in this picture. The expected numbers of
steps before falling are calculated using (2.12) versus µγ . Slopes ahead of the robot
are assumed to be normally distributed with σγ = 5 deg.
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5.1.4 Sighted Walking

In sighted walking the high-level controller uses both the state information and one-

step lookahead to terrain, i.e., the policy is given by (5.1). To use the one-step lookahead

in deriving policy, we modify the value iteration in (5.11) as

V (i) :=
∑
γ∈Γ

max
ζ

{
PΓ(γ)

∑
j 6=1

T dij(γ, ζ) (1 + α V (j))

}
. (5.12)

So, maximization operation is carried for each slope in Γ.

Instead of modifying the value iteration algorithm, we could define a new 11D state,

including the slope in addition to the 10D state of the robot. However, (5.12) makes

the analysis of the following parts easier, reduces computational cost, and requires less

memory. Note that PΓ(γ) gives the probability of ‘the slope ahead being γ’ and T dij(γ, ζ)

is the probability of ‘transitioning from xi to xj when ζ is used and the slope is γ’.

We optimize for µγ = 0 and σγ = 5 degrees to get the performance shown in Figure 5.5.

Noting the logarithmic y-axis, it is clear that sighted walking is significantly better than

visual and blind walking, as one would intuitively expect. The ability to quantify this

intuition is a driving goal of our work.

Although the optimal high-level control in Figure 5.5 is obtained by optimizing for

µγ = 0 and σγ = 5 degrees, the figure demonstrates that it also performs well for µγ 6= 0.

In the following sections we observe that the same argument follows for σγ 6= 5 degrees.

The dramatic improvement gained by using one-step terrain lookahead along with

state information motivates measuring how much a two-, three- and infinite-step looka-

head increases the stability, which is a topic of future work.
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Figure 5.5: Sighted walking. The high-level controller uses both the state information
and one-step lookahead to terrain. See Figure 5.2 to distinguish five fixed controllers
shown in this picture. The expected numbers of steps before falling are calculated using
(2.12) versus µγ . Slopes ahead of the robot are assumed to be normally distributed
with σγ = 5 deg.
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5.2 Robustness of Switching

Although Figure 5.5 is impressive, for this methodology to be applicable to real-life

problems, policies must be robust to uncertainties. In particular, considering the noise

in the inputs of high-level controller is crucial. So, in this section we study and improve

robustness of sighted walking to terrain estimation and state information. The results

motivate experimenting the methods and controllers of this thesis on a real robot.

5.2.1 Noisy Terrain Estimation

We start our robustness study by considering the addition of noise to slope informa-

tion. The slope ahead is still defined by variable γ, but let’s say the controller thinks it

is (closest to) γ̃ ∈ Γ, due to the noise l ∈ Γ. The relationship is given by

γ̃ = max(min(Γ),min(max(Γ), γ + l)). (5.13)

Note that this equation simply says γ̃ = γ+ l except at boundaries of the slope set. PL(l)

is defined by

PL(l) := Pr(l[n] = l), (5.14)

and normally distributed with zero mean and standard deviation σl, i.e.,

l[n] ∼ N (0, σ2
l ). (5.15)

In the presence of noise, the policy is a function of γ̃, not γ. Thus, we have

ζ[n] = π(x[n], γ̃[n]). (5.16)

Then the stochastic state-transition matrix in (2.10) becomes

T =
∑
γ∈Γ

∑
l∈Γ

PΓ(γ) PL(l) T d(γ, π(x, γ̃)). (5.17)
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To account for noise in the slope information while optimizing, we first rewrite the

modified value iteration algorithm as

V (i) :=
∑
γ̃∈Γ

max
ζ

{∑
γ∈Γ

PΓ(γ)P (γ, γ̃)
∑
j 6=1

T dij(γ, ζ) (1 + α V (j))

}
, (5.18)

where P (γ, γ̃) is the probability of ‘actual slope being γ when robot thinks it is γ̃’. This

probability is given by

P (γ, γ̃) =
∑
l∈Γ̃

PL(l), (5.19)

where Γ̃ = {l ∈ Γ | γ̃ = max(min(Γ),min(max(Γ), γ + l))}.

Note that in this setting the sighted policy of Figure 5.5 is a special case that is

obtained assuming no sensor noise, i.e., σl = 0◦. Figure 5.6 shows what happens to this

policy in the presence of noise. As σl increases we rapidly start performing worse than the
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σl

Figure 5.6: Noisy terrain estimation. Sighted policy from Figure 5.5 performs poorly
with σl 6= 0. Considering noise while optimizing provides robustness while keeping
almost all the optimality. The expected numbers of steps before falling are calcu-
lated using (2.12) versus σl. Slopes ahead of the robot are assumed to be normally
distributed with µγ = 0 and σγ = 5 deg. Fixed controller ζ0 is drawn for reference.
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fixed controller ζ0. The figure also demonstrates that considering noise while optimizing

provides robustness to terrain estimation while mostly keeping the optimality. Although

optimizing for very high σl values seem tempting in this graph, it is important to note

that we have not considered discretization errors yet and as we assume higher σl while

optimizing, the high-level controller tends to rely more on the state information.

Next, we assume the sensor noise is given by σl = 1◦. In practice this number can be

easily and conservatively calculated. The performance of the high-level control optimized

for σl = 2◦ versus mean slope is presented in Figure 5.7.
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Figure 5.7: A policy which is robust to sensor noise. Comparing with Figure 5.5, we
conclude that we obtain nearly optimal performance even under the presence of sensor
noise in terrain estimation. See Figure 5.2 to distinguish five fixed controllers shown in
this picture. The expected numbers of steps before falling are calculated using (2.12)
versus µγ . Slopes ahead of the robot are assumed to be normally distributed with
σγ = 5 deg. Slope estimation experiences a normal noise with zero mean and standard
deviation σl = 1◦.
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5.2.2 Discretization Errors

Up until now, we optimized policies and evaluated resulting performance using the

same (dthr = 1) mesh. In this section, we keep optimizing on the coarse (dthr = 1) mesh,

but we estimate performance using a denser, more refined (dthr = 0.7) mesh, intended

to better approximate the true system dynamics. The high-resolution mesh, which has

199,358 states, is used to tune the real performance of high-level control and ensure its

robustness to discretization errors. First, we need to explain how the coarse-mesh policy

can be applied when the noisy slope ahead estimation γ̃[n] may not be in the slope set,

and/or state x[n] may not be in the mesh. In these cases, we apply the most basic idea

formulated by

ζ[n] = π(c(x[n], X), c(γ̃[n],Γ)), (5.20)

where function c is as defined in (3.2). In its general form, let us denote the dense mesh

by Xd, which is obtained from a slope set Γd. Using this mesh, we can approximate how

(5.20) would behave in practice by

ζ[n] = π(c(xd[n], X), c(γ̃d[n],Γ)), (5.21)

where xd ∈ Xd and γ̃d ∈ Γd. The definition and calculation of T remain the same,

but this time Xd and Γd is used in obtaining it. Figure 5.8 shows that the policy from

Figure 5.7 performs poorly when evaluated on the dense mesh. We must once again refine

our algorithm, this time to improve robustness to meshing discretization.

In our approach to fix this issue, we consider the following: While the actual state

is xi, the robot may think it is xk. To make this clear, we rewrite the value iteration

algorithm as

V (k) :=
∑
γ̃∈Γ

max
ζ

{∑
γ∈Γ

PΓ(γ)P (γ, γ̃)
∑
i

P (i, k)
∑
j 6=1

T dij(γ, ζ) (1 + α V (j))

}
, (5.22)

where P (i, k) is the probability of ‘actual state being xi when robot thinks it is xk’.
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Low−Level Control
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Monte Carlo Simulations

Policy from Figure 5.7

(ζ0)

σγ

Figure 5.8: Performance evaluation on the dense mesh. The policy from Figure 5.7
performs poorly. However, discretization errors can be handled to obtain the robust
policy shown in this graph. Compare to Figure 4.2, where the stability of low-level
controller was verified with Monte Carlo simulations. The expected numbers of steps
before falling are calculated using (2.12) versus σγ . Slopes ahead of the robot are as-
sumed to be normally distributed with µγ = 0. Sensor noise is given by σl = 1◦. Fixed
controller ζ0 is drawn for reference. Numerical limit at 1012 is due to machine preci-
sion, and it corresponds to a 10 thousand tours around the world for a human-sized
robot with half a meter step length.

