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Abstract: The gray matter/white matter (GM/WM) boundary of the brain is vulnerable to shear
strain associated with mild traumatic brain injury (mTBI). It is, however, unknown whether GM/WM
microstructure is associated with long-term outcomes following mTBI. The diffusion and structural
MRI data of 278 participants between 18 and 65 years of age with and without military background
from the Department of Defense INTRuST study were analyzed. Fractional anisotropy (FA) was
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extracted at the GM/WM boundary across the brain and for each lobe. Additionally, two conventional
analytic approaches were used: whole-brain deep WM FA (TBSS) and whole-brain cortical thickness
(FreeSurfer). ANCOVAs were applied to assess differences between the mTBI cohort (n = 147) and the
comparison cohort (n = 131). Associations between imaging features and post-concussive symptom
severity, and functional and cognitive impairment were investigated using partial correlations while
controlling for mental health comorbidities that are particularly common among military cohorts
and were present in both the mTBI and comparison group. Findings revealed significantly lower
whole-brain and lobe-specific GM/WM boundary FA (p < 0.011), and deep WM FA (p = 0.001) in
the mTBI cohort. Whole-brain and lobe-specific GM/WM boundary FA was significantly negatively
correlated with post-concussive symptoms (p < 0.039), functional (p < 0.016), and cognitive impair-
ment (p < 0.049). Deep WM FA was associated with functional impairment (p = 0.002). Finally, no
significant difference was observed in cortical thickness, nor between cortical thickness and outcome
(p > 0.05). Findings from this study suggest that microstructural alterations at the GM/WM boundary
may be sensitive markers of adverse long-term outcomes following mTBI.

Keywords: diffusion tensor imaging; mild traumatic brain injury; fractional anisotropy; magnetic
resonance imaging; post-concussion symptoms; cognitive impairment

1. Introduction

Traumatic brain injury (TBI) is a leading cause of disability and is particularly common
among military service members [1,2]. About 90% of TBI cases are categorized as mild TBI
(mTBI) and affect as many as ~42 million people annually worldwide [3,4]. About a third
of individuals with mTBI will go on to develop long-term symptoms, also referred to as
persistent post-concussive symptoms [5]. Nonetheless, and despite the high prevalence of
mTBI and the large number of individuals with adverse long-term outcomes, the underlying
pathophysiology is still not fully understood.

The current understanding is that during a head impact, rotational and linear forces
act on the skull, leading to brain tissue deformation and, thereby the stretching and shear-
ing of axons [6]. The latter may result in microinjury of axons, also known as traumatic
axonal injury (TAI), which is one of the most common injuries associated with mTBI [7].
The gray matter/white matter (GM/WM) boundary is particularly susceptible to TAI,
given that WM is more rigid and viscous than GM and reacts less rapidly to mechanical
strain, potentially leading to the shearing of the two types of tissues juxtaposed to one
another [8,9]. Indeed, recent computer simulations suggest that the GM/WM boundary is
where acceleration and shear forces are at their highest levels [10]. Moreover, microbleeds,
which constitute a prevalent pathophysiologic feature of brain tissue strain are commonly
found along the GM/WM boundary [11]. Of note, WM microinjuries to the brain tissue
have previously been associated with the development of long-term post-concussive symp-
toms [12]. These symptoms may involve cognitive and functional disability including
compromised processing speed, executive functioning, and problems with participation in
social activities, work, and family life [13].

Strikingly, microinjuries to WM often remain undetected by conventional imaging
modalities (e.g., computed tomography (CT)) and thus their detection requires the use of
more sensitive advanced imaging techniques. Importantly, diffusion magnetic resonance
imaging (dMRI) can both detect and quantify even subtle alterations in brain structure.
Specifically, dMRI measures the magnitude and orientation of water molecule diffusion in
brain tissue, expressed as fractional anisotropy (FA) [14].

Previous studies investigating individuals with a history of mTBI have focused on
brain alterations of either the most central part of WM (“deep WM”) [15,16] or GM [17,18].
Interestingly, these studies revealed variable findings, with some reporting increases or
decreases in FA in the chronic phase following mTBI [15], while others did not observe
differences in FA between mTBI individuals and a comparison group [16]. Similarly, when
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assessing GM structure following mTBI, some studies report alterations in GM cortical
thickness [17], while other studies do not reveal any differences in GM compared to
controls [18] in the acute and sub-acute stages after mTBI. Conflicting results have further
been reported in the chronic stages, where some studies describe thinning of the cortex [19],
while others report thickening in the same GM regions [20]. In fact, time since injury is
an important aspect when considering brain structural alterations following mTBI. Some
studies have suggested that even in the case that rehabilitative processes lead to presumed
recovery after a couple of weeks or months, degenerative processes may commence later
in life and may be linked to disadvantageous outcomes, such as accelerated aging and
declining cognitive functioning [21,22]. It is possible that previous studies did not observe
alterations in brain microstructure following mTBI because they failed to assess what may
constitute the most vulnerable region of injury, and that is the GM/WM boundary. This
may also explain why some individuals with mTBI exhibit post-concussive symptoms
despite any visible signs of tissue alteration in either the deep WM [23] or the cortex [24].

