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Abstract 

Application Of Memristive Device Arrays For Pattern Recognition 

by  

Yinghao Shao 

Artificial intelligence (AI) technology like deep learning is powering our daily life in 

many areas such as pattern recognition. The artificial neural network (ANN) is one of 

the deep learning models to achieve pattern recognition. A well-trained ANN can 

recognize images with precision over 98%. Although traditional two terminals 

memristors like phase changing memory (PCM) are already used to build ANNs. But 

those devices typically suffer from nonlinear, asymmetric conductance tuning 

problems. The novel memristive device Ionic Floating Gate memory (IFG) could 

potentially solve those problems. In this paper, a compact Cadence model of fully 

connected ANN using IFG is presented. The devices are tuned to an optimized state 

and formed a well-trained network. The recognition accuracy reaches 93.8%. This 

work demonstrates the IFG device also has the potential to be further utilized into 

other deep neural networks as synaptic memory.  
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1. Introduction 

Machine learning technology is powering our daily life in many areas, from social 

communication recommendations to a better filter for the search engine, even to 

better deliver commercial advertisements customized to the users' habits and interests. 

Nowadays, machine learning is also applied for image pattern recognition, speech 

recognition, and language translations [1]. Deep learning is the technique to tackle 

those problems. And among several deep learning techniques, the artificial neural 

network (ANN) has been used to achieve the best efficiency and accuracy. Although 

ANNs using two terminals memristor like the phase changing memory (PCM) and the 

filament-forming metal oxides (FFMO) are already demonstrated. Those devices 

typically suffer from nonlinear, asymmetric conductance tuning problems. Their 

scalability is also very low. The novel memristive device Ionic Floating Gate memory 

(IFG) could potentially solve those problems. 

In this work, we use the Cadence VerilogA model of the memristive device Ionic 

floating gate (IFG) memory [2] which combined a redox transistor [3] and a volatile 

conductive bridge memory to make a non-volatile synaptic memory. We design a 

compact Cadence ANN model for numeric pattern recognition.  

1.1 Motivation 

Artificial intelligence and deep learning have improved our lives in so many areas, 

from science to business. Among those models, the artificial neural network (ANN) is 

the most important one. The idea of ANN is inspired by our human brains. It has 
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shown great potential in image processing and pattern classification. The image 

recognition using ANN commonly has a very high accuracy of over 90% [4]. Its 

strength in extracting image features could also be used in enhancing or classifying 

blurry pictures [5]. The new device IFG has linear and symmetrical conductance 

tuning properties that could be implemented to ANN. We built our compact Cadence 

ANN model with IFG devices. We applied pattern recognition tasks to our ANN and 

successfully recognized the numbers in MNIST data sets. 

1.2 Working environment 

This thesis work was done under the supervision of Professor Sung-Mo Kang in 

collaboration with Donguk Choi and Xiaoyang Jia. 

All the simulation is run on Windows PC, we used Xming and Putty to connect the 

UCSC Linux server, and we used the University licensed version of Cadence 

simulation tools.  

1.3 Outline of the thesis 

This thesis work started with an introduction to the research project described in 

chapter 1. Chapter 2 gives an introduction to AI and machine learning. Chapter 3 

introduces the ANN architecture and the back-propagation training method. We 

describe how we can apply the back-propagation method to ANN and get optimized 

weights. A brief introduction to the MNIST training data is included. Chapter 4 

shows the introduction of the memristor. We described the IFG memory structure and 

its working principles. The ANN structure of our design is also introduced. Chapter 5 
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shows our IFG Cadence model and ANN recognition results. Chapter 6 provides a 

brief conclusion of our work. References are provided in the end. All the Cadence 

IFG VerilogA model and simulation Python code could be found in the Appendix.    
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2. Machine learning  

2.1 What is machine learning 

In 1959, Arthur Samuel gave us a general definition of machine learning: 

“Machine learning is the field of study that gives the computer the ability to learn 

without being explicitly programmed”. 

Tom Mitchell gave an engineering explanation in 1997.  

"A computer program is said to learn from experience E concerning some task T and 

some performance measure P, if its performance on T, as measured by P, improves 

with experience E" 

The email spam filter is a commonly used machine learning program. It is a well-

organized program that can use examples to identify spam emails. The examples 

include both spam emails (Flagged by the users) and regular emails (Emails that are 

not flagged as spam) from your email box. The set of examples the computer used to 

learn is called "training set", each small and simple example inside are called 

"training instance". In the case of spam emails flagging, according to Tom Mitchell’s 

definition, Task T is flagging spam emails. The experience E is the training set (all 

the emails you received, both spam and regular emails). The performance measure P 

is yours to define, like how accurate the program is while doing the spam email 

identification. 
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Simply storing the regular emails, and flagged spam emails separately doesn’t make 

the computer smarter. It only means the computer stores two sets of data. One set is 

the regular emails, the other set is the spam emails. However, the learning program 

will automatically identify the emails. 

When exam the spam emails, we may realize that some specific words are frequently 

used, such as "credentials satisfied, pre-approved, qualified, etc.” Those words always 

show up in credit card advertisements. For a traditional filter program, we can extract 

those phrases and write a program that can identify those phrases automatically.  

