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ARTICLE

Ulcerative colitis mucosal transcriptomes reveal
mitochondriopathy and personalized mechanisms
underlying disease severity and treatment response
Yael Haberman 1,2, Rebekah Karns1, Phillip J. Dexheimer 1, Melanie Schirmer3, Judith Somekh4,5,

Ingrid Jurickova1, Tzipi Braun2, Elizabeth Novak6, Laura Bauman1,7, Margaret H. Collins 1, Angela Mo8,

Michael J. Rosen1, Erin Bonkowski 1, Nathan Gotman9, Alison Marquis9, Mason Nistel1, Paul A. Rufo10,

Susan S. Baker11, Cary G. Sauer12, James Markowitz13, Marian D. Pfefferkorn14, Joel R. Rosh15,

Brendan M. Boyle16, David R. Mack17, Robert N. Baldassano18, Sapana Shah19, Neal S. Leleiko20,

Melvin B. Heyman 21, Anne M. Grifiths22, Ashish S. Patel23, Joshua D. Noe24, Bruce J. Aronow1,

Subra Kugathasan 12, Thomas D. Walters22, Greg Gibson 8, Sonia Davis Thomas9,25, Kevin Mollen6,

Shai Shen-Orr 4, Curtis Huttenhower 3,26, Ramnik J. Xavier 3,27, Jeffrey S. Hyams28 & Lee A. Denson 1

Molecular mechanisms driving disease course and response to therapy in ulcerative colitis (UC)

are not well understood. Here, we use RNAseq to define pre-treatment rectal gene expression, and

fecal microbiota profiles, in 206 pediatric UC patients receiving standardised therapy. We validate

our key findings in adult and paediatric UC cohorts of 408 participants. We observe a marked

suppression of mitochondrial genes and function across cohorts in active UC, and that increasing

disease severity is notable for enrichment of adenoma/adenocarcinoma and innate immune genes.

A subset of severity genes improves prediction of corticosteroid-induced remission in the discovery

cohort; this gene signature is also associated with response to anti-TNFα and anti-α4β7 integrin in

adults. The severity and therapeutic response gene signatures were in turn associated with shifts in

microbes previously implicated in mucosal homeostasis. Our data provide insights into UC

pathogenesis, and may prioritise future therapies for nonresponders to current approaches.

https://doi.org/10.1038/s41467-018-07841-3 OPEN
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U lcerative colitis (UC) is a chronic relapsing-remitting
inflammatory bowel disease (IBD) diagnosed primarily in
young individuals. The disease burden has increased with

globalization; newly industrialized countries show the greatest
increase in incidence1 and the highest prevalence is recorded in
Western countries2. Disease severity and treatment response are
strikingly heterogeneous with some patients quickly and con-
tinually responding to initial therapies while others experience
ongoing inflammation ultimately requiring surgical resection of
the affected bowel3,4. Greater understanding of individualized
pathways driving clinical and mucosal severity and response to
therapy, and the clinical translation of these data, is needed to
proactively identify targeted therapeutic approaches.

To improve our understanding of UC pathogenesis and its
potential clinical personalized translation, we applied a standar-
dized approach to a large, multicenter inception cohort that
collected samples before treatment initiation, and included sub-
jects representing the full spectrum of disease severities. The
Predicting Response to Standardized Pediatric Colitis Therapy
(PROTECT) study included 428 UC patients from 29 pediatric
gastroenterology centers in North America3. At diagnosis, disease
was clinically and endoscopically graded, rectal biopsy histology
was centrally read5, and clinical and demographic data were
recorded. Patients were assigned a specific standardized initial
therapy with mesalamine or corticosteroids, and outcomes were
recorded. Rectal biopsies from a representative subcohort of 206
patients underwent high-throughput RNA sequencing (RNAseq)
prior to medical therapy, representing the largest UC tran-
scriptomic cohort to date (Supplementary Table 1). We capture
robust gene expression and pathways that are linked to UC
pathogenesis, severity, response to corticosteroid therapy, and gut

microbiota, which provide new insights into molecular mechan-
isms driving disease course.

Results
A unique treatment-naive UC inception cohort. The PROTECT
study systematically examined response of 428 newly diagnosed
pediatric UC patients to consensus-defined disease severity-based
treatment regimens guided by the Pediatric Ulcerative Colitis
Activity Index (PUCAI)3. mRNAseq defined pretreatment rectal
gene expression for a representative discovery group of 206 UC
PROTECT patients, a validation group of 50 UC PROTECT
patients, and 20 age- and sex-matched non-IBD controls
(Table 1). The validation group had similar characteristics to the
discovery group, but with a higher frequency of nonwhite parti-
cipants. More severe endoscopic disease (Grade 3 Mayo endo-
scopic subscore, Chi squares p < 0.001) and more extensive
disease or pancolitis (Chi squares p < 0.001) were noted in
moderate-severe cases. Of the patients with mild disease, 53
(98%) of 54 received initial therapy with mesalamine, and all
moderate-severe patients received initial therapy with corticos-
teroids. Week 4 remission was defined as PUCAI < 10 without
additional therapy or colectomy and was achieved by 105 of 206
(51%) patients in the discovery cohort. One hundred and fifty-six
patients also had 16S rRNA sequencing to characterize their gut
microbial communities.

The core UC gene signature. We defined a core rectal UC gene
expression signature composed of 5296 genes (Fig. 1a) differen-
tially expressed (FDR < 0.001 and fold change (FC) ≥ 1.5) in
comparison to controls (Ctl, Fig. 1 and Supplementary Dataset 1).

Table 1 Characteristics of controls and PROTECT ulcerative colitis discovery and validation cohorts

Ctl
(n= 20)
RNAseq

UC
(n= 428)
Full PROTECT
Cohort

UC
(n= 206)
RNAseq

UC mild
(n= 54)
RNAseq

UC mod-sev
Discovery
(n= 152)
RNAseq

UC mod-sev
Validation
(n= 50)
RNAseq

Age (Mean ± SD) 13.9 ± 3.3 12.7 ± 3.3 12.9 ± 3.2 13.1 ± 3.5 12.8 ± 3.1 12.4 ± 3.4
Sex M (%) 9 (45%) 216 (50%) 112 (54%) 32 (59%) 80 (53%) 23 (46%)
BMI z score (Mean ± SD) 0.3 ± 1.6 −0.2 ± 1.3 −0.26 ± 1.32 −0.08 ± 1.19 −0.33 ± 1.36 −0.28 ± 1.27
White 17/20

(85%)
351/420 (84%) 204/206 (99%) 52/54 (96%) 152/152 (100%) 28/50 (56%)

PUCAI score (range 0–85)
10–30 (Mild) — 102 (24%) 54 (26%) 54 (100%) — —
35–60 (Moderate) — 185 (43%) 84 (41%) — 83 (55%) 21 (42%)
≥65 (Severe) — 141 (33%) 68 (33%) — 69 (45%) 29 (58%)