Finding the best calculation for P (i, k) is an open question. However, it is intuitive

that for a given state k (the robot thinks the state is xk), P (i, k) should be smaller for

i for which d(xi, xk) is larger. Among many other methods, inverse distance weighting

as in [Shepard, 1968] did not provide desirable performance. In [Saglam and Byl, 2014c],

we illustrate that an exponential distribution works well. In this thesis, to show the

applicability of various distributions, we use power distribution given by

P (i, k) =
λc∑
c λ

c
≈ λc(1− λ), (5.23)

where xi is the cth closest state to xk and 0 ≤ λ ≤ 1 is the distribution parameter1.

1Assume 00=1 when using (5.23).
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Note that this is just a power distribution scaled to have
∑

k P (i, k) = 1. As we increase

λ, robustness increases but performance drops. λ = 0 would mean P (i, i) = 1 and

P (i, k) = 0 for i 6= k, i.e., what we had before this section. λ = 1 would try to consider

all points in the mesh2 with equal probability. Then the high-level controller would not

make use of state information, so it would be a visual policy.

To derive final high-level control policy, we again use σl = 2◦ for optimization and

quickly tune λ = 0.5 by trial and error using the dense mesh. The resulting performance

is demonstrated in Figure 5.8. The stability of the high-level controller turns out to

be more than 2 orders of magnitude depending on the terrain roughness. To illustrate,

for µγ = 0◦ and σγ = 3.5◦, while the most stable low-level controller (ζ0) is expected

to take 1.4×107 steps, the high-level controller increases this number to 1.8×109. As

in Figure 4.2, we conduct Monte Carlo simulations for higher σγ values as shown in

Figure 5.8 and Table 5.1. The close matches verify the performance of the final high-level

control policy. To compare it with all the low-level controllers available to the robot, we

present Figure 5.9, where we assumed µγ = 0 and σγ = 5 deg.

Table 5.1: Monte Carlo simulations for final high-level control policy. Slopes are nor-
mally distributed with µγ = 0 and σγ = 5 deg. One step look ahead experiences a
normal noise with zero mean and standard deviation σl = 1◦. 10 thousand iterations
were conducted until failure and the results are presented on the last row. Estimation
using (2.12) is carried on the dense mesh.

σγ = 7◦ σγ = 8◦ σγ = 9◦ σγ = 10◦

Estimation using
1

1− λ2

637.4 167.9 66.45 33.99

Monte Carlo simulations 633.23 171.41 68.35 35.24

2Note that c is bounded between zero and number of states minus 1.
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Figure 5.9: Stability of the final high-level policy. For this specific roughness the per-
formance is an order of magnitude improvement compared to the most stable low-level
controller. See Figure 5.2 to distinguish five fixed controllers shown in this picture.
The expected numbers of steps before falling are calculated using (2.12) versus µγ .
Slopes ahead of the robot are assumed to be normally distributed with σγ = 5 deg.
Slope estimation experiences a normal noise with zero mean and standard deviation
σl = 1◦.
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5.3 Incorporating Secondary Metrics

In section 4.4 we showed how to incorporate metrics like speed and energy efficiency

into low-level controller optimization. Here we repeat the same process for high-level

control as in [Saglam and Byl, 2014b]. As case demonstration in this chapter, we employ

the two controllers in Table 4.3, one of which is more energy efficient but less stable.

Intuitively the high-level controller should prefer the efficient controller when the slope

ahead is mild and state is appropriate. For stability, it better pick the more stable low-

level controller otherwise.

For simplicity and proof of concept, in this section we neglect the sensor noises and

discretization errors. To incorporate energy efficiency into high-level control design, unlike

(5.6) and (5.12), we use

V (i) :=
∑
γ∈Γ

max
ζ

{
PΓ(γ)

∑
j

T dij(γ, ζ) (Rij(γ, ζ) + α V (j))

}
. (5.24)

The reward is given by

Rij(γ, ζ) =


0, j = 1,

1− β COT(xi, γ, ζ), otherwise,

(5.25)

where COT(xi, γ, ζ) is the cost of transport when the robot takes a step from state xi

using controller ζ and the slope ahead is γ. Figure 5.10 shows the performance of high-

level controller obtained using β = 1. It is as stable as the robust controller and almost

as energy efficient as the other controller. To derive the expected cost of transport, we

computed the expected energy expenditure and expected distance using the methodology

explained in Appendix A.3.

Comparing Figure 5.10 and Table 4.3, we note that the relatively energy efficient

low-level controller turned out to be a little off from what is calculated before, but the

results are fairly close.
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Figure 5.10: Incorporating secondary metrics on high-level control design. The
low-level controllers are as listed in Table 4.3. The high-level controller is stable as
the robust low-level controller and almost as energy efficient as the other low-level
controller. To derive the expected cost of transport, we first needed to calculate ex-
pected energy expenditure and expected distance using the methodology explained in
Section A.3. The expected numbers of steps before falling are calculated using (2.12).
Slopes ahead of the robot are assumed to be normally distributed with µγ = 0 and
σγ = 5 deg.

Overall this chapter motivates the use of high-level controller for increased autonomy

and better performance, including stability, speed, and energy efficiency.
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Chapter 6

Conclusions and Future Work

Toward capable robots operating reliably in real-world environments, this thesis quanti-

fied robustness to variations with an intuitive and meaningful metric, which is later used

to optimize and benchmark a given control scheme. Specifically, we introduced extended

hybrid zero dynamics framework which produced quantitatively good performance for

two-legged walking on rough terrain.

The proposed mathematical tool in this thesis is based on discretization of dynamics

to treat the system as a Markov chain representation which, in addition to reliability, was

used to calculate expected speed and energy consumption under variations such as rough

terrain. As importantly, the process of learning the discretized system provided extremely

valuable information about the dynamics which was later used to obtain high-level be-

havioral algorithms for autonomous walking. Overall, this thesis proposes a systematic

way of obtaining controllers that are autonomous and reliable in a quantifiable manner.

On top of obtaining a Markov chain representation in Chapter 2, Appendix A ex-

plained our approach with toy examples to motivate researchers to employ our method-

ology. These newly designed tools are highly applicable to a wide range of robotic systems

such as 3D bipeds, hopping, running, and experimental robots. Moreover, many interest-
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ing applications can be identified and addressed in various other dynamical systems that

are highly amenable to quantification of performance under stochasticity, which includes

physical and social graphs, epidemics, queues, and teleoperation.

One of two major future directions is to exploit this mentioned applicability. Sec-

ond, we would like to keep developing the tools of this thesis to advance the science of

highly-dynamic robots. In particular, for two-legged walking we are interested in more

realistic and higher dimensional biped and terrain models. The former can potentially be

a 3D walker with complex foot, while the latter can consider varying friction coefficient,

obstacles, and holes to be avoided. The framework is already capable of measuring the

advantages of additional control actions such as reflexes. We also would like to study the

benefits of more than one-step lookahead to the terrain. Very interestingly, our powerful

optimization technique allows directly mapping terrain estimation and state information

to torques, which is to be exploited in a future work. Incorporating more advanced ma-

chine learning techniques has potential to provide even better autonomy and robustness

to the system.
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Appendix A

First Passage Value

Many interesting applications can be identified and addressed in various dynamical sys-

tems that are highly amenable to quantification of performance under stochasticity, in-

cluding robots, physical and social graphs, epidemics, and teleoperation. Often for such

systems, eigenalysis yields a meaningful and intuitive measure of overall stability, namely

system-wide mean first passage time, which we mainly refer to as expected number of

steps before failure in this thesis.

First passage time, aka first hitting time, gives survival duration until a specific event

or set of events, such as death or failure. In discrete-time models, the expected number

of discrete time steps of survival corresponds to mean first passage time (MFPT). While

different initial conditions (states) often result in different MFPTs, for many metastable1

systems a scalar called system-wide MFPT is an accurate estimate across a large set of

states, and it can potentially well represent the stability.

