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Face Recognition in Hyperspectral Images
Zhihong Pan, Student Member, IEEE, Glenn Healey, Senior Member, IEEE,

Manish Prasad, and Bruce Tromberg

Abstract—Hyperspectral cameras provide useful discriminants for human face recognition that cannot be obtained by other imaging

methods.We examine the utility of using near-infrared hyperspectral images for the recognition of faces over a database of 200 subjects.

The hyperspectral images were collected using a CCD camera equipped with a liquid crystal tunable filter to provide 31 bands over the

near-infrared (0.7�m-1.0�m). Spectral measurements over the near-infrared allow the sensing of subsurface tissue structure which is

significantly different from person to person, but relatively stable over time. The local spectral properties of human tissue are nearly

invariant to face orientation and expression which allows hyperspectral discriminants to be used for recognition over a large range of

poses and expressions. We describe a face recognition algorithm that exploits spectral measurements for multiple facial tissue types.

We demonstrate experimentally that this algorithm can be used to recognize faces over time in the presence of changes in facial pose

and expression.

Index Terms—Face recognition, hyperspectral.

�

1 INTRODUCTION

SPECTROSCOPY is a valuable tool for a large number of
applications. Spectral measurements from human tissue,

for example, have been used for many years for character-
ization and monitoring applications in biomedicine. In
remote sensing, researchers have shown that hyperspectral
data are effective for material identification in scenes where
other sensing modalities are ineffective [1]. The introduc-
tion of hyperspectral cameras has led to the development of
techniques that combine spectral and spatial information.
As hyperspectral cameras have become accessible, compu-
tational methods developed initially for remote sensing
problems have been transferred to biomedical applications
[2]. Considering the vast person-to-person spectral varia-
bility for different tissue types, hyperspectral imaging has
the ability to improve the capability of automated systems
for human identification.

Current face recognition systems primarily use spatial
discriminants that are based on geometric facial features [3],
[4], [5], [6], [7]. Many of these systems have performed well
on databases acquired under controlled conditions [8], [9].
However, these approaches often exhibit significant perfor-
mance degradation in the presence of changes in face
orientation. The study in [10], for example, showed that
there is significant degradation in recognition performance
for images of faces that are rotated more than 32 degrees
from a frontal image that is used to train the system. A more
recent study in [11], which uses a light-fields model for

pose-invariant face recognition, showed promising recogni-
tion results for probe faces rotated more than 60 degrees
from a gallery face. The approach currently requires the
manual determination of the 3D transformation required to
register face images. Algorithms that use geometric features
can also perform poorly when subjects are imaged at
different times. For example, recognition performance can
degrade by as much as 20 percent when imaging sessions
are separated by a two week interval [10]. Partial face
occlusion also often brings poor performance. A method
[12] that divides the face into regions for isolated analysis
can tolerate up to 1/6 face occlusion without losing
accuracy. Thermal infrared imaging provides an alternative
imaging modality that has been used for face recognition
[13], [14], [15]. However, techniques based on thermal
images use spatial features and have difficulty recognizing
faces after pose changes. A 3D morphable face model has
been used for face identification across different poses [16].
This approach has provided promising performance on a 68
subject data set. At the current time, however, this system is
computationally intensive and requires considerable man-
ual intervention.

Several of the limitations of current face recognition
systems can be overcome by using spectral information.
The interaction of light with human tissue has been studied
extensively by various researchers [17], [18], [19] and
determines tissue spectral properties. The epidermal and
dermal layers of human skin constitute a scattering medium
that contains several pigments such as melanin, hemoglobin,
bilirubin, and �-carotene. Small changes in the distribution of
these pigments induce significant changes in the skin’s
spectral reflectance [20]. The effects are large enough, for
example, to enable algorithms for the automated separation
of melanin and hemoglobin from RGB images [21]. Recent
research [22] has measured skin reflectance spectra over the
visible wavelengths and proposed models for the spectra.
Other researchers [23] have used a skin reflectance model
over the 0.3�m-0.8�m range to propose a method for skin
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detection under varying lighting conditions. A skin reflec-

tance model has also been used to synthesize face images after

changes in lighting and viewpoint [24].
In the near-infrared (NIR), skin has a larger penetration