Mayo endoscopy subscore (range 0–3)
Grade 1 Mild — 59 (14%) 27 (13%) 20 (37%) 7 (5%) 2 (4%)
Grade 2 Moderate — 224 (52%) 108 (52%) 29 (54%) 79 (52%) 22 (44%)
Grade 3 Severe — 145 (34%) 71 (34%) 5 (9%) 66 (43%) 26 (52%)

Disease location
Proctosigmoiditis — 29 (7%) 14 (7%) 11 (20%) 3 (2%) 0 (0%)
Left-sided colitis — 44 (10%) 25 (12%) 14 (26%) 11 (7%) 1 (2%)
Extensive/Pancolitis/a

Unassessable
— 355 (83%) 167 (81%) 29 (54%) 138 (91%) 49 (98%)

Initial treatment
Mesalamine — 136 (32%) 53 (26%) 53 (98%) —
Oral or IV steroids — 292 (68%) 153 (74%) 1 (2%) 152 (100%) 50 (100%)
Oral steroids — 144 (34%) 82 (40%) 1 (2%) 81 (53%) 20 (40%)
IV steroids — 148 (34%) 71 (34%) — 71 (47%) 30 (60%)

Week 4 remission (PUCAI < 10) — 211/422 (50)% 105 (51%) 30 (56%) 75 (49%) 21 (42%)
Week 4 fecal calpro < 250 — 56/282 (20%) 39/150 (26%) 14/42 (33%) 25/108 (23%) 9/28 (32%)

PUCAI Pediatric Ulcerative Colitis Activity Index
aUnassessable: severe/fulminant disease at presentation and the clinician performed a flexible sigmoidoscopy for safety concerns. Data are mean ± SD, n (%), n/N (%) unless noted otherwise. n/N
values show missing data
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Fig. 1 The core genes and pathways of newly diagnosed treatment-naive pediatric Ulcerative colitis emphasize lymphocyte activation and mitochondrial
dysfunction. a Volcano plot of the 5296 differentially expressed genes between 206 UC and 20 Ctl samples (FC≥ 1.5 and FDR < 0.001). Functional
annotation enrichment analyses of the b 3600 upregulated and c 1696 downregulated UC core genes using CluGO8 charts. Detailed functional annotation
enrichment analyses of the d 3600 upregulated and e 1696 downregulated UC core genes using ToppGene6, ToppCluster7, and Cytoscape52 are shown.
GO Biological Process, Cellular Component, and Molecular Function (pink), pathways (light blue), mouse phenotype (blue), gene family (yellow),
coexpression (light green), disease (dark green), interactions (purple). The full list of gene set enrichment results and P values are in Supplementary
Dataset 1. f Computational deconvolution of cell subset proportions in 206 UC and 20 controls. Differences (Wilcoxon test with FDR < 0.01 (**)) are
shown for cell types with at least 80% non-zero values. Overlap of differentially expressed genes between UC and Ctl in g RISK, h isolated colon epithelial
cells (IEC13), and i a microarray study of adult cases (GSE59071 12). j Detailed functional annotation enrichment analyses of the shared downregulated
functions of the above studies. Box and whisker plot with central line indicating median, box ends representing upper and lower quartile, and whisker
represent 10–90 percentile. UC ulcerative colitis
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Functional annotation enrichment analyses using ToppGene6,
ToppCluster7, and CluGO8 mapped groups of related genes to
biological processes9. Overview CluGo pie charts (Fig. 1b, c)
showed highest enrichment for increased lymphocyte activation
and associated cytokine signaling, and a robust decrease in
mitochondrion, aerobic tricarboxylic acid (TCA) cycle, and
metabolic functions. P values for the top specific biological pro-
cesses were obtained as an output from ToppGene (Supplemen-
tary Dataset 1) and more detailed ToppCluster pathways analysis
output is shown in Fig. 1d for the 3600 upregulated and Fig. 1e
for the 1686 downregulated genes. Upregulated gene signatures
were enriched for integrin signaling (P < 1.08E-12), JAK-STAT
cascade, and TNF production (P < 9.9E-93), pathways that are
already associated with therapeutic advances in UC10,11. The
downregulated UC signature showed a robust decrease of
mitochondrial-encoded and nuclear-encoded mitochondrial
genes (P < 2.76E-35). Applying a computational gene expression
deconvolution approach to estimate the relative composition of
immune cell subsets, epithelia, and other stromal cell types in
each sample (Methods) showed a significant increase in the
estimated proportion of several immune cells including T and B
cells, dendritic cells (DC), and monocytes (Fig. 1f). Using RISK
cohort rectal biopsies mRNAseq data for treatment-naïve pedia-
tric UC patients (Fig. 1g, Supplementary Dataset 1) and colonic
biopsies microarray data of adults with active UC (Fig. 1i, Sup-
plementary Dataset 1, GSE5907112), we demonstrate that 87% of
the differentially expressed genes in RISK UC, and 80% of the
adult UC genes, were within our core PROTECT signature.
Comparing the differentially expressed genes from isolated
intestinal epithelial cells (IEC) from another pediatric UC
inception cohort13 showed an overlap of 94% of the genes
identified in that study (Fig. 1h) with the PROTECT genes,
validating the majority of the core PROTECT UC signature in
whole biopsies and in isolated epithelia. Functional annotation
enrichment analyses of the shared genes further confirmed many
of the common enriched pathways (Supplementary Dataset 1).
Comparing the shared downregulated genes and pathways
between PROTECT, RISK, adult UC cohort GSE5907112, and the
IEC UC cohort13 using ToppGene/ToppCluster confirmed the
reduction of mitochondrial metabolic-associated genes and
pathways, genes associated with lipid metabolism, and genes
associated with formation of adenoma and adenocarcinoma
(Fig. 1j).

Robust colonic mitochondriopathy in UC. Notably, the mito-
chondrial genome encodes 13 genes regulating ATP production
and all 13 were significantly reduced in UC (Fig. 2a). Real-time
analysis of cellular respiration14 was subsequently evaluated in
colonic biopsies from UC and control patients. Mitochondrial
electron transport chain Complex I activity, the rate-limiting step
in oxidative phosphorylation15,16 was reduced in active UC rectal
biopsies compared to those from control patients (Fig. 2b). There
was also a nonsignificant trend toward a decrease in Complex II
activity (Fig. 2c). The mitochondrial membrane potential (MMP)
that provides an integrated measure of the cellular capacity for
ATP production was measured using JC-1 staining and FACS
analysis of freshly isolated EpCAM+ colon epithelial cells
(Fig. 2d) and CD45+ leukocytes (Fig. 2e). This showed a specific
reduction in epithelial cells of active UC, with recovery in inactive
UC (Supplementary Fig. 1). In addition, PPARGC1A (PGC-1α),
the master regulator of mitochondrial biogenesis, was profoundly
reduced in UC patients in comparison to controls in PROTECT,
RISK, and adult UC (Fig. 2f, h, j), and the IEC UC cohort
(Supplementary Dataset 1)13. Principal coordinates analysis
(PCA) principal components 1 (PC1) to summarize the Krebs

cycle (TCA) genes variations between patients showed reduction
of genes regulating mitochondrial energy production in the UC
groups (Fig. 2g, i, k). The RISK dataset revealed a spectrum of
mitochondrial gene expression downregulation in inflamed whole
rectal biopsies, ranging from no significant suppression in
mucosal biopsies obtained from inflamed rectum of ileo-colonic
CD (L3 iCD) patients, to moderate suppression in samples from
inflamed rectal biopsies of colon-only CD (L2 cCD) patients, and
profound suppression in samples from pediatric UC samples with
inflamed rectum (Fig. 2h, i). The spectrum between UC and CD
was validated in the adult IBD cohort (GSE5907112, Fig. 2j, k),
and we noted a recovery of this pathway in inactive adult UC.
However, the larger PROTECT mRNAseq cohort permitted
identification of an additional 3106 differentially expressed genes,
which primarily demonstrated more robustly the suppression of
mitochondrial pathways (Supplementary Dataset 1). Immuno-
histochemistry confirmed reduced epithelial abundance of both
mitochondrial-encoded MT-CO1 and nuclear-encoded COX5A
genes which comprise complex IV in active UC (Fig. 2l, m).

