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Abstract

In this chapter we address the recent explosion in large multilevel population studies such as the 

METSIM study in humans as well as large panels of animal models such as the Hybrid Mouse 

Diversity Panel or the BXD set of recombinant inbred strains. These studies have harnessed the 

increasing affordability of large-scale high-throughput profiling to gather massive quantities of 

data. These datasets, spread across different -omics levels (genome, transcriptome, etc.), different 

tissues (e.g. heart, plasma, bone) and different environmental factors (e.g. diet, drugs) each 

individually have led to a number of novel findings relevant to a variety of complex diseases and 

other phenotypes. The analysis of these results, however, is often limited to individuals with a 

comprehensive understanding of database languages such as SQL. In this chapter, we describe the 

development of a GUI-based database analysis suite, using the Hybrid Mouse Diversity Panel as 

an example to lay out a series of methods for visualization and integration of large systems 

genetics datasets. The database is based on the Shiny suite of tools in R, and is transferrable to 

other SQL-based datasets.

Keywords

Analysis tools in systems genetics; GUI-based database analysis suite; Multilevel population 
studies; Hybrid mouse diversity panel; BxD recombinant inbred strains; METSIM in humans

1 Introduction and Background

Systems genetics deals with the analysis of massive datasets typically gathered by large, 

multicenter studies. In order to overcome hurdles ranging from the need to amass large 

sample sizes to performing data analysis to dealing with administrative issues such as 
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informed consent or obtaining funding, these studies often require teams of individuals who, 

working together, are able to generate data which must subsequently be sifted through to 

find notable results. As the field has matured, increasingly ambitious studies have been 

designed and implemented by building off of the framework of other studies. For instance, a 

recent study, the METabolic Syndrome in Men (METSIM) [1], is collecting multiple -omics 

levels of data from over 10,000 men and intends to do follow-up studies with these same -

omes over the next several decades. Similarly, large panels of inbred animal models, such as 

the Hybrid Mouse Diversity Panel (HMDP) [2], the BxD set of recombinant inbred strains, 

or the Collaborative Cross [3] have been constructed which allow for a continually 

expanding set of diseases and phenotypes to be explored on genetically identical individuals. 

These animal models are able to avoid the issues of environmental confounders and 

informed consent, while still providing powerful insights into the underlying mechanisms of 

complex phenotypes and diseases.

These large studies have had considerable successes in discovering genes and pathways 

which are implicated in the regulation of phenotypes and disease progression. In the process, 

they have generated massive datasets which span different tissue types, environmental 

conditions and -omics levels. The analysis of these large datasets, however, can prove 

challenging. On the one hand, individuals without a sufficient background in programming 

may have difficulty navigating the (often SQL) databases in which these data are typically 

deposited and/or be unable to visualize and interpret these results even if they were able to 

access them. On the other hand, the scale of the data generated means that a comprehensive 

analysis is often beyond the capabilities of a few members of a team who do possess the 

ability to access, visualize and understand these data after they are generated. This chapter 

lays out the implementation of a suite of point-and-click tools for the visualization and 

interpretation of large systems genetics datasets, designed to allow researchers who do not 

deal with computational techniques on a regular basis to access and interpret these data in an 

intuitive way. The database accessibility suite has been coded using the Shiny R package [4], 

therefore each tool can be modified to interface with any SQL-based database by a 

programmer knowledgable about the struture of the database.

2 Methods

2.1 Type of Data and Principle Analysis Tools

2.1.1 The Hybrid Mouse Diversity Panel—The dataset we will be using throughout 

this chapter is the Hybrid Mouse Diversity Panel, a set of over 150 unique inbred mouse 

lines. These lines have been extensively studied, and at present the database consists of mice 

studied under five different environmental conditions or genetic stressors (Table 1) and ten 

different tissues from which transcriptomes and other -omics studies have been performed. 

In total, over 300 clinical traits, 40,000 transcripts, 350 metabolites and 3500 protein 

fragments have been queried in one or more HMDP study (Figs. 1 and S1). Through a 

variety of systems biology techniques, many candidate genes and pathways [5, 9, 14, 18] 

have been identified using this panel. While past studies have generally focused on data 

from an individual experimental model/condition, integration across models can also be 

fruitful. Because the mice studied under various conditions are identical in terms of their 
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genetic backgrounds, a variety of combined analyses across multiple tissues or studies are 

possible; for example, the data can be used for the discovery of novel cross-tissue or cross-

conditional relationships.

Below, we describe the suite of accessibility tools we have developed to assist in these sorts 

of HMDP analyses. Broadly speaking, our database implements two categories of analysis: 

The Visualization of previously generated data (e.g., the creation of a Manhattan plot) and 

the Discovery of new relationships between these data (e.g., identifying correlations of genes 

and phenotypes across multiple tissues/studies).

2.1.2 Overall Design—It was important that the tools we created for accessing the 

database operated similarly to one another. Each tool (Figs. S2, S3, S4, S5, S6, S7, and S8) 

asks users for inputs on the left side of the screen using drop-down menus, checkboxes and 

places for users to input text. As many of our studies examine similar measurements, each 

drop-down menu is dependent on the selection of the menus above it. For instance, in Fig. 

S2, the plotted Manhattan plot was generated from clinical trait data from the atherosclerosis 

study using female mice and the adiposity phenotype. Similarly, in Fig. S3, the displayed 

beeswarm plot was generated from clinical data from one of the Chow studies, using males 

from the first chow study and visualizing the effects on HDL of the SNP rs31423553. On the 

right hand side of each tool is the output, with the figure or table at the top followed by a 

button to download the results from the database to one’s own computer.

2.2 Visualization Tools

2.2.1 Generating a Manhattan Plot—A classic tool for the analysis of GWAS results 

is the Manhattan plot, which visualizes genome-wide association. The locations of single 

nucleotide polymorphisms (SNPs) are plotted on the X-axis and the strength of their 

association with the trait of interest as −log10 (p value) on the ϒ-axis. The HMDP contains 

over 400,000 individual quantitative traits. For each trait, the database allows for a 

Manhattan plot (using the qqman package [22]) to be generated either over the entire 

genome (Fig. 2a S2a) or in greater detail at an individual chromosome (Fig. S2b) or at an 

even narrower scope to look at a more localized region. At distances of less than 10 Mb, the 

UCSC genome browser is linked to the output (Fig. S2c), allowing for direct identification 

of possible candidate genes. Additionally, at any point the data displayed may be 

downloaded for later analysis.

2.2.2 Generating a Beeswarm Plot—Whereas a Manhattan plot displays the results 

of an association study across a range of SNPs, it is often desirable to examine the 

distribution of individual samples across a single polymorphism. In this case, a “beeswarm” 

plot is often used. Our database is capable of quickly generating such a plot for any 

phenotype/SNP pairing (Figs. 2b and S3) through the use of the Beeswarm package [23].

2.2.3 Visualizing Values Across Strains and Tissues—A frequently asked 

question in animal research is whether a given animal model is the best model to explore a 

particular phenotype of interest. Since the strains which comprise the HMDP are publically 

available, one of the benefits of the HMDP as a model is that it can answer these questions 
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and provide researchers with the ideal mouse strain for further research. By visualizing the 

phenotype or gene expression value across all or a subset of strains and all or a subset of 

studies/tissues (Figs. 2c and S4), our database allows for quick analysis and subsequent 

download of any gene expression or phenotypic value it contains. For example, we can see 

in Fig. 2c that the gene Abcc6 is highly expressed in the liver and moderately expressed in 

the intestine, but weakly expressed in other tissues.

2.2.4 Linkage Disequilibrium—While linkage disequilibrium (LD) in humans is 

typically quite small, the LD structure in mouse panels is broader, ranging from 1 Mb to up 

to 10 Mb in the HMDP. Consequently, identifying candidate genes near significantly 

associated SNPs involves examining all genes which lie within the LD of the peak SNP, 

rather than simply examining the one or two nearest genes to the peak SNP as is often done 

in human studies. Our database allows researchers to either specify an individual SNP, in 

which case a proposed LD block around the SNP will be provided, or provide a particular 

window to examine, in which case the LD structure between each pair of SNPs in the 

window will be displayed (Figs. 2d and S5).

2.3 Discovery Tools

2.3.1 Identifying Nonsynonymous SNPs Within a Gene—Prioritizing candidate 

genes at a locus can be difficult, as some genes in a locus can be poorly annotated or 

described. One common technique used to identify genes with a greater likelihood to be 

implicated in the phenotype of interest is to examine the gene for nonsynonymous and splice 

mutations which may act to disrupt the structure and function of a gene at the locus without 

affecting its expression. Our database makes use of the Wellcome Trust Mouse Genomes 

Project [24] which contains the full sequences of 18 of the inbred lines of the HMDP and, 

therefore, the vast majority of all sequence variations within the panel. The output allows 

researchers to identify which strains have mutations within them, what sort of mutations 

they are and where in the gene they are located (Figs. 3a and S6).

2.3.2 Identifying Local-eQTLs Within Tissues—If a candidate gene’s physical 

amino acid sequence is not altered, another means by which a SNP may affect a gene’s 

function is by altering its expression. SNPs residing near a gene whose expression is 

associated with that SNP are commonly termed local or cis-eQTLs. Our database allows 

users to search across all HDMP studies and tissues to identify cis-eQTLs by either probe ID 

or gene symbol, returning the best p-value and location for a SNP within a user-defined 

window (default 2 Mb) (Figs. 3b and S7). The table can be searched quickly within the GUI 

or downloaded for more detailed analysis.

2.3.3 Find Correlations Within and Across Studies, Tissues and Conditions
—The HMDP is an expanding resource, where each subsequent study builds on prior 

research. Finding relationships between genes of interest in one dataset and genes or 

phenotypes of interest in another, however, can be challenging. We have implemented a 

searchable unified correlation table, allowing users to examine how genes and phenotypes 

might correlate to one another across tissues and experimental conditions. For example, we 

can observe that Adamts2 expression in the heart is linked to changes in heart weight after 
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isoproterenol stimulation (Figs. 3c and S8). However, we can also see that Adamts2 
expression in the aorta and intestine are linked to plasma platelet counts, suggesting a role 

for the gene in clotting or wound repair. It is notable that while both aortic and intestinal 

expression of Adamts2 is linked to plasma platelets, they are linked in opposite directions: 

Higher expression in the intestines in mice with a high-fat diet is linked to lower platelets, 

while higher expression in the aorta in mice induced to develop atherosclerosis is linked to 

increased platelet counts. Such inter-study observations can provide additional clues to the 

roles genes play in physiologic/disease traits.