The aim of this study is to characterize the microstructure at the GM/WM boundary
in participants of the Department of Defense Injury and Traumatic Stress (INTRuST)
study with a history of mTBI against a comparison group while adjusting for common
confounders of brain structure such as age, gender, post-traumatic stress disorder (PTSD),
depressive symptoms, and alcohol use. In addition, we investigate whether alterations in
GM/WM boundary diffusion properties are associated with clinical outcome measures
following mTBI, including post-concussive symptom severity, cognitive functioning, and
functional impairment. Finally, since this is the first investigation focusing on the GM/WM
boundary in this population, we also apply more commonly used approaches to investigate
brain structure following mTBI (i.e., WM diffusion of the deep WM and cortical thickness).

2. Materials and Methods
2.1. Study Design and Participants

Participants of the Injury and Traumatic Stress (INTRuST) Clinical Consortium (De-
partment of Defense, W81XWH-08-2-0159, intrust.sdsc.edu, accessed on 6 January 2022)
were enrolled from 10 sites across the United States between 2008 and 2013. Institutional
review board study approval was obtained from all participating sites and the study was
conducted in conformity with the Declaration of Helsinki. All study participants provided
written informed consent prior to enrolment.

Participants included English-speaking males or females between the ages of 18 and
70 years of age. Participants were excluded from the study if they had acquired English
as a second language after the age of 5, had a history of a learning disability, a TBI history
that resulted in a hospital stay and/or abnormal imaging findings, a history of moderate
to severe TBI, a diagnosis of Bipolar I, psychotic, delirious, or dementia-related disorders,
uncontrolled chronic disease, uncontrolled hypertension, or were taking more than one
antihypertensive medication, used oral or intramuscular steroids within the past four
months, or were currently taking drugs or any medication affecting brain function (other
than psychotropic medication). Individuals with a history of psychotropic drug, alcohol, or
substance use were permitted to participate in the study if they had been in remission for
the last 30 days prior to data collection. Additional exclusion criteria were general MRI
contraindications, disorders of the central nervous system, or pregnancy/lactating.

Out of the 771 enrolled participants, 373 completed neuropsychological and MRI
assessments. After the evaluation of MRI data quality, 95 cases were excluded due to severe
motion artifacts (n = 14), harmonization issues (n = 44), or missing demographic data
(n = 37) leaving a total of 278 participants with available structural and dMRI data. The
enrolled participants did not differ significantly from those excluded in any demographic
variable (p > 0.05). These participants were classified into participants with a history of
mTBI (n = 147) and a comparison group without mTBI (n = 131) (Table 1). Participants
with psychiatric comorbidities (other than severe mental disorders such as schizophrenia
and bipolar disorder) were not excluded from either group given that we aimed for a most
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accurate resemblance of the larger population, and psychiatric symptoms are common in
the military population and those with mTBI.

Table 1. Sample Characteristics.

Total Sample mTBI No mTBI

ANCOVA
Demographics n mean ± SD n mean ± SD n mean ± SD F(df) p
Age 278 36.27 ± 12.71 147 36.56 ± 11.97 131 34.62 ± 12.88 1.70(1, 276) 0.193
Years between injury and
scan - - 101 7.57 ± 9.54 - - - -

Fisher’s exact test
% % % χ2 p

Gender
(male/female) 54.3/45.7 65.3/34.7 41.9/58.1 15.31 <0.001

Race Native 0.7 1.4 - 13.74 0.193
Asian 3.2 1.4 5.3
Pacific 0.4 - 0.8
African
American 13.7 10.2 17.6

White 76.3 82.9 68.7
Unknown 5.7 4.1 7.6

ANCOVA
Imaging n mean ± SD n mean ± SD n mean ± SD F(df) p (pFDR)
Whole-brain GM/WM
Boundary FA 278 0.27 ± 0.02 147 0.27 ± 0.02 131 0.28 ± 0.01 23.16(1, 271) <0.001

(0.001)
Frontal lobe GM/WM
Boundary FA 278 0.28 ± 0.02 147 0.28 ± 0.02 131 0.29 ± 0.02 18.62(1, 271) <0.001

(0.001)
Parietal lobe GM/WM
Boundary FA 278 0.27 ± 0.04 147 0.26 ± 0.05 131 0.28 ± 0.03 8.88(1, 271) 0.003 (0.004)