Disease severity gene signatures. More severe disease is linked in
our data and others to higher rates of therapy escalation and
colectomy3,17, whereas mild disease is associated with remission
by 12 weeks. Unsupervised hierarchical clustering analysis using
the core 5296 genes grouped 204 of 206 UC cases in the den-
drogram cluster A while all 20 non-IBD controls were in cluster B
(Supplementary Fig. 2). Most mild cases grouped in A(i), while
severe cases tended to be enriched in cluster A(ii) (Supplementary
Fig. 2B, P < 0.001). The core UC 5296 gene principle component
1 (PC1) values separated Ctl from UC across both clinical and
endoscopic severity (Supplementary Fig. 2C, D), while PC2
contributed to separation within UC severity. In all, 106 genes
were significantly differentially expressed between severe vs.
moderate and between moderate vs. mild UC clinical disease
defined by PUCAI, showing stepwise alteration across cases
(Supplementary Fig. 2E). We identified 916 genes that differed
between UC with severe vs. mild clinical disease and 1038 genes
that differed between severe vs. mild endoscopic subscore (FDR <
0.001 and FC ≥ 1.5, Supplementary Dataset 2). The Venn diagram
(Fig. 3a) shows the overlap of the resulting 712 genes (292 down-
and 420 upregulated genes) and the core UC signature, referred to
hereafter as the UC severity signature. Functional annotation
enrichment analyses of the UC severity signature (Supplementary
Dataset 2, Fig. 3b) emphasized genes that are down- (P < 4.54E-
46) and upregulated (P < 7.62E-51) in colorectal adenoma.
Immunohistochemistry (Supplementary Fig. 3) confirmed
increased epithelial abundance of REG1A gene, known to be
upregulated in both UC and in colitis-associated colorectal cancer
(CAC)18 in active UC. In addition, upregulated severity genes
were also enriched for innate immunity (P < 7.07E-19),
neutrophil degranulation (P < 1.51E-16), and CXCR1 interactions
(P < 9.08E-8). Relative composition of immune cell subsets using
a computational gene expression deconvolution approach showed
an increase in activated DC, plasma cells, and monocytes in
patients with severe vs. mild disease (Fig. 3c). An alternative
analytic approach using the Immunological Genome Project data
series as a reference through ToppGene6 also identified an
increased proportion of myeloid cells with increased severity
(Supplementary Fig. 4).

Rectal genes correlated with histologic features. Rectal biopsy
histology was evaluated centrally. Surface villiform architectural
abnormality (Fig. 3d) was linked to escalation therapy or
colectomy in our recent report3,5. We identified 187 genes (69 up-
and 118 downregulated, Supplementary Dataset 3) that differed
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(FDR < 0.001 and FC ≥ 1.5) between UC patients with and
without surface villiform changes. Most of these genes overlapped
with the 712 UC severity genes (Fig. 3e) suggesting a molecular
link between this histologic feature and UC severity (Supple-
mentary Dataset 3). In contrast, higher eosinophil infiltrate (>32

rectal eosinophils/hpf, Fig. 3f) was associated with a favorable
week 12 outcome3,5. Three genes differed significantly (FDR <
0.001 and FC ≥ 1.5) between UC patients with and without higher
infiltrating eosinophils (Fig. 3f, g). This included Arachidonate
15-Lipoxygenase (ALOX15) involved in production of lipid
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mediators which resolve inflammation. A Histologic Severity
Score (HSS) for chronic and active acute neutrophil inflammation
was defined5 (Supplementary Table 2). While we noted a higher
frequency of patients with moderate-severe disease showing
marked acute inflammation with crypt abscesses (grade 3) his-
tology than the frequency noted within patients with mild disease
(Fig. 3h), no such difference was noted within moderate-severe
patients that did or did not achieve week 4 (WK4) remission
(Fig. 3i).

Corticosteroid response gene signature and microbial shifts. In
the full cohort, the strongest predictor of corticosteroid-free
remission by week 12 was clinical remission at week 4 (WK4),
irrespective of initial corticosteroid status3. When considering
WK4 remission, clinical factors associated with this outcome
included disease severity and rectal biopsy eosinophil count3.
Based on these results, we focused our analysis on the WK4
outcome of moderate-severe patients that received corticoster-
oids. A corticosteroid response gene signature composed of 115
differentially expressed genes (FDR < 0.05 and FC ≥ 1.5) in
baseline rectal biopsies between moderate-severe UC patients
who did or did not achieve WK4 remission was defined (Fig. 4,
Supplementary Dataset 4, and Supplementary Fig. 5). PCA PC1
values summarized variation in the corticosteroid response gene
signature which was differentially expressed based on Week 4
clinical remission (R vs. NoR, Fig. 4a), and week 4 mucosal
healing defined as fecal calprotectin <250 mcg/gm (Fig. 4b) in the
Illumina discovery cohort. Healthy controls showing lower scores,
implying that patients destined to respond to CS have a more
healthy profile with respect to this gene signature at baseline. The
corticosteroid response gene signature PC1 was replicated using
the Lexogen platform19 in the subset of 134 UC patients with
Illumina data, as well an independent subcohort of 50 UC
patients that were not included in the original analysis (Fig. 4c, d).
As there are no other mucosal transcriptomic studies that
examined response to standardized initial corticosteroid induc-
tion therapy, we tested previous transcriptomic studies that
examined anti-TNF (GSE1687920, used by refs. 21,22) or anti-
integrin α4β7 (GSE7366123) response. We noted a similar differ-
ence with anti-TNF or anti-integrin α4β7 response in adult UC, in
this case defined by mucosal healing at colonoscopy (Fig. 4e, f).