More recently, the tools for quantifying metastable systems has been applied to walk-

ing robots to predict how a robot performs over variable terrain for a given control policy

[Byl and Tedrake, 2009], [Saglam and Byl, 2014c]. For such analyses, the walking robot,

1See Chapter 2 for metastability.
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the environment, the system noise, and the control actions can be modeled together as a

Markov chain as explained in Chapter 2. Assuming that the initial state of the robot lies

within “metastable region” of state space, the eigenvalues of the state transition matrix

of the Markov chain, specifically the largest eigenvalue not associated with the (absorb-

ing) failed system state, can be used to predict the number of steps the robot can take

before failing.

Using a Europe tour game, this chapter explains the robotic locomotion community

the dynamics of metastable walking. It also aims to encourage countless controls appli-

cations of MFPT calculation for metastable systems. Finally, a more generalized concept

of first passage time, namely first passage value, is presented to discuss both the mean

and variability of a value of interest for a metastable system.

A.1 Toy Example: Europe Tour

Consider a person traveling between some of the largest cities in Europe shown in

Figure A.1. After spending a day that person either stays in the same city, or moves

to one of the connected cities. The probability of action is directly proportional to the

population of the next city. For instance, when in Madrid,

Probability of staying in Madrid =
Population of Madird

Population of Madird + Population of Paris
.

(A.1)

For the Europe tour game, Istanbul represents failure2 for a robot. The number of days

before reaching Istanbul is analogous to the number of steps before failure for a walker.

Each of the remaining cities corresponds to a (discretized) state of the robot. For an

explanation of discretization, please see Chapter 2.

2Istanbul may also represent success depending on the application. See epidemics example of this
appendix. In general we are interested in expected number of steps before escape (failure or success).
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Figure A.1: Populations of Europe’s most populated 8 cities excluding Russia. Cities
are ordered by their population as indicated in parenthesis. For instance, Athens (State
3) is the third most crowded city in this map. Consider a person traveling between
these cities. After spending a day that person either stays in the same city, or moves
to one of the connected cities. The probability of action is directly proportional to the
population of the next city. The resulting Markov Chain has similarities with walking
dynamics.
The author would like to thank Beril Pisgin for drawing this picture.

Note that as time goes to infinity, the probability of visiting Istanbul becomes 1.

However, if the population of Paris was infinite, then being in Paris would be stable and

the tourist would spend infinitely many days without going to Istanbul. This behavior

is analogous to periodic walking on flat terrain. For an appropriate initial condition, the

robot would never leave the periodic orbit under deterministic conditions, which implies

walking infinitely many steps without failure. By taking a Poincaré section intersecting

walking motion, this periodic orbit can be represented as a fixed point on the corre-

sponding Poincaré map. So, Paris is analogous to the fixed point on the Poincaré map

for the robot walking in terms of mapping back to itself at each step. Moreover, Madrid,

London, Rome, and Berlin are in the basin of attraction for stable walking. Starting from
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any one of those cities means going to Paris. However, Athens is destined to be absorbed

rapidly, because it is only connected to Istanbul. Similar to a tripped walker, Kiev is a

risky state, because it may lead to Istanbul, which means failure. Otherwise going Berlin

results in stable walking at Paris.

For dynamic walking on rough terrain, metastability is present if the number of steps

before failure is very high but finite. In the tour example, we assume the population of

Paris is 1 billion to study metastability. Then, Istanbul is globally asymptotically stable,

but a tourist in Paris is expected to spend a large number of days before going to Istanbul.

Define reachable (controllable) subspace as the union of states that might transition from

(to) Paris. Then, Paris, Madrid, London, Rome, and Berlin are reachable and controllable

states, whereas Athens is not a controllable or a reachable state. In addition, imagine

having Barcelona in this map too, from which the tourist can go to Madrid, but not

vice versa. Then Barcelona would be a controllable but not reachable state. As following

sections justify, unreachable states do not affect the system-wide MFPT value. Thus,

only reachable state space needs to be meshed for a walking robot and the curse of

dimensionality can be avoided.

A.2 Absorbing Markov Chains

To calculate the expected number of steps before a specific ‘escape’ event, the corre-

sponding set needs to be modeled as an absorbing ‘halt’ state. For the Europe tour game,

this modeling is achieved by assuming it is impossible to leave Istanbul. Remember that

Istanbul is analogous to the set of failure modes for a walking robot, no matter how the

robot failed. Without loss of generality, let the halt state be State 1 (x1) and note that

absorption assumption does not change the dynamics until State 1.

For the Markov Chain under consideration, the state distribution vector at step n is
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denoted by p[n] and defined by

pi[n] := Pr(X[n] = xi). (A.2)

So pi[n] corresponds to the probability of being at state xi at step n. Since probability

cannot be negative, p[n] is a non-negative vector, and because the system has to be at

a state at any step, p[n] sums to 1. The state transition matrix, aka the Markov matrix

or the stochastic matrix, is defined by

Tij := Pr(X[n+ 1] = xj | X[n] = xi). (A.3)

So, the entry of T on the ith row and jth column gives the probability of transitioning

from state xi to state xj. To illustrate, the Markov chain for the Europe tour game is

represented with

T =



1 0 0 0 0 0 0 0

0 0.0082 0 0.0035 0 0 0 0.9883

0.7905 0 0.2095 0 0 0 0 0

0.0138 0.0081 0 0.0034 0 0.0028 0 0.9720

0 0 0 0 0.0032 0 0 0.9968

0.6899 0 0 0.1714 0 0.1387 0 0

0.0139 0 0 0 0 0 0.0027 0.9833

0 0.0082 0 0.0035 0.0032 0 0.0027 0.9825



. (A.4)

Indices on Figure A.1 yield that T64 = 0.1714 is the probability of moving from Kiev to

Berlin. Just like p[n], T is non-negative. And because any state transitions (possibly to

the halt state or the starting state itself) after each step, each row sums to one. Let ` > 1

be the number of states. So, the state transition matrix is ` by `. The state transition

matrix gives the next state distribution, given the current one by

p[n+ 1] = T ′ p[n] = (T ′)n+1 p[0], (A.5)
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where the prime (′) symbol denotes the transpose operation.

Let λ be an eigenvalue of T . Then, there exists a non-zero vector v such that

Tv = λv. (A.6)

As in [Matthews, 1995], let k be such that |vj| ≤ |vk| for all 1 ≤ j ≤ `. Equating the k-th

components in equation (A.6) gives∑
j

Tkjvj = λvk. (A.7)

As a result,

|λvk| = |λ| |vk| =
∣∣∣∣∑

j

Tkjvj

∣∣∣∣ ≤∑
j

Tkj|vj| ≤
∑
j

Tkj|vk| = |vk|, (A.8)

where Tkj ≥ 0 and
∑

j Tkj = 1 are used. |λ||vk| ≤ |vk| implies |λ| ≤ 1.

For the rest of this chapter, the transpose of T is used to make the following sections

easier to follow. Since T is square, T ′ has the same eigenvalues as T . Due to the nature

of transpose operation and the structure of T , each column of T ′ sums to one.

Remember that x1 is an absorbing state, which represents the end of game. Then, T ′

can be partitioned as

T ′ =

11×1 T1

0 T̂


`×`

. (A.9)

Note that λ = 1 and v = [1 0 ... 0]′ satisfies the equation

T ′v = λv. (A.10)

To distinguish (possibly non-distinct) eigenvalues, note them by λj, where 1 ≤ j ≤ `.

Without loss of generality, let λ1 = 1 and the associated basis vector be v1 = [1 0 ... 0]′.

Existence of Jordan normal form for any square matrix is fundamental to Linear

Algebra. Consider a Jordan normal form of T̂ given by

T̂ = V̂ Ĵ V̂ −1, (A.11)
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Then, as will be verified, a Jordan normal form of T ′ is given by

T ′ = V JV −1, (A.12)

where J =

1 0

0 Ĵ

 , (A.13)

and V =

1 −[1 ... 1]V̂

0 V̂

 . (A.14)

Note that the sum of each column of V equals zero, except the first one. Furthermore,

these columns form a basis in R`. Equation (A.12) can be verified as follows. The inverse

of V is

V −1 =

1 [1 ... 1]

0 V̂ −1

 . (A.15)

Then, the right hand side of (A.12) can be calculated as1 [1 ... 1]− [1 ... 1]V̂ Ĵ V̂ −1

0 V̂ Ĵ V̂ −1

 =

1 [1 ... 1](I− T̂ )

0 T̂

 . (A.16)

Equation (A.12) is thus verified because T1 + [1 ... 1]T̂ = [1 ... 1] (columns of T ′ sum to

one).