2.3.4 Identify Overlapping Loci—In addition to exploring how genes and phenotypes 

are correlated to one another across different tissues and conditions in the HMDP, we can 

use the large number of associations available in the panel to look for loci which are shared 

between multiple phenotypes. This could have a number of applications, from the validation 

of cis or trans-eQTLs in multiple tissues to exploring how a complex phenotype or set of 

phenotypes, identified across multiple tissues, may be regulated by a single locus or set of 

loci. Our database allows researchers to look at and download either all phenotypes which 

are associated with a SNP at a specific p-value, or to examine all phenotypes which have a 

p-value of a given significance within a user-defined window. For example, a locus on 

chromosome 5 near the gene Mospd3 has been linked to increased right ventricular weight 

after isoproterenol stimulation [18]. By examining this same locus across all of our tissues, 

we can see that we also have links to food intake on a high-fat diet, levels of the IL-1b 

cytokine, levels of the metabolite hexanoyl-carnitine, and the abundance of several proteins 

in the liver (Figs. 3d and S9).

2.3.5 Availability—The HMDP database may be accessed at systems.genetics.ucla.edu. 

The most up-to-date version of the code for the implementation of the database can be found 

at https://github.com/ChristophRau/HMDPDatabase.

3 Further Considerations and Limitations

Other databases do exist for the analysis of mouse data, the most notable of which is the 

Mouse Genome Informatics (MGI) database provided by Jackson Labs (informatics.jax.org). 

There it is possible to download phenotypes and genotypes of a number of strains from a 

variety of different studies as well as visualize the results of each individual study in terms 

of the phenotypes observed as well as information on a gene of interest. One strength of the 

HMDP over the studies typically found at this database is the scale of the study and the 

comparability across studies. While most HMDP studies involve over 100 strains of mice, 

studies in the MGI repository are typically much smaller. At the same time, few studies 

involve the same strain of mice as others, making it difficult for researchers to compare 

results between individual studies. Additionally, few studies involve the study of multiple -

omics layers, and differences in housing, diet and other environmental factors make it 

difficult to directly compare studies to one another. Moreover, the tools made available in the 

MGI database to query these studies are generally designed for the smaller, less systems-

wide studies that make up the bulk of the repository.
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It is always possible to perform more nuanced and complicated analyses of the HDMP 

database using direct SQL queries. While results gathered by these sorts of analyses may be 

stronger and more meaningful than the results obtainable by our analysis suite, it requires 

the ability to navigate the SQL databases directly. As mentioned in the introduction, we 

believe that an ultimately more fruitful approach is to open up access to such databases to 

anyone with a grasp of the concepts involved, but perhaps not the technical skill to access 

the data directly.

4 Outlook

The HMDP is a constantly evolving tool with ongoing studies in several laboratories and an 

expanding database. Our graphical interface is designed to be able to access any data which 

is added to the database without the need to manually update a number of tables. We plan to 

continue to add modules to the database, for instance allowing users to select a series of 

phenotypes, genes, metabolites and proteins and receive in return graphical and tabular 

outputs of SNPs on the genome which are associated with one or more of these inputs, a tool 

which will complement our currently implemented ability to study a given genomic location 

for association overlaps. Additionally, we plan to improve the relationships of the modules 

to one another, allowing a user to start in one module, get a result, click on that result and 

then be taken to another module for additional analyses. Finally, we plan to expand our 

results to interface with some of the gene-centric databases which currently exist (e.g. NCBI 

Gene), to allow researchers to seamlessly travel from phenotype to locus to gene. The code 

for each of these updates will be made available and like the rest of the interface, will be 

designed to be easily modifiable to interface with other researchers’ SQL databases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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5: Appendix: Code for Database Algorithm v0.7

The Shiny package, developed by Rstudio allows users to implement a graphical user 

interface with an R-based backend. A GUI created with Shiny requires two R scripts to 

properly function. The first, Server.R, is the part of the code which actually performs the 

various analyses, interfaces with the SQL database and does all the things that a standard R 

script would do. The second, ui.R, controls the layout and structure of the GUI itself and is 

responsible for sending inputs to and receiving outputs from Server.R. Updates to this code 

may be found on GitHub at: https://github.com/ChristophRau/HMDPDatabase.

6 Server.R

# A Graphical User Interface for querying a genetics SQL Database using 
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Shiny in R

# Version: 0.7

# Last Modified: 12/9/15

#

# The following is an implementation of a GUI using the Shiny package in 

Rstudio. Shiny programs have two scripts associated with them. This one, 

server.R acts as the “brains”

# of the code and contains all of the functions which actually compute 

results. The other script, ui.R, controls the appearance of the GUI and 

provides inputs and displays outputs from

# Server.R

#####Startup Stuff#####

options(shiny.maxRequestSize = 50*1024^2)

options(stringsAsFactors=FALSE)

#Scripts and packages required for operation

source(“manhattan.R”)

if (!require(“beeswarm”)) install.packages(“beeswarm”)

if (!require(“gplots”)) install.packages(“gplots”)

library(beeswarm)

library(“gplots”)

#Initialize the database reader and get a list of all relevant tables 

print(“Initializing Database”)

library(RODBC)

dbhandle <- odbcDriverConnect(‘driver={SQL 

Server};server=JLUSISDB;database=HM

DP;trusted_connection=true’)

FullTables=sqlTables(dbhandle)

#A section to define limited Tables if you want to password protect the full 

data.

limitedTables=FullTables #no password protection

limitedTables=FullTables[grep(“Chow”, FullTables[,3]),] #limit to a subset 

of data

allTables = limitedTables

#The following section goes through all of the tables in the database and 

creates a master list which maps gene symbols to probe IDs. This takes some 

time and it is often

# easier to generate this file separately and read it in with read.csv

#####Create the Master table of Gene names and IDs#####

print(“Creating Genes Table... this could take up to 5 minutes…”)

# AFFY=“Affymetrix_HT_MG-430A_v33”

# ILMN=“Illumina_MouseRef8_v2_R3”

#

# #Load Affy Data

#
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# query <- paste(“Select gene_symbol, probesetID from [TranscriptAnnotation].

[“,AFFY,”]”,sep=““)

# temp=sqlQuery(dbhandle, query)

#

# #Load Illumina Data

#

# query <- paste(“Select Symbol, probesetID from [TranscriptAnnotation].

[“,ILMN,”]”,sep=““)

# temp2=sqlQuery(dbhandle, query)

# colnames(temp)=c(“Symbol”, “probesetID”)

# all_genes=rbind(temp,temp2)

# all_genes[,1]=toupper(all_genes[,1])

#

#

# #Creating the Search_List. This can take a moment...

# geneSearchList<-do.call(rbind,

# by(all_genes,all_genes$Symbol, function(x)

# with (x,

# data.frame(

# Symbol=unique(Symbol),

# probeIDs=paste(probesetID,collapse=“,”)

# )

# )

# )

# )

# geneSearchList=as.matrix(geneSearchList)

# geneSearchList=paste(geneSearchList[,1],geneSearchList[,2],sep=“,”)

#or just read it in.

geneSearchList=as.matrix(read.delim(file=“GeneSearchList.csv”))

allStrains=as.matrix(read.csv(file=“Strains.csv”)) #reads in all the strains 

(individuals) used in the study

#####At this point the server is initialized and ready to launch#####

print(“Launching!”)

shinyServer(function(input, output,session) { #basic implementation of a 

shinyServer

#####Suggestions#####

#This first part of the code implements a simple suggestion .csv for 

recording bugs and/or suggestions

Suggest <- reactive({

outfile=file(“Suggestions.csv”,”a”)

name=input$Suggestion_Name

value=input$Suggestion_Report

outrow=paste(name,value,sep=“,”)

cat(outrow,file=outfile,sep=“\n”)
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close(outfile)

})

output$Suggestion_Text <- renderText({

if(input$Suggestion_Button==0){

return (NULL)} else{

isolate(Suggest())

val=“Thanks!”

return(val)

}

})

#####Login#####

#A way to implement some degree of password protection on your data, say if 

you have some public and some private information.

Password=“Password”

Login <- reactive({

if(input$Password_Go==0)

{return(““)} else {

isolate({

if(input$Password == Password){

allTables <<- FullTables

return(“Login Successful”)

} else {

return(“Login Failed”)

}

})

}

})

output$PassOK <- renderText({

LogVal=Login()

print(LogVal)})

#####ProbeID_Lookup#####

#This section allows for rapid conversion of Probe_IDs to Gene Symbols and 

vice versa. Works in batch mode.