depth than for visible wavelengths enabling the imaging of

subsurface characteristics that are difficult for a person to

modify [25]. The optical penetration depth is defined as the

tissue thickness that reduces the light intensity to 37 percent

of the intensity at the surface. The optical penetration depth is

defined as 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
3�a�0

s

p
, where �a and �0

s are the absorption

coefficient and reduced scattering coefficient of the tissue,

respectively. For a typical person, we have �a ¼ 0:77mm�1

and�0
s ¼ 1:89mm�1 in the visible (550nm) and�a ¼ 0:02mm�1

and �0
s ¼ 1:31mm�1 in the NIR (850nm) [26]. This leads to an

optical penetration depth of 3.57mm at 850nm and 0.48mm at

550nm. In addition, observed spectral signatures have little

dependence on skin temperature over the NIR, whereas

measured radiance in the thermal infrared (8�m-12�m) has a

strong dependence on skin temperature [27].

Fig. 1 presents an example of the spectral variability in

human skin using measurements obtained at our laboratory.

The reflectance spectra in the figure were measured from the

right cheek of four subjects over the NIR (700nm-1000nm). In

Fig. 2, four reflectance spectra were acquired from different

facial locations for one subject in order to compare within-

class and between-class variability. We see that there are

significant differences in both the amplitude and spectral

shape of the reflectance curves for the different subjects,

while the spectral reflectance for one subject remains similar

from trial-to-trial. Similar results were obtained for other

facial skin samples.
Spectral variation for a single subject is also typically small

over a range of poses. Fig. 3 plots spectral measurements

derived from hyperspectral images. In Fig. 3a, NIR skin and

hair reflectance spectra are plotted for two subjects as

acquired in a front-view hyperspectral image. In Fig. 3b,

reflectance spectra for the same subjects are plotted as

acquired in a side-view (profile) image. While the subject

was rotated, the camera and illumination configuration were

the same for both images. We see that there is significant

spectral variability from one subject to the other, while the

spectral characteristics of the subjects remain stable over a

large change in face orientation. The differences in the skin

spectra between the two subjects are more pronounced, but

the hair spectra also have discernible differences that are

valuable for recognition.

PAN ET AL.: FACE RECOGNITION IN HYPERSPECTRAL IMAGES 1553

Fig. 1. Skin spectra for four subjects.

Fig. 2. Four skin spectra for one subject.

Fig. 3. Skin and hair reflectance spectra for two subjects. (a) Front view

images. (b) 90 degree side view images.



In this paper, we consider the use of spectral information
for face recognition. We present experimental results on
recognizing 200 human subjects using hyperspectral face
images. For each subject, several NIR images were acquired
over a range of poses and expression. Recognition is achieved
by combining spectral measurements for different tissue
types. Several of the subjects were imaged multiple times
over several weeks to evaluate the stability of the hyperspec-
tral measurements over time.

2 DATA COLLECTION AND CAMERA CALIBRATION

Our data collection utilizes a hyperspectral camera from
Opto-Knowledge Systems, Inc. (OKSI) that is based on a
liquid crystal tunable filter [28] made by Cambridge
Research Instruments (CRI). The full-width at half-max-
imum (FWHM) of the filter is 10nm when the center
wavelength is 850nm and the FWHM is proportional to the
center wavelength squared. All images were captured with
31 spectral bands with center wavelengths separated by
0.01�m over the NIR (0.7�m-1.0�m) with 468� 494 spatial
resolution. A full 31-band hyperspectral image is acquired

in about ten seconds. Fig. 4 shows the imaging setup with a
subject and two light sources. Each source is a 750W
halogen lamp with a white diffuser screen. The two sources
provide approximately uniform illumination on the subject.
Fig. 5 displays all 31 bands for one subject. The 31 bands are
shown in ascending order from left to right and from top to
bottom. All 31 bands are used by our face recognition
algorithm. The spectral channels have unknown gains due
to filter transmission and CCD response and unknown
offsets due to dark current and stray light. These gains and
offsets may change over time. Therefore, we devised a
method to convert the raw images acquired by the
hyperspectral camera to spectral reflectance images for
analysis. Two spectralon panels were used during calibra-
tion. A panel with approximately 99 percent reflectance is
referred to as white spectralon and a panel with approxi-
mately 2 percent reflectance is referred to as black
spectralon. Both spectralon panels have nearly constant
reflectance over the 0.7�m-1.0�m spectral range. The
calibration of spectralon is traceable to the US National
Institute of Standards and Technology (NIST).