The spectrum of T̂ , denoted by σ(T̂ ), is the set of distinct eigenvalues of T̂ . The

spectral radius of T̂ is given by

ρ(T̂ ) = max
λ∈σ(T̂ )

|λ|. (A.17)

Let the spectral radius be r = ρ(T̂ ). As proven in [Meyer, 2000], because T̂ is a non-

negative square matrix,

1. r ∈ σ(T̂ ) (r is an eigenvalue of T̂ ),
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2. T̂ z = rz for some z ∈ N = {v| v ≥ 0 with v 6= 0}.

Let λ2 := r and v2 refer to the associated column in V . Then, v2 = [−‖z‖1 z′]′. Now,

consider the state distribution

φ :=

 0

z

‖z‖1

 = v1 +
1

‖z‖1

v2. (A.18)

φ is called the metastable distribution. Note that it is a valid initial state distribution

since it sums to one and each element is non-negative. For the metastable Europe tour,

λ2 ≈ 1− 9.2393× 10−5 and φ ≈



0

0.0081

0

0.0035

0.0031

1.1× 10−5

0.0027

0.9826



(A.19)

λ2 being close to one means escapes are rare and the system is metastable. The first

element of φ is the probability of being at x1, and it equals zero by definition. In this

metastable distribution, the probability of being in Paris is high due to its high pop-

ulation. However, Athens does not appear in the metastable distribution, because it is

connected only to the absorbing state. The probability of being in Kiev is close to zero,

because several steps are typically enough to move directly from Kiev to either Istanbul

(the absorbing state) or Berlin. The latter almost implies going to Paris in the following

step due to high population there.

Taking a step when φ is the initial condition results in

T ′φ = T ′
(

v1 +
1

‖z‖1

v2

)
= v1 +

λ2

‖z‖1

v2. (A.20)
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Naturally, the resulting distribution is also non-negative and sums to one. In addition,

the first component is

1 +
λ2

‖z‖1

(−‖z‖1) = 1− λ2, (A.21)

which means the system escaped with probability 1− λ2. Furthermore, given the system

did not escape, φ is the final probability distribution for the states. This fact can be seen

by zeroing the first component of T ′φ and scaling to sum to one. So, when φ is the initial

state distribution, the probability of escaping is 1− λ2, the probability of staying in the

same distribution (φ) is λ2.

Now let the initial condition be φ, that is p[0] = φ. The expected number of steps

before escape corresponds to the term mean first passage time (MFPT) in [Byl and

Tedrake, 2009]. The higher MFPT is, the more stable a system is said to be. Two cases

are possible depending on the probability of taking a step: If λ2 = 1, then the probability

of escape is zero. In this case the system takes infinitely many steps without escaping to

the halt state. The other case (λ2 < 1) is relatively more complicated and interesting as

focused next.

A.2.1 System-wide First Passage Time

Given the probability of taking a step without escaping is λ2 < 1, the probability of

taking n steps only, equivalently escaping at the nth step is

Pr(X[n] = x1, X[n− 1] 6= x1) = λn−1
2 (1− λ2). (A.22)

Realize that as n → ∞, the right hand side goes to zero, which means the escape is

inevitable. The step ended up escaping also counts as a step, which can be verified

considering escaping at the first step (taking 1 step only). When n = 1 is substituted,
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1− λ2 is obtained as expected. Then, the expected number of steps can be calculated as

MFPT = E[FPT]

=
∞∑
n=1

n Pr(X[n] = x1, X[n− 1] 6= x1)

=
∞∑
n=1

nλn−1
2 (1− λ2) =

1

1− λ2

,

(A.23)

where FPT stands for first passage time and the fact that λ2 < 1 is used. As a result,

MFPT can then be calculated using

M =


∞ λ2 = 1,

1

1− λ2

λ2 < 1.

(A.24)

The MFPT for the Europe tour is

M ≈ 10, 823. (A.25)

So, if p[0] = φ, then the system takes approximately 10,823 steps on average.

The standard deviation of FPT can be calculated by

E[FPT2] =
∞∑
n=1

n2 Pr(X[n] = x1, X[n− 1] 6= x1)

=
∞∑
n=1

n2λn−1
2 (1− λ2) =

1 + λ2

(1− λ2)2

=⇒
√

E[FPT2]− (E[FPT])2 = M
√
λ2. (A.26)

Then for the Europe tour, the standard deviation of FPT is M
√
λ2 ≈ 10, 822. Note that

λ2 being close to one results in a standard deviation close to the mean.

The MFPT vector, m, gives the MFPT for each state and it is defined as

mi :=


0 i = 1,

1 +
∑
j

Tijmj otherwise.
(A.27)
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Equation (A.27) says it takes zero steps to go to the halt state if the system escaped

already. Otherwise, the number of steps until halt is 1 less after a step is taken. For the

Europe tour, the solution to (A.27) is

m ≈



0

10, 825

1

10, 652

10, 825

2, 121

10, 674

10, 824



. (A.28)

This vector says if the initial state is x2, then 10, 825 steps are expected before escape.

Note that London, Paris, Madrid, Berlin and Rome have MFPT close to the system-wide

MFPT M . Also the MFPT of Istanbul and Athens are very small. However, Kiev has a

MFPT that is not close to zero or the system-wide MFPT, because m1 = 0, m4 ≈ M ,

and

m6 = T61m1 + T64m4 + T66m6 (A.29)

implies

m6 ≈
T64

1− T66

= 2, 153. (A.30)

For walking robots, the picture is the same. Metastable states are almost equally stable

(m2 ≈ m4 ≈ m5 ≈ m7 ≈ m8 ≈ M) and some states are doomed to fail (m3 = 1). Also

some states are risky and likely to fail in the next step, otherwise they are mapped to

the metastable region, just like Kiev. This structure is the case when memory constant,

which is to be defined shortly, is small.
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By using (A.9), it is straightforward to obtain

m =

 0

(I− T̂ ′)−11

 . (A.31)

(I − T̂ ′) is invertible when λ2 < 1, which is the hidden assumption made while defining

the MFPT vector. The system-wide MFPT calculated in (A.23) can be also obtained by

M = m′φ =
1

‖z‖1

[1 ... 1](I− T̂ )−1z. (A.32)

This equivalence makes sense because each state has its own MFPT, and MFPT of the

metastable distribution is just a convex combination of each state’s MFPT weighted

according to φ. Indeed

M̂ =
1

‖z‖1

[1 ... 1](I− T̂ )−1z

=
1

‖z‖1

[1 ... 1](I− T̂ )−1(I− T̂ + T̂ )z

=
1

‖z‖1

[1 ... 1](I + (I− T̂ )−1T̂ )z

=
1

‖z‖1

[1 ... 1]z +
1

‖z‖1

[1 ... 1](I− T̂ )−1T̂ z

= 1 + λ2
1

‖z‖1

[1 ... 1](I− T̂ )−1z

= 1 + λ2M̂ =⇒ M̂ = 1/(1− λ2) = M.

(A.33)

Note that M is upper bounded by the largest element in m. In fact, any initial state

distribution, p[0], has a MFPT that is a convex combination of the mi values.

MFPT of the metastable distribution is useful for various reasons. First of all, it is

a lower bound for average steps taken from at least one of the states, because it is a

convex combination of mis. So, there exists state(s) at least as stable. Secondly, it is a

meaningful and intuitive measure of overall stability. Often systems quickly converge to

their metastable distributions, where MFPT becomes the true value. Thirdly, system-

wide MFPT also has advantages over calculating the MFPT vector. In case T is large,
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estimating the second largest eigenvalue is relatively easy, whereas finding the inverse to

calculate MFPT vector costs more time. Also, a scalar representing the stability is much

easier to understand than a possibly huge vector.

Assume T has distinct eigenvalues. Please see [Saglam and Byl, 2014a] for other cases.