Lookup <- reactive({

inFile <- input$Lookup_Batch

if(is.null(inFile)){ #If no batch file uploaded

if(is.null(input$Lookup_One)){ return(NULL)} else{ #if nothing entered, 

return nothing

val=input$Lookup_One

print(val)

entry=geneSearchList[grep(paste0(val,”(,|$)”),geneSearchList, ignore.

case= TRUE)] #find gene in master table

print(entry)

entry=strsplit(entry,”,”)[[1]]
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print(entry)

out=c()

for(i in 2:length(entry)){

out=rbind(out,c(entry[1],entry[i])) #generate output for gene

}

colnames(out)=c(“Gene Name”,”Probe ID”)

print(out)

return(out)

} else { #If batch file uploaded

vals=read.csv(inFile$datapath,header=F) #read the file

out=c()

for(i in 1:nrow(vals)){ #for each gene

val=vals[i,1]

entry=geneSearchList[grep(paste0(val,”(,|$)”),geneSearchList, ignore.

case= TRUE)] #find in master table

entry=strsplit(entry,”,”)[[1]]

for(j in 2:length(entry)){ #append results to output

out=rbind(out,c(entry[1],entry[j]))

}

}

colnames(out)=c(“Gene Name”,”Probe ID”)

return(out)

}

})

output$Lookup_Table <- renderDataTable({ #This tells the ui how to output 

the data.

if(input$Lookup_Button==0){

return (NULL)} else{

isolate(Lookup())

}

})

#####Data Visualization Section####

#This section creates Manhattan Plots for any study in the database

#This function populates the possible studies to be drawn from based on the 

type of data being mapped

output$DataViz_StudyUI<- renderUI({

if(input$DataViz_DataType==“Clinical”){

DV_StudyChoices=allTables[allTables[,2]==“ClinicalTraitAnnotation”,3]

}

if(input$DataViz_DataType==“Expression”){

DV_temp=allTables[allTables[,4]==“TABLE”,]

DV_StudyChoices=DV_temp[DV_temp[,2]==“TranscriptAbundance”,3]

}

if(input$DataViz_DataType==“Metabolite”){
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DV_StudyChoices=allTables[allTables[,2]==“MetaboliteAnnotation”,3]

}

if(input$DataViz_DataType==“Protein”){

DV_StudyChoices=allTables[allTables[,2]==“ProteinAnnotation”,3]

}

selectInput(“DataViz_Study”, “Select Study”, DV_StudyChoices ) #the select 

input to be placed into the UI

})

#After a study has been selected, this function populates the possible 

phenotypes to select from output$DataViz_PhenotypeUI <- renderUI({

cur_table=input$DataViz_Study #Get which study is being examined

if(input$DataViz_DataType==“Clinical”){

query=paste(“SELECT distinct trait_name FROM HMDP.ClinicalTraitAnnotati 

on.”,input$DataViz_Study,”“,paste=““)

DV_PhenoChoices=as.vector(sqlQuery(dbhandle, query)[[1]])

}

if(input$DataViz_DataType==“Expression”){ #My original idea was to do a drop-

down menu for all phenotypes, including genes/probes. This proved too taxing 

and instead I’ve implemented a simple text entry box.

# The code for the drop-down menu is below.

# query=paste(“Select Top 1 HMDP.TranscriptAbundance.”,input$DataViz_ 

Study,”.* FROM HMDP.TranscriptAbundance.”,input$DataViz_Study,sep=““)

# DV_TempExpressionQuery=sqlQuery(dbhandle,query)

# query=paste(“SELECT distinct probesetID “,colnames(DV_TempExpressionQuery)

[2],” FROM HMDP.TranscriptAbundance.”,input$DataViz_Study,

# “ WHERE “,colnames(DV_TempExpressionQuery)

[2],”=‘“,DV_TempExpressionQuery[2][[1]],”‘“,sep=““)

# DV_PhenoChoices=as.vector(sqlQuery(dbhandle, query)[[1]])

}

if(input$DataViz_DataType==“Metabolite”){

query=paste(“SELECT distinct metabolite_name FROM HMDP.MetaboliteAnnota 

tion.”,input$DataViz_Study,”“,paste=““)

DV_PhenoChoices=as.vector(sqlQuery(dbhandle, query)[[1]])

}

if(input$DataViz_DataType==“Protein”){

query=paste(“SELECT distinct gene_symbol FROM HMDP.ProteinAnnotation.”, input

$DataViz_Study,”“,paste=““)

DV_PhenoChoices=as.vector(sqlQuery(dbhandle, query)[[1]])

}

if(input$DataViz_DataType==“Expression”){ #Text entry for expression 

textInput(“DataViz_Pheno”, “Please Enter your probesetID”)

} else{ # Select Input for phenotype

selectInput(“DataViz_Pheno”, “Select Phenotype”, DV_PhenoChoices )}

})
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#This function differentiates between sub-studies (for instance, male vs 

female mice)

output$DataViz_FinalTableSelectUI <-renderUI({

if(input$DataViz_DataType==“Clinical”){

DV_temp=allTables[allTables[,4]==“VIEW”,]

DV_FinalTableChoices=DV_temp[DV_temp[,2]==“ClinicalQTL”,3]

}

if(input$DataViz_DataType==“Expression”){

DV_temp=allTables[allTables[,4]==“VIEW”,]

DV_FinalTableChoices=DV_temp[DV_temp[,2]==“expressionQTL”,3]

}

if(input$DataViz_DataType==“Metabolite”){

DV_temp=allTables[allTables[,4]==“VIEW”,]

DV_FinalTableChoices=DV_temp[DV_temp[,2]==“MetaboliteQTL”,3]

}

if(input$DataViz_DataType==“Protein”){

DV_temp=allTables[allTables[,4]==“VIEW”,]

DV_FinalTableChoices=DV_temp[DV_temp[,2]==“ProteinQTL”,3]

}

DV_FinalTableContenders=DV_FinalTableChoices[grep(input

$DataViz_Study,DV_FinalTableChoices)]

selectInput(“DataViz_ExactView”, “Select Table”, DV_FinalTableContenders )

})

#Finally, now that we have pinpointed the exact phenotype/study combination 

desired, we get the data from the server

DV_GetData <- reactive({ #A reactive function only triggers if a variable 

within it changes (in this case, if the button ‘DataViz_Calulate’ is 

pressed) if(input$DataViz_Calculate==0)

{return(“NULL”)} else {

isolate({ #Nothing within the isolate function “counts” for the reactive 

function above. This allows the user to modify what they are looking for 

without constantly telling the program to start interacting with the database

if(input$DataViz_DataType==“Clinical”){

Group=“ClinicalQTL”

}

if(input$DataViz_DataType==“Expression”){

Group=“expressionQTL”

}

if(input$DataViz_DataType==“Metabolite”){

Group=“MetaboliteQTL”

}

if(input$DataViz_DataType==“Protein”){

Group=“ProteinQTL”

}

Rau et al. Page 12

Methods Mol Biol. Author manuscript; available in PMC 2019 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



#We are now going to construct the query to the SQL server.

query <- paste(“SELECT trait_name,rsID,snp_chr,snp_bp_mm10,pvalue FROM 

HMDP.”,Group,”.”,input$DataViz_ExactView,” WHERE trait_name=‘“,input

$DataViz_Pheno,”‘“,sep=““)

print(“Query Constructed”)

#and here we actually run the query

DV_Data=sqlQuery(dbhandle, query)

})

}

})

#This function makes the Manhattan Plot. It is separate from the above 

function to allow users to modify their Manhattan plot parameters (eg look 

at specific chromosomes)

#without having to re-download the data

DV_MakeManhattan <- reactive({

withProgress(message=“Constructing Query…”,value=0,{ #withProgress allows 

for the creation of a progress bar in the GUI. In this case, its reporting 

that the query is being constructed

DV_Data=DV_GetData()}) #and then getting the data

print(“Data Aquired”)

#print(dim(DV_Data))

if(DV_Data[1]!=“NULL”){ #If there is data…

print(“Running”)

withProgress(value=.5, message=“Processing Results…”,{ #another update on 

the current progress (50% complete)

subset=DV_Data[,c(3,4,5)] #get relevant values from the output (chromosome, 

position, p-value)

if(input$DataViz_Chromosome!=“All”){ #if we are NOT looking at all 

chromosomes, we need to filter our data

subset=subset[subset[,1]==input$DataViz_Chromosome,] #Limit to just the 

chromosome of interest

positions=as.numeric(subset[,2])

#And Limit to the region on the chromosome of interest

subset=subset[positions>as.numeric(input$DataViz_Lower_Bound)*1000000,]

positions=as.numeric(subset[,2])

subset=subset[positions<as.numeric(input$DataViz_Upper_Bound)*1000000,]

}

#Tweak the X and Y chromosome to Chromosomes ‘20’ and ‘21’ respectively

levels(subset[,1])[levels(subset[,1])==“X”]=“20”

levels(subset[,1])[levels(subset[,1])==“Y”]=“21”

subset=apply(subset,2,as.numeric)

colnames(subset)=c(“CHR”,”BP”,”P”)

subset=as.data.frame(subset)

#At this point we have our final data table.
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})

withProgress(value=.9,message=“Constructing Plot...”,{ #Finally, construct 

the plot

print(“Constructing Plot”)

DV_Button_Value=DV_Button_Value+1

#This function is provided in Manhattan.R from http://

GettingGeneticsDone.blogspot.com. In this case, we are alternating color on 

each chromosome and have set the genome-wide

#singificance like to 10^−5.387, which is the accepted significance line of 

the HMDP. manhattan(subset, colors=c(“black”,”#666666”,”#CC6600”), 

main=DV_Data[1,1], pch=20, genomewideline=5.387, suggestiveline=F)

})

}

})

#This function is a simple wrapper which takes the output of the above 

functions (which are reactive and cannot be directly interfaced with the UI) 

and makes a continually updating plot for the UI

DV_Button_Value=0

output$DataViz_Manhattan <-renderPlot({

DV_MakeManhattan()

})

#This function takes the GWAS results for the phenotype of interest and 

packages it for download for later off-line analysis.

output$DataViz_Download<-downloadHandler(

filename = “results.gwas”, #the default filename

content = function(file) {

write.table(DV_GetData(), file,row.names=F,sep=“\t”)

})

#Finally, this function displays the UCSC genome browser in a frame for 

regions of less than 10MB in length

output$DV_GenomeBrowser <-renderUI({

if(input$DataViz_Chromosome==“All” || input$DataViz_Upper_Bound-input

$DataViz_Lower_Bound>10 ) #If we are looking at more than 10 MB of genome

{return(tags$iframe(src=““,seamless=T,height=800,width=“100%”))} else 

{ #Return an empty frame. Otherwise…

options(scipen=999) #turn off scientific notation

#This creates a link to the Mouse UCSC Genome broser for the chromosome and 

region of interest. It will need to be changed for other species, of course.

temp=paste(“http://genome.ucsc.edu/cgi-bin/hgTracks?hgHubConnect.destUrl“,

“=..%2Fcgi-bin%2FhgTracks&clade=mammal&org=Mouse&db=mm10&position=chr”,

input$DataViz_Chromosome,”%3A”,input$DataViz_Lower_Bound*1000000,

“-”,input$DataViz_Upper_Bound*1000000,

“&hgt.positionInput=enter+position%2C+gene+symbol+or+search

+terms&knownGene=pack”,
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“&ensGene=hide&xenoRefGene=hide&refGene=hide&ucscRetroAli6=hi de&mrna=hide”,