However, if the advertisement company knew its specific advertisement phrase was 

blocked, it will modify its advertisement emails by changing those words to other 

similar words. This can lead to the revision of the filter program endlessly.  

 

Figure 1. How modern emails get filtered. 
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To solve those problems, machine learning techniques automatically self-learn the 

new words that have a high probability to be spam emails. No matter how new 

phrases appear in spam emails, the program should detect them automatically by 

monitoring unusually frequent new words that show up among all the emails. And no 

human effort should be required for maintenance.  

2.2 Machine learning types and strength 

Nowadays, machine learning is a major part of the artificial intelligence technique, 

contains many methods. Both supervised learning and unsupervised learning. This 

work is focused on a supervised learning model for pattern recognition with an 

artificial neural network (ANN).  

 

Figure 2. Types of artificial intelligence models, The ANN is the core part of deep learning. Deep 

learning is the most important member of the “Machine learning” and “Supervised learning” group. [5] 

Briefly speaking, the machine learning is good at solving complex problems that are 

too difficult for traditional programs, data variable environment (Data changes over 
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time like the spam emails), extremely large scale database problems (image 

recognition, sound recognition), and optimization of the solutions that already exist 

[7].  

2.3 Deep learning and artificial neural network (ANN)  

ANN (Artificial neural network) is one of the machine learning models inspired by 

the human brain cortex. The neural network was first introduced back in 1943 by 

McCulloch and Walter Pitts [8]. Their paper showed a very simple computational 

logic model of how biological neurons works together. That was a primitive neural 

network model. Since then, the ANN experienced a 50 years’ cold winter for several 

reasons: lack of fundings, computational power, good AI models, etc.  

But the Internet explosion has brought us a huge amount of data, which can be used 

for training the network. The development of CPU and GPU has provided us with 

sufficient computational power. The algorithm for training has been improved 

dramatically over the past few decades, and enormous funding is going to AI now. 

In 2006, a well-trained neural network that capable of recognizing numerical numbers 

with state of art precision (over 98%) was demonstrated by Geoffrey Hinton et al [4]. 

They called it "Deep learning". The deep neural network is also inspired by our brain 

cortex. It has several layers of artificial neurons. ANN uses neurons to represent the 

simple unit from the biological neural network. It uses hidden layers to mimic the 

whole interconnection layers between inputs and outputs. 
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Figure 3. Artificial neural network compared with the biological neural network. They both can work 

for pattern recognition [5]. 

ANN has tremendous potential for extracting features from a large amount of raw 

data.  Therefore, it has the potential to help solve the massive data capacity problems 

that cannot be handled by human or traditional computational algorithms. For 

example, discovering patterns from “all” human beings’ written data sets, simulate 

“every” potential drug molecule [8], predict the mutations of “every” DNA sequence 

and their affection on human diseases [9][10].  

In this work, we focus on the number pattern recognition using ANN deep learning 

algorithms. 
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3 Pattern recognition using ANN 

The pattern recognition we discuss in this work is based on a supervised deep 

learning method. It uses the artificial neural network (ANN) to automatically extract 

the features of the input images.  

3.1 MNIST as training and testing data sets 

To train the ANN to do pattern recognition, first, we collect a large number of 

patterns. We used the MNIST (Modified National Institute of Standard and 

Technology database) database [11] to train our Neural Network. It has 70,000 

images of data, which contains 60,000 training images and 10,000 testing images. 

Every picture inside the database has been labeled with their correct digits 

accordingly. The MNIST database is a commonly used database for nearly every 

pattern classification algorithm. 

 

Figure 4. MNIST database samples [11].  
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Among the 70,000 images data, each one of them is 28 pixels wide and 28 pixels 

long. Therefore, every picture has 784 pixels. Every pixel's intensity is a greyscale 

number from 0 (white) to 255 (black). The following Fig 5 is a demonstration for the 

digit "7". 

 

Figure 5. MNIST number “7”. 

We successfully trained our ANN using this data. To reduce the ANN size for easy 

implementation, we also cropped the 70000 pictures from 28×28 pixels to 7×7 pixels. 

We averaged every 4×4 pixels and cropped the pictures. 

 

Figure 6. Averaging every 16 pixels to one and cropping the MNIST picture. The pixel numbers are 

randomly filled for better demonstration. 
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3.2 A fully connected ANN for pattern recognition  

A typical ANN contains three kinds of layers: one input layer, multiple hidden layers, 

and one output layers. Between the two adjacent layers, every neuron from the first 

layer is connected through its original synapse (weight) to all the neurons in the next 

layer, which is also described as fully connected. The strength of the weights 

indicates how important the connection is between the post-neuron and the pre-

neuron [12].  

While using ANN for pattern recognition, the input image data would be transferred 

to a vector also serve as the input neurons. Every input neuron holds a grayscale 

number from the MNIST pictures. Then the signals will propagate through a layer of 

weights Wij. Every input layer neuron Ii is connected through its corresponding 

weight Wij to next layer neuron Xj. 

 Xj = 𝑓(∑ Ii

𝑛

𝑖=1

Wij) (1) 

In the receiving end, the weighted sum is run through a nonlinear function f () then 

fed to next layer neuron Xj. And the nonlinear function we used is the SIGMOID 

function. 