Temporal lobe GM/WM
Boundary FA 278 0.28 ± 0.02 147 0.27 ± 0.02 131 0.28 ± 0.01 27.78(1, 271) <0.001

(0.001)
Occipital lobe GM/WM
Boundary FA 278 0.25 ± 0.02 147 0.25 ± 0.02 131 0.26 ± 0.02 6.65(1, 271) 0.010 (0.011)

Deep white matter FA 278 0.58 ± 0.02 147 0.57 ± 0.02 131 0.59 ± 0.02 25.21(1, 271) <0.001
(0.001)

Whole-brain cortical
thickness 278 2.37 ± 0.09 147 2.35 ± 0.08 131 2.37 ± 0.10 0.039(1, 271) 0.843 (0.843)

Psychiatric Symptoms F(df) p
PCL-C 278 30.40 ± 17.58 147 36.66 ± 18.50 131 23.30 ± 13.38 35.35(1, 274) <0.001
PHQ-9 278 4.40 ± 5.67 147 6.61 ± 5.99 131 1.92 ± 4.06 47.72(1, 274) <0.001
Alcohol Use
AUDIT-10 278 3.73 ± 5.50 147 4.67 ± 6.40 131 2.67 ± 4.03 6.63(1, 274) 0.011
Post-Concussive
Symptoms
RPQ13 168 13.25 ± 15.04 139 17.35 ± 14.79 29 3.76 ± 11.23 21.83(1, 166) <0.001
Functional Impairment
SDS 275 6.36 ± 9.07 147 10.44 ± 9.70 128 1.67 ± 5.28 74.47(1, 271) <0.001
Cognitive Functioning F(df) p
TMT-A time (seconds) 275 24.92 ± 10.21 145 26.58 ± 10.78 130 23.06 ± 9.24 6.10(1,271) 0.014
TMT-B time (seconds) 275 55.65 ± 27.52 145 58.19 ± 27.52 130 52.84 ± 26.83 0.89(1,271) 0.348

Note. SD, Standard deviation; PCL-C, PTSD Checklist Civilian; PHQ-9, Patient Health Questionnaire; SDS,
Sheehan Disability Scale; AUDIT, Alcohol Use Disorder Identification Test, RPQ13, Rivermead Post-Concussion
Questionnaires 13; All ANCOVAs were corrected for age and gender. Imaging parameters were corrected for age,
gender, PCL-C, PHQ-9, and AUDIT-10. Significant p-values are marked in bold font.

2.2. Diagnostic and Clinical Assessments
2.2.1. Assessment of mTBI

Mild TBI history was assessed using the self-report INTRuST mTBI Screening Instru-
ment which closely follows the American Congress of Rehabilitation Medicine’s diagnostic
guidelines [25] and has been used in previous publications of the INTRuST Clinical Con-
sortium [26]. MTBI was diagnosed if a head injury led to any of the following: alteration or
loss of consciousness and/or posttraumatic anterograde/retrograde amnesia.

2.2.2. Assessment of Post-Concussion Symptom Severity

The Rivermead Post-Concussion Symptoms Questionnaire (RPQ13) [27] is an estab-
lished scale for assessing chronic persistent post-concussive symptoms with strong internal
validity, test–retest reliability, and inter-rater reliability [28]. Higher scores on the RPQ13
indicate greater post-concussive symptom severity.
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2.2.3. Assessment of Functional Impairment

To assess functional impairment, the Sheehan Disability Scale (SDS) was employed [29].
The SDS is a self-report questionnaire that includes three items that assess functional impair-
ment in daily work, social, and family life (e.g., “symptoms have disrupted family/home
responsibilities”). The scale is rated from 0 (“not at all”) to 10 (“extreme”). This scale was
used to assess functional impairment in daily work, social, and family life. Higher scores
on the SDS indicate greater functional impairment.

2.2.4. Assessment of Cognitive Functioning

The Trail Making Test (TMT) [30] is a highly efficient tool to assess cognitive func-
tioning, such as processing speed (TMT-A) and executive functioning, including mental
flexibility and task switching, attention, and visual tracking (TMT-B). TMT-A assesses
how fast a participant can connect 25 numbers in ascending order (i.e., 1-2-3 etc.) that
are randomly arranged on a sheet of paper. TMT-B requires the participant to alternate
between connecting letters and numbers in numerical and alphabetical order, respectively
(i.e., 1-A-2-B etc.). For both TMT-A and B, the total time to completion is assessed. The
TMT is sensitive in discriminating between individuals with brain alterations and healthy
controls [31].

2.2.5. Assessment of Psychiatric Comorbidities

The presence and severity of PTSD symptoms were assessed using the PTSD Checklist-
Civilian Version (PCL-C) [32], a 17-item self-report questionnaire corresponding to the
Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) diagnostic criteria
for PTSD. Items (e.g., “repeated, disturbing memories, thoughts, or images of a stressful
experience from the past?”) are rated on a scale from 1 “not at all bothersome” to 5
“extremely bothersome,” and summed into a total symptom severity score.