“&intronEst=hide&snp138Common=dense&rmsk=dense&Submit=submit”,sep=““)

options(scipen=0) #Turn back on Scientific Notation

tags$iframe(src=temp,seamless=T,height=800,width=“100%”) #create a frame 

which displays the link above

}

})

#The following section allows users to create a ‘beeswarm’ plot to examine 

the effect of a single SNP on a phenotype

#####Beeswarm Section#####

#these first sections are identical to those for the Manhattan Plots above, 

but due to the weirdness of Shiny, are simply repeated here.

output$Beeswarm_StudyUI<- renderUI({

if(input$Beeswarm_DataType==“Clinical”){

BS_StudyChoices=allTables[allTables[,2]==“ClinicalTraitAnnotation”,3]

}

if(input$Beeswarm_DataType==“Expression”){

BS_temp=allTables[allTables[,4]==“TABLE”,]

BS_StudyChoices=BS_temp[BS_temp[,2]==“TranscriptAbundance”,3]

}

if(input$Beeswarm_DataType==“Metabolite”){

BS_StudyChoices=allTables[allTables[,2]==“MetaboliteAnnotation”,3]

}

if(input$Beeswarm_DataType==“Protein”){

BS_StudyChoices=allTables[allTables[,2]==“ProteinAnnotation”,3]

}

selectInput(“Beeswarm_Study”, “Select Study”, BS_StudyChoices )

})

output$Beeswarm_FinalTableSelectUI <-renderUI({

if(input$Beeswarm_DataType==“Clinical”){

BS_temp=allTables[allTables[,4]==“VIEW”,]

BS_FinalTableChoices=BS_temp[BS_temp[,2]==“ClinicalTraits”,3]

}

if(input$Beeswarm_DataType==“Expression”){

BS_temp=allTables[allTables[,4]==“VIEW”,]

BS_FinalTableChoices=BS_temp[BS_temp[,2]==“TranscriptAbundance”,3]

}

if(input$Beeswarm_DataType==“Metabolite”){

BS_temp=allTables[allTables[,4]==“VIEW”,]

BS_FinalTableChoices=BS_temp[BS_temp[,2]==“MetaboliteAbundance”,3]

}

if(input$Beeswarm_DataType==“Protein”){

BS_temp=allTables[allTables[,4]==“VIEW”,]

BS_FinalTableChoices=BS_temp[BS_temp[,2]==“ProteinQTL”,3]
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}

# print(input$Beeswarm_Study)

BS_FinalTableContenders=BS_FinalTableChoices[grep(input

$Beeswarm_Study,BS_FinalTableChoices)]

# print(“Done”)

selectInput(“Beeswarm_ExactView”, “Select Table”, BS_FinalTableContenders )

})

output$Beeswarm_PhenotypeUI <- renderUI({

cur_table=input$Beeswarm_Study

if(input$Beeswarm_DataType==“Clinical”){

query=paste(“SELECT distinct trait_name FROM HMDP.ClinicalTraitAnnotati 

on.”,input$Beeswarm_Study,”“,paste=““)

DV_PhenoChoices=as.vector(sqlQuery(dbhandle, query)[[1]])

}

if(input$Beeswarm_DataType==“Expression”){ #once again, a drop-down menu 

isn’t practical here.

#query=paste(“Select probesetID FROM HMDP.TranscriptAbundance.”,input$Be 

eswarm_ExactView,sep=““)

#DV_TempExpressionQuery=sqlQuery(dbhandle,query)

#DV_PhenoChoices=as.vector(sqlQuery(dbhandle, query)[[1]])

}

if(input$Beeswarm_DataType==“Metabolite”){

query=paste(“SELECT distinct metabolite_name FROM HMDP.MetaboliteAnnota 

tion.”,input$Beeswarm_Study,”“,paste=““)

DV_PhenoChoices=as.vector(sqlQuery(dbhandle, query)[[1]])

}

if(input$Beeswarm_DataType==“Protein”){

query=paste(“SELECT distinct gene_symbol FROM HMDP.ProteinAnnotation.”, input

$Beeswarm_Study,”“,paste=““)

DV_PhenoChoices=as.vector(sqlQuery(dbhandle, query)[[1]])

}

if(input$Beeswarm_DataType==“Expression”){

textInput(“Beeswarm_Pheno”, “Please Enter your probesetID”)

} else{

selectInput(“Beeswarm_Pheno”, “Select Phenotype”, DV_PhenoChoices )}

})

#With all the inputs set, this actually creates the output once the button 

‘Beeswarm_Calculate’ is pressed.

BS_GetData <- reactive({

if(input$Beeswarm_Calculate==0)

{return(“NULL”)} else {

isolate({

if(input$Beeswarm_DataType==“Clinical”){

Group=“ClinicalTraits”
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}

if(input$Beeswarm_DataType==“Expression”){

Group=“TranscriptAbundance”

}

if(input$Beeswarm_DataType==“Metabolite”){

Group=“MetaboliteAbundance”

}

if(input$Beeswarm_DataType==“Protein”){

Group=“ProteinAbundance”

}

if(input$Beeswarm_DataType==“Expression”){

#Expression Data is a little bit different from the other datatypes in terms 

of how it is stored, so it is collected in its own conditonal phrase.

query<- paste(“SELECT * FROM HMDP.”,Group,”.”,input$Beeswarm_ExactView,” 

WHERE probesetID=‘“,input$Beeswarm_Pheno,”‘“,sep=““)

print(“Query Constructed”)

print(query)

#Get Expression Data

Pheno_Data=sqlQuery(dbhandle, query)

query <- paste(“SELECT * FROM 

HMDP.genotypes.MouseDivArray_genotype_calls_emma_format WHERE rsID=‘“,input

$Beeswarm_rsID,”‘“, sep=““)

print(“Query Constructed”)

#Get SNP Info

Geno_Data=sqlQuery(dbhandle,query)

Mapping=match(colnames(Pheno_Data),colnames(Geno_Data))

temp=is.na(Mapping)

Mapping[temp]=1

BS_Data=cbind(t(Geno_Data[,Mapping]),t(as.matrix(Pheno_Data)))

}

else {

#The Althersclerosis data is slightly different from the other data, so this 

corrects for a difference in column names. (Strain vs Maternal_strain)

if(length(grep(“Atherosclerosis”,input$Beeswarm_ExactView))>0)

{query <- paste(“SELECT Maternal_strain, \”“,input$Beeswarm_Pheno,”\” FROM 

HMDP.”,Group,”.”,input$Beeswarm_ExactView,sep=““)}

else{query <- paste(“SELECT Strain, \”“,input$Beeswarm_Pheno,”\”

FROM HMDP.”,Group,”.”,input$Beeswarm_ExactView,sep=““)}

print(“Query Constructed”)

#Run the query and get the Phenotype

Pheno_Data=sqlQuery(dbhandle, query)

#get the SNP data at that particular RSID

query <- paste(“SELECT * FROM 

HMDP.genotypes.MouseDivArray_genotype_calls_emma_format WHERE rsID=‘“,input
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$Beeswarm_rsID,”‘“, sep=““)

print(“Query Constructed”)

Geno_Data=sqlQuery(dbhandle,query)

Mapping=match(Pheno_Data[,1],colnames(Geno_Data))

temp=is.na(Mapping)

Mapping[temp]=1

BS_Data=cbind(t(Geno_Data[,Mapping]),as.numeric(as.matrix(Pheno_Data)[,2]))

}

})

}

})

#This section actually creates the Beeswarm Plot from the data gathered above

output$BS_Plot <- renderPlot({

if(input$Beeswarm_Calculate==0){

return (“NULL”)} else{

isolate({ #Nothing after this matters for updating, so it will only update 

if the button is pressed.

BS_Data=BS_GetData()

print(“Data Aquired”)

if(BS_Data[1]!=“NULL”){

print(“Running”)

#Remove missing values…

temp0=!is.na(BS_Data[,1])

BS_Data=BS_Data[temp0,]

#Identify which strains are WT or SNP for that rsID

temp1=BS_Data[,1]==0

temp2=BS_Data[,1]==1

BS_Data=rbind(BS_Data[temp1,],BS_Data[temp2,])

BS_Data=apply(BS_Data,2,as.numeric)

#calculate a p-value for that rsID and phenotype

p_val=t.test(as.numeric(BS_Data[BS_Data[,

1]==0,2]),as.numeric(BS_Data[BS_Data[,1]==1,2]))$p.value

#Create a simple boxplot of data

boxplot(BS_Data[,2]~BS_Data[,1],xlab=input$Beeswarm_rsID,ylab=input

$Beeswarm_Pheno,main=“Genotype x Phenotype”,outline=FALSE)

#overlay it with the beeswarm

beeswarm(BS_Data[,2]~BS_Data[,1],col = 4, pch = 16,add=TRUE)

}

})

}

})

#The following section identifies the most significant eQTL within a 

specific user-defined window of the gene in question. Mostly useful for 

answering ‘does this gene have a cis-eQTL?’
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#####ciseQTL section#####

#While this function isn’t specifically needed (the outputed UI could have 

just been included in the main UI script, it is here so it can be expanded 

if needed) output$ciseQTL_PhenotypeUI <- renderUI({

# Needs to be probesetID

textInput(“ciseQTL_Pheno”, “Please Enter your probesetID”)

})

#Once again, a workhorse function to actually get the data only when the 

button is pushed.