 𝑓(𝑥) =
1

1 + e−x
 (2) 
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Figure 7. A fully connected ANN for pattern recognition in which every input layer neuron Ii is 

connected through their corresponding weight Wij to Xj. The summation is run through a nonlinear 

function f (), then fed to next layer neuron Xj [12].  

The input neurons receive the grayscale values from the input pictures and through 

the complete fully connected neuron network, which was then processed and 

transferred to the 10 outputs neurons. Each one of the output neurons was flagged 

with "0 to 9". If the value of output neuron flagged with "8" is the largest after 

processed through the whole neural network, it indicates that the input image is most 

likely a handwritten number "8". 

The successful recognition process can be achieved through training. And a right 

algorithm is needed to train the weights correctly. 
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3.3 Neural network training algorithm 

The algorithms we used to get the neural network weights are the backpropagation 

and the gradient descent [1][12][13].  

First, we feed the ANN with a labeled picture example. We already know the output 

neurons vector values will not be the correct (The corresponding neuron has the 

highest output value indicating the input picture has the highest probability to be that 

neuron) before training. Next, we calculate the difference between our computational 

output results and the correct (error term 𝛿𝑗). Then the difference is feedbacked to our 

ANN and backpropagated through the network. The weights are adjusted through a 

procedure called stochastic gradient descent. 

 𝜟𝑊𝑖𝑗 = 𝐼𝑖 ∗ 𝜂 ∗ 𝛿𝑗 (3) 

Training of the network means optimization of each weight into an organized stage: 

Whenever a new picture input comes in, the neural network will spike the 

corresponding output neuron to the highest number, indicates the picture is the 

corresponding number. 

We applied those weight values to our Cadence model of ANN and got the simulation 

results. 
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Figure 8. The backpropagation of the error term 𝛿𝑗, each weight of the network is adjusted by the 

gradient descent method. The error can be reduced through training [12].  
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4 ANN using memristor device IFG (Ionic floating gate memory)  

4.1 Memristor, the missing component 

Memristor is a passive two terminals fundamental electrical component first named 

by Professor Leon Chua at UC Berkeley in 1971 [14]. It was declared as the fourth 

fundamental circuit element besides resistor, capacitor, and inductor. 

We already know those 3 fundamental electrical components: describe the relations 

between four circuit variables: Current i, Voltage v, Charge q, and Flux φ.  

 

Figure 9. (a). The resistor defines the connection between Voltage and Current, the capacitor defines 

the connection between Voltage and Charge, the inductor defines the connection between Current and 

Flux. (b). the symbol of a memristor. 

Professor Leon Chua defined the missing component as memristance and it can be 

measured as memristance M.  
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 𝑀(𝑞) =
𝑑𝜑

𝑑𝑞
 (4) 

The equation could be change to  

 𝑀(𝑞(𝑡)) =
𝑑𝜑

𝑑𝑡
∙

𝑑𝑡

𝑑𝑞
=

𝑉(𝑡)

𝐼(𝑡)
 (5) 

From this equation, we can find the memristance also has unit ohm like the resistor. 

Memristor can function as a non-volatile memory that could be tuned to multiple 

states. It could also be operated at very low voltage. These properties could be 

implemented into the neural network as the synapse [15].  

4.2 IFG as a memristor 

The IFG device is a three terminals memristive device fabricated by researchers at 

Sandia National Laboratory [2]. They combined a redox transistor [3] and a volatile 

conductive bridge memory (CBM) [16]to make a non-volatile addressable synaptic 

memory (IFG memory).  

The redox transistor has three layers. The first layer is the poly (3,4-ethylene-

dioxythiophene): polystyrene sulfonate (PEDOT: PSS) film, the second layer is a 

layer of Nafion, the third layer is a layer of PEDOT: PSS film partially reduced with 

poly(ethylenimine) (PEI). The electrolyte of the redox is ion conductive but electron 

blocking. During the “write” process, a positive Vwrite is applied to the Gate. Cations 

H+ flows from the PEI/PEDOT: PSS to the electrolyte, resulting in the polarization of 

the PEI. The ion concentration changing between Drain and Source represents 

thousands of conductance levels (thousands of weights).  
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Figure 10. A polymer-based redox transistor [3].  

This structure combined with a control bridge memory (CBM) [16] forms the Ionic 

Floating Gate memory (IFG). The CBM is a layer of silicon oxide doped with Ag and 

sandwiched by two Pt electrodes. 

 

Figure 11. IFG memory structure with ‘read’ and ‘write’ process [2].  
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For the "Write” process, the voltage Vw is greater than the CBM threshold voltage 

Vth. It will result in the formation of the Ag filament. The electrons will insert to the 

top PEDOT: PSS gate. The channel will be polarized and therefore increase the 

conductance between source S and drain D nodes. 

For the “OFF” state, the voltage Vw is way smaller than the Vth. It will result in the 

splitting of the Ag filament and a high resistance “OFF” state. The “OFF” state of the 

CBM stops the electron from inserting to the redox transistor and achieves non-

volatile memory. 

For the “read” process, a voltage VR is applied to the source and drain node. 

Through those states, we can easily manipulate the conductance (weight) of the IFG. 