Denote the initial distribution as

p[0] = c1v1 + c2v2 + ...c`v`. (A.34)

Note that c1 = 1 to have ‖p[0]‖1 = 1. Then,

p[n] = (T ′)np[0] = v1 + c2λ
n
2v2 + ...+ c`λ

n
` v`. (A.35)

In the light of this section, the metastable distribution is also given by

φi = lim
n→∞

Pr(X[n] = xi |X[n] 6= x1]), (A.36)

when the limit exists. It exists, for example, when the eigenvalues are distinct.

A.2.2 How Quickly is the Initial Distribution Forgotten?

The initial distribution (condition) is forgotten if either the distribution is the metastable

distribution (p = φ) or the game ended (p = [1 0 ... 0]′). So, the question can be para-

phrased as “how quickly does the system converge toward the metastable distribution,

given it is not absorbed yet?”. For systems with distinct eigenvalues,

memory constant =
1− λ2

1− |λ3|
(A.37)

is a dimensionless indicator of the convergence speed.

The definition of the memory constant is motivated by the fact that
∑∞

n=0 λ
n
i =

1/(1 − λi) for |λi| < 1. Although this property also holds for complex λi values, since

|λn3 | = |λ3|n, memory constant uses 1/(1−|λ3|) to quantify how many steps it takes before
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vanishing. Higher λ3 results in larger 1/(1 − |λ3|), which means the initial condition is

forgotten slower and more steps are required to forget the same amount of initial condition

information. λ3 gives the worst case scenario, so the memory constant is a conservative

value. (1/(1− |λ3|) is divided by M = 1/(1− λ2) for a relative memory constant, which

is upper bounded by 1.

Note that the memory constant being smaller than ε implies M > 1/ε. Thus, small

memory constants require metastability. If, on the other hand, the memory constant is

very close to one, then there is another mode almost as stable as the one associated with

λ2. In such cases it may be useful to use the next |λi| instead of |λ3|, until a small memory

constant is obtained. In particular, when the eigenvalues are not necessarily distinct, it

might be the case that λ2 = |λ3|.

For the Europe tour example, the memory constant is 1.1688 × 10−4. This small

memory constant indicates the structure mentioned earlier, where there are metastable

states, controllable unreachable states, doomed states, risky states, and halt state. Some

other motivating applications of MFPT calculation is presented later in this Chapter.

A.3 Mean First Passage Value

Calculating the discrete time to a state of interest has potential to be greatly useful,

but in some applications, metrics other than expected number of steps before absorption

are of interest. To illustrate, instead of how many decisions it took before reaching Istan-

bul, travel-time or distance to Istanbul might be needed. For this matter, MFPT can be

generalized as mean first passage value (MFPV), where “value” depends on the task, for

example, mean first passage distance. So, MFPT is a special case of MFPV, where value

is discrete time steps.
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Redefining m from (A.27) as the MFPV vector gives the MFPV for each state as

mi :=


0 i = 1∑
j

TijRij +
∑
j

Tijmj otherwise,
(A.38)

where Rij is the reward (value) of transitioning from state xi to xj. Then, vector m can

be calculated as

m =



0

(I− T̂ ′)−1



∑
j

T2jR2j

.

.

.∑
j

T`jR`j





. (A.39)

And the (system-wide) MFPV is

M = m′φ. (A.40)

For the metastable Europe tour example, consider the information provided in Ta-

ble A.1. Then, using (A.40) mean first passage distance can be calculated to be 325.68

thousand km. This calculation is achieved by setting, for example, R24 = 1, 098 km,

which corresponds to the distance between London, and Berlin.
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Time (h:m) Distance (km)

London (2) - Paris (8) 5:06 454

London (2) - Berlin (4) 10:25 1,098

Madrid (5) - Paris (8) 11:10 1,270

Rome (7) - Paris (8) 12:46 1,419

Berlin (4) - Paris (8) 9:18 1,055

Berlin (4) - Kiev (6) 14:41 1,329

Berlin (4) - Istanbul (1) 21:39 2,210

Kiev (6) - Istanbul (1) 19:00 1,459

Rome (7) - Istanbul (1) 22:46 2,262

Athens (3) - Istanbul (1) 11:13 1,095

Table A.1: Travel times and distances for the roads of Europe map in Figure A.1.
For the game explained in that figure’s caption, the values in this table are used to
calculate the expected distance and time before visiting Istanbul.

The travel-time only (excluding the days spent in a city) is calculated by setting

Rii = 0. Then, it takes 128 days on average before Istanbul. The MFPV vector for this

case is

m =



0

128.4756

0.4674

126.6098

128.7334

25.9478

127.0149

128.2681



days. (A.41)
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Remember that a random decision is made after spending a day in the city. For the

MFPV calculation, to include those days spent in a city, the reward needs to be set such

that Rii = 1 day. This setting results in a MFPV of 29 years, which is much higher

than 128 days. One reason of this difference is because once in Paris, there is a 0.9825

probability to stay in Paris.

In addition, MFPV does not need to have a physical meaning. Multiple objectives

can be included in a single value function, for example for walking robots failure events,

such as falling down, can be penalized while also rewarding fast speed and low energy

use. The value, or the cost function, does not need to have a physical correspondence.

Number of steps minus 10−3 times energy consumption is a valid value definition. Please

see [Saglam and Byl, 2014b] for further details and usage of this example.

A.4 Confidence Levels on Value

In some applications, instead of the mean FPV, a conservative FPV bound for a

particular “confidence level” pr is needed. In other words, a value above lower first passage

time (LFPT) would be observed with probability pr, and a value below upper first passage

time (UFPT) would be observed with probability pr.

A.4.1 First Passage Time

The probability of taking more than LFPT steps is λLFPT
2 . Then, the lower bound on

number of steps taken with probability pr can be calculated by

LFPT(pr) = logλ2pr. (A.42)

Note that LFPT(1)=0, so taking only a single step is guaranteed, which leads to the halt

state. The probability of taking less than UFPT steps is 1 − λUFPT−1
2 . Then, the upper
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bound on number of steps taken with probability pr is

UFPT(pr) = logλ2(1− pr) + 1. (A.43)

Since lim
pr→1

UFPT(pr) = ∞, it may theoretically take infinitely many steps before con-

verging to the halt state. Then FPT can be limited for a given probability as

LFPT ≤ FPT ≤ UFPT. (A.44)

Having LFPT<UFPT requires pr > λ2/(1 + λ2), where right hand side equals 0.5 for

λ2 = 1. To illustrate the advantage of looking to FPT, consider the metastable Europe

tour example. The probability of the journey taking more than M = 10, 823 days is only

36.79 %. On the other hand,

1, 140 ≤ FPT(0.9) ≤ 24, 921,

108 ≤ FPT(0.99) ≤ 49, 842.

(A.45)

These numbers are not coincidence. As λ2 → 1, the probability of taking M steps is

lim
λ2→1

λ
1/(1−λ2)
2 =

1

e
≈ 0.3679. (A.46)

In fact, 0.3679 is an upper limit for the probability of taking 1/(1− λ2) steps for any λ2.

In addition, when λ2 and pr are close to one,

LFPT(pr) =
ln(pr)

ln(λ2)
≈ 1− pr

1− λ2

= (1− pr)M, (A.47)

UFPT(pr) =
ln(1− pr)
ln(λ2)

+ 1 ≈ −ln(1− pr)M, (A.48)

where M denotes MFPT.

LFPT is of interest for walking systems, to give a conservative bound on steps to

failure, while UFPT would be helpful in modeling epidemics, to obtain a conservative

time when everyone is healthy, which means recurrence to an “all-healthy” system state.
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A.4.2 First Passage Value

Using MFPT and MFPV value per step can be used to write

FPV =
MFPV

MFPT
FPT, (A.49)

where FPV denotes first passage value. When the value is the distance in the metastable

Europe tour example,

3.4× 104 ≤ FPV(0.9) ≤ 7.5× 105,

3.2× 103 ≤ FPV(0.99) ≤ 1.5× 106.

(A.50)

So, with probability 0.99, the journey takes more than 3.2 thousand or less than 1.5

million kilometers.

A.5 Controlling the Europe Tour

In order to control a system, a goal is needed. For instance, going to Istanbul as

quickly as possible could be a goal for the Europe tour. It is then useful to quantify the

performance toward achieving that goal. For example, number of days before reaching

Istanbul would be a meaningful metric to minimize. FPV analysis provides useful metrics

for many applications. To illustrate, the more steps a walking robot takes before failure,

the more stable it is said to be. Once the performance is quantified, the control can be

optimized.

