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The developmental long trace profiler (DLTP)  
optimized for metrology of side-facing optics at the ALS  
Ian Lacey*, Nikolay A. Artemiev, Edward E. Domning, Wayne R. McKinney,                        

Gregory Y. Morrison, Simon A. Morton, Brian V. Smith, and Valeriy, V, Yashchuk 

Lawrence Berkeley, National Laboratory, Berkeley, CA USA 94720 

ABSTRACT  

The autocollimator and moveable pentaprism based DLTP [NIM A 616 (2010) 212-223], a low-budget, NOM-like 
profiler at the Advanced Light Source (ALS), has been upgraded to provide fast, highly accurate surface slope metrology 
for long, side-facing, x-ray optics. This instrument arrangement decreases sensitivity to environmental conditions and 
removes the gravity effect on mirror shape. We provide design details of an affordable base tool, including clean-room 
environmental arrangements in the new ALS X-ray Optics Laboratory with advanced temperature stabilization and 
turbulence reduction, that yield measurements in under 8 hours with accuracy better than 30 nanoradians (rms) for super 
polished,190 mm flat optics, limited mainly by residual temporal instability of the experimental set-up. The upgraded 
DLTP has been calibrated for highly curved x-ray optics, allowing same day measurements of a 15 m ROC sphere with 
accuracy of better than 100 nanoradians (rms). The developed calibration procedure is discussed in detail. We propose 
this specific 15 m ROC sphere for use as a round-robin calibration test optic. 

Keywords: Surface Metrology, long trace profiler, surface slope measurement, x-ray optics, large measurement range, 
accuracy, stability, nanoradian repeatability, synchrotron radiation. 

1. INTRODUCTION  
Development of X-ray optics for 3rd and 4th generation X-ray light sources and x-ray free electron lasers (XFELs) with 
a level of surface slope precision better than 150 nrad requires the development of adequate fabrication technologies and 
associated dedicated metrology instrumentation and methods.1,2  

The best performing slope measuring profilers, such as the Nanometer Optical Component Measuring Machine (NOM) 
at Helmholtz Zentrum Berlin (HZB)/BESSY-II (Germany),3-6 the Developmental Long Trace Profiler (DLTP) at the 
Advanced Light Source (ALS),10 and the Extended Shear Angle Difference (ESAD) instrument at the PTB (Germany), 7-

9 come close to the required precision. These instruments utilize a schematic with a movable pentaprism10-14 and an 
electronic autocollimator (AC) as a non-contact slope sensor.3,15 The high performance of the instruments is based on the 
precision calibration of the ACs for the specific application with aperture diameters in the range of 2.5 - 5 mm.16-18 

The ALS DLTP was brought into operation in 2009 for surface slope metrology of face-up optics.10 Similar to the NOM 
and ESAD, the DLTP is based on a movable pentaprism and a precision calibrated autocollimator. In contrast to the 
NOM, this is a low budget instrument originally used at the ALS for the development and testing of new measurement 
strategies. Some of the methods developed with the DLTP18-23 have been implemented into the ALS LTP-II slope 
measuring long trace profiler,24,25 and are in use with the DLTP for routine metrology with x-ray optics. 

Besides the application as a test facility, the DLTP is supplementary to the existing LTP-II. There are a number of 
arguments for having two principally different instruments that perform the same function. First, the systematic errors of 
an autocollimator-based instrument are significantly different24 than that of the LTP. In the LTP, the optical reference 
arm was added26 to monitor the carriage wiggling and laser pointing instability. Unfortunately, the current performance 
of the reference arm is one of the most important factors limiting the accuracy of LTP measurements.27  

The use of a movable, mirror-based pentaprism in the DLTP28-30 makes the slope measurement insensitive, in first 
approximation, to carriage wobble. Second, the use of an autocollimator, precisely calibrated with a high performance 
stationary calibration system, as the one at the PTB,16,17 allows transfer of calibration accuracy to the DLTP 
measurement. Third, the closed and self-sufficient design and high stability of the DLTP autocollimator31 provides an 
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The one hour stability of the X channel of the autocollimator (corresponding to the slope measurement in the tangential 
direction), with 84 nrad rms variation, is almost twice better than the Y channel of the autocollimator (corresponding to 
the slope measurement in the sagittal direction) showing a 150 nrad rms variation over the same period. Note that for a 
standard run of 8 scans performed according to the measurement strategy, optimized for effective suppression of the 
instrumental drift error up to the third polynomial,22 the contribution of the instability to the measurement result 
corresponds to an instability of about 30 nrad and 35 nrad rms, respectively for the X and Y channels. The difference is 
significantly smaller because of suppression of the larger drift error for the Y-channel. 

The stability demonstrated in Fig. 4 corresponds to the repeatability of the upgraded DLTP observed in the 
measurements with a plane optic, Fig 5. In the course of this test, the DLTP was operated in the normal measurement 
mode, scanning along the 170 mm clear aperture of a 180 mm long, plane reference mirror.  