Its conductivity is controlled by the charge state. Therefore, it is a memristor device. 

When built into a fully connected artificial neural network (ANN), the IFG device has 

the potential to do high-efficiency deep learning. In this work, we applied it for 

pattern recognition. 

4.3 Features of IFG Device 

Although there are two terminals memristor using phase changing memory (PCM) 

and filament-forming metal oxides (FFMO). Those devices typically suffer from 

several drawbacks. To be implemented as the synaptic unit in learning, they should 

have the ability to be tuned linearly and symmetrically. However, those devices must 

be driven out of thermal equilibrium. They typically need to overcome a very large 

energy barriers to tune the conductance states. Instead of linear and symmetric 
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changing of the conductance, they typically have an exponential and asymmetric 

conductance changing behavior [2]. 

On the other hand, two terminals memristors suffer from the current issue. The 

traditional two terminals memristors’ “read & write” voltages are greater than 

microampere. As the currents are summed up through the entire array. The total 

current easily exceed the wire capacity. Large current also causes power dissipation 

problems which degrades the behavior of the circuit and reduces the learning 

efficiency. Due to those properties, PCM and FFMO memristors also have scalability 

problems [2]. 

However, the IFG device has several appealing features that could tackle those 

problems. 

(1). Near-Linear conductance tuning:  

The IFG memory combines a redox transistor [3] and a volatile conductive bridge 

memory (CBM) [16]. The conductance between Drain and Source are controlled by 

H+ ion concentration. The H+ acts like a dopant of the channel. Through its gradual 

modulation, thousands of near-linear levels (thousands of weights) are achieved. 

(2). Low “read & write” voltages and good scalability   

The “read & write” process only requires few millivolts voltages and the read 

currents are smaller than 10 nano amperes. When we implement the device into a 

large array, smaller summation current could help to reduce the wire size and the 
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power dissipation. These properties could solve the traditional two terminals devices’ 

current issues and scalability problems.  

(3). Addressable and parallel programmable 

The CBM also makes the IFG device addressable and parallel programmable.  

(4). Good stability  

The IFG could potentially endure over 1 billion read-write operation and over 1 

megahertz frequency.  

4.4 IFG memory as ANN synapses  

For pattern recognition, we built a three-layer artificial neural network: one input 

layer, one hidden layer, one output layer. The weights of our ANN are already trained 

and holds optimized values. Therefore, all the weights hold their fixed conductance 

values which are stored as the IFGs source-drain memristance G. All the IFGs are 

already written with the corresponding memristance and stay at the “read” mode. Our 

optimized weights were generated from the software by my colleague Xiaoyang Jia 

[23]. 
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Figure 12. Every weight of our ANN is one IFG memory in the “read” state. A resistor Rlimit is needed 

to read out the voltage Vout in the Cadence simulator. 

Here we demonstrate the circuit implementation of the IFG synapse connection 

between the input layer and the hidden layer. Input neurons are driven by the MNIST 

database images. Each input layer neuron is assigned a normalized greyscale number 

from the MNIST database. We add voltage unit “volt” to the value and apply it to the 

circuit as the voltage source VR. If the normalized input neuron value is “0.6”, we 

will apply 0.6V voltage as the voltage input VR in our circuit. The IFG memories’ 

source and drain memristance G1 represent the weights.  

 𝑉𝑜𝑢𝑡 =
𝑉𝑅1 ∙ 𝐺1 ∙ 𝑅𝑙𝑖𝑚𝑡

1 + 𝑅𝑙𝑖𝑚𝑡 ∙ 𝐺1
 (6) 

When we set 𝑅𝑙𝑖𝑚𝑡 to 1 milli ohm,  𝑅𝑙𝑖𝑚𝑡 ∙ 𝐺1<<1, the equation is  
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 𝑉𝑜𝑢𝑡 = 𝑉𝑅1 ∙ 𝐺1 ∙ 𝑅𝑙𝑖𝑚𝑡 (7) 

If the weight is negative, we set its corresponding voltage input VR  to negative,  

Every hidden layer neuron sums up the current from all the weights connections with 

the input layer. The current value is read out by a resistor Rlimt as the output voltage 

Vout. Then the voltage will be fed into Sigmoid function (2) and placed as the next 

layer neuron value’s voltage VRj 

 𝑉𝑜𝑢𝑡 = 𝑅𝑙𝑖𝑚𝑡 ∙ ∑ 𝑉𝑅𝑖

𝑛

𝑖=1

∙ 𝐺𝑖𝑗 (8) 

 

Figure 13. “Read” mode IFG as the synapses. 

4.5 Fully connected ANN using IFG  
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We devise two demonstration networks. To testify the principle of the ANN for 

pattern recognition, we first designed and tested a smaller and simpler network (49 

input neurons and 10 hidden layer neurons). It contains 69 neurons and 590 weights. 

We cropped the original 70,000 MNIST data set from 28×28=784 pixels resolution to 

7×7=49 pixels resolution and done the training and testing. We used successfully 

optimized weights [23].  

 

Figure 14. The reduced ANN using 7×7 pixels MNIST data set for training and testing.  