The raw measurement obtained by the hyperspectral
imaging system at spatial coordinate ðx; yÞ and wavelength
�k is given by

Iðx; y; �kÞ ¼ Lðx; y; �kÞSðx; y; �kÞRðx; y; �kÞ þOðx; y; �kÞ;
ð1Þ

where Lðx; y; �kÞ is the illumination, Sðx; y; �kÞ is the system
spectral response, Rðx; y; �kÞ is the reflectance of the viewed
surface, and Oðx; y; �kÞ is the offset which includes dark
current and stray light. For the image of white spectralon,
we have

IW ðx; y; �kÞ ¼ Lðx; y; �kÞSðx; y; �kÞRW ð�kÞ þOðx; y; �kÞ;
ð2Þ

and for the image of black spectralon, we have

IBðx; y; �kÞ ¼ Lðx; y; �kÞSðx; y; �kÞRBð�kÞ þOðx; y; �kÞ; ð3Þ
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Fig. 4. Imaging setup with a subject and two light sources.

Fig. 5. Thirty-one bands for a hyperspectral image of one subject.



where RW ð�kÞ and RBð�kÞ are the reflectance functions for
the two spectralon panels, respectively.

We average 10 images of the white and black spectralon
panels to obtain estimates of IW ðx; y; �kÞ and IBðx; y; �kÞ:
These estimates are used together with (2) and (3) to
estimate Lðx; y; �kÞSðx; y; �kÞ according to

Lðx; y; �kÞSðx; y; �kÞ ¼
IW ðx; y; �kÞ � IBðx; y; �kÞ

RW ð�kÞ �RBð�kÞ
; ð4Þ

and this estimate can be substituted into (3) to obtain an
estimate for Oðx; y; �kÞ: With these estimates, (1) can be
solved for reflectance to give

Rðx; y; �kÞ ¼
ðIðx; y; �kÞ � IBðx; y; �kÞÞRW ð�kÞ

IW ðx; y; �kÞ � IBðx; y; �kÞ
þ

ðIW ðx; y; �kÞ � Iðx; y; �kÞÞRBð�kÞ
IW ðx; y; �kÞ � IBðx; y; �kÞ

:

ð5Þ

We performed this calibration step at the beginning of each
imaging session. The reflectance Rðx; y; �kÞ is invariant to
the illumination and our experiments do not consider
illumination variability. In Section 5, we suggest a method
that can be used to extend this work for illumination-
invariant recognition.

We collected hyperspectral face images for a total of
200 human subjects. All these subjects were studied under
protocol HS# 2000-1449, which was approved by the
Institutional Review Board (IRB) of UC Irvine. As shown in
Fig. 6, the 200 subject database has a diverse composition in
terms of gender, age, and ethnicity. Images of all human
subjects were acquired in sets of seven images per subject.
Fig. 7 shows the seven images for one subject. Two front-view
images were taken with neutral expression (fg and fa).

Another front-view image, fb, was taken with a different
expression. Four other images were taken with face orienta-
tions of -90 degrees, -45 degrees, 45 degrees, and 90 degrees,
as shown in Fig. 7. These images are referred to as fr2, fr1, fl1,
and fl2, respectively. Twenty of the 200 subjects were imaged
at different times separated by up to five weeks from their
initial imaging session. Fig. 8 shows the front-view images of
one subject taken at four different visits.

3 SPECTRAL METRIC FOR FACE RECOGNITION

In order to test the feasibility of hyperspectral face
recognition, we represent each face image using spectral
reflectance vectors that are extracted from small facial
regions. Squares overlayed on the images in Fig. 7 indicate
the size and location of the regions that are considered for
each subject. The regions are selected manually, but we
describe a method later in this section that is used to reduce
dependence on the particular location of the region. For the
frontal images (fg, fa, fb), five facial regions corresponding
to the forehead, left cheek, right cheek, hair, and lips are
used. For images acquired at other facial orientations, the
subset of these facial regions that are visible are used, as
shown in Fig. 7. The forehead, for example, is not visible for
a facial orientation of 90 degrees.