Interestingly, Oncostatim M (OSM21) and TREM122 pre-
viously associated with anti-TNF response were within our
corticosteroid response gene signature (Fig. 4g), and this
signature PC1 showed a high correlation with OSM and TREM1
(0.79 and 0.89, P < 0.0001). We also noted a substantial overlap
between the genes from the PROTECT corticosteroid response
gene signature and previously described anti-TNF response
genes21 (Fig. 4g). Functional annotation enrichment analyses of
the corticosteroid response gene signature were performed and
the full output from ToppGene (Supplementary Dataset 4) with

more detailed ToppCluster output is shown in Fig. 4g. Those
analyses indicated that this signature is highly associated
with chemokines including CXCR (P < 7.12E-12), innate
myeloid immune signatures (P < 1.62E-15), and response to
bacteria (P < 2.16E-13). Aberrant immune responses to shifts in
commensal microbes likely play a role in UC pathogenesis and
treatment responses. In all, 152 of the 206 UC patients in our
cohort also had fecal 16S rRNA microbial profiles24. By applying
hierarchical all-against-all association testing (HAllA: http://
huttenhower.sph.harvard.edu/halla), we identified genes and
pathways associated with specific microbial operational taxo-
nomic units (OTUs), including associations between disease
severity associated taxa such as Campylobacter, Veillonella, and
Enterococcus with genes and pathways linked to a more severe
disease form, and refractory disease in connection with initial
corticosteroid induction therapy. In contrast, we identified
decreased taxa from the Clostridiales order that are considered
beneficial, which show a negative correlation with gene signatures
associated with disease severity and unfavorable treatment
responses (Fig. 4h and Supplementary Dataset 5).

A gene signature improves prediction of week 4 remission. We
next asked whether gene expression data would improve a mul-
tivariable regression WK4 prediction model based on clinical
factors alone (Table 2 and Supplementary Table 3). A model that
included (Table 2, model 1) sex, disease severity (total Mayo
clinical and endoscopic severity score), and histologic character-
ization of rectal eosinophils agreed with the model for the full
cohort, adding sex with borderline significance. The corticoster-
oid response gene signature PC1 was negatively associated with
week 4 outcome (model 2, OR 0.36, 95% CI 0.18–0.71; P= 0.003).
When this gene signature was included, the AUC improved to
0.774 (Likelihood ratio P value < 0.002), indicating superiority to
the model which included clinical factors alone. In model 3, we
replaced the eosinophil count with the eosinophil-associated gene
ALOX15 without harming the model accuracy with
some improvement of the discriminant power (AUC of 0.777,
0.692−0.848), sensitivity of 62.7%, (95% CI 52.8–72.5%), speci-
ficity of 76.6% (95% CI 0.68.8−84.4%), positive predictive value
of 72.3%, and negative predictive value of 67.8% (AUC cutoff at
≥0.5). Bootstrapping and multiple imputation were used for
internal validation and were generally supportive of the final
selected moderate/severe model (Supplementary Fig. 6). The HSS
showed moderate correlation with the corticosteroid response
gene signature PC1 (Spearman r= 0.31, P < 0.001), but not with
WK4 outcome. Moreover, the gene signature was still significant
in the model even after adjusting for the HSS (Supplementary
Table 3). Similarly, while the monocyte deconvolution score
showed high correlation with the corticosteroid response gene
signature PC1 (Pearson r= 0.72, P < 0.001) and was different
between WK4 responders and nonresponders (Supplementary

Fig. 2 Colonic mitochondriopathy with a robust gene signature for reduced rectal mitochondrial energy functions in UC. a Thirteen mitochondrial-encoded
genes are downregulated in UC vs. control with their fold change, FDR corrected P value, and associated mitochondrial complex as indicated. High-
Resolution Respirometry was performed on fresh colon biopsies (5 control, 9 with active UC, and 9 with inactive UC) using the Oroboros O2k modular
system to evaluate the activity of Complex I (b) and Complex II (c) of the electron transport chain. JC1 staining and FACS analysis were used to define the
mitochondrial membrane potential of d EpCAM+ epithelial cells and e CD45+ leukocytes isolated from colon biopsies (7 controls, 6 active UC, and 7
with inactive UC, 85–99% viability). Colon PPARGC1A (PGC-1α) expression for f PROTECT cohort, h RISK cohort in (transcripts per million (TPM) values),
and for j adult UC cohort (GSE5907112) in normalized values was plotted after stratifying the samples as indicated. g, i, k Krebs cycle TCA gene signature
PCA PC1 for the above cohorts is plotted, samples are stratified as indicated. l Representative rectal MT-CO1 and COX5A immunohistochemistry (complex
IV) for Ctl (n= 14), inactive (n= 10), and active UC (n= 11) with moderate Mayo endoscopic subscore and moderate PUCAI. Scale bar represents 50 μm.
m Frequency of MT-CO1-positive and COX5A-positive epithelial cells out of the total epithelial cells for controls, inactive UC, and active UC. Lines in the
scatter dot plots represent mean and SEM. Kruskal−Wallis with Dunn’s Multiple Comparison or ANOVA with false discovery rate (FDR) was used. *All
two-sided P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. UC ulcerative colitis, L2 cCD colon-only Crohn’s disease L3 iCD ileo-colonic Crohn’s disease
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Fig. 5), it was not significant when added to the model in place of
the gene signature, while the gene signature remained significant
in the model after adjusting for the monocyte score (Supple-
mentary Table 3).

Discussion
PROTECT is the largest prospective inception cohort study to
examine factors associated with early responses to standardized
first-line therapy in pediatric UC. We provide evidence for core
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host gene expression profiles driving lymphocyte activation and
cytokine signaling which are targeted by current therapies. How-
ever, our data also suggest a robust reduction in epithelial mito-
chondrial genes and associated energy production pathways in UC,
not directly addressed by current approaches. This reduction of
mitochondrial genes was validated in treatment-naïve pediatric UC,
adults with active UC with longstanding disease, and more speci-
fically in viable isolated epithelia of treatment-naïve pediatric UC.
We capture genes and pathways that are linked to UC severity and
prioritize those regulating epithelial transformation and innate
CXCR-mediated leukocyte recruitment. We identified a gene sig-
nature linked to corticosteroid response, which was validated in an
independent subset of UC patients, and showed substantial overlap
with genes previously associated with anti-TNF response. A mul-
tivariable analysis combining the corticosteroid response gene sig-
nature PC1 and ALOX15 gene expression with clinical variables
better predicted corticosteroid responsiveness than clinical factors
alone. These findings are summarized in Fig. 4i.