The structure size is 49 input neurons, 10 hidden layer neurons, and 10 output 

neurons. Every weight Gij is implemented by an IFG memory. The small circle 

indicates the neurons in between. 

For comparison, the original-sized ANN has 784 input neurons, 100 hidden layer 

neurons, and 10 output neurons. Those 894 neurons make up to 79400 weights. 
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Figure 15. ANN using original 28×28 MNIST data set for training and testing.  

The structure size is 784 input neurons, 100 hidden layer neurons, and 10 output 

neurons. The small circle indicates the neurons in between. 

Both the reduced sized ANN and the original sized ANN can successfully recognize 

the numbers. 
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5 Cadence model and simulation  

5.1 Cadence model for IFG memory  

Our Spice IFG model is a three-terminal memristor device based on the Sandia 

National Laboratory’s IFG memory [2]. My colleague Donguk Choi designed our 

own VerilogA code for the IFG. The VerilogA code is listed in the Appendix [24]. 

 

Figure 16. (a). The equivalent circuit of the IFG device. (b). The Cadence circuit model of IFG, Vw is 

the “write” voltage applied to the “Gate” node. Vr is the “Read” voltage applied to drain. Inside the 

instance of IFG is the VerilogA code (attached in Appendix) 

To set the weight of an IFG memory, we applied voltage to the gate node. For the 

IFG device [2], the writing can be achieved by applying a voltage greater than the 

CBM threshold voltage Vth at the gate node.  

For a demonstration of the weight writing process, we applied the ±0.95 V voltage to 

the gate and source node. If the Vgate is negative, the conductance increase. If the 

difference is positive, the conductance drops. If we stop the gate voltage, the 
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conductance between source and drain holds its value. The threshold voltage has been 

set to 0.4V according to the device parameter [2].  

The conductance of the IFG device is successfully set with the operation above. And 

after stopping the gate and source node voltages, the written conductance state stays 

constant, thus we fully control the IFG to achieve state retention. 

As we can see in the simulation result, our conductance tuning process is near-linear 

and very symmetric. Those are the expected properties to improve the ANN learning 

efficiency. 

 

Figure 17. Weight writing process of the IFG memory. The yellow line is the conductance of the IFG 

memory. The red line is the “write” voltage applied to the “Gate”, the yellow line is the source voltage 

and the white line is the conductance of the IFG memory.  
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5.2 Network building and weight setting  

After the weight setting the IFG memory serves as a conductor. Its memristance is 

fixed. To verify the role of ANN for pattern recognition, we used the resistors to build 

a fully connected ANN. Our optimized weights were generated from the software 

[23]. The equation 8 will be reshaped to the following equation (9). 

 𝑉𝑜𝑢𝑡 = 𝑅𝑙𝑖𝑚𝑡 ∙ ∑ 𝑉𝑅𝑖

𝑖

𝑖=1

∙
1

𝑅𝑖𝑗
 (9) 

The values of Rij are reciprocal numbers of the optimized conductance weights Wij 

which we get from the software training. 

The VRi in this equation is the input of the entire network. It was normalized from the 

greyscale numbers of the MNIST pictures pixels. All the greyscale numbers were 

divided by 255 to normalize it. Then we applied the same number of voltages as the 

input to VR as the circuit network input. For example, the pixels circled in Figure 17 

have the same input value as VR=1V. 

 

Figure 18. Normalization of the MNIST pictures. Every greyscale number is divided by 255 and 

normalized. 
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Figure 19. Circuit demonstration of the connections between the 49 input layer neurons and one hidden 

layer neuron N9.  

For easy demonstration, we only show three weight connections. X0 to X48 are the 

input neurons, and they were applied input voltages Xi=VR. VR is the normalized 

voltage input from the MNIST data set shown in Figure 17. Every resistor represents 

the optimized weights from software training. The circuit simulation result is the 

current summation at node X48, therefore the voltage value at the Rload. The 

connections of the other 9 hidden layer neurons Nj are similar, but with their unique 

weight settings. After the simulation, we feed the summation to the activation 

function. The results were then used as the next layer input voltages VNj.  
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Figure 20. Circuit demonstration of the connections between the 10 hidden layer neurons and the 

output layer neuron “1”.  

For easy demonstration, we only show three connections. N0 to N9 is the hidden 

layer neurons, and they were applied with output voltages VNi from Figure 19. Every 

resistor represents the weights optimized through software training. The circuit 

simulation result is the current summation at node “1”, therefore the voltage value at 

the Rload. The connections of the other 9 output layer neurons are similar but with 

their unique weight settings. The summations at output neurons are fed to the 

activation function. All ten output neurons’ results are ranked in order. The neuron 

with the highest output voltage value indicates that the corresponding input picture 

has the highest probability to be the correct number.  

Our reduced sized ANN contains 49+10+10=4,900 neurons while the other original 

sized ANN contains 784×100×10=784,000 neurons. For every IFG memory, we need 
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to control three nodes and apply unique voltage to control the weight. As we can see 

from these numbers, using a schematic SPICE simulation set up is rather 

cumbersome. To solve the problem, we used the text-based “Spectre” simulation 

inside Cadence. It doesn’t require schematic input and for our 784,000 neurons ANN, 

it runs less than a few seconds. We used Python to generate text-based connections of 

our conductor ANN circuit. The Python code is listed in Appendix 2.1. The activation 

function code is also listed in Appendix 2.2. 