The severity of depressive symptoms was assessed using the 9-Item Patient Health
Questionnaire 9 (PHQ-9), with items rated from 0 “not at all” to 3 “nearly every day” [33].
A total symptom severity score was computed by summing all items.

The Alcohol Use Disorders Identification Test (AUDIT-10) was used to assess alcohol
consumption [34]. The AUDIT-10 consists of 10 items that cover the quantity of alcohol
consumed, level of dependency, and harmful consequences for self and others. Items
(e.g., “How many drinks containing alcohol do you have on a typical day when you are
drinking?”) are scored on a scale from 0 to 4 with varying response options depending
on the question. A total alcohol use severity score was computed by summing all items.
Higher scores correspond to greater alcohol use severity.

2.3. MRI Acquisition and Image Processing
2.3.1. Image Acquisition

Structural MRI sequences and dMRI sequences were acquired on 3-Tesla scanners
(Tim Trio, Siemens Healthineers, Erlangen, Germany; GE 750, GE Healthcare, Chicago, IL,
USA, or Achieva, Philips Healthcare, Best, The Netherlands) across six out of ten INTRuST
study sites (for details for each MRI system, see Table 2).

Table 2. Acquisition parameters for MRI.

Sequence Parameter SIEMENS PHILIPS GE

DTI
Orientation axial axial axial

Phase Encoding Direction a/p p/a l/r
FOV (in mm) 256 256 256

Bandwidth (in kHz or Hz/Px) 1396 1271 250
Number of Directions 87 64 86

b-value 900 900 900
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Table 2. Cont.

Sequence Parameter SIEMENS PHILIPS GE

Number of b0 0 7 1
Resolution Matrix 128 × 128 128 × 128 128 × 128

Voxel Size (in mm3) 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2
Number of Slices 73 73 73

Acquisition Time (in min) 14:08 14:21 14:40

T1w
Sequence details MP-RAGE T1W_3D_TFE SENSE SPGR-BRAVO

Orientation Sagittal Sagittal Sagittal
Flip Angle (in degrees) 7 7 10

FOV (in mm) 256 256 256
Bandwidth (in kHz) 25.6 24.5 25.0

TE (in ms) 3.3 3.5 3.7
TR (in ms) 2530 7600 9150

Inversion Time 1100 1100 600
Resolution Matrix 256 × 256 256 × 256 256 × 256

Voxel Size (in mm3) 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1
Number of Slices 176 176 176

Acquisition Time (in min) 6:03 5:13 5:15

Note. Multi-site study; MRI data acquisition on Tim Trio, Siemens Healthineers, Erlangen, Germany; GE 750, GE
Healthcare, Chicago, IL, USA; Achieva, Philips Healthcare, Best, The Netherlands. FOV, Field of view; TE, Echo
time; TR, Repetition time.

2.3.2. Image Pre-Processing

Pre-processing of the structural and dMRI images was conducted according to the
in-house pipeline of the Psychiatry Neuroimaging Laboratory, Brigham and Women’s
Hospital, Harvard Medical School (https://github.com/pnlbwh/pnlNipype, accessed
on 10 December 2021). This included axis alignment, centering, and motion correction
of all images. For the dMRI images, eddy current correction was applied. The image
quality was visually inspected and semi-automatically examined for artifacts (e.g., motion
artifacts) using 3D Slicer (version 4.5, Surgical Planning Laboratory, Brigham and Women’s
Hospital, Boston, MA, USA; http://www.slicer.org, accessed on 10 December 2021) [35].
Structural and diffusion masks covering the entire brain were constructed and manually
corrected in 3D Slicer where necessary (e.g., in case of incomplete coverage of the brain) by
a trained rater.

2.3.3. Structural Image Processing

To accurately delineate the GM/WM boundary, FreeSurfer was used (version 5.3,
Laboratory for Computational Neuroimaging, Boston, MA, USA; https://surfer.nmr.mgh.
harvard.edu, accessed 15 January 2022) [36]. Processing of the structural data included the
removal of non-brain tissue, automated Talairach transformation, grayscale intensity nor-
malization, correction for any inhomogeneities in the magnetic field, automated topology
correction, and surface deformation correction referring to intensity gradients. Subsequent
steps included surface inflation, registration to a common spherical atlas, and parcellation
of the cortex into 150 regions of interest (ROIs, 75 per hemisphere) according to the De-
strieux brain atlas [37]. This resulted in a 3D reconstruction of the GM/WM boundary,
which was visually quality checked to ensure anatomical accuracy.

