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Abstract

Interdomain Multipath Routing

by

Igor Anatolyevich Ganichev
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Chair

While astonishingly successful, Internet is still less reliable than the phone system
and supports very limited user choice and control. As many researchers observed,
multipath routing is a promising paradigm to address these issues. In this thesis, we
argue that multipath routing can indeed go a long way towards these goals as well as
lead to a more scalable, extensible, and evolvable Internet.

We begin by describing Yet Another Multipath Routing (YAMR) protocol that
provably constructs a set of paths resilient to any one interdomain link failure. YAMR
uses an efficient scheme to construct the paths and a novel failure hiding technique
to further reduce the control plane overhead.

Next, we describe Pathlet Routing, a protocol that departs from the path-vector
paradigm. Pathlet routing allows ASes to advertise policy-compliant path segments
called pathlets, and allows users to stitch them together, thus forming a complete
path suitable for the user’s particular needs. Pathlet routing greatly reduces the
forwarding table size, can efficiently express a wide class of routing policies, and
provide an exponential number of paths to the users. Finally, we investigate how
pathlet routing can be a basis for an evolvable Internet architecture.
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Chapter 1

Introduction and Related Work

The Internet has changed all of our lives, mostly for the better. As an example of
its power to transform in strange and wonderful ways, the Internet enables Tibetan
monks to keep track of the latest Silicon Valley news. In this growth sprint, it outgrew
the farthest dreams of it original designers and early developers. While all of us are
indebted to the original design that did not fall apart under the growth pressures,
we must admit that the current Internet architecture faces a number of important
challenges. This realization has led many researchers to work on clean-slate redesigns
of the Internet. This thesis is a small contribution to this great challenge.

1.1 Architectural Challenges of the Current Inter-

net

Researchers and operators have identified a long list of outstanding architectural
challenges with Reliability, Scalability, and Poor User Choice being among the promi-
nent ones ([50], [12], [71], [49]).

Reliability. The Internet is becoming a critical component of our infrastructure,
business, and lives, thereby expanding our dependence on it and making it increas-
ingly more painful to go through an outage. Moreover, the possibility of an outage
prevents us from developing applications that cannot tolerate a disconnection, an
illustrative example being telesurgery.

Companies realizing this fact develop mechanisms to mitigate the effects of