Decreased mitochondrial activity25,26 was previously descri-
bed in UC, but understanding of the molecular mechanism was
lacking27–30. Dysfunctional mitochondria exacerbate barrier
dysfunction and inflammation, while pro-29 and anti-30

inflammatory stimuli affect mitochondrial metabolic functions.
PPARGC1A (PGC1α), the master regulator of mitochondrial
biogenesis, ameliorated experimental colitis, whereby intestinal
epithelial depletion of PGC1α suppressed mitochondrial func-
tion and the intestinal barrier31. Mitochondrial loss also pre-
ceded the development of colonic dysplasia in UC32, and high
mitochondrial activity reflecting electron transport in the ileum
was also associated with protection against CD progression in
RISK33. Our findings of a substantial suppression of all 13
electron transport mitochondrial-encoded genes (Complex I,
III, IV, and V), PPARGC1A (PGC1α), and epithelial MMP
further support the robustness of the colonic mitochondrio-
pathy in UC. Moreover, we demonstrate specificity of mito-
chondrial gene expression downregulation in colon-only forms
of IBD rather than in CD patients with both ileal and colonic
inflammation. Interestingly, previous studies in infectious
colitis34or diverticulitis35 demonstrated an induction of
immune and wound-healing genes, with considerable overlap
with the immune and wound-healing genes identified in
pediatric UC for the current report. However, these studies did
not demonstrate a similar reduction in mitochondrial genes,
suggesting specificity of this response in UC. Functionally, we
observe a decrease in the activity of Complex I of the electron
transport chain in the inflamed rectums of patients with UC,
and a reduction of mitochondrial depolarization more specifi-
cally in epithelia. Although a defect in respiration has been
observed in the colons of UC patients previously, to our
knowledge mitochondrial function from intestinal biopsies has
never before been evaluated via high-resolution respirometry.

With real-time analysis of intact human tissue, this technique
offers precise evaluation of mitochondrial membrane integrity
and oxidative capacity. In conjunction with our expression
data, these results suggest a downregulation and dysfunction of
mitochondrial respiration, characterized by a defect at Complex
I, the rate-limiting step in oxidative phosphorylation. Supple-
menting the mitochondrial electron transport axis via medical,
environmental, or nutritional approaches can be potential tar-
gets for future therapies.

Inflammation has a substantial cumulative role in colitis-
associated colorectal cancer (CA-CRC) development and is closely
linked to the extent36, duration37 and severity38. Studies in the
noncancerous IBD mucosa indicated that colorectal cancer devel-
opment in IBD begins many years before the development of
neoplasia as part of the occult evolution within the inflamed
bowel39. Here, we detect a profound dysregulation of gene sets
associated with disease severity previously implicated in adeno-
carcinoma. Our results therefore show that not only at the genomic
and epigenetic level39,40, but also at the transcriptomic level, already
at diagnosis, genes and pathways that are associated with UC
severity show associations with epithelial transformation.

Microbial organisms and products affect host immune education,
development and response, and aberrant immune responses to
commensal microbes likely contribute to gut inflammation which is
the hallmark of UC41. We identified positive associations between
genes and pathways associated with UC severity and response to
treatment and disease-linked microbial taxa. Negative associations
involved more beneficial commensal taxa with pathways and genes
that were linked to resolution of inflammation or upregulated in
non-IBD controls. Those included oral pathobionts Veillonela dis-
par, and Campylobacter, and depletion of several commensal
organisms such as Lachnospiraceae, Bifidobacterium, and Rumi-
nococcaceae suggesting a substantial depletion of SCFA-producing
bacteria that may affect epithelial barrier function42. Those asso-
ciations will need to be validated in an independent cohort.

In our study3 and in previous studies in children and
adults4,43,44, higher baseline disease severity identified patients
less likely to achieve remission with corticosteroids. We supple-
ment and improve those models by adding baseline gene
expression data. We identified a gene signature linked to corti-
costeroid response and validated it in an independent subset of
UC patients. The corticosteroid response gene signature is enri-
ched for cytokines and chemokines (CXCR1/2 and CXCL/6/8/10/
11/17), which promote activation of the innate immune system
and recruitment of neutrophils, and to response to external sti-
muli and bacteria. Notably, the corticosteroid response gene
signature showed a substantial overlap with genes previously
associated with anti-TNF response, and exhibited a similar dif-
ference between responders and nonresponders to anti-TNF or
anti-integrin α4β7 therapies. These similarities support an emer-
ging concept in the field that the mucosal inflammatory state as

Fig. 3 Disease severity is linked to adenoma/adenocarcinoma and innate immune pathways. a Venn diagram shows the 712 UC severity genes overlapping
the 5296 core UC signature with the 916 clinical severity and 1038 endoscopic severity genes differentially expressed between severe and mild cases
(FC≥ 1.5, FDR < 0.001). b Functional annotation enrichment analyses of the 712 UC severity genes. The full list of gene set enrichment results and P values
are in Supplementary Dataset 2. Node colors are as in Fig. 1. c Computational deconvolution of cell subset proportions in controls and UC patients stratified
by endoscopic severity Mayo subscore. Differences (ANOVA with FDR < 0.05 (*)) between Mayo 3 (severe, n= 71) and 1 (mild, n= 27) are shown for
those cell types in Fig. 1. d Hematoxylin and eosin (H&E, 100×) staining of control (left) and UC (right) case with acute cryptitis (arrows), crypts that do not
rest on the muscularis mucosa (bar), and marked surface villiform change (concave arrows). e Venn diagram shows the 187 villiform changes genes
overlapping with severity genes. f H&E staining of UC case with acute cryptitis (arrow) and numerous eosinophils in the lamina propria (arrowheads).
g Three genes that are associated with presence of >32 eosinophils/HPF in UC. h Frequency (percent of patient of the total per group) of mild (n= 54) and
moderate-severe (n= 152) patients across histology severity scores (defined in Supplementary Table 2). **Chi squares p < 0.01. i Distribution of moderate-
severe patients who did or did not achieve week 4 (WK4) remission across histology severity scores. UC ulcerative colitis. Box and whisker plot with
central line indicating median, box ends representing upper and lower quartile, and whisker represent 10–90 percentile. Scale bar represents 50 μm
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Fig. 4 A rectal gene signature is associated with response to UC induction therapy and microbial shifts. Samples loading PC1 (Z score) values of the
corticosteroid response gene signature are shown for controls and the discovery cohort of 152 moderate-severe UC patients stratified by a WK4 clinical
remission (R) and b mucosal healing (fecal calprotectin < 250mcg/gm). Samples loading PC1 values derived from an independent 3′UTR Lexogen
mRNASeq platform are shown for the discovery cohort and an independent validation cohort stratified by c WK4 clinical remission (R), or by d mucosal
healing as in (b) for the validation cohort. Samples loading PC1 values including controls and e the GSE1687920 data set of UC treated with anti-TNF and
f GSE7366123 of UC treated with anti-integrin α4β7. R: mucosal healing defined by colonoscopy. g Functional annotation enrichment analyses of the
corticosteroid response gene signature and the top 50 genes that were differentially expressed in pretreatment colon biopsies of anti-TNF refractory vs.
responsive UC patients21. The full list of enriched functions and P values are in Supplementary Dataset 4. Genes are in blue and biologic functions in pink;
connections to each signature are as shown. h Heat map summarizing Spearman similarity measures between microbial abundances and gene expression
using hierarchical all-against-all association. *False discovery rate < 0.2. Blue and red indicate negative and positive associations, respectively. i Graphical
summary of the cohort and main findings. Box and whisker plot with central line indicating median, box ends representing upper and lower quartile, and
whisker represent 10–90 percentile. Mann−Whitney and ANOVA FDR as applicable, *P < 0.05, **P < 0.01, ***P < 0.001, ****<0.0001
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measured by gene expression may better define the likelihood of
response to current treatment approaches than conventional
clinical measures of severity. By comparison, higher ALOX15
expression was linked to a higher likelihood for remission.
Increasing evidence suggests a role for ALOX15 expressed in
tissue eosinophils and macrophages in the resolution of inflam-
mation45, by interfering with neutrophil recruitment in models of
arthritis46, postoperative ileus47, and peritonitis48.