To account for alterations in the GM, cortical thickness was calculated as the distance
between the GM/WM boundary (i.e., white surface) and the GM/cerebrospinal fluid (CSF)
boundary (i.e., pial surface) [38]. Measurements of cortical thickness were smoothed using
a standard Gaussian kernel to enhance contrast.

https://github.com/pnlbwh/pnlNipype
http://www.slicer.org
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
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2.3.4. Diffusion-Weighted Image Processing

Given the multi-site nature of the INTRuST project and the associated scanner vari-
ability, an established single-shell harmonization algorithm (https://github.com/pnlbwh/
dMRIharmonization, accessed 10 January 2022) was used on the b = 900 dMRI data to
account for scanner differences, while maintaining within-site inter-subject variability [39].
Using a least-squares fit model to derive diffusion tensors from the preprocessed diffusion-
weighted images, voxel-based FA maps were produced. FA is a diffusion metric that
ranges between 0 (isotropic, unrestricted diffusion) and 1 (anisotropic, restricted diffusion)
and expresses the magnitude and direction of water molecule diffusion in the tissue [40].
Additionally, free-water (FW) imaging was used to estimate and eliminate the relative
contribution of extracellular FW (e.g., due to CSF, edema, or atrophy) [41]. After accounting
for FW, corrected FA maps were extracted.

Deep WM was examined using tract-based spatial statistics (TBSS; https://github.
com/pnlbwh/TBSS, accessed 26 January 2022) [42], according to the Enhancing Neuro
Imaging Genetics by Meta-Analysis Diffusion Tensor Imaging (ENIGMA-DTI) working
group’s protocol (http://enigma.ini.usc.edu/ongoing/dti-working-group/, accessed 26
January 2022). The FA maps generated were co-registered onto the ENIGMA-DTI template
and subsequently projected onto the ENIGMA-DTI skeleton [43]. A skeletonized FA map
was produced, depicting the core of each participant’s WM fiber pathways. Last, average
FW-corrected FA values were extracted from each participant’s FA skeleton.

2.3.5. Registration and Extraction of Diffusion Metrics at the GM/WM Boundary

To estimate FA values along the GM/WM boundary, we registered the b = 0 map from
the dMRI scan to the Freesurfer subject’s space using boundary-based registration [10,44]
(FS command: bbregister, option –t2 to indicate the b = 0 contrast is similar to a T2 weighted
image). The resulting transformation was then used to co-register and map the subject’s FA
image (in original dMRI space) to the Freesurfer “white” left and right hemisphere surfaces
(FS command: mri_vol2surf) (Figure 1). We then extracted FA values for the GM/WM
boundary across the brain (whole-brain), as well as for each of the major brain lobes, frontal,
parietal, temporal, and occipital lobe according to the Destrieux brain atlas [37]. When
merging ROIs, the average FA of the merged region was computed via a weighted sum of
the mean FA of the individual ROIs to account for area differences between individual ROIs.

2.4. Statistical Analysis

SPSS software (version 25.0; IBM Statistics for Mac, Armonk, NY, USA) was used
for all statistical analyses. Age, gender, PTSD symptoms (PCL-C), depressive symptoms
(PHQ-9), and alcohol use (AUDIT-10) were included as covariates in all models to account
for potentially confounding effects on brain structure. Significance values were corrected
for multiple comparisons according to the Benjamini–Hochberg method (false discovery
rate (FDR)) [45]. p-values were adjusted for seven analyses referring to seven outcome
measures (whole-brain, frontal, parietal, temporal, and occipital lobe GM/WM boundary
FA, deep WM FA, and cortical thickness). An FDR-corrected p-value of 0.05 was set to
indicate statistical significance.

2.4.1. Group Differences in GM/WM Boundary Diffusion, Deep WM Diffusion, and
Cortical Thickness

We conducted seven analyses of covariance (ANCOVAs) to assess differences in whole-
brain, frontal, parietal, temporal, and occipital lobe GM/WM boundary FA, deep WM FA,
and cortical thickness (respective dependent variables) between groups of participants with
mTBI compared to the comparison group without mTBI (independent variable).

https://github.com/pnlbwh/dMRIharmonization
https://github.com/pnlbwh/dMRIharmonization
https://github.com/pnlbwh/TBSS
https://github.com/pnlbwh/TBSS
http://enigma.ini.usc.edu/ongoing/dti-working-group/
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Figure 1. Image Processing. Structural MRI sequences were segmented into GM and WM using
FreeSurfer 5.3.0, to identify the GM/WM boundary (in blue). Diffusion MRI (dMRI) images were
fitted with the free-water (FW) map to create a voxel-wise map of FA corrected for FW. Each partic-
ipant’s FW-corrected dMRI data were registered onto the respective FreeSurfer segmentation. All
images were overlayed with the Destrieux brain atlas to identify and extract FA values along the
GM/WM intersection in different regions of the brain. Note. GM, gray matter; WM, white matter;
FA, fractional anisotropy Tissue; Images are displayed using Freeview. The FW-corrected FA map is
shown in color scheme ‘Heat’ for better visualization.