 
Figure 5: Repeatability of DLTP measurements after optimizing the XROL environmental conditions, including the DLTP 
compressed air supply. The top two curves are the pair of repeated measurements, and the bottom curve, is the half the 
difference between the pair with rms variation of 26 nrad, offset added for clarity. 

A measure of repeatability is the half difference between repeated pairs of measurements. In this case it was found to be 
26 nrad rms. This repeatability test was, itself repeated, with the same 26 nrad result. 

3. THE PERFORMANCE OF THE UPGRADED DLTP WITH CURVED OPTICS 
The DLTP performance with significantly curved x-ray optics was verified by measuring a 15 m ROC spherical test 
mirror, the same one that was used in Ref.10 after initial assembly of the DLTP, then for face-up optics.  The strong 
mirror curvature tests the profiler over the entire dynamic range of the AC, which is ±4.6 mrad. The previous 
measurements allowed the determination of systematic error of the DLTP measurements with the curve optic to be on 
the level of nearly 400 nrad. The problem is that the calibration of the AC performed at the PTB35,36 using the high 
precision angular comparator, is valid only for a fixed distance37,38 between the AC and the SUT. Therefore, a special 
sequence of measurements, with a goal to calibrate the DLTP for the current experimental arrangement, side-facing, that 
we routinely use for measurements with x-ray optics. Below we discuss the developed calibration procedure and the 
results of application of the procedure in order to obtain truthful surface slope topography of the 15 m spherical 
reference. 

3.1 Measurement sequence 

A series of measurements was performed using a high quality 15 m ROC reference mirror substrate in both the direct 
and flipped orientation22 where the substrate was rotated with respect to the zero autocollimator reading at the center of 
the clear aperture. From these measurements, a calibration file of the instrumental systematic errors was created. This 
calibration curve can be subtracted from present and prior measurements to give a more accurate slope profile of curved 
optics under test. 

In order to allow surface slope measurements to have vastly different angular ranges compared to the common tangential 
coordinate range, measurements of the substrate were divided into seven regional traces. For measurements associated 
with each regional trace, the substrate was tilted so that at the tangential central coordinate of the specific regional trace, 
the measured angle was nearly zero, schematically shown in Fig 6. A further detail is that each regional trace consists of 
a pair of measurements, with approximately a 140 µrad tilt between each member of the pair; to compensate for a high 
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Figure 8: Showing the combined average residuals as a function of fit for each orientation of the substrate, direct and 
flipped, upper two curves respectively, and the average of the two, thick lower curve, with the average difference between 
the residuals as a function of fit for each orientation of the substrate, bottom curve. 

At this point it is worth noting that the residual as a function of fit for each orientation of the substrate are similar, even 
though the substrate is in a completely different orientation. 

3.3 Creating a first-round calibration file: analysis description 

The average of the residuals as a function of fit, over both orientations of the substrate, exhibits a high angular frequency 
fluctuation that is inspected in Fig. 9. The even order trend of the average difference between the residuals as a function 
of fit will be considered in section 5.4. The combined average was Gaussian filtered, with a radius of 12 points, to 
remove high angular frequency fluctuations which are most likely be artifacts of the mirror surface, and thus not 
applicable for a general calibration. 

 
Figure 9: (a) The average residual as a function of fit, over both orientations of the substrate from raw data, upper curve, and 
with a Gaussian filter of 12 point radius, lower curve. (b) The associated PSDs 

This filtered average residual slope as a function of best linear fit, with rms variation over the 8.5 mrad range of 0.457 
µrad, may then be used as a first order calibration curve describing instrumental error that may be removed from 
measurements of curved optics. A refinement of this determined calibration will be examined in the next section. 

3.4 Second round of calibration 

In this section, the first-round calibration file, determined above, will be applied to each of the 32 prior measurements; 
each measurement within the eight regional trace pairs for each orientation of the substrate, direct and flipped, Fig. 10.  

These calibrated measurements, Fig 10, will then be stitched together to give a determination of the mirror surface. To 
understand the error introduced by rotating and resampling slope data, for the purpose of stitching, we consider the 
rotation of a slope dataset that is itself a function of linear position 
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Figure 10: Eight pairs of calibrated regional trace measurements for the direct, (a), and flipped, (b), orientation of the 
substrate. Only seven traces are clearly visible as the central regional trace is repeated for each orientation. The negative 
slope progression does not mean that the SUT is convex, only that for the given arrangement of the pentaprism and 
autocollimator, the recorded angles have a negative trend. For ultimate measurement results, this is compensated for as a last 
step after all calibration is performed.  

For the present purpose, the maximum rotation required for stitching, required for regional traces IV and VIII is less than 
3.3 mrad, which for the spherical surface of the reference substrate will yield an introduced error as a function of 
position described with Fig. 11. The maximum error is introduced, 45 nrad at tangential position 20 mm, is a coordinate 
range common to all eight regional traces to be averaged. For tangential coordinates where the fewest, five, angularly 
overlapping measurements occur, the error is -25 nrad.  