Our study has several strengths, but also some limitations. We
utilized highly sensitive sequencing and novel analytic approaches
in the largest multicenter treatment-naïve UC cohort to date. We
were thereby able to make several novel observations, while
avoiding confounding effects of prior therapy and longstanding
duration of disease49,50. We validated key gene signatures across
several independent pediatric and adult cohorts. However, whole
biopsies, composed of a mixture of cellular components, were used
rather than single-cell transcriptomics. To address this limitation,
we performed computational deconvolution of cell subset propor-
tions in UC and controls, and across UC severity with specific
differences noted. Deconvolution has limitations as it only estimates
cell subset proportions and it is possible that closely related cell
types will not be discriminated. Future studies using single-cell
preparations, prioritized by the current dataset, will be important
for further cellular subset characterizations. While we noted only
monocytes to vary with corticosteroid response, its proportion score
was not significant when added to the outcome model in place of
the gene signature. By analyzing published datasets obtained from
IEC isolated from treatment-naïve pediatric UC patients and by
FACs analyses gating on EpCAM+ epithelial cells, we demonstrate
that the mitochondrial gene expression signature and function
respectively are suppressed in the epithelial compartment in UC.

In summary, our UC transcriptomics cohort is the largest and
most comprehensive to date and the only data set to utilize
pretreatment samples, and to link these to 16S microbial com-
munity data and response to standardized first-line corticosteroid
therapy. We implicate a robust colonic mitochondriopathy in

overall UC pathogenesis. Already at diagnosis genes associated
with UC severity are enriched for those known to drive epithelial
transformation. A validated corticosteroid response gene sig-
nature and higher anti-inflammatory ALOX15 expression are
associated with higher odds of achieving early clinical remission,
with remarkable overlap with genes implicated in response to
biologics. A shift to personalized approaches targeting specific
mechanisms in individual patients will be key to reducing the
increasing disease burden of UC worldwide.

Methods
Study design and participants. PROTECT was a multicenter inception cohort
study3 based at 29 centers in the USA and Canada. Children aged 4–17 years with a
diagnosis of UC based on accepted clinical, endoscopic, and histological para-
meters5, disease extent beyond the rectum, a baseline Pediatric Ulcerative Colitis
Activity Index (PUCAI) score of at least 10, no previous therapy for colitis, and
stool culture negative for enteric bacterial pathogens and Clostridium difficile toxin
were included. Informed consent or assent was obtained in all cases and the study
was approved by the local investigational review board at all investigative sites.
Detailed protocol and study description can be found in Hyams et al.3. Disease
extent was classified as proctosigmoiditis, left-sided colitis (to the splenic flexure),
extensive colitis (to the hepatic flexure), or pancolitis (beyond the hepatic flexure)
by visual evidence. Patients with severe or fulminant disease at presentation who
received a flexible sigmoidoscopy because of safety concerns were assigned to the
extensive colitis group (unassessable). Clinical activity at diagnosis was established
with the PUCAI (range 0−85), Mayo endoscopic scope (grade 1–3), and total
Mayo score (range 0−12). PUCAI less than 10 denoted inactive disease or
remission, 10−30 denoted mild disease, 35−60 denoted moderate disease, and 65
or higher denoted severe disease. A central pathologist blinded to clinical data
examined a single rectal biopsy from each patient and assessed histological features
of chronicity and quantitated acute inflammation. Paneth cell metaplasia, surface
villiform changes, or basal lymphoid aggregates were recorded if present. The
description of eosinophilic inflammation included the peak number of eosinophils
per high-power field relative to a cut-point (>32 cells per high-power field) derived
from a study of normal rectal biopsies in children3,5.

Depending on initial PUCAI score, patients received initial treatment with
either mesalamine (mild disease), or corticosteroids (moderate and severe disease),
with some physician discretion allowed. A detailed description of treatment
guidelines is provided in Hyams et al.3. All patients on mesalamine received study-
supplied Pentasa (Shire Pharmaceuticals/Pantheon, Greenville, NC, USA). For this
part of the study we used a week 4 (W4) remission outcome defined as PUCAI < 10
without additional therapy or colectomy. Twenty additional Cincinnati Children’s

Table 2 Multivariable models of baseline characteristics and gene expression associated with week 4 remission in 147 patients
with moderate-severe disease that received corticosteroids

Model
#

Model variables OR (95% CI) Variable P Model AIC Model AUC Model ChiSq Model P

1 Total Mayo score (range 0–12)
Rectal eosinophil level (count > 32 /hpf)
Sex (M vs. F)

0.68
(0.54–0.85)
2.27
(1.11–4.63)
0.47
(0.23–0.96)

0.0007
0.0245
0.039

186.03 73.7
(65.4–82.0)

25.75 <0.0001

2 Total Mayo score (range 0–12)
Rectal eosinophil level (count > 32 /hpf)
Sex (M vs. F)
Corticosteroid response gene signature (PC1 z-score
values)

0.77
(0.61–0.98)
1.81
(0.85–3.84)
0.47
(0.22–0.99)
0.36
(0.18–0.71)

0.032
0.122
0.048
0.003

178.51 77.4
(69.7–85.1)

35.27 <0.0001

3 Total Mayo score (range 0–12)
ALOX15 gene exp. (TPM)
Sex (M vs. F)
Corticosteroid response gene signature (PC1 z-score
values)

0.79
(0.63–1.00)
2.59
(1.21–5.52)
0.45
(0.21–0.96)
0.40
(0.2–0.79)

0.055
0.014
0.038
0.009

172.98 77.7
(70.0–85.4)

40.80 <0.0001

LR= 9.519 and LR P value= 0.002 when comparing model 2 to model 1
OR odds ratio, AIC Akaike’s information criterion, AUC area under the ROC curve, LR likelihood ratio, ROC receiver operator characteristic
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Hospital Medical Center patients were enrolled under another IRB approved
protocol, and were included in the current analyses as non-IBD controls after
clinical endoscopic, and biopsies evaluation demonstrated no histologic and
endoscopic inflammation. Rectal mucosal biopsies from a representative subcohort
of 206 PROTECT UC patients and 20 age and gender matched non-IBD controls
underwent high coverage transcriptomic profiling using Illumina RNAseq
(Table 1). These constituted the Discovery cohort for the current study.

The representative subcohort for RNAseq was defined by having a baseline
rectal biopsy available to be included in the RNAseq analysis, and must also have
the following data available in order to be assigned to the appropriate clinical
subgroup: baseline PUCAI, medication data including the need for rescue or
colectomy through week 4 and a week 4 PUCAI if the participant has not required
rescue or a colectomy during the first 4 weeks. The following PROTECT
participants were not eligible for the RNAseq analysis: patients with a diagnosis
other than UC after enrollment, patients with significant baseline violations,
patients who took rescue medications for a non-UC reason within the first 4 weeks,
baseline RNA sample is unavailable, race is either “Asian”, “Black or African
American” or “Unknown”, baseline PUCAI < 35 but did not start on mesalamine
as first therapy, baseline PUCAI ≥ 35 but did not start on corticosteroids as first
therapy. A total of 219 were selected, and data for 206 were ultimately available,
after excluding 5 subjects based on the RNAseq data as described below, and 8 with
insufficient RNA.