5.3 Results and comparison  

In the software simulation, the reduced ANN performed a recognition accuracy of 

86%. The original sized ANN has a recognition accuracy of 95%. 

In the hardware simulation. We first ran 10 test MNIST data with our ANN. For our 

reduced sized ANN, it recognized 6 numbers out of 10, shown below for 

demonstration are the test results for the correct number “0” and the wrong number 

“7”. The other 8 numbers of recognition results could be found in Appendix 3.  
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Figure 21. An ANN recognition result of number “0” from our reduced network. 

The N0 to N9 are the voltage values of the output neurons identify digit from “0” to 

“9”. Rank is the order of that voltage value among ten output signals. For this result, 

the signal for output neuron N0 ranks the first. It means our ANN recognize this 

picture as digit “0”, which is correct. 

 

Figure 22. An ANN recognition result of number “7” from our reduced network.  
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The N0 to N9 are the voltage values of the output neurons identify digit from “0” to 

“9”. Rank is the order of that voltage value among ten output signals. For this result, 

the signal for output neuron N2 ranks the first. It means our ANN confused this 

picture as digit “2”, which is incorrect. 

For our original ANN, it recognized all ten numbers. We demonstrate the test results 

of the number “7” here. Other recognition results could also be found in Appendix 3. 

 

Figure 23. An ANN recognition result of our full-size network. 

The N0 to N9 are the output neurons identify digit from “0” to “9”. Rank is the order 

of output signals. For this result, the signal for output neuron N0 ranks the first. It 

means our ANN recognize this picture as digit “0”, which is correct. 

To better demonstrate the capability of our network, we test more images to calculate 

the accuracy. We test several images until the accuracy becomes stable. We test our 

reduced ANN array with 2000 images, it has the accuracy of 78.80%. It’s lower than 

the software. 
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Figure 24. Performance for reduced ANN with 2,000 test samples.  

Our network is 17 percentage lower than the software simulation result. We also test our 

original ANN with 2000 images, it has the accuracy of 93.82%. The 1st recognition error 

image came out at the 93 sample. The accuracy is lower than the software. The simulation 

time of the original IFG ANN is 14s per test which limits the simulation time. 

 

Figure 25. Performance for reduced ANN with 1800 test samples.  
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6 Conclusion 

Artificial neural network forms the core part of the deep learning models. It has a 

huge potential for improving our daily life. In this thesis report, we successfully 

applied a Cadence model of the IFG device, designed IFG-based neural networks, and 

achieved the weight setting properly. By using Cadence tools, we successfully 

simulated two IFG-based neural networks to demonstrate their capability for pattern 

recognition. One reduced ANN has 69 neurons 590 weights. The original ANN has 

894 neurons and 79400 weights. For the ten testing MNIST pictures. The reduced 

sized network recognized 6 numbers out of 10. The original sized networks yielded 

correct recognition results as listed in Appendix Table 1 and Table 2. The accuracy of 

the reduced ANN is 78.80%. The accuracy of the original ANN is 93.82%. From the 

comparison between reduced ANN and original ANN, we found the higher 

complexity of the neural network is, the higher recognition accuracy we will get. And 

the hardware implementation has lower accuracy than the software. Because we add 

distortion like the Rlimt into the ANN. We successfully testify that the IFG has the 

potential to be implemented as the synaptic memory in ANN. The value of our 

optimized weights ranges from 0.1ms to 10ms. After the implementation of our IFG 

network, the value of our output neurons ranges from 1mV to 10mV shown in Table 

1 and Table 2. 
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7 Future work  

This report provided a compact Cadence model of a fully connected artificial neural 

network (ANN) using the IFG device. MNIST data set was used to train and test our 

network. To better investigate and demonstrate the principle of pattern recognition we 

reduced our network size. Our largest network which consists of 79,400 weights has 

the highest accuracy of 93.82%. However, Geoffrey E. Hinton and his group achieved 

98% state of art recognition accuracy [4]. It was achieved by a very large scale of 

network and trillions of connecting weights. Their ANN has one input layer consists 

of 784 neurons, two hidden layers each consists of 500 neurons, one top layer consists 

of 2000 neurons and 10 output neurons at the output layer. This large neural network 

builds up to 1,662,000 weights. The higher complexity of the neural network is, the 

higher the recognition accuracy you will get. Our work is a good starting point on 

pattern recognition using memristive devices. To improve recognition accuracy, we 

need to build much larger memristive arrays. 

For our network, we applied the SIGMOID function. But the ReLU [7] function is 

more commonly used nowadays. It was partially inspired by the action potential 

behavior of the biological neurons. It is easier to train the neural network with the 

ReLU function. To improve our training efficiency, we could implement the ReLU as 

the nonlinear function in the future. 
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Figure 26. ReLU function  

On the other hand, our work demonstrated pattern recognition using MNIST images 

and fully connected ANN. The MNIST images are all greyscale images. However, a 

typical colored image contains three 2D input arrays in three RGB color channels. To 

do colorful image recognition, another deep learning network called convolutional 

neural network (CNN) is required [1]. Shown in Figure 23. CNN’s training 

algorithms and network structures are different from ANN. But our memristive 

device array can also be implemented to the CNN structure as the weights with proper 

training. Therefore, our memristive array can also be used in videos, audios, and 

language recognition. 