For each facial region, the spectral reflectance vector
Rt ¼ Rtð�1Þ; Rtð�2Þ; � � � ; Rtð�BÞð ÞT is estimated by averaging
over the N pixel squares shown in Fig. 7 according to

Rtð�kÞ ¼
1

N

X
x;y

Rðx; y; �kÞ k ¼ 1; 2; . . . ; B; ð6Þ

where the sum is over the N pixels in the square, B is the
number of spectral bands, and t is one of the following tissue
types: f (forehead), lc (left cheek), rc (right cheek), h (hair), or
l (lip). The normalized spectral reflectance vector Rt is
defined by

Rt ¼ Rt=kRtk: ð7Þ

The distance between face image i and face image j for
tissue type t is defined by the square of the Mahalanobis
distance [29].

D0
tði; jÞ ¼ RtðiÞ �RtðjÞ

� �T
��1

t RtðiÞ �RtðjÞ
� �

; ð8Þ

where �t is the B�B covariance matrix for the distribution
of the vector Rt for a subject. In our experiments, we use a
single �t to represent variability for tissue type t over the
entire database. Since the amount of data available to
estimate the covariance matrix is limited, we approximate
�t by a diagonal matrix Lt with elements that correspond to
the variance at each �k. The matrix LtðiÞ is estimated for
each subject i using the vectors RtðiÞ from each image of
subject i that contains tissue type t: The overall matrix Lt

PAN ET AL.: FACE RECOGNITION IN HYPERSPECTRAL IMAGES 1555

Fig. 6. Human subject distribution according to gender, age, and

ethnicity.

Fig. 7. Examples of images with different expressions and rotations.



which is used to approximate �t in (8) is obtained by
averaging the LtðiÞ matrices over all subjects. Fig. 9 plots the
diagonal elements of Lt as a function of wavelength for the
forehead tissue type. The corresponding functions for the
left cheek and right cheek are similar while the functions for
the lips and hair have a similar shape but larger values of
the variance at each wavelength. As seen in Fig. 9, the
variance has larger values at the low and high ends of the
700-1000 nm wavelength range. This is due primarily to a
lower signal-to-noise ratio for the sensing system for
wavelengths near the ends of the spectral range.

Since tissue spectral reflectance can have spatial

variability, the distance D0
tði; jÞ will have some depen-

dence on the locations of the squares used to compute

RtðiÞ and RtðjÞ. We address this issue by defining a set

StðiÞ ¼ fRð1Þ
t ðiÞ;Rð2Þ

t ðiÞ; . . . ;RðMÞ
t ðiÞg of normalized spec-

tral reflectance vectors where each R
ðkÞ
t ðiÞ is derived from

a different N-pixel square region in the image of subject i

for tissue type t. A similar set StðjÞ is defined for subject

j: The distance Dtði; jÞ is defined as the smallest squared

Mahalanobis distance between an element of StðiÞ and an

element of StðjÞ

Dtði; jÞ ¼ min
k2½1;M�;l2½1;M�

R
ðkÞ
t ðiÞ �R

ðlÞ
t ðjÞ

� �T
�

��1
t R

ðkÞ
t ðiÞ �R

ðlÞ
t ðjÞ

� �i
:

ð9Þ

In our experiments, we consider M ¼ 5 adjacent square
regions of size 17� 17 pixels arranged in a cross pattern to
define the sets StðiÞ for each tissue type except the lips.
Smaller regions of size 9� 9 pixels are used to represent the
smaller spatial extent of the lips.

Recognition performance can be enhanced by utilizing
all visible tissue types. Thus, the distance between a frontal
face image i and a test face image j is defined as

Dði; jÞ ¼ !fDfði; jÞ þ !lcDlcði; jÞ þ !rcDrcði; jÞþ
!hDhði; jÞ þ !lDlði; jÞ;

ð10Þ

where !t is 1 if tissue type t is visible in the test image, and 0
otherwise.