Rectal RNA extraction and RNAseq analysis. RNA was isolated from rectal
biopsies obtained during diagnostic colonoscopy using the Qiagen AllPrep RNA/
DNA Mini Kit. PolyA-RNA selection, fragmentation, cDNA synthesis, adaptor
ligation, TruSeq RNA sample library preparation (Illumina, San Diego, CA), and
paired-end 75 bp sequencing was performed9. An additional validation of the
baseline rectal gene expression at diagnosis utilized the independent RISK cohort of
treatment-naïve pediatric patients (55 non-IBD controls, 43 UC patients, and 92
CD patients with rectal inflammation) and single-end 75 bp mRNA sequencing9.
Reads were quantified by kallisto51, using Gencode v24 as the reference genome
and transcripts per million (TPM) as an output. We included 14,085 protein-
coding mRNA genes with TPM above 1 in 20% of the samples in our downstream
analysis. Only samples for which the gene expression (Y encoded genes and XIST)-
determined gender matched the clinical-reported gender were included in the
analyses (we excluded only one sample with unmatched gender). Four other
PROTECT samples were excluded due to poor read quality. A total of 226 RNAseq
samples with mean read depth of ~47M (14M std. deviation) were stratified into
specific clinical subgroups including Ctl (n= 20), and UC (n= 206), and were
substratified based on disease severity, and on histologic findings. Differentially
expressed genes were determined in GeneSpring® software with fold change dif-
ferences (FC) ≥ 1.5 and using the Benjamini–Hochberg false discovery rate cor-
rection (FDR, 0.001) for all analyses except for the corticosteroid response genes
that was calculated out of the 712 severity genes with FDR < 0.05. Unsupervised
hierarchical clustering using Euclidean distance metric and Ward’s linkage rule was
used to test for groups of rectal biopsies with similar patterns of gene expression.
ToppGene6 and ToppCluster7 software were used to test for functional annotation
enrichment analyses of immune cell types, pathways, phenotype, immune cell-type
enrichments, and biologic functions. Visualization of the network was obtained
using Cytoscape.v3.0.252.

For validation of the association between baseline gene expression and outcome,
we also generated independent Lexogen QuantSeq 3′ mRNAseq libraries19 and
single-end 100 bp sequencing for 134 participants who also had Illumina
mRNAseq data (the Discovery Cohort) and for 50 participants who did not have
Illumina mRNAseq data (the independent Validation cohort, Table 1). PCA was
performed to summarize variation in gene expression between patients, and
principal components (PC) values were extracted for downstream analyses. We
considered several central gene expression pathways PC1 preidentified by the
previous differential expression analyses and functional annotation enrichment
analyses of the core 5296 UC genes, the 712 severity genes, and the 115
corticosteroid response gene signature for the model building and associations with
the microbial composition as described below. PROTECT (GSE109142) and RISK
(GSE117993) rectal mRNAseq data sets were deposited into GEO.

Analyses of microarrays. We obtained colon biopsy gene expression data and
patient clinical data from published studies available in Gene Expression Omnibus
(GEO) as summarized in Suppl. Table 1. The Affymetrix raw gene array data (.CEL
files) were processed to obtain a log2 expression value for each gene probe set using
the robust multichip average (RMA) method implemented in R; the Affymetrix
GeneChip Human Genome U133 Plus 2.0 Arrays were processed in R with the affy
package (v1.56.0) and the gcrma package (2.50.0), and the Human Gene 1.0 ST
arrays were processed with the oligo package (v1.42.0). For comparative analysis,
the LIMMA package53 was used to identify the filtered gene probe sets that showed
significant differential expression between the studied groups, based on moderated
t-statistics with Benjamini−Hochberg FDR correction for multiple testing. Gene
probe sets were selected as biologically significant using FDR < 0.05 and a fold
change (FC) ≥ 1.5. When genes in microarray data were represented by multiple
probes, the probe with the greatest interquartile range was selected for analysis.

PCA was performed on the normalized log2 microarray data of control and UC
samples and PC1 values were calculated.

Microbiome analyses. DNA was extracted from PROTECT UC stool samples and
subjected to 16S rRNA amplicon sequencing. OTU clustering and taxonomic
assignment was performed24 (NCBI SRA Bioproject: PRJNA436359). Briefly, for
the OTU analysis the 16S bioBakery workflow built with AnADAMA254 was
applied and microbial taxonomy was based on the Greengenes 16S rDNA database
(version 13.5)55. Samples were subsequently filtered (min 3000 reads and OTU
prevalence threshold of 20 samples). Statistical significance was established using
hierarchical all-against-all association testing (HAllA: http://huttenhower.sph.
harvard.edu/halla) in all-against-all mode using Spearman as the similarity mea-
sure and a cutoff of 0.2 for the FDR. Overall, 156 PROTECT stools at baseline were
available that also had mRNAseq data. In total, 149 OTUs were significantly
associated with 9 genes, and 15 pathways, with 36 below FDR 0.1 (Supplementary
Dataset 5). Overall, only 28 RISK CD cases and 21 PROTECT Lexogen UC vali-
dation cohort cases had both fecal microbial profiling and rectal mRNAseq data,
providing insufficient power for validation of these results.

Computational deconvolution. To estimate cell subset proportions, we performed
a cell-type deconvolution. We utilized xCell56, a computational method that is able
to infer 64 various cell types (e.g., immune cell types, epithelial, and stroma cell
types) using gene signatures. To ensure robustness of our downstream analyses, we
considered only cell types that had significant enrichment scores (FDR corrected P
values < 0.1 in at least 80% of the samples). We calculated the significance using
two approaches, and took into account cell types that were significant in at least
one of them. The first includes randomization of the genes in the signatures used
for generating the enrichment scores and the second includes using simulations
where the tested cell type is not included in the mixture56. Epithelial cells were
considered but did not vary significantly between samples. We identified the fol-
lowing significant cell types: active DC, astrocytes, B cells, CD4+ naive T cells,
conventional DC, DC, memory B cells, plasma cells, Th1 cells, and monocytes. The
scores of active DC and DC as well as B cells and “Memory B cells” across samples
were positively and highly correlated (Supplementary Fig. 7) and we consider the
more specific and biologically relevant activated DC and memory B cells. Astro-
cytes cell type was removed from the calculation.