37 
 

 

Figure 27. Structure comparisons between (a). fully connected ANN and (b). Convolutional neural 

networks CNN. The CNN weights can also be implemented with IFG devices. 

Above all, our memristive array has the potential to be the future implementation of 

all kinds of deep neural network systems. 
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Appendix 

1. VerilogA model for IFG 

 

// VerilogA for mylib, IFG_r3_yh, veriloga 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

nature conductance  

  access = Siemens; 

  units = "S"; 

  abstol = 0.01n; 

end nature 

  

discipline Conductance 

  potential conductance; 

enddiscipline 

 

module IFG_r3_yh (Gate1, Drain1, Source1, G); 

 inout Gate1, Drain1, Source1, G; 

 

 electrical Gate1, Drain1, Source1, N_el; 

 Conductance G; 

 real k, q; 

 

 parameter real Rel = 1000 ; 
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 parameter real Rct = 100M ; 

 parameter real Cenode = 10u ; 

 parameter real pulse_w = 50u ; 

 parameter real pulse_h_e = -0.95; 

 parameter real pulse_h_p = 1.2; 

 parameter real n_p= 50; 

 parameter real Gmax = 100n; 

 parameter real Gmin = 50n; 

 parameter real G0 = Gmax ; 

 parameter real Vth = 0.6; 

 parameter real k1 = 1.024; 

 real g_last = G0; 

 real last_t = 0 ; 

 real dt ; 

 real g, delphi; 

 real delG = Gmax - Gmin ;   

 real k_p = delG/(pulse_w*pulse_h_p*n_p) ; 

 real k_e = -delG/(pulse_w*pulse_h_e*n_p) ; 

 real cur_time, last_time = $abstime ; 

 

 analog begin 

  q = Cenode * V(N_el,Source1); 

  V(Gate1, N_el) <+ Rel * I(Gate1, N_el); 

  I(N_el, Source1) <+ V(N_el, Source1)/Rct + ddt( q ) ;   

  if (V(N_el, Source1) > 0)  

   k = k_p*k1 ; 

  else  
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   k = k_e*k1 ; 

 

  cur_time = $abstime; 

  dt = cur_time - last_time; 

  last_time = cur_time; 

 

  if (abs(V(N_el, Source1))>Vth) 

   g_last = g_last + k*dt*V(Source1, N_el); 

  $display("Vext = %7.3f Vint = %7.3f, G = %.3e time = %.2e", 

V(Gate1, Source1), V(N_el, Source1), g_last, cur_time); 

 

  I(Source1,Drain1) <+ g_last*V(Source1, Drain1); 

  Siemens(G) <+ g_last ; 

 end 

endmodule 

2. Cadence text-based simulation codes  

2.1 Python code to generate text based “Spectre” simulation   

import numpy as np 

 

row = 28*28 

col = 100 

 

def print_header(): 

    f.write("simulator lang=spectre\n") 

    f.write("global 0\n") 

    f.write("parameters Rload=1M \\\n") 
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    res = 1/np.loadtxt("wih.txt") 

    x = np.loadtxt(f"input{inp}.txt") 

   

    for i in range(0,row): 

        f.write(f"\tx{i}={x[i]} \\\n") 

        for j in range(0,col): 

            res0 = res[i][j] 

            if res0>=0: 

                f.write(f"\tr{i}{j}={res0} r{i}{j}b=1T \\\n") 

            else: 

                f.write(f"\tr{i}{j}=1T r{i}{j}b={-res0} \\\n") 

    f.write("\n") 

     

def form_array(): 

     

    for i in range(0, row): 

        f.write(f"\\-Vr{i} (\\-X{i} 0) vsource dc=-x{i} type=dc\n") 

        f.write(f"Vr{i} (X{i} 0) vsource dc=x{i} type=dc\n") 

    f.write("\n") 

     

    for i in range(0, row): 

        for j in range(0, col): 

            f.write(f"R{i}{j}b (\\-X{i} N{j}) resistor r=r{i}{j}b\n") 

            f.write(f"R{i}{j} (X{i} N{j}) resistor r=r{i}{j}\n") 

    f.write("\n") 

 

    for j in range(0, col): 
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        f.write(f"Rl{j} (N{j} 0) resistor r=Rload\n") 

 

def print_simul(): 

 

    f.write("simulatorOptions options psfversion=\"1.1.0\" reltol=1e-3 vabstol=1e-6 

\\\n") 

    f.write("\tiabstol=1e-12 temp=27 tnom=27 scalem=1.0 scale=1.0 gmin=1e-12 

rforce=1 \\\n") 

    f.write("\tmaxnotes=5 maxwarns=5 digits=5 cols=80 pivrel=1e-3 \\\n") 

    f.write("\tsensfile=\"./psf/sens.output\" checklimitdest=psf \n") 

    f.write("tran tran stop=1u write=\"spectre.ic\" writefinal=\"spectre.fc\" \\\n") 

    f.write("\tannotate=status maxiters=5 \n") 

    f.write("finalTimeOP info what=oppoint where=rawfile\n") 

    f.write("modelParameter info what=models where=rawfile\n") 

    f.write("element info what=inst where=rawfile\n") 

    f.write("outputParameter info what=output where=rawfile\n") 

    f.write("designParamVals info what=parameters where=rawfile\n") 

    f.write("primitives info what=primitives where=rawfile\n") 

    f.write("subckts info what=subckts where=rawfile\n") 

    f.write("\n") 

    for j in range(0, col): 

        f.write(f"save N{j} \n") 

    f.write("saveOptions options save=allpub\n") 