4 EXPERIMENTAL RESULTS

We conducted a series of recognition experiments using an
image database consisting of C ¼ 200 subjects. At each
imaging session, seven images of each subject were
acquired, as shown in Fig. 7. Image fg is used to represent
the subject in the gallery set which is the group of
hyperspectral images of known identity [9]. The remaining
images are used as probes to test the recognition algorithm.
Thus, the experiments follow the closed universe model [9],
where the subject in every image in the probe set is present

in the gallery. Twenty of the 200 subjects participated in
imaging sessions which occurred after their initial session.
The images taken in the second and subsequent sessions are
called duplicates. The results of the experiments will be
presented using cumulative match scores [9]. For a probe
image j, the image in the gallery which corresponds to the
same subject is denoted by Tj. Given a probe image j, we
can compute Dði; jÞ for each of the C images i in the gallery.
Probe j is correctly recognized if DðTj; jÞ is the smallest of
the C distances. Given a set of probes, the total number of
correctly recognized probes is denoted as M1. Similarly, Mn

is the number of probes for which DðTj; jÞ is one of the n
smallest of the C distances. Thus, Mn is a monotonically
nondecreasing function of n and we say that the algorithm
correctly recognizes Mn of the probes at rank n. The
cumulative match score (CMS) function for an experiment
is defined by Rn ¼ Mn=P where P is the total number of
probes used in the experiment and n denotes rank. Note
that if all of the probes are in the gallery, then Rn equals 1
when n equals the size of gallery.

We first consider the use of the frontal fa and fb probes to
examine the utility of the various tissue types for
hyperspectral face recognition. Fig. 10 presents the cumu-
lative match scores Rn as a function of the rank n that are
obtained when using Dtði; jÞ for each of the tissue types
individually and Dði; jÞ for the combination of all tissue
types. We see that skin is the most useful tissue type for
recognition while the hair and lips are less useful. The top
curve in Fig. 10 shows that the best performance is achieved
by combining all of the tissue types. We see that, for this
case, more than 90 percent of the 400 probes are correctly
identified in the 200 subject database. Fig. 11 compares
recognition performance when using probes fa and fb
separately with the algorithm that considers all tissue types.
The fa images have the same facial expression as the gallery
images, while the fb images have different expressions. We
see that accurate recognition is achieved in both cases which
suggests that recognition using hyperspectral discriminants
is not impacted significantly by changes in facial expres-
sion. Nevertheless, probes with different facial expressions
are somewhat harder to identify. Fig. 12 compares the
performance for fa and fb probes for individual tissue types.
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Fig. 9. Forehead spectral variance as a function of wavelength.

Fig. 8. Examples of images taken at different times.



There is little change in the forehead geometry for an
expression change and the degradation in performance
from fa to fb probes is the smallest over the four facial tissue
types for the forehead. As seen in Fig. 12, recognition
performance degrades more significantly for the left cheek
and right cheek for the fb probes since an expression change
can significantly change the local surface geometry for the
cheek areas. We also see in Fig. 12 that the performance for
the lips is significantly worse than for the other tissue types
for both the fa and fb probes.

Fig. 13 examines the impact of changes in face orienta-
tion on recognition performance over the 200 subject
database. Current face recognition systems experience
significant difficulty in recognizing probes that differ from
a frontal gallery image by more than 32 degrees [10]. As
expected, however, hyperspectral images can be used to
achieve accurate recognition results for larger rotations. In
Fig. 13, we see that for probes that are rotated 45 degrees to
the left or right from the frontal gallery image, 75 percent of
the probes are recognized correctly and 94 percent of the
probes have the correct match ranked in the top 5. For the

difficult case of probes that are rotated 90 degrees about
80 percent of the probes have the correct match ranked in
the top 10. These results utilize the distance function
defined in terms of all visible tissue types. This distance
function assumes that tissue spectral reflectance does not
depend on the photometric angles. This is an approxima-
tion and leads to degradation in performance as the probe
image is rotated with respect to the gallery image.