2.4.2. Correlation between GM/WM Boundary Diffusion and Post-Concussive Symptoms,
Functional Impairment, and Cognitive Functioning

To determine whether GM/WM boundary diffusion serves as an indicator of long-
term outcome after mTBI, we assessed correlations between whole-brain, frontal, parietal,
temporal, and occipital lobe GM/WM boundary FA, deep WM FA, cortical thickness, and
chronic post-concussive symptoms (RPQ13), functional impairment (in work, social, and
family life (SDS)), and cognitive functioning (processing speed (TMT-A) and executive
functioning (TMT-B)). Nonparametric partial correlations were used due to non-normal
distributions of the outcome variables.

The data presented in this study is available upon request from the corresponding author.

3. Results

The sample characteristics and of the study sample are presented in Table 1, together
with summary statistics and analytical results. The age and racial distribution between
the groups did not differ (p > 0.05). However, there was an unequal gender distribution
between the two groups (p < 0.001). ANCOVA further revealed greater PTSD and de-
pressive symptoms in the mTBI group (p < 0.001), as well as higher alcohol consumption
(p = 0.011). Furthermore, the mTBI group displayed greater chronic post-concussive symp-
toms (p = < 0.001) and significantly greater functional impairment (p = < 0.001). The mTBI
group showed worse processing speed than the comparison group (p = 0.014), however,
there was no significant difference between the groups for executive functioning (p = 0.348).

3.1. Group Differences in GM/WM Boundary Diffusion, Deep WM Diffusion, and Cortical Thickness

The ANCOVAs revealed significant lower whole-brain (p < 0.001, pFDR = 0.001),
frontal (p < 0.001, pFDR = 0.001), parietal (p = 0.003, pFDR = 0.004), temporal (p < 0.001,
pFDR = 0.001), and occipital lobe (p = 0.010, pFDR = 0.011) GM/WM boundary FA and deep
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WM FA (p < 0.001, pFDR = 0.001) in the mTBI compared to the no mTBI group. However, no
significant differences were found for cortical thickness (p = 0.843, pFDR = 0.843) between
the mTBI group and the no mTBI group. (Table 1, Figure 2).
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Figure 2. Group differences between participants with mTBI and participants without mTBI.
ANCOVA revealed significantly lower whole-brain GM/WM boundary FA (pFDR = 0.001), and deep
WM FA (pFDR = 0.001) in mTBI subjects compared to participants without mTBI. No significant
differences were observed between groups in cortical thickness (pFDR = 0.843). The area of the brain
where the imaging measure was acquired is displayed beneath for better visualization. Note. mTBI,
Mild traumatic brain injury; FA, Fractional Anisotropy; ns = not significant; *** = p < 0.001.

3.2. Correlation between GM/WM Boundary Diffusion and Post-Concussive Symptoms,
Functional Impairment, and Cognitive Functioning

Having more post-concussive symptoms (RPQ13) was significantly negatively cor-
related with lower whole-brain (r = −0.19, p = 0.017, pFDR = 0.039), frontal (r = −0.21,
p = 0.007, pFDR = 0.024), and parietal (r = −0.21, p = 0.006, pFDR = 0.024) GM/WM bound-
ary FAT, but not with temporal (r = −0.16, p = 0.043, pFDR = 0.075) and occipital GM/WM
boundary FAT (r = 0.06, p = 0.404, pFDR = 0.404), deep WM FAT (r = −0.12, p = 0.117,
pFDR = 0.163), or cortical thickness (r = 0.10, p = 0.201, pFDR = 0.234).

The analyses further revealed significant associations between functional impairment
(SDS) and lower whole-brain (r = −0.23, p < 0.001, pFDR = 0.002), frontal (r = −0.19,
p = 0.001, pFDR = 0.002), parietal (r = −0.17, p = 0.004, pFDR = 0.006), temporal (r = −0.25,
p = < 0.001, pFDR = 0.002), and occipital (r = −0.15, p = 0.014, pFDR = 0.016) GM/WM
boundary FAT as well as deep WM FAT (r = 0.25, p < 0.001, pFDR = 0.002), but not for
cortical thickness (r = −0.05, p = 0.413, pFDR = 0.413).
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Moreover, significant associations were found between slower processing speed (TMT
A) and lower whole-brain (r = −0.16, p = 0.009, pFDR = 0.031), frontal (r = −0.17, p = 0.006,
pFDR = 0.031), and temporal (r = −0.14, p = 0.021, pFDR = 0.049) GM/WM boundary
FAT, but not for lower processing speed with parietal (r = −0.11, p = 0.072, pFDR = 0.101)
or occipital GM/WM boundary FAT (r = −0.05, p = 0.448, pFDR = 0.448), deep WM
FAT (r = −0.12, p = 0.042, pFDR = 0.073), or cortical thickness (r = −0.05, p = 0.441,
pFDR = 0.448).