High-resolution respirometry. The Oxygraph-2k (O2k, Oroboros Instruments,
Innsbruck, Austria) was used for measurements of respiration. Each chamber was
air-calibrated in Mir05 respiration medium (0.5 mM Ethylenediaminetetraacetic
acid (EDTA), 3 mM MgCl2, 60 mM k-lactobionic acid, 20 mM taurine, 10 mM
KH2PO4, 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),
110 mM D-sucrose, 0.1% Bovine serum albumin (BSA) essentially fatty acid free)
before each experiment. All experiments were performed at 37 °C. Oxygen con-
centrations in each chamber never dropped below 80 μM during any experiment.
Patient biopsies were taken from the cecum and rectum in both control patients
(N= 5) and patients with UC (N= 9). Cecal and rectal biopsies were homogenized
in Mir05 respiration medium, and 100 μl of the tissue homogenate was added to
each chamber. Once baseline oxygen levels in each chamber became stable, cyto-
chrome c (10 μM), malate (2 mM), pyruvate (5 mM), Adenosine dipho-
sphate (ADP) (5 mM), and glutamate (10 mM) were added to stimulate respiration
through Complex I. Once the oxygen consumption rate plateaued, succinate
(10 mM) was added to assess the combined activity of Complexes I+ II. Next,
rotenone (1 mM) was added to inhibit Complex I activity, and additional succinate
was added to analyze maximal Complex II activity. Carbonyl cyanide p-
trifluoromethoxyphenylhydrazone (0.5 μM) was then added to uncouple the
mitochondrial membrane and induce maximal respiration. Respiration rates were
normalized to the amount of protein added for each sample. Complex I respiration
was defined as the rate of respiration of malate/ADP/pyruvate/glutamate (first
succinate—rotenone). Complex II respiration was defined as respiration after
adding the second dose of succinate minus Complex I respiration. Average rates of
oxygen consumption [(pmol/(s×ml)/μg protein]+ standard error of the mean
(SEM) were graphed.

Cold enzyme biopsy prep to generate single cells. Colon biopsies were minced
in a Petri dish on ice in the presence of Native Bacillus Licheniformis psychrophilic
proteases at 1 mg/ml (Creative Enzymes, Shirley, NY), transferred to an Eppendorf
tube, intermittently vortexed for 30–60 s, placed on ice, and gently pipetted over
15 min57. The suspension was centrifuged at 90 × g and the supernatant filtered
over a 40 mcM filter. Additional enzyme was added to residual tissue and the
procedure repeated for an additional 15 min. Cells were counted with trypan blue
and 85−99% viability was noted.

JC1 mitochondrial membrane potential measurement. JC1 staining was per-
formed on the above single-cell isolations with flow cytometry using the JC-1
(5,5″,6,6″-tetrachloro-1,1″,3,3″-tetraethylbenzimidazolylcarbocyanine iodide,
Molecular Probes, Inc. Eugene, OR) reagent according to the manufacturer’s
instructions. In brief, JC-1 dye was added at 1 mcM to washed cells, and incubated
for 20 min at 37 °C, 5% CO2. Cells were washed and CD45 APC-Cy7 (BD

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07841-3 ARTICLE

NATURE COMMUNICATIONS |           (2019) 10:38 | https://doi.org/10.1038/s41467-018-07841-3 | www.nature.com/naturecommunications 11

http://huttenhower.sph.harvard.edu/halla
http://huttenhower.sph.harvard.edu/halla
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Bioscience, Franklin Lakes, NJ) and EpCAM APC (BioLegend, San Diego, CA)
antibodies were added for an additional 30 min at room temperature. Cells were
washed, acquired on a Canto flow cytometer, and data were analyzed using
DeNovo software. The MMP was calculated as the ratio of PE-MFI/FITC-MFI in
EpCAM+ and CD45+ cells. Representative data are shown in Supplemental Fig. 1.
As a positive control for the specificity of the assay we used 50 mcM of CCCP
(carbonyl cyanide 3-chlorophenylhydrazone) to depolarize the MMP measured
using the JC-1 dye.

Immunohistochemistry. Immunohistochemistry detection of MT-CO1, COX5A,
and REG1A was performed32,58, using anti-Complex IV subunit I (Thermo Fisher
Scientific cat. #459600), anti-Complex IV subunit Va (Thermo Fisher Scientific cat.
#459120), and anti–REG1A (R&D Systems, INC. cat. #MAB4937). Staining was
examined using an Olympus BX51 light microscope and digitally recorded at ×20
and ×40 magnification.

Regression analysis for week 4 remission. We used multiple logistic regression
to (1) determine the prognostic power of baseline clinical information, and (2)
assess additional prognostic power resulting from including baseline gene
expression in predicting remission 4 weeks after diagnosis in the moderate-severe
group that received initial corticosteroid therapy. Pairwise association testing was
performed to identify baseline variables appropriate for model building (nominal
P value < 0.05). Clinical information considered for inclusion in the models were
baseline clinical and endoscopic severity (Total Mayo EEF), Paris and Montreal
classifications, presence of >32 eosinophils in the baseline rectal biopsy, gender,
race, age at diagnosis, baseline BMI z-score, and serum albumin. We considered the
corticosteroid response genes PC1 and several other central genes pathways PC1
preidentified by the previous differential expression analyses and functional
annotation enrichment analyses of the core 5296 UC genes and the 712 severity
genes. The corticosteroid response gene signature passed our predefined expression
filtering with the highest significance. For validation of the within subject biopsy
consistency, we performed in parallel mRNAseq of paired biopsies obtained at the
same time as the rectal sample used to derive the predictive gene panel in a subset
of patients (n= 6). Those comparisons showed a strong correlation of 0.94 (P=
0.005) for the corticosteroid response gene signature PC1 between pairs of biopsies.
Using forward selection, we progressively constructed several logistic regression
models that respectively include clinical and endoscopic severity, eosinophilic
grade, and sex (model 1), and clinical and endoscopic severity, eosinophilic grade,
sex, and the corticosteroid response gene signature PC1 (model 2). In model 3 we
tested how well eosinophil-associated genes can replace the histologic eosinophil
grade in model 2. At each step of model building, variables with P < 0.1 were
considered for inclusion; a likelihood ratio test was performed to compare the
model with and without the new variable. Each new variable with likelihood ratio
P < 0.05 was maintained in the model. The reliability of the final model was tested
by tenfold cross validation. Model fit and improvement at each stage was assessed
using AUC, Akaike Information Criterion (which penalizes for model complexity),
and sensitivity and specificity.

Summary of statistical tests used. Shapiro−Wilk normality test was used on the
continuous clinical parameters, and on specific gene expression, and PC1. If the
data were not normally distributed, Mann−Whitney was used to compare two
groups, and Kruskal−Wallis with Dunn’s Multiple Comparison test was used for
comparison of more than two groups. However, if the data were normally dis-
tributed unpaired t test was used to compare two groups, and ANOVA with FDR
was used for comparison of more than two groups. *All two-sided P < 0.05, **P <
0.01, ***P < 0.001. All statistical analyses were performed in SASv9.3 or GraphPad
Prism v7.04.

Study approval. This study was approved by the Institutional Review Boards at
each of the participating PROTECT sites. Informed consent was obtained for all
participants, with assent obtained for those aged 11 and older.

Data availability
PROTECT (GSE109142) and RISK (GSE117993) rectal mRNAseq data sets were
deposited into GEO.
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