CE_GetData <- reactive({

if(input$ciseQTL_Calculate==0)

{return(“NULL”)} else {

isolate({

Group=“expressionQTL”

Gene=input$ciseQTL_Pheno

#form the SQL Query. This first one simply gets the information about the 

gene, namely its location on the genome

query <-paste(“SELECT TOP 1 [dataset],[probesetID],[gene_chr],

[gene_start_bp],[gene_end_bp],[snp_chr],[snp_bp_mm10],[pvalue] from 

HMDP.Unified.QTL_AllInfo WHERE probesetID=‘“,Gene,”‘“,sep=““)

Pheno_Data=sqlQuery(dbhandle,query)

Gene_chr=Pheno_Data[,3]

SNP_Lower=Pheno_Data[,4]-(input$ciseQTL_Window*1000000)

SNP_Upper=Pheno_Data[,5]+(input$ciseQTL_Window*1000000)

#This next query grabs all SNPs for that particular gene within that window 

from all studies

query <-paste(“SELECT [dataset],[probesetID],[snp_chr],[snp_bp_mm10],

[pvalue] from HMDP.Unified.QTL_AllInfo WHERE probesetID=‘“,Gene,”‘ and 

snp_chr=‘“,Gene_chr,

“‘ and snp_bp_mm10>“,SNP_Lower,” and snp_bp_mm10<“,SNP_Upper,sep=““)

#A progress bar to get the data

withProgress(value=0,message=“Getting Data”,{

Pheno_Data=sqlQuery(dbhandle,query)

})

#Now that we have the data, we need to find the best eQTL for each study

withProgress(value=.2,message=“Generating Table”,{

table_names=names(table(Pheno_Data[,1])) #get study names

output=c()

temp_count=0

for(i in table_names){ #for each study

temp_count=temp_count+1

incProgress(amount=temp_count/length(table_names)*.8) #slowly increment the 

% complete from 0% to 80%

temp=grep(i,Pheno_Data[,1])
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temp_data=Pheno_Data[temp,c(1,3,4,5)] #extract study from master table

temp=which.min(as.numeric(temp_data[,4])) #find minimum value

output=rbind(output,temp_data[temp,]) #add minimum row to total output

}

rownames(output)=NULL

})

output #return output.

})

}

})

#Creates the actual output table for the cis_eQTL data

output$ciseQTL_Table <- renderDataTable({

if(input$ciseQTL_Calculate==0){

return (NULL)} else{

isolate(CE_GetData())

}

})

#Creates a downloadable table with the cis_eQTL data

output$ciseQTL_Download<-downloadHandler(

filename = “results.txt”,

content = function(file) {

write.table(isolate(CE_GetData()), file,row.names=F,sep=“\t”)

})

#This section looks for all loci (for different phenotypes/tissues/studies) 

which overlap a particular region. Useful for identifying relationships 

between different phenotypes

#####Overlapping Loci section#####

#There are two means of looking for overlap which are supported. The first 

is to provide a genomic interval of interest, the second to provide a 

specific rsID.

#The following two lines are only rendered in the UI if it is in “window” 

format.

output$Overlap_chr <-renderUI({if(input$Overlap_window_or_rsID==“window”)

{selectInput(“Overlap_Chr”,”Select Chromosome”,c(1:19,”X”))}})

output$Overlap_LB <-renderUI({if(input$Overlap_window_or_rsID==“window”)

{numericInput(“Overlap_LB”,”Lower Bound (in MB)”,value=10,min=0)}})

#This last one is *either* the upper bound OR the rsID.

output$Overlap_additional <-renderUI({

if(input$Overlap_window_or_rsID==“window”){

numericInput(“Overlap_UB”,”Upper Bound (in MB)”,value=15,min=0)

} else {

textInput(“Overlap_rsID”,”Please enter a SNP rsID”)

}

})
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#The Workhorse function for this section

OL_GetData <- reactive({

if(input$Overlap_Calculate==0)

{return(“NULL”)} else { #if the button is pushed…

isolate({

print(“Generating Overlap Table, Please Wait…”)

if(input$Overlap_window_or_rsID==“window”){ #If we are in Window format 

withProgress(value=0,message=“Obtaining Results…”,{

#There is an option to either include eQTLs or exclude them. It is 

significantly faster to NOT include eQTLs.

if(input$Overlap_includeGenes){ #if we are including eQTLs, we draw from the 

entire unified QTL table.

query <- paste(“Select [dataset],[probesetID],[gene_symbol],[rsID],[snp_chr],

[snp_bp_mm10],[LD_block_start_mm10],”,

“[LD_block_end_mm10],[pvalue] from Unified.QTL_AllInfo WHERE snp_chr=‘“,input

$Overlap_Chr,”‘ and snp_bp_mm10>“,

input$Overlap_LB*1000000,” and snp_bp_mm10<“,input$Overlap_UB*1000000,” and 

pvalue<“,input$Overlap_threshold,sep=““)

Pheno_Data=sqlQuery(dbhandle, query)

} else { #if we are excluding eQTLs, we filter out the eQTLs as part of the 

query

query <- paste(“Select [dataset],[category],[probesetID],[gene_symbol],

[rsID],[snp_chr],[snp_bp_mm10],[LD_block_start_mm10],”,

“[LD_block_end_mm10],[pvalue] from Unified.QTL_AllInfo WHERE snp_chr=‘“,input

$Overlap_Chr,”‘ and snp_bp_mm10>“,

input$Overlap_LB*1000000,” and snp_bp_mm10<“,input$Overlap_UB*1000000,” and 

pvalue<“,input$Overlap_threshold, “ and category!=‘expression QTL’”,sep=““)

Pheno_Data=sqlQuery(dbhandle, query)

Pheno_Data=Pheno_Data[,−2] #To make the rest of the code work, we remove the 

“category” column from the data.

}

print(“Data Aquired, Analyzing. Please Wait...”)

all_names=apply(Pheno_Data[,c(1:2)],1,paste,collapse=““) #We wish to find 

all of the unique peaks in the returned data

unique_names=names(table(all_names))

})

print(paste(“There are “,length(unique_names),” peaks!”,sep=““))

#We now process the results to find the minimum p-value for each phenotype 

peak.

output=c()

withProgress(value=0,message=“Processing Peaks...”,{

for(i in 1:length(unique_names)){

# print(i)

if(i%%50==0){incProgress(50/length(unique_names),detail=paste(i,” Peaks 
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Processed”,sep=““))}

cur_name=unique_names[i] #for the ith unique name

temp=grep(cur_name,all_names) #find those names in the main output (non-

unique)

temp_array=Pheno_Data[temp,] #form a subset from just those rows 

temp=which.min(as.numeric(temp_array[,9])) #find the minimum pvalue

winner=temp_array[temp,] #declare THAT particular SNP the ‘winner’

winner=winner[,c(1:4,9)] #extract the important information (study, probeID/

identifier, gene symbol, rsID, p value)

output=rbind(output,winner) #add the winner to the final output

}

})

} else { #if we are looking at a specific rsID

withProgress(value=0,message=“Obtaining Results…”,{

#We first find the precomputed linkage disequilibrium block for that SNP

query <- paste(“Select top 1 [dataset],[probesetID],[gene_symbol],[rsID],

[snp_chr],[snp_bp_mm10],[LD_block_start_mm10],”,

“[LD_block_end_mm10],[pvalue] from Unified.QTL_AllInfo WHERE rsID=‘“,input

$Overlap_rsID,”‘“,sep=““)

#print(query)

Pheno_Data=sqlQuery(dbhandle, query)

print(Pheno_Data)

incProgress(.5,detail=“part 2”)

snp_chr=Pheno_Data[5] #chr of LD block

lower=Pheno_Data[7] #lower bound of LD block

upper=Pheno_Data[8] #upper bound of LD block

#And now we basically do the same thing as when we were doing the window.

query <- paste(“Select [dataset],[category],[probesetID],[gene_symbol],

[rsID],[snp_chr],[snp_bp_mm10],[LD_block_start_mm10],”,

“[LD_block_end_mm10],[pvalue] from Unified.QTL_AllInfo WHERE 

snp_chr=‘“,snp_chr,”‘ and snp_bp_mm10>“,

lower,” and snp_bp_mm10<“,upper,” and pvalue<“,input

$Overlap_threshold,sep=““)

#print(query)

Pheno_Data=sqlQuery(dbhandle, query)

})

if(input$Overlap_includeGenes){

Pheno_Data=Pheno_Data[,−2]

} else {

tokeep=Pheno_Data[,2]!=“expression QTL”

Pheno_Data=Pheno_Data[tokeep,]

Pheno_Data=Pheno_Data[,−2]

}

print(“Data Aquired, Analyzing. Please Wait...”)
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withProgress(value=0,message=“Processing Peaks...”,{

all_names=apply(Pheno_Data[,c(1:2)],1,paste,collapse=““)

unique_names=names(table(all_names))

print(paste(“There are “,length(unique_names),” peaks!”,sep=““))

output=c()

for(i in 1:length(unique_names)){

# print(i)

if(i%%50==0){incProgress(50/length(unique_names),detail=paste(i,” Peaks 

Processed”,sep=““))}

cur_name=unique_names[i]

temp=grep(cur_name,all_names)

temp_array=Pheno_Data[temp,]

temp=which.min(as.numeric(temp_array[,9]))

winner=temp_array[temp,]

winner=winner[,c(1:5,9)]

output=rbind(output,winner)

}

})

}

#Finally, we prepare the data for output by tweaking the significant digits 

and scientific notation of the p values.

withProgress(value=.9,message=“Outputing...”,{

vals=as.matrix(output[,5])

vals=as.numeric(vals)

format(vals,digits=3,scientific=T)

vals=as.character(vals)

output[,5]=vals

})

#and we return that final output

output

})}

})

#This function simply takes the output of the workhorse function above and 

repackages it in a form acessible to the GUI.

output$Overlap_Table <- renderDataTable({

if(input$Overlap_Calculate==0){

return (NULL)} else{

isolate(OL_GetData())

}

})

#This function creates a downloadable file of the table generated above 

output$Overlap_Download<-downloadHandler(

filename = “results.txt”,

content = function(file) {
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write.table(isolate(OL_GetData()), file,row.names=F,sep=“\t”)

})

#This section creates a visual depiction of the Linkage Disequilibrium of a 

specific region of the genome or, alternately, provides the precomputed LD 

block around a provided rsID.

#####LD Block Section#####

#Like the section above, this is designed to take either a genomic interval 

of interest OR a specific rsID.

output$LD_chr <-renderUI({if(input$LD_window_or_rsID==“window”)

{selectInput(“LD_Chr”,”Select Chromosome”,c(1:19,”X”))}})

output$LD_LB <-renderUI({if(input$LD_window_or_rsID==“window”)

{numericInput(“LD_LB”,”Lower Bound (in MB)”,value=10,min=0)}})

output$LD_additional <-renderUI({

if(input$LD_window_or_rsID==“window”){

numericInput(“LD_UB”,”Upper Bound (in MB)”,value=15,min=0)

} else {

textInput(“LD_rsID”,”Please enter a SNP rsID”)

}

})

output$LD_MAFCutoff <-renderUI({if(input$LD_window_or_rsID==“window”)

{numericInput(“LD_MAF”,”Minor Allele Frequency Cutoff”,value=.05,min=0)}})

#First function for the ‘simple’ case where we are dealing with a rsID.