Last, significant associations were found between poorer executive functioning (TMT
B) and lower parietal GM/WM boundary FAT (r = −0.17, p = 0.005, pFDR = 0.035), but not
whole-brain (r = −0.06, p = 0.304, pFDR = 0.709), frontal (r = −0.02, p = 0.716, pFDR = 0.817),
temporal (r = −0.03, p = 0.663, pFDR = 0.817), or occipital GM/WM boundary FAT
(r = −0.10, p = 0.120, pFDR = 0.420), deep WM FAT (r = −0.01, p = 0.817, pFDR = 0.817), or
cortical thickness (r = −0.04, p = 0.477, pFDR = 0.817) (Figures 3 and 4).
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Figure 3. Association between GM/WM boundary diffusion, deep white matter, cortical thickness,
and long-term outcomes (symptoms, functional impairment, processing speed, executive functioning),
displayed by a heatmap of pFDR-values. Dark red boxes indicate a stronger relationship between
imaging and outcome measures, whereas brighter boxes indicate a weak relationship between
imaging and outcome measures. Note. FA, Fractional anisotropy.
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Figure 4. Associations between GM/WM boundary diffusion, post-concussive symptoms, functional
impairments, and cognitive functioning. In all analyses, GM/WM boundary diffusion was negatively
correlated with the outcome measure, suggesting an association between lower GM/WM diffusion
and poorer long-term outcome. Note. FA, Fractional anisotropy; Post-Concussion Symptoms (RPQ13
Score); Functional Impairment (SDS Score); Processing Speed (TMT-A time in seconds); Executive
Functioning (TMT-B time in seconds).

4. Discussion

This study found that the group with a history of mTBI (mean 7.57 ± 9.54 years after
mTBI) had significantly lower whole-brain and lobe-specific GM/WM boundary FA, as
well as lower deep WM FA compared to participants without mTBI. Interestingly, more
severe post-concussive symptoms, slower processing speed, poorer executive functioning,
and poorer functioning in work, family, and social life were significantly associated with
lower GM/WM boundary FA but not with deep WM FA. There were no group differ-
ences in cortical thickness. These findings suggest that microstructural alterations at the
GM/WM boundary may be a sensitive marker of adverse effects of long-term outcomes
following mTBI.

4.1. WM and GM Alterations Following mTBI

The group of participants with mTBI showed lower WM FA, compared to participants
without mTBI. This is in line with some previous studies that report widespread lower
WM FA in individuals with a history of mTBI [15]. When acceleration and rotational forces
act on the skull, the strain is transferred to the brain’s tissue and may result in the tearing
or shearing of axons. This shearing of axons has previously been associated with lower
FA [46]. Previous research further suggest that lower FA may reflect gliosis, demyelination,
and/or inflammation months to years post-injury [47].

In the current study, we also report diffusion alterations at the GM/WM boundary
many years following mTBI, suggesting that shear strain at the GM/WM boundary may
result in long-lasting pathology. Of interest here, a study using a computer simulation of
head impact predicted that strain and strain rate are highest at the GM/WM boundary [10].
This is likely due to differences in tissue viscoelastic properties of WM compared to GM,
which may increase the likelihood of shearing of GM against WM [8]. The GM/WM
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boundary may thus be particularly vulnerable to shear strain-induced axonal injury and
subsequently also to TAI-related pathologies [10].

4.2. Association between GM/WM Boundary Diffusion and Long-Term Outcome Following mTBI

A large percentage (46.6%) of the mTBI group exhibited post-concussive symptoms
years after injury (the average time since injury was 7.57 years in this sample), which is
consistent with the literature [5]. Further, more severe post-concussive symptoms were as-
sociated with lower whole-brain and lobe-specific GM/WM boundary FA. This association
was still significant when adjusting for common confounders of brain structure (i.e., age,
gender, PTSD, depressive symptoms, and alcohol use) suggesting that WM alterations at
the GM/WM boundary may be sensitive to adverse long-term outcomes following mTBI.
Of further note, we observed lower GM/WM boundary FA values in the mTBI group,
particularly in older participants with greater psychiatry symptom burden, potentially
suggesting additive effects.