Control action comes into play in two ways: Low-level and high-level. For the Europe

tour, say the probability for city change is directly proportional to population to the

power k, e.g.,

Probability of staying in Madrid =
(Population of Madird)k

(Population of Madird)k + (Population of Paris)k
,

(A.51)
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where k ∈ {1, 2, 3}. This means a Markov Decision Process with three control actions.

Previous analysis was a special case of this setting with k = 1 (see (A.1)). Any choice of

k gives a Markov Chain, for which FPV is calculated as shown. Choosing a k or a set of

k values for the whole system is the low-level control problem we discuss in Chapter 4.

Moreover, if multiple k values are available, deciding on which k to use for a given city

is the high-level control problem, which we tackle in Chapter 5.

A.6 Applications

A.6.1 Coin Toss

Consider tossing an unfair coin, for which the probability of having tails is p. As

illustrated in Figure 2.5, when the number of flips before two heads in a row is of interest,

three states are possible: (1) Heads-heads, (2) Tails in the last flip (including ‘not-flipped

yet’), (3) Tails-Heads (including ‘flipped once and it was heads’). When p = 0.01, the

system-wide MFPT is M ≈ 10, 099 and the memory constant is 1.0001 × 10−4. The

MFPT vector and the metastable distributions are given by

m ≈


0

10, 100

10, 000

 and φ ≈


0

0.9901

0.0099

 (A.52)

So, if the initial state is x2, 10, 100 flips are expected before two heads in a row.

A.6.2 Epidemics

For the susceptible-infected-susceptible (SIS) model explained in [Ahn and Hassibi,

2013], the number of discrete time steps to everyone being healthy can be calculated. As

a toy example, consider a network of only 2 people with no birth or death. Each person
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is either susceptible or infected, so four states are possible as listed in Table A.2. Note

that when both patients are susceptible (State 1), the state does not change, because

noone can become infected.

State 1 State 2 State 3 State 4

Patient 1 Susceptible Susceptible Infected Infected

Patient 2 Susceptible Infected Susceptible Infected

Table A.2: Possible states for SIS model of epidemics with 2 people

Let ‘the probability of recovery when a node is infected’ be δ = 0.01, and ‘the prob-

ability to be infected when the other node is infected’ be β = 0.8. Then, the stochastic

matrix is given by

T =



1 0 0 0

(1− β)δ (1− δ)(1− β) βδ β(1− δ)

(1− β)δ βδ (1− δ)(1− β) β(1− δ)

δδ δ(1− δ) δ(1− δ) (1− δ)(1− δ)



=



1 0 0 0

0.002 0.198 0.008 0.792

0.002 0.008 0.198 0.792

0.001 0.0099 0.0099 0.9801


.

(A.53)

λ2 is such that MFPT is M = 6.8383 × 103. In addition, λ3 = 0.19, and the memory
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constant is 1.8× 10−4. The MFPT vector and the metastable distribution are given by

m ≈



0

6822.7

6822.7

6838.7


and φ ≈



0

0.0122

0.0122

0.9757


. (A.54)

Small memory constant results in states having a MFPT close to either zero or M . It is

interesting to see that with a high probability (0.9757), both people are infected during

the epidemic while all healthy state is the stable one.

Estimating survival times of epidemic spreads can potentially be useful for public

health research to optimize actions while minimizing deaths and expenditures.

A.6.3 Driving a Car

Arguably, given enough time (millions of years if necessary), any driver will be in-

volved in an accident. The same is true for autonomous cars including the Google car.

The expected miles driven between accidents can be estimated to quantify and increase

the safety.

A.6.4 Queueing and Polling Systems - Traffic Intersection

Queueing theory deals with waiting lines and queues. One application of polling sys-

tems, which are extensions of queueing systems, is traffic intersections with multiple lines

as illustrated in [Miculescu and Karaman, 2014]. As a toy example, consider the intersec-

tion with two lines shown in Figure A.2. The goal of the traffic light of the intersection is

to avoid traffic jam, which is defined as having more than 4 cars in a lane. Assume that

each turn a single car may pass through the intersection and new cars come stochastically

to each line. Let the number of cars arriving at each lane have Poisson distribution with

84



First Passage Value Chapter A

parameter λ = 0.1. This intersection can be easily treated as a Markov Decision Process.

If the controller always allows the same line to proceed, the expected discrete-time to

traffic jam is around 10. The exhaustive policy allows a line to proceed until that line

is empty and then switches to the other lane. This policy results with 1.09 × 106 turns

before traffic jam.

Figure A.2: An intersection with two lanes. Cars are either going from west to east or
south to north. Blue cars are waiting to pass through the intersection. Cyan colored
car recently moved to the north side of the intersection. The arrow shows which lane
is allowed to proceed. In this toy example, traffic jam corresponds to 5 or more cars in
a lane. The goal of the traffic lights is to minimize the traffic jam rates. Each turn a
single car may pass through the intersection and new cars come stochastically to each
line. The number of cars arriving at each lane has Poisson distribution with parameter
λ = 0.1. This intersection can be easily treated as a Markov Decision Process.
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A.7 Conclusion

This appendix studied first passage time, which is a survival metric. It presented

system-wide mean first passage time (MFPT), which is calculated using the second

largest eigenvalue of the stochastic transition matrix. The chapter also illustrated that

for metastable systems, system-wide MFPT is an accurate indicator across a large set

of states of those frequently visited. Then mean first passage value (MFPV) was intro-

duced, which gives a more general value of interest, such as energy expenditure, distance,

or time. Bounds on first passage value (FPV) was provided for a given confidence level.

The chapter also showed how these tools explained can be used to low-level and high-level

control hybrid systems.
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Biped Model

The methods of this paper are appropriate and useful for various systems. To show

applicability to high degree of freedom (DOF) robots (compared to 2-link walker in [Byl

and Tedrake, 2009] and 3-link walker of [Chen and Byl, 2012]), the analysis in this thesis

is carried out with the 5-link biped shown in Figure B.1. The model is based on the

RABBIT robot shown in Figure 1.4c [Chevallereau et al., 2003].

RABBIT has point feet, 5 degrees-of-freedom (DOF) and four actuators located at

the internal joints. Since the robot cannot produce ankle torques, it is underactuated

by 1 DOF. While studying RABBIT, we restrict our attention to planar motion and

assume links are rigid. The angles shown in the figure form q := [q1 q2 q3 q4 q5]T , the

ten dimensional state of the robot is defined as x := [qT q̇T ]T , and sh denotes the height

of the swing foot. The model parameters are taken from RABBIT [Westervelt et al.,

2007] and listed in Table B.1.

Depending on the number of legs in contact with the ground, the robot is either in

the single or double support phase. Walking consists of these two phases in sequence. The

single support (swing) phase has continuous dynamics. Using a Lagrangian approach, the
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Table B.1: Model parameters for the five-link robot based on RABBIT [Westervelt
et al., 2007]

Description Parameter Label Value

Torso Mass mT 12 kg

Femur Mass mf 6.8 kg

Tip Mass mt 3.2 kg

Torso Inertia IT 1.33 kg m2

Femur Inertia If 0.47 kg m2

Tip Inertia It 0.20 kg m2

Torso Length lT 0.63 m

Femur Length lf 0.4 m

Tip Length lt 0.4 m

Torso Mass Center pT 0.24 m

Femur Mass Center pf 0.11 m

Tip Mass Center pt 0.24 m

Gravitational Acceleration g0 9.81 m/s2

Gear Ratio ng 50

Ground Friction Coefficient µs 0.6

Saturation Limit usat 50 Nm
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q5

q1q2

−q3
−q4

Torso

Swing Femur

Swing Tip

Swing Leg

Stance Leg

sh

lT
pT

lfpf

lt pt

Figure B.1: Illustration of the five-link robot with identical legs that is used as our
biped model in this thesis. This model is based on RABBIT shown in Figure 1.4c.

equations of motion can be derived in the canonical form of

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (B.1)

where u is the input. An important point is that q consists of the five angles depicted in

Fig. B.1 whereas u has only four elements. The system has this degree of underactuation

because of the passive joint at the stance tip. The swing dynamics can be equivalently

expressed as

ẋ =

 q̇

D−1(−Cq̇ −G+Bu)

 =: f(x) + g(x)u. (B.2)

During the swing phase of a successful step, the swing leg takes off from the ground,

passes the stance leg and lands on a further point on the ground. So, each single support

phase starts and ends with double support phases. As the robot has point feet, the double

support (stance) phase can be well captured as an instantaneous impact event. The robot

experiences this impact whenever the swing foot hits the ground (sh = 0) from above
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(ṡh < 0). Let us denote this impact surface, aka the jump set, by S. Then we have

x+ = ∆(x−) :=

 ∆q q
−

∆q̇(q
−) q̇−

 x ∈ S, (B.3)

where x− = [(q−)T (q̇−)T ]T and x+ are the states just before and after the impact re-

spectively. Conservation of energy and the principle of virtual work gives the mapping

∆ [Westervelt et al., 2007], [Hurmuzlu and Marghitu, 1994]. Essentially, this model as-

sumes instantaneous, inelastic collisions between the swing leg tip and the ground, with

instantaneous changes in velocities to reflect the effects of impulsive forces exerted on

the robot.