LD_GetData_rsID <- reactive({

if(input$LD_Calculate==0 || input$LD_window_or_rsID==“window”) #if we are 

looking for the LD within an interval, return nothing.

{return (“NULL”)} else { #otherwise… all we need to do is grab that specific 

SNP from our database…

query <- paste(“Select top 1 [dataset],[rsID],[snp_chr],[snp_bp_mm10],[LD_ 

block_start_mm10],”,

“[LD_block_end_mm10] from Unified.QTL_AllInfo WHERE rsID=‘“,input$LD_rsID,”

‘“,sep=““)

#print(query)

withProgress(value=0,message=“Getting Data”,{

Pheno_Data=sqlQuery(dbhandle, query)

val=Pheno_Data[2]

print(val)

val=val[[1]]

})

#and print out specific values found within its entry

outtext=paste(“The SNP “,val,” Located at Chr”,Pheno_Data[3],”:”,Pheno_ 

Data[4],” Has a proposed LD window of “,

(as.numeric(Pheno_Data[6])-as.numeric(Pheno_Data[5])),” bp spanning from 

“,Pheno_Data[5],” to “,Pheno_Data[6],sep=““)

outtext
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}

})

#The more complicated situation is where instead of looking at a particular 

rsID we are interested in visualizing the LD structure within a particular 

region of the genome.

LD_GetData_Window <- reactive({

if(input$LD_Calculate==0 || input$LD_window_or_rsID==“rsID”) #if we are 

looking at just one rsID... output nothing.

{return (“NULL”)} else {

print(“Beginning”)

options(scipen=999) #turn off scientific notation

#construct our query to extract out all the SNPs (but not the genotypes!) 

within the region

query<- paste(“Select [snp_chr],[rsID],[snp_bp_mm10] from genotypes. 

MouseDivArray_genotype_calls_plink_format where snp_chr=‘“,

input$LD_Chr,”‘ and snp_bp_mm10>‘“,input$LD_LB*1000000,”‘ and 

snp_bp_mm10<‘“,input$LD_UB*1000000,”‘“,sep=““)

Pheno_Data=sqlQuery(dbhandle,query)

options(scipen=0) #return scientific notation to normal

SNPs=Pheno_Data[,2] #get SNP names

SNPs=paste(SNPs,collapse=“‘ OR rsID=‘“) #create a master search entry

which looks like ‘rsID=“SNPA” OR rsID=“SNPB” OR…’

print(“Getting SNPs”)

withProgress(value=0,message=“Getting SNPS”,{

#Here we actually get out the genotypes for the SNPs identified above (this 

is done to save a significant amount of time)

query<- paste(“Select genotypes.MouseDivArray_genotype_calls_emma_format.*, 

rsID AS Expr1 from genotypes.MouseDivArray_genotype_calls_emma_format WHERE 

“, “rsID=,”,SNPs,”,”,sep=““)

#massage the data into the right format.

Pheno_Data=sqlQuery(dbhandle,query)

Pheno_Data=Pheno_Data[,−1]

Pheno_Data=Pheno_Data[,-ncol(Pheno_Data)]

positions=Pheno_Data[,1]

Pheno_Data=Pheno_Data[,−1]

#calculate the minor allele frequency of each SNP and remove those who whose 

MAFs are less than the predefinited cutoff

sums=apply(Pheno_Data,1,sum,na.rm=TRUE)

ngoodcol=table(is.na(Pheno_Data[1,]))[1]

MAFS=sums/ngoodcol

tokeep=MAFS>input$LD_MAF

Pheno_Data=Pheno_Data[tokeep,]

positions=positions[tokeep]

})

Rau et al. Page 25

Methods Mol Biol. Author manuscript; available in PMC 2019 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



#Now that we have the exact phenotypes we care about, we can calulate the 

relationship of each of these SNPs to one another withProgress(value=.

5,message=“Calculating Correlations”,{

print(“Calculating Correlations”)

cortable=corFast(t(Pheno_Data),use=“pairwise.complete.obs”)

cortable[which(is.na(cortable))]=0

cortable2=cortablê2

rownames(cortable2)=positions

colnames(cortable2)=positions

#cortable2=1-cortable2

})

#and finally create the output PDF, which is simply a heatmap of the 

correlations of each SNP to each other SNP within the window.

print(“Creating Plot”)

title=paste(“LD Block Structure: Chr “,input$LD_Chr,” “,input$LD_LB, “ to 

“,input$LD_UB,” Mb”,sep=““)

heatmap.2(cortable2, Rowv=FALSE,Colv=FALSE, dendrogram=“none”, col=heat. 

colors(75), scale=“none”,

key=FALSE, symkey=FALSE, density.info=“none”, trace=“none”, ce 

xRow=0.5,cexCol=.15,main=title)

}

})

#Two output functions, one for the rsID version and one for the window 

version. output$LD_rsIDOut <- renderText({

if(input$LD_Calculate==0 || input$LD_window_or_rsID==“window”){return(““)} 

else{isolate(LD_GetData_rsID())}

})

output$LD_windowOut <- renderPlot({

if(input$LD_Calculate==0 || input$LD_window_or_rsID==“rsID”){return(NULL)} 

else {isolate(LD_GetData_Window())}

})

#A very simple section which takes a gene name as input and opens up a 

browser window to the Wellcome Trust Mouse Genomes SNP Query site for that 

gene and the strains in the HMDP

#Originally, this actually opened in a frame, but recent changes to the 

Wellcome Trust site mean that a new tab/window is now necessary.

#####NONSYNNONYMOUS SNP SECTION#####

output$NonSynnon_Result <-renderUI({

if(input$NonSynnon_Calculate==0){return(NULL)} else {

isolate({

temp=paste(“http://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1505?gene=“,

input

$NonSynnon_Gene,”&context=0&loc=&release=rel-1505&sn=frameshift_variant&sn=mi

ssense_variant&”,
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“sn=splice_region_variant&sn=stop_gained&sn=stop_lost&sv=complex_events&sv=co

py_number_gain&sv=“,

“deletion&sv=insertion&sv=inversion&st=129s1_svimj&st=a_j&st=akr_j&st=balb_cj

&st=btbr_titpr3tf_j”,

“&st=bub_bnj&st=c3h_hej&st=c57l_j&st=c58_j&st=cba_j&st=dba_2j&st=fvb_nj&st=i_

lnj&st=kk_hij&st=lp_j”,

“&st=nod_shiltj&st=nzb_b1nj&st=sea_gnj”, sep=““)

browseURL(temp)

#tags$iframe(src=temp,seamless=F,height=1024,width=1600)

})

}

})

#This section creates a heatmap of all the values for a particular gene 

across all the studies/strains of the HMDP

#####Vizualize Values Across Strains Section##### output$VVAS_StudyUI<- 

renderUI({

if(input$VVAS_DataType==“Phenotype”){

VVAS_StudyChoices=c(“Not”, “Implemented”,”Yet”) #There are some significiant 

challenges here. See systems.genetics.ucla.edu for an eventual update... 

selectInput(“VVAS_Pheno”, “Select Study”, VVAS_StudyChoices )

}

if(input$VVAS_DataType==“Gene”){

textInput(“VVAS_Gene”, “Please Enter your probesetID OR Gene Name”)

}

})

#This section of the UI lets users select a subset of all of the studies to 

examine output$VVAS_SelectExperimentsUI <-renderUI({

selectors=allTables[allTables[,2]==“TranscriptAbundance”,]

selectors=selectors[selectors[,4]==“VIEW”,]

selectors=selectors[,3]

checkboxGroupInput(“VVAS_Experiments”, “Select Experiments to Include”, 

selectors, selected=selectors)

})

#Workhorse function for this section

VVAS_Output <-reactive({

if(input$VVAS_Calculate==0 || input$VVAS_DataType==“Phenotype”)

{return (“NULL”)} else {

withProgress(value=0,message=“Setting up...”,{

#prepare the specific studies we are interested in…

Table_subset=input$VVAS_Experiments

Table_subset=paste0(“HMDP.TranscriptAbundance.”,Table_subset)

Table_subset=as.matrix(Table_subset)

})

withProgress(value=0,message=“Generating Table...”,{
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#here we are creating the first query of our output, to which the rest will 

be added.

gene_query=paste(“(ProbesetID=‘“,input$VVAS_Gene,”‘ OR gene_symbol=‘“,input

$VVAS_Gene,”‘)”,sep=““)

query <- paste(“SELECT * FROM “,Table_subset[1],” WHERE “, 

gene_query,paste=““ )

})

print(paste0(“Fetching Data From “,Table_subset[1]))

withProgress(value=1/length(Table_subset),message=paste0(“Fetching Data From 

“,Table_subset[1]),{

#Actually get the data for the first row and process

#The eventual result should have the gene name as a row and all strains of 

interest as columns. If more than one probeset is returned (if using gene 

name instead of probesetID)

#then the most highly expressed value will be added.