In previous studies, lower deep WM FA post-injury has been associated with neu-
roinflammation, characterized by the activation of microglia, astrocytes, and the release
of inflammatory cytokines, which exacerbates myelin loss, and impairs neurogenesis [47].
Altered microstructure at the GM/WM boundary may thus affect communication between
brain regions that belong to functional connectivity networks [48], which have been associ-
ated with post-concussive symptoms [49]. Moreover, we hypothesize that degeneration or
demyelination of axons at the GM/WM boundary may be associated with disruptions in
communication between cortical and subcortical structures. Indeed, mTBI has been linked
to altered functional connectivity within large-scale brain networks, such as the default
mode network. Particularly intriguing, altered functional network activity has previously
been observed in individuals who exhibit post-concussive symptoms [50].

In addition to an association between post-concussive symptoms and lower GM/WM
boundary FA, we report an association between poorer functioning in work, family, and
social life, and lower whole-brain, frontal, parietal, temporal, and occipital GM/WM
boundary FA and deep WM FA. Long-term functional impairment is common after mTBI,
and our results are consistent with findings that associate functional impairment with
mTBI-related WM alterations [51]. Importantly, results from this study extend the current
literature by suggesting that FA at the GM/WM boundary is a sensitive marker of functional
impairment following mTBI.

Finally, lower whole-brain, frontal, and temporal GM/WM boundary FA were sig-
nificantly correlated with slower processing speed, while lower parietal lobe GM/WM
boundary FA was associated with poorer executive functioning. In this regard, mTBI has
consistently been linked to reduced processing speed and impaired executive function-
ing [52]. In addition, effective communication across several brain areas is a prerequisite
for both processing speed and executive functioning tasks [53]. The prefrontal cortex is
particularly important for executive functioning, and damage to this area may result in
impaired cognitive functioning that includes mental flexibility, task switching, attention,
and decision making [54]. Indeed, the central executive network, a large-scale brain net-
work that encompasses the dorsolateral prefrontal cortex and posterior parietal cortex [55],
is commonly disrupted in chronic mTBI patients [50]. We speculate that by aggravating
disrupted signal transmission across these cortical regions, mTBI-related injury at the
GM/WM boundary may contribute to poor cognitive outcomes [56].

These findings, taken together, suggest that microstructural alterations at the GM/WM
boundary may be sensitive markers of adverse long-term outcomes including processing
speed, executive functioning, and functioning in work, family, and social life, follow-
ing mTBI.

4.3. Limitations and Future Directions

We acknowledge several limitations in the current study. First, we analyzed cross-
sectional data, precluding the inference of conclusions based on causal relationships be-
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tween the study variables. Longitudinal studies are thus needed to evaluate changes in
diffusion properties at the GM/WM boundary over time. Ideally, a large sample should be
followed over time (i.e., pre-injury, within 24 h of injury, acutely, sub-acutely, and in the
chronic stages post-injury). Further, for a comparison group, individuals with orthopedic
injuries may be considered in addition to a group of uninjured individuals to mitigate
bias. In addition, various imaging modalities should be correlated with neuropsychological
outcomes that can be contrasted against each other to identify biomarkers of mTBI sensitive
to adverse long-term outcomes. Second, the mTBI assessment was based on self-report,
without available medical records or other information on injury mechanism, previous
mTBI, and premorbid estimates of symptoms for validation. Third, gender, not biological
sex, was assessed via the study’s demographic questionnaire. Unfortunately, we lack data
on how many participants identified as a gender other than their biological sex. Fourth,
while participants were recruited as part of the Department of Defense INTRuST Clinical
Consortium, information about military status was not available, meaning we were unable
to identify a participant as a civilian or a deployed combat veteran. This is important
to know since causes of military mTBI have been shown to differ from causes of civilian
mTBI, given that military blast-related injuries affect brain structure and function more
profoundly than blunt injuries [57]. The mechanism of injury may also likely be relevant to
the GM/WM boundaries that are subjected to the most strain [10].

Last, we investigated whole-brain GM, WM, and whole-brain and lobe-specific
GM/WM boundary alterations, rather than focusing on individual cortical areas or specific
WM tracts. Given the lack of research on mTBI-related alterations at the GM/WM bound-
ary, we chose this approach to provide an initial broad overview of GM/WM boundary
alterations and associated clinical burden. Moreover, delineating the GM/WM boundary
and transferring low-resolution and echo planar imaging (EPI) distorted diffusion data onto
the anatomical space is particularly challenging in small regions of interest compared to the
entire brain. Future studies will likely benefit from employing a combination of structural
and functional imaging to identify network hubs and more specific brain regions and
their connections, which may be vulnerable to GM/WM boundary injury and associated
post-concussive burdens.

5. Conclusions

We report microstructure alterations at the GM/WM boundary in a group of individu-
als with a history of mTBI compared to a comparison group. Moreover, in the mTBI group,
lower GM/WM boundary FA is associated with post-concussive symptom severity and
poor clinical and cognitive functioning. We conclude that microstructural alterations at the
GM/WM boundary may serve as a sensitive marker of mTBI-related adverse long-term
outcomes following mTBI.
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