Although the robot’s position and orientation do not actually change according to

the impact model, we relabel the legs every step, so the previous swing leg becomes the

new stance leg and vice versa. So, ∆q is such that we have ∆q[q1 q2 q3 q4 q5]T =

[q2 q1 q4 q3 q5]T . Without relabeling, a periodic walking gait would have two steps as

its period.

Since a step consists of a single support phase and an impact event, it has hybrid

dynamics as illustrated in Figure B.2. In our modeling, we assume the impact event

occurs first, but the order in the definition of a step is an arbitrary choice, so long as

one remains consistent after deciding. As seen in Figure B.2, for a step to be successful,

certain “validity conditions” must be satisfied, which we list next. After impact, the

former stance leg must lift from ground with no further interaction with the ground until

the next impact. Also, the swing foot must have progressed past the stance foot before

the impact of the next step occurs. Only the feet should contact the ground. Furthermore,

the force on the stance tip during the swing phase, and the force on the swing tip at the

impact should satisfy the friction constraint given by

Ffriction = Fnormal µs > |Ftransversal|. (B.4)

90



Biped Model Chapter B

If validity conditions are not met, the step is labeled as “unsuccessful” and the system

is modeled as transitioning to a failure state. This is a conservative model, because in

reality violating these conditions does not necessarily mean failure.

ẋ = f(x) + g(x)u

x+ = ∆(x)

Swing tip touched the ground
and validity conditions

are not violated

Validity conditions
are violated

Failure

Figure B.2: Hybrid model of a step and the failure state. Swing phase is governed by
continuous dynamics or flows, which are interrupted by discontinuous impacts.
Image inspired by [Westervelt et al., 2007].
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Appendix C

Modeling Rough Terrain

To study rough terrain walking, the methodology in Chapter 2 assumes stochastically

changing terrain, which requires modeling ground with finitely many dimensions. Two

most elementary models, which are only one dimensional disturbances to the robot, are

presented in Figure C.1. This thesis mainly assumes sloped terrain model, but results

when heights are varying instead are also presented in Section 4.3.

slope

(a) Sloped Terrain

step
height

(b) Step Terrain

Figure C.1: One dimensional terrain disturbances
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A natural concern is related to the validity of these terrain models. Consider the higher

dimensional terrain disturbance in Figure C.2. Red dashed line shows the trajectory of

the swing foot for a specific initial condition and the controller employed. Given this

trajectory, all three terrains shown on the right hand side of Figure C.2 are equivalent

to the original terrain. In particular, the terrain in the right bottom is generated with

double-sloped terrain model. In addition to the sloped terrain of Figure C.1a, this model

has an extra dimension which stores the slope experienced at impact. Adopting double-

sloped terrain is a topic of future work.

Equivalent Terrains

Figure C.2: Higher dimensional terrain disturbances
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Extended Hybrid Zero Dynamics

Any one of the numerous control schemes proposed for bipedal locomotion can be opti-

mized and benchmarked using the methods presented in this thesis. As case demonstra-

tion, we illustrate our results mainly on the extended hybrid zero dynamics framework

explained in this Appendix.

In the literature of bipedal locomotion control, typically time trajectories are imposed

to achieve a desired walking motion. However, time-invariant controllers have critical

advantages over their time-varying counterparts. For example, imagine someone holding

the robot in the mid-step for a second. After released, instead of hurrying to catch up

the time trajectories for re-synchronization, the robot better continue the interrupted

motion. For this reason, defining an internal clock which defines how far the robot is

at a step is a meaningful approach, which has led to the hybrid zero dynamics (HZD)

framework [Westervelt et al., 2003]. The controller scheme introduced in this thesis is

a generalization of the now-famous HZD control in two-ways. First, we modify it for

non-flat terrain as in [Yadukumar et al., 2012] and [Saglam and Byl, 2015]. Secondly,

and much more importantly, HZD controllers assume deterministic terrain by design,

where the internal clock ticks from 0 to 1 at every step. In this thesis, we extend the
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trajectories to cover from 0 to 1.4, thus the extended hybrid zero dynamics (EHZD). The

start and end points were empirically chosen and can be extended further in both ways

when necessary. Finally, we use B-splines instead of Bézier polynomials just as a design

choice. For optimization and benchmark results of this strategy along with the original

HZD controller and a piecewise reference trajectories using a sliding mode control, see

Chapter 4.

D.1 The Structure

First, we choose a phase-variable which will work as an internal-clock. The phase

should be monotonic through the step, e.g., hip location moves forward with an al-

most constant velocity in humans [Ames, 2012]. As in [Westervelt et al., 2007], we

choose θ shown in Figure D.1 as our phase variable, which corresponds θ = cq with

c = [−1 0 − 1/2 0 − 1] since femur and tip lengths are equal in RABBIT robot.

sh

θ

Figure D.1: Phase θ and swing tip height sh. Since femur and tip lengths are equal
in RABBIT robot, θ = cq with c = [−1 0 − 1/2 0 − 1]. The robot experiences an
impact whenever sh = 0 and ṡh < 0, i.e., swing tip hits the ground from above.
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Second, we decide on four independent variables to control h0 because the robot has

four actuators only. It is intuitive to control the relative (internal) angles, i.e., h0 :=

[q1 q2 q2 q3 q4]T . Then h0 is in the form of h0 = H0 q, where H0 = [I4 0]. Changing h0

later is an easy step in this framework and it does not affect the performance to the

author’s experience.

Third, let hd(θ) be the references for h0. Then the tracking error is given by

h(q) := h0(q)− hd(θ) = H0q − hd(cq). (D.1)

Taking the first derivative with respect to time yields

ḣ =
∂h

∂x
ẋ =

∂h

∂x
f(x) =: Lfh = 〈∇h, f〉 , (D.2)

where we used the fact that
∂h

∂x
g(x) = 0. For the clarity of later equations, we will use

the Lie derivative (L) notation. Then, we have

ḧ = L2
fh+ LgLfh u. (D.3)

Substituting the linearizing controller structure

u = (LgLfh)−1(−L2
fh+ v) (D.4)

to (D.3) yields

ḧ = v. (D.5)

There are various methods to design v in (D.4) to force h (and ḣ) to zero [Ames et al.,

2012]. While even a PD controller could be sufficient, a sliding mode control (SMC) is

preferable, due to its finite time convergence [Sabanovic and Ohnishi, 2011], which we

summarize next.
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D.2 Sliding Mode Control

Remember that h corresponds to tracking error. The generalized error is defined as

σi = ḣi + hi/τi, i = {1, 2, 3, 4}, (D.6)

where τis are time constants for hi. Note that when the generalized error is driven to

zero, i.e. σi = 0, we have

0 = ḣi + hi/τi. (D.7)

The solution to this equation is given by

hi(t) = hi(t0) exp(−(t− t0)/τi), (D.8)

which drives hi to 0 exponentially fast. Finally, v in (D.4) is given by

vi = −ki|σi|2αi−1sign(σi), i = {1, 2, 3, 4}, (D.9)

where ki > 0 and 0.5 < αi < 1 are called the convergence coefficient and convergence

exponent respectively. Note that if we had αi = 1, this would simply be a standard PD

controller. Then, ki/τi and ki are analogous to the proportional and derivative gains of

a PD controller. However, 0.5 < αi < 1 ensures finite time convergence. In this thesis we

used αi = 0.75, τi = 0.1, ki = 10 for all controllers, but hd was different for each low-level

controller.