Pheno_Data=as.matrix(sqlQuery(dbhandle, query))

Pheno_Data=Pheno_Data[,-c(1:2)]

Pheno_Data=as.matrix(Pheno_Data)

if(ncol(Pheno_Data)==1){

Pheno_Data=t(Pheno_Data)

}

if(nrow(Pheno_Data)>1){

Pheno_Data=apply(Pheno_Data,2,as.numeric)

averages=apply(Pheno_Data[,-c(1:2)],1,mean,na.rm=TRUE)

Pheno_Data=Pheno_Data[which.max(averages),]

Pheno_Data=t(as.matrix(Pheno_Data))

}

rownames(Pheno_Data)=strsplit(strsplit(Table_subset[1],”.”,fixed=T) [[1]]

[3],”_”,fixed=T)[[1]][1]

gene_data=Pheno_Data

})

#now we do the same thing for every other study of interest, merging the 

results with the growing master output table

for(i in 2:length(Table_subset)){

query <- paste(“SELECT * FROM “,Table_subset[i],” WHERE “, 

gene_query,paste=““ )

print(paste0(“Fetching Data From “,Table_subset[i]))

withProgress(value=i/length(Table_subset),message=paste0(“Fetching Data From 

“,Table_subset[i]),{

Pheno_Data=as.matrix(sqlQuery(dbhandle, query))

Pheno_Data=Pheno_Data[,-c(1:2)]

Pheno_Data=as.matrix(Pheno_Data)

if(ncol(Pheno_Data)==1){Pheno_Data=t(Pheno_Data)}

if(nrow(Pheno_Data)==0){ #we need a special case if the gene/probe isn’t 
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found in the study’s array. In this case, we just add a row of NAs.

new_val= strsplit(Table_subset[i],”.”, fixed=T)[[1]][3]

temp=c(rownames(gene_data),new_val)

new_row=rep(NA,ncol(gene_data))

gene_data=rbind(gene_data,new_row)

rownames(gene_data)=temp

} else {

if(nrow(Pheno_Data)>1){

Pheno_Data=apply(Pheno_Data,2,as.numeric)

averages=apply(Pheno_Data[,-c(1:2)],1,mean,na.rm=TRUE)

Pheno_Data=Pheno_Data[which.max(averages),]

Pheno_Data=t(as.matrix(Pheno_Data))

}

rownames(Pheno_Data)=strsplit(Table_subset[i],”.”,fixed=T)[[1]][3]

temp=c(rownames(gene_data),rownames(Pheno_Data))

gene_data=merge(gene_data,Pheno_Data,all=TRUE,sort=FALSE)

rownames(gene_data)=temp

}

})

}

#and finally, we return the combined data gene_data

}

})

#Unused in the final code, this allows for testing of which samples will be 

included for the strain select portion of the UI.

output$TEST_Checkbox <-renderText({

res=input$VVAS_SelectStrains

strain_classes=input$VVAS_SelectStrains

strains=c()

for(q in 1:length(strain_classes)){

temp=allStrains[allStrains[,2]==strain_classes[q],1]

strains=c(strains,temp)

}

print(strains)

})

#This section actually outputs the heatmap of all the expression values 

output$VVAS_Plot <- renderPlot({

if(input$VVAS_Calculate==0){

return (“NULL”)} else}

isolate({

VVAS_Data=VVAS_Output() #get the data...

print(“Data Aquired”)

if(VVAS_Data[1]!=“NULL”){ #if there is data…

print(“Running”)
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strain_classes=input$VVAS_SelectStrains #get which strain classes (mouse 

panels) we are interested in from the GUI.

strains=c()

for(q in 1:length(strain_classes)){ #create a master list of strains of 

interest.

temp=allStrains[allStrains[,2]==strain_classes[q],1]

strains=c(strains,temp)

}

#Filter output for only the strains of interest

temp=match(strains,colnames(VVAS_Data))

temp=temp[!is.na(temp)]

print(temp)

VVAS_Data=VVAS_Data[,temp]

#and now actually generate the heatmap.

withProgress(value=0,message=“Generating Figure...”,{

gene_data=VVAS_Data

pheno_names=rownames(gene_data)

strain_names=colnames(gene_data)

gene_data=gene_data[,order(strain_names)]

strain_names=strain_names[order(strain_names)]

gene_data=apply(gene_data,2,as.numeric)

rownames(gene_data)=pheno_names

heatmap.2(gene_data,Rowv=FALSE,Colv=FALSE,dendrogram=“none”,trace=“none”, 

col=greenred(100),na.color=“grey”,keysize=1.2,density. 

info=“none”,margins=c(5,9))

})

}

})

}

})

#This function allows users to download the values plotted in the heatmap. 

output$VVAS_Download<-downloadHandler(

filename = “results.txt”,

content = function(file) {

write.table(isolate(VVAS_Output()), file,row.names=T,sep=“\t”)

})

#This section examines the entirety (or a subset) of the data currently 

available to find significant/suggestive correlations between a phenotype of 

intetrest and other phenotypes, studies, tissues, etc.

#####Find Correlations#####

#This first function allows the user to select a subset of the entire data 

to look for correlations in. Obviously, the fewer experiments, the faster it 

goes.

output$FC_SelectExperimentsUI <-renderUI({
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selectors=allTables[allTables[,2]==“Correlations”,] #find all correlations 

in allTables

selectors=selectors[selectors[,4]==“VIEW”,] #find all of those correlations 

which are views (to avoid duplicates)

selectors=selectors[,3] #get names

#We have to clean up the names a little bit (namely remove anything after 

the first “_”), so here is a quick function to do so.

retElement <- function(x,num){

temp=strsplit(x,”_”)

temp=temp[[1]][num]

return(temp)

}

selectors=sapply(selectors,retElement,1)

selectors=names(table(selectors))

checkboxGroupInput(“FC_Experiments”, “Select Experiments to Include”, 

selectors, selected=selectors)

})

#The workhorse function which actually finds the correlations

FC_GetResults<- reactive({

experiments=allTables[allTables[,2]==“Correlations”,] #get all correlations

experiments=experiments[experiments[,4]==“VIEW”,]

experiments=experiments[,3]

if(!input$FC_Include_Probes){ #we have the option to keep or remove all the 

eQTLs.

temp=sapply(experiments,retElement,3)!=“trx” #if we don’t want the eQTLs, we 

filter them out.

countElement <-function(x){

temp=strsplit(x,”_”)

temp=length(temp[[1]])

return(temp)

}

t2=sapply(experiments,countElement)!=4

temp= temp | t2

experiments=experiments[temp]

}

all_experiments=experiments

#We now filter ALL experiments by the ones we selected above that we wish to 

keep experiments=c()

for(i in 1:length(input$FC_Experiments)){

temp=input$FC_Experiments[i]

temp=paste(temp,”_”,sep=““)

temp=grep(temp,all_experiments,fixed=T)

temp=all_experiments[temp]

experiments=c(experiments,temp)
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}

#Trim off the ‘AllInfo’ part.

for(i in 1:length(experiments)){

temp=strsplit(experiments[i],”_”)[[1]]

temp=temp[-length(temp)]

temp=paste(temp,collapse=“_”)

experiments[i]=temp

}

#Make the MASSIVE experiment filter for the eventual query 

exp_filter=“(dataset=‘“

for(i in 1:(length(experiments)-1)){

temp=experiments[i]

exp_filter=paste0(exp_filter,temp,”‘ OR dataset=‘“)

}

exp_filter=paste0(exp_filter,experiments[length(experiments)],”‘)”)

# print(exp_filter)

#The much smaller phenotype_filter

pheno_query=paste(“(ProbesetID_1=‘“,input$FC_Input,”‘ OR gene_ 

symbol=‘“,input$FC_Input,”‘ OR clinical_trait_1=‘“,input$FC_Input,”‘ OR 

metabolite_1=‘“,input$FC_Input,”‘ OR protein_1=‘“,input$FC_Input,”‘)”,sep=““)

# print(pheno_query)

#The tiny pvalue filter

pval_filter=paste0(“pvalue<=‘“,input$FC_threshold,”‘“)

# print(pval_filter)

#and finally we combine everything together to create our master SQL query.

final_query=paste0(“SELECT * FROM Unified.Correlations_AllInfo WHERE 

“,exp_filter,” AND “,pheno_query,” AND “,pval_filter)

print(final_query)

withProgress(value=0,message=“Generating Results… this may take some 

time.”,! #It really might. Working on a way to improve speed now.

FC_Data=sqlQuery(dbhandle, final_query) #and here we actually are getting 

the results

})

outdata=c()

withProgress(value=0,message=“Processing Results…”,{

#our correlations can be with all sorts of different things. a gene, a 

phenotype, a metabolite, a protein, etc, etc. Our initial input can be any 

of those things as wel

#as a result, we have to figure out which entries in our unified correlation 

database is actually filled

for(i in 1:nrow(FC_Data)){ #for each row of the correlations we’ve 

downloaded incProgress(1/nrow(FC_Data))

cur_row=FC_Data[i,] #extract that row

tokeep=c(2:4) #keep a few columns that are always needed (type of 
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correlation, tissue of interest, study) and then look to see which other 

columns are filled

if(!is.na(cur_row[5])){ tokeep=c(tokeep,5,6)} #gene 1

if(!is.na(cur_row[11])){ tokeep=c(tokeep,11,12)} #gene 2

if(!is.na(cur_row[17])){ tokeep=c(tokeep,17,18)} #phenotype 1

if(!is.na(cur_row[20])){ tokeep=c(tokeep,20,21)} #phenotype 2

if(!is.na(cur_row[23])){ tokeep=c(tokeep,23,24)} #metabolite 1

if(!is.na(cur_row[25])){ tokeep=c(tokeep,25,26)} #metabolite 2

if(!is.na(cur_row[27])){ tokeep=c(tokeep,27,27)} #protein 1

if(!is.na(cur_row[28])){ tokeep=c(tokeep,28,28)} #protein 2

tokeep=c(tokeep,29,30) #and we want to keep the last two values as well 

(correlation score and pvalue)

cur_row=cur_row[tokeep] #and now we actually filter the row to the values we 

care about

names(cur_row)=c(“class”,”tissue”,”study”,”Pheno1_ID”,”Pheno1_ 

Info”,”Pheno2_ID”,”Pheno2_Info”,”bicor”,”pvalue”) #add names to those values 

outdata=rbind(outdata,cur_row) #and add it to our master output.

}

})

#this output is a condensed form of the SQL query which removes empty spaces 

and is better for visualization

outdata

})

#the output function for the data above.

output$FC_Output <-renderDataTable({

if(input$FC_Calculate==0){

return (NULL)} else{

isolate(FC_GetResults())

}

})

#and a downloader to allow downloading of all correlations.

output$FC_Download<-downloadHandler(

filename = “results.txt”,

content = function(file) {

write.table(isolate(FC_GetResults()), file,row.names=F,sep=“\t”)

})

})

#####EXTRAS#####

#Takes a string x, splits it and reurns the num-th element.

retElement <- function(x,num){

temp=strsplit(x,”_”)

temp=temp[[1]][num]

return(temp)

}
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7 ui.R

# A Graphical User Interface for querying a genetics SQL Database using 

Shiny in R

# Version: 0.7

# Last Modified: 12/9/15

#

# The following is an implementation of a GUI using the Shiny package in 

Rstudio. Shiny programs have two scripts associated with them. This script, 

ui.R, controls the appearance of

# The GUI and provides inputs to and displays outputs from Server.R which 

contains the actual functions.