Fig. 14 plots CMS curves showing the effect of changes in
face orientation on recognition for experiments where the
probes are restricted to specific subsets of the database
defined by age group, ethnicity, and gender. The full gallery
of 200 subjects was used for these experiments. We see that
recognition performance typically degrades as the size of
the subset considered increases. One exception is that
performance degrades from the 18-20 age group (86 sub-
jects) to the 21-30 age group (67 subjects) for 45 degrees and
90 degrees face rotations. We speculate that additional facial
3D geometric structure may be starting to appear for the
subjects in the 21-30 age group that leads to stronger
bidirectional reflectance effects for the rotated face images.

PAN ET AL.: FACE RECOGNITION IN HYPERSPECTRAL IMAGES 1557

Fig. 13. Identification performance for rotated face images.

Fig. 12. Performance comparison of probes fa and fb for each tissue

type.

Fig. 11. Performance comparison of probes fa and fb.

Fig. 10. Identification performance using fa and fb probes.



Tables 1, 2, 3, and 4 analyze the probes that are not
identified correctly at rank 1 for the experiments described
by Fig. 11 and 13. The first column in each table is the probe
category according to gender, age group, or ethnicity and
the second column indicates the number of probes in that
category that are not identified correctly. The remaining
columns in each row describe the distribution of the best
match in the gallery for the incorrectly identified probes. If
we consider the first row of Tables 1, for example, we see

that four female probes were incorrectly identified in this

experiment and that for three of these probes the top match

in the gallery was female and for the other probe the top

match in the gallery was male. We see from Tables 1, 2, 3,

and 4, that female probes tend to false match with female

images in the gallery and that male probes tend to false

match with male images in the gallery. We also see that

Asian probes tend to false match with images of the same

ethnicity in the gallery.
Fig. 15 shows the recognition performance for duplicate

probes, i.e., probe images taken on different days than the

gallery image of the same subject. This experiment considers

98 probes acquired from 20 subjects at times between three

days and five weeks after the gallery image was acquired. The

same 200 subject gallery is used as in the other experiments.

We see that 92 percent of the probes have the correct match

ranked in the top 10. Fig. 15 also compares the recognition

performance for duplicate probes acquired over different

time intervals. We see that performance for duplicates

acquired within one week (40 probes) is similar to perfor-

mance for duplicates acquired at an interval of over one week

(58 probes). We note that there is a significant reduction in

recognition accuracy for the duplicate probes considered in

Fig. 15 compared to the results for images acquired on a single

day, as shown in Figs. 10, 11, 12, and 13. This can be attributed

to changes in subject condition including variation in blood,

water concentration, blood oxygenation, and melanin con-

centration. Drift in sensor characteristics and calibration

accuracy is another possible source of day-to-day variation in

spectral measurements. However, the experiments with

duplicates indicate that hyperspectral imaging has potential

for face recognition over time.
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TABLE 1
Analysis of Incorrectly Identified, Front View, Neutral Expression Probes

TABLE 2
Analysis of Incorrectly Identified, Front View, Changed Expression Probes

Fig. 14. Identification performance for rotated face images for different

probe subsets. (a) Female, (b) male, (c) Asian, (d) Caucasion, (e) Black,

(f) 18-20, (g) 21-30, (h) 31-40, and (i) over 40.



5 CONCLUSION

We have demonstrated the utility of hyperspectral imaging
for face recognition over time in the presence of changes in
facial pose and expression. The experiments consider a
database of calibrated NIR (0.7�m-1.0�m) hyperspectral
images for 200 subjects. A face recognition algorithm based
on the spectral comparison of combinations of tissue types
was applied to the images. The results showed that the
algorithm performs significantly better than current face
recognition systems for identifying rotated faces. Perfor-
mance might be further improved by modeling spectral
reflectance changes due to face orientation changes. The
algorithm also provides accurate recognition performance

for expression changes and for images acquired over
several week time intervals. Since the algorithm uses only
local spectral information, we expect that additional
performance gains can be achieved by incorporating spatial
information into the recognition process. Previous work [1]
has shown that the high-dimensionality of hyperspectral
data supports the use of subspace methods for illumination-
invariant recognition. A similar method can be used for face
recognition under unknown illumination.
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