 
Figure 11: Plot of the error introduced by resampling rotated slope data for the purpose of stitching, for the case of the 
maximum rotation required, regional trace VIII. 

As this resampling upon rotation error is 5 orders of magnitude less than the measurement range of ±4.5 mrad, and that 
this will be reduced upon averaging the common angular ranges, we are satisfied that we may reasonably trust the results 
of said stitching procedure.  

This surface slope trace, determined from stitching the 16 pairs (eight direct and eight flipped) of calibrated 
measurements will then be subtracted from each calibrated measurement. The remaining residuals as a function of fit are 
again combined, as in section 5.2, in order to better compensate for the instrumental systematic error, Fig 12. 
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Figure 12: Top: Using the first round of calibration determined in Sec.5.3, the residual slope as a function of best linear fit of 
calibrated measurements, with the surface, determined from stitching, subtracted, for the direct (a) and flipped (c) 
orientations of the substrate (offset added for clarity). Bottom: The average over common domains with a zero order 
polynomial detrended for the direct, (b) and flipped (d) orientations. 

Combining the above average residuals as a function of best linear fit of measurements with the surface subtracted, gives 
the second round of calibration that now accounts for the even order polynomial trend that was remaining after the first 
round of calibration, Fig 13. 

 
Figure 13: Average of the residuals as a function of linear fit of measurements with the stitched surface subtracted; raw data 
upper curve, Gaussian filtered with a 12 point radius, lower curve, (a). The associated PSDs, (b). This lower curve, filtered 
to remove surface artifacts, may be considered as the second round of calibration.     

As a consideration to the efficacy of performing further calibration, we compare the results after the first two rounds, 
Fig. 14. 

With a determination of the instrumental error added to measurements in hand, we may then subtract this calibration 
curve from measurements to obtain reasonable results of the surface shape of highly curved x-ray optics. 

3.5 Considering the translational and time dependent stability of the DLTP 

As a test of the translational stability of measurements, to check that the above determined calibration is valid, we 
performed a test where the substrate was translated upstream by 25 mm, and then downstream by 25 mm, with the 
results. 

This net translational difference of 50 mm corresponds to approximately half, the anticorrelation, distance between the 
peaks of the residual slope trace found at roughly -40 mm and +60 mm from the substrate center. As there is no 
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discernable trend to the difference, we consider dividing this difference between the two measurements by the square 
root of two, to account for random noise, yielding translational stability on the order of 97 nrad rms. 

For comparison, the time stability of measurements was also inspected, using the angularly centered regional trace pairs 
I and V, showing repeatability, with substrate repositioning, to be on the order of 84 nrad rms. 

 
Figure 14. The results of two rounds of calibration data processing, bottom curve, as the additive sum of the first round, 
upper curve, and the second round, middle curve, of calibration data processing. We determine this sum to be a good 
representation of instrumental error added to measurements. 

For a consideration of the actual translational variation, we may subtract in quadrature the translational stability from the 
time dependent instability and find the result to be 49 nrad rms. As this is an order of magnitude less than the calibration 
variance, we trust the calibration curve, over at least the central range of the DLTP translational carriage.  

3.6 Utility of calibration information 

With the calibration information in hand, highly accurate measurement results may be obtained with a fraction of the 
time otherwise required to reduce the impact of systematic error.7 With the results of applying the calibration to a limited 
number of measurements, that may be carried out in a single day, produces nearly the same useful result as a carefully 
stitched, exhaustive series of measurements that may take, at best, 3 weeks to perform. 

4. CONCLUSIONS 
With an instrument optical table thermally stabilized to better than 2 mK rms, and the optimized air pressure, supplied to 
the DLTP translational carriage air bearings, we have demonstrated long term stability of the DLTP to be about 80 nrad 
rms for the main AC X-channel. This stability translates to 30 nrad rms stability of a typical scan run, consisting of 8 
scans.  

The repeatability test was carried out with a 180 mm super polished plane SUT. Comparison of two pairs of sequential 
measurement runs, each consisting of 16 scans, has confirmed the repeatability to be on the order of 26 nrad rms.  

We have described a series of measurements and a system of data processing that was used to precisely calibrate the 
DLTP for measurements with significantly curved, 15 m spherical, reference mirror. The calibration has allowed us to 
measure 4 spherical substrates with radius of curvature about 19 and 29 meters with accuracy better than 80 nrad rms 
with speed improved by a factor of about 16.   

In the course of the calibration experiments, we have characterized the surface residual slope variation of the reference 
mirror with accuracy better than 100 nrad rms. This mirror is now available for use as a calibrated standard helpful for 
fast and accurate calibrations of other profilometers.  

In summary, we have demonstrated the capability of the DLTP, in the advanced environmental conditions in the new 
XROL, to provide fast, highly accurate surface slope metrology with error less than 40 nrad rms for flat, and less than 
100 nrad for highly curved x-ray optics. This is a factor of three improvement compared to the DLTP performance prior 
to upgrade. 
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