#gen_xw() 

for inp in range(0,2):  

 f = open(f"test{inp}.scs",'w')  

 print_header()  
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 form_array()  

 print_simul()  

 f.close() 

2.2 Python code to apply the activation function to the signals 

import numpy as np 

 

def sigmoid(z): 

    return 1 / (1 + np.exp(-z)) 

 

trial = int(input()) 

 

ho = np.loadtxt('ho0.txt') 

if trial > 1: 

    for i in range(1,trial): 

        ho = np.vstack((ho,np.loadtxt(f'ho{i}.txt'))) 

else: 

    ho = np.vstack((ho,np.zeros(np.size(ho)))) 

 

hon = (ho-np.mean(ho))/np.std(ho) 

hona = sigmoid(hon) 

for i in range(0,trial): 

    np.savetxt(f'hon{i}.txt',hona[i,:]) 

 

hoa = sigmoid(ho) 

for i in range(0,trial): 

np.savetxt(f'hoa{i}.txt',hoa[i,:])   

3. Recognition results of original and reduced sized ANN 
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Table 1. Recognition results from original sized ANN 

  

  

 

 

 

 

 

N0 -2.85E-03 2

N1 -4.68E-03 5

N2 4.99E-03 1 2

N3 -7.79E-03 10

N4 -6.30E-03 8

N5 -4.66E-03 4

N6 -6.08E-03 7

N7 -5.41E-03 6

N8 -3.85E-03 3

N9 -6.74E-03 9

input 2

Output Signals rank image

N0 -5.12E-03 8

N1 -6.44E-03 9

N2 -4.12E-03 4

N3 -4.86E-03 6

N4 -4.65E-03 5

N5 -3.40E-03 2

N6 -4.99E-03 7

N7 5.14E-03 1 7

N8 -6.50E-03 10

N9 -3.47E-03 3

N0 -7.81E-03 8

N1 4.22E-03 1 1

N2 -4.42E-03 4

N3 -5.43E-03 5

N4 2.51E-03 2

N5 -7.57E-03 7

N6 -5.55E-03 6

N7 1.93E-03 3

N8 -8.79E-03 9

N9 -1.26E-02 10

input 3

N0 5.82E-03 1 0

N1 -4.88E-03 6

N2 -4.19E-03 3

N3 -7.75E-03 10

N4 -4.41E-03 5

N5 -6.55E-03 8

N6 -4.35E-03 4

N7 -5.21E-03 7

N8 -7.22E-03 9

N9 -3.66E-03 2

input 4

N0 -6.44E-03 8

N1 -5.61E-03 6

N2 -4.73E-03 5

N3 -8.55E-03 9

N4 6.96E-03 1 4

N5 -3.59E-03 2

N6 -4.12E-03 3

N7 -6.14E-03 7

N8 -9.13E-03 10

N9 -4.51E-03 4

input 5

N0 -4.52E-03 4

N1 -5.65E-03 7

N2 -5.90E-03 9

N3 -5.53E-03 6

N4 -4.91E-03 5

N5 -7.15E-03 10

N6 -4.48E-03 3 6

N7 -5.85E-03 8

N8 -4.41E-03 2

N9 4.32E-03 1

input “10”
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N0 -7.27E-03 8

N1 5.10E-03 1 1

N2 -4.11E-03 4

N3 -5.36E-03 5

N4 1.35E-03 2

N5 -6.49E-03 7

N6 -6.21E-03 6

N7 3.71E-04 3

N8 -8.16E-03 9

N9 -9.62E-03 10

input 6

N0 -6.84E-03 9

N1 -5.31E-03 7

N2 -7.62E-03 10

N3 -3.75E-03 4

N4 2.98E-03 1 4

N5 -4.23E-03 5

N6 -6.20E-03 8

N7 -2.57E-03 3

N8 -2.31E-03 2

N9 -5.00E-03 6

input 7

N0 -6.39E-03 7

N1 -7.65E-03 10

N2 -7.33E-03 8

N3 -4.27E-03 4

N4 -4.06E-03 3

N5 -7.56E-03 9

N6 -4.96E-03 5

N7 -3.27E-03 2

N8 -6.12E-03 6

N9 3.37E-03 1 9

input 8

N0 -1.20E-02 9

N1 -5.52E-03 5

N2 -5.34E-03 4

N3 -1.29E-02 10

N4 -7.22E-03 7

N5 2.93E-03 1 5

N6 -2.56E-03 2

N7 -7.71E-03 8

N8 -6.83E-03 6

N9 -4.36E-03 3

input 9
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Table 2. Recognition results from reduced sized ANN 
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