What the controller does is driving the system to the “zero dynamics manifold”,

noted by Z, where h = 0 and ḣ = 0. The following two sections consider the dynamics

on this manifold. The final goal is to design hd such that the desired walking motion is

generated.
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D.3 Swing Phase Zero Dynamics

Let V be the potential energy of the robot, γ0(q) be the last row of D and define

γ := γ0q̇. Then, Lgγ = 0 and Lfγ = −∂V
∂q5

∣∣∣∣
Z

. For x ∈ Z we transform coordinates by

ξ1 = θ, ξ2 = γ, (D.10)

to equivalently express the system dynamics during the swing phase as

ξ̇1 = cq̇, ξ̇2 = Lfγ, (D.11)

where the right-hand sides are evaluated at

q = H−1

hd
ξ1

 (because ξ1 = θ = cq and H0q = h0 = hd for x ∈ Z),

and q̇ =

∂h∂q
γ0


−1  0

ξ2

 (because ḣ = 0 for x ∈ Z and ξ2 = γ = γ0q̇).

(D.12)

To evaluate q̇, we can alternatively differentiate q from above to get

q̇ = H−1

∂hd∂θ
1

 θ̇ (D.13)

Using (D.12) we can write (D.11) as

ξ̇1 = κ1(ξ1)ξ2, ξ̇2 = κ2(ξ1). (D.14)
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D.4 Hybrid Zero Dynamics Impact

As we will see, hd will be designed such that x− ∈ Z implies x+ ∈ Z. Now assume

the swing foot passed the stance foot and had an impact. Let q−0 denote the angles just

before the impact on hd. Then, q−0 is a solution toh(q)

sh

 = 0, (D.15)

where sh is the swing tip height as drawn in Figure D.1. At the impact, the angles

are relabeled as in (B.3). So, after the impact we have q+
0 = ∆qq

−
0 . The phases at the

beginning and end of the step are simply θ+ := cq+
0 and θ− := cq−0 respectively.

Similarly let q̇−0 and q̇+
0 denote the velocities just before and after the impact respec-

tively. ξ−2 and ξ+
2 are the corresponding ξ2 values. Then, using (D.12) we get

q̇−0 =

∂h∂q (q−0 )

γ0(q−0 )


−1 0

1

 ξ−2 =: λq̇ ξ
−
2 (D.16)

From (B.3), we obtain q̇+
0 = ∆q̇(q

−
0 ) q̇−0 and ξ+

2 = γ0(q+
0 ) q̇+

0 . Defining

δzero := γ0(q+
0 ) ∆q̇(q

−
0 ) λq̇, (D.17)

the impact map on zero dynamics manifold is given by

ξ+
1 = θ+, ξ+

2 = δzero ξ
−
2 . (D.18)

D.5 Poincaré Analysis

We then define a Poincaré section just before the impact. We already know the angles

are q−0 . To find the fixed point on this Poincré map (if it exists), we also need a fixed
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ξ−2 . Define ξ2b := ξ2
2/2. ξ+

2b and ξ−2b denote its value at the beginning and end of the step

respectively. Then, we have

dξ2b

dξ1

=
κ2(ξ1)

κ1(ξ1)
. (D.19)

Integration over a step gives

ξ−2b − ξ
+
2b =

∫ θ−

θ+

κ2(ξ1)

κ1(ξ1)
dξ1. (D.20)

Since impact maps ξ2b to δ2
zeroξ2b, the fixed point ξ∗2b is obtained by solving

ξ∗2b − δ2
zeroξ

∗
2b =

∫ θ−

θ+

κ2(ξ1)

κ1(ξ1)
dξ1. (D.21)

Then, the fixed points for the zero dynamics are

ξ∗1 = θ−, ξ∗2 =

√
−2

1− δ2
zero

∫ θ−

θ+

κ2(ξ1)

κ1(ξ1)
dξ1. (D.22)

D.6 Under deterministic conditions

[Westervelt et al., 2007] carries a Poincaré analysis, where the stability is formulated

analytically and shown numerically. Using the fixed point as initial condition, they simu-

late the 2D dynamics described in (D.11) until θ = θ− and calculate the steady-state cost

of transport (COT) defined in (4.1). However, we demonstrate in Figure 4.1 that opti-

mizing for energy efficiency results in sensitivity to perturbations, thus poor performance

on rough terrain.

During optimization, [Westervelt et al., 2003] impose many constraints such as fric-

tion violations and torque saturation limits. On the other hand, our method deals with

stochastic conditions to maximize global stability and no constraints are necessary for

optimization because it considers the full dynamics where, for example, the controller

can hit the saturation limit.
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D.7 Reference Design

While forming trajectories in phase instead of time, we first scale and shift θ to have

an internal clock which ticks from 0 to 1 on the limit cycle using

τ(q) :=
θ(q)− θ+

θ− − θ+
. (D.23)

Then, the reference trajectory is determined as

hd(θ) :=



b1(τ)

b2(τ)

b3(τ)

b4(τ)


. (D.24)

To form trajectories defined by bj(τ)s, we use B-splines as formulated in [Patrikalakis

and Maekawa, 2010]. Each of the four trajectories is then defined as a linear combination

of control points αji and B-spline basis functions Ni,k(τ) given by

bj(τ) =
n∑
i=0

αjiNi,k(τ), n ≥ k − 1, τ ∈ [τk−1, τn+1], (D.25)

where k is order of the curve and the number of control points equals n + 1. The basis

functions Ni,k(τ) are uniquely determined by the knot vector

T = (τ0, τ1, ..., τk−1, τk, τk+1, ..., τn−1, τn, τn+1, ..., τn+k), (D.26)

which consist of n+ k + 1 elements. We use 4th order curves on the knot vector

T = (0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.4, 1.4, 1.4). (D.27)

The resulting 10 basis functions and their derivatives are pictured in Figure D.2.

10 basis functions imply 10 control points for each of the 4 bj(τ)s. So, 10 × 4 = 40

αji parameters need to be optimized. However, we demand hybrid invariance, so x− ∈ Z
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Figure D.2: 10 basis functions of order 4 with uniform knot vector in (D.27) and their
derivatives. On the limit cycle, the internal clock ticks from τ = 0 to τ = 1. We extend
the knots until τ = 1.4 for impacts on uneven terrain.
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on the limit cycle should imply x+ ∈ Z, i.e., once the walker is on the zero dynamics

manifold it should stay there under deterministic conditions. Hybrid invariance constraint

eliminates 2 × 4 = 8 of the 40 parameters. This is achieved by calculating αj0 and αj1 in

terms of the other αji values.

First, assume h = 0 at the impact when τ = 1. Note that hd|τ=1 is independent from

αj0 and αj1 (see Figure D.2a). Also hd|τ=0 is a function of αj0 only. Achieving h = 0 after

the impact requires

q+
0 = ∆qq

−
0

H−1

hd|τ=0

θ+

 = ∆qH
−1

hd|τ=1

θ−


hd|τ=0

θ+

 = H∆qH
−1

hd|τ=1

θ−

 ,
(D.28)

which determines αj0.

Second, assume ḣ = 0 at the impact with τ = 1. Again,
∂hd
∂θ

∣∣∣∣
τ=0

is independent

from αj0 and αj1. Also
∂hd
∂θ

∣∣∣∣
τ=1

is a function of these two (see Figure D.2b), one which

we already determined above. Now remember (D.13). Achieving ḣ = 0 after the impact

means

q̇+
0 = ∆q̇(q

−
0 ) q̇−0 , (D.29)

or equivalently

H−1

 ∂hd∂θ
∣∣∣∣
τ=0

1

 θ̇+ = ∆q̇(q
−
0 ) H−1

 ∂hd∂θ
∣∣∣∣
τ=1

1

 θ̇−, (D.30)

from which we calculate αj1. As a result, 32 αji parameters that need to be optimized

are given by i ∈ {2, 3, 4, 5, 6, 7, 8, 9} and j ∈ {1, 2, 3, 4}. For optimization and benchmark

results of this controller scheme see Chapter 4.
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