#for details on how this page’s layout works, please see http://

shiny.rstudio.com/tutorial/ and http://shiny.rstudio.com/reference/shiny/

latest/shinyUI(fluidPage(

titlePanel(“Welcome to the HMDP Database Shiny Server v0.7”), tabsetPanel(

tabPanel(“Start Here/Login”,

h6(“Welcome to the first iteration of the searchable HMDP Database. Please 

click a relevant tab to begin.”),

textInput(“Password”,”Enter password for full access”),

actionButton(“Password_Go”,”Login”),

textOutput(“PassOK”)),

tabPanel(“Visualize GWAS Result”,

sidebarLayout(

sidebarPanel(

selectInput(“DataViz_DataType”,label=h3(“Select a type of data”),choices = c 

(“Clinical”,”Expression”,”Metabolite”,”Protein”)), #a selectInput is a 

dropdown menu htmlOutput(“DataViz_StudyUI”), #an ‘htmlOutput’ is actually a 

way to create dynamic inputs. In this case, Server.R is taking the selection 

from above and creating a new

#selectInput populated with all the studies which have that type of data

htmlOutput(“DataViz_FinalTableSelectUI”), #then this one is allowing for 

fine tuning of the selection (typically selecting which gender of mice to 

examine)

htmlOutput(“DataViz_PhenotypeUI”), #and finally this one gives you a list of 

all possible phenotypes that can be used.

actionButton(“DataViz_Calculate”,”Create Manhattan Plot”), #This is a button 

which, when clicked, tells Server.R to start calculating.

selectInput(“DataViz_Chromosome”,label=“Which Chromosome?”,choices=c(“Al 

l”,c(1:19),”X”),selected=“All”), #another select input

numericInput(“DataViz_Lower_Bound”,”Lower Bound (In MB)”,1,min=0),

#a numeric input which will take any number

numericInput(“DataViz_Upper_Bound”,”Upper Bound (In MB)”,999,min=0)

),
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mainPanel(downloadButton(‘DataViz_Download’, ‘Download These Results’), 

#creates a download button which takes a created file from Server.R

plotOutput(‘DataViz_Manhattan’), #creates a plot

h5(“At distances of less than 10Mb, the UCSC Genome Browser will Appear 

Below.”),

htmlOutput(“DV_GenomeBrowser”))) #once again an htmlOutput, but in this case 

it really is an output, namely a visualization of the UCSC genome browser

),

tabPanel(“Create Beeswarm Plot”,

sidebarLayout(

sidebarPanel(

selectInput(“Beeswarm_DataType”,label=h3(“Select a type of data”),choices = 

c(“Clinical”,”Expression”,”Metabolite”,”Protein”)),

htmlOutput(“Beeswarm_StudyUI”),

htmlOutput(“Beeswarm_FinalTableSelectUI”),

htmlOutput(“Beeswarm_PhenotypeUI”),

textInput(“Beeswarm_rsID”,”Enter your SNP of choice”,value=““), #will take 

any string as an input

actionButton(“Beeswarm_Calculate”,”Create Plot”) ),

mainPanel(plotOutput(‘BS_Plot’))

)

),

tabPanel(“Visualize Values Across Strains and Tissues”,

sidebarLayout(

sidebarPanel(

selectInput(“VVAS_DataType”,label=h3(“Select a type of data”),choices = 

c(“Phenotype”,”Gene”)),

htmlOutput(“VVAS_StudyUI”),

htmlOutput(“VVAS_SelectExperimentsUI”),

checkboxGroupInput(“VVAS_SelectStrains”,label=“Strain Groups”,choices=c(“In 

bred”,”AxB”,”BxA”,”BxD”,”BxH”,”CxB”),selected=c(“Inbred”,”AxB”,”BxA”,”BxD”,”B

xH”,”CxB”)), actionButton(“VVAS_Calculate”,”Create Plot”) ),

mainPanel(downloadButton(‘VVAS_Download’, ‘Download These Results’),

plotOutput(‘VVAS_Plot’)

#,textOutput(“TEST_Checkbox”)

)

) ),

tabPanel(“Nonsynnonymous SNPs”,

sidebarLayout(

sidebarPanel(

textInput(“NonSynnon_Gene”,”Enter Gene (SYMBOL FOR NOW)”),

actionButton(“NonSynnon_Calculate”,”Run”)

),

mainPanel(htmlOutput(“NonSynnon_Result”)))),
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tabPanel(“cis-eQTLs”,

sidebarLayout(

sidebarPanel(

htmlOutput(“ciseQTL_PhenotypeUI”),

numericInput(“ciseQTL_Window”,”Size of cis-eQTL window in MB”,min=0,value=2),

actionButton(“ciseQTL_Calculate”,”Create Table”)

),

mainPanel(dataTableOutput(‘ciseQTL_Table’),

downloadButton(‘ciseQTL_Download’, ‘Download These Results’)))

),

tabPanel(“Gene/Phenotype Correlations”,sidebarLayout(

sidebarPanel(

textInput(“FC_Input”,”Enter your gene or phenotype name”),

htmlOutput(“FC_SelectExperimentsUI”),

numericInput(“FC_threshold”,”P-value

threshold”,min=0,value=.0000042,max=1),

checkboxInput(“FC_Include_Probes”,”Include Genes?”,value=TRUE), #a simple 

checkbox for TRUE/FALSE statments. In this case, should genes be included 

when calculating correlations?

actionButton(“FC_Calculate”,”Create Table”)

),

mainPanel(dataTableOutput(“FC_Output”),

downloadButton(‘FC_Download’, ‘Download These Results’))

)),

tabPanel(“Overlapping Loci”,

sidebarLayout(

sidebarPanel(

selectInput(“Overlap_window_or_rsID”,”Please select to 

begin”,c(“window”,”rsID”))

,htmlOutput(“Overlap_chr”),

htmlOutput(“Overlap_LB”),

htmlOutput(“Overlap_additional”),

numericInput(“Overlap_threshold”,”P-value threshold”,min=0,val ue=.

0000042,max=1),

checkboxInput(“Overlap_includeGenes”,”Include eQTLs?”,value=FALSE), 

actionButton(“Overlap_Calculate”,”Create Table”)

),

mainPanel(dataTableOutput(‘Overlap_Table’),

downloadButton(‘Overlap_Download’, ‘Download These Results’))

)),

tabPanel(“Generate LD Plot”,

sidebarLayout(

sidebarPanel(

selectInput(“LD_window_or_rsID”,”Please select to begin”,c(“window”,”rsID”))
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,htmlOutput(“LD_chr”),

htmlOutput(“LD_LB”),

htmlOutput(“LD_additional”),

htmlOutput(“LD_MAFCutoff”),

actionButton(“LD_Calculate”,”Calculate!”)

),

mainPanel(textOutput(“LD_rsIDOut”),plotOutput(“LD_windowOut”))

)),

tabPanel(“Gene Name Conversions”,

sidebarLayout(

sidebarPanel(

textInput(“Lookup_One”,”Please enter a gene name or probesetID”),

fileInput(“Lookup_Batch”,”Or upload a file for batch conversion”),

actionButton(“Lookup_Button”, “Convert!”)

),

mainPanel(

dataTableOutput(“Lookup_Table”)

)

)),

tabPanel(“More Tools To Come!”,h3(“Soon...”)),

tabPanel(“Bugs/Suggestions”,

textInput(“Suggestion_Name”,”Name”),

textInput(“Suggestion_Report”,”Suggestion/Bug”),

tags$style(type=‘text/css’, “#Suggestion_Report { height: 300px; width: 

600px; }”),

actionButton(“Suggestion_Button”,”Suggest!”),

textOutput(“Suggestion_Text”),

h3(“Planned Changes:”),

h4(“Make it Faster (Especially correlations)”),

h4(“Eliminate Bugs”),

h4(“Make it Look Nice”)

)

)))
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Fig. 1. 
A subset of the data available in the HMDP Database. Depicted here is a subset of the total 

HMDP database, organized with study name (in this case, a high-cholesterol diet) at the top 
level, followed by gender, then -omics level, and finally by individual tissues or phenotypes. 

A full depiction of the contents of the HMDP Database can be found in Fig. S1
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Fig. 2. 
Visualization tool outputs in the HMDP Database GUI. (a) A Manhattan plot for adiposity 

reveals a significant association on chromosome 9. (b) A beeswarm plot demonstrates the 

effect of SNP rs31423553 on HDL levels in plasma. (c) The expression of the gene Abcc6 is 

plotted across the different studies of the HMDP, revealing high expression in liver 

compared to other tissues. (d) A LD plot of chromosome 3 between 10 and 11 Mb shows 

evidence of a small LD block from 10.1 to 10.5 Mb
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Fig. 3. 
Discovery Outputs of the HMDP Database GUI. (a) Querying the Wellcome Trust Mouse 

Genomes resource reveals a number of nonsynonymous mutations in the gene Mospd3. (b) 

cis-eQTLs located near Prkag2 show strong local regulation in multiple tissues (c) 

Correlation of Adamts2 with other phenotypes (see Fig. S8 for additional correlations) 

reveals a previously unappreciated correlation with platelet counts in multiple studies. (d) 

Examination of the Mospd3 locus for RV weight reveals additional significant loci across 

the HMDP studies
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Table 1

Experimental models in the HMDP database

Environmental condition/stressor Primary traits [references]

1. Low-fat chow diet Plasma lipids, adiposity [5]

Bone density [6, 7]

Behavior [8]

Blood cell levels [9]

Proteomics [10]

Macrophage inflammation [11]

Metabolomics (hepatic) [12]

DNA methylation [13]

2. High-fat, high sucrose diet Dietary responsiveness [14]

Diabetes/insulin resistance [15]

Gut microbiota [14, 16]

Bone marrow stem cells (ALLAYEE, LUSIS) Fatty liver [17]

3. Isoproterenol treatment Heart failure [18]

4. High-fat, high-cholesterol diet and ApoE-Leiden, CETP transgenes Atherosclerosis [19]

5. Low-fat chow diet, auditory stressors Hearing [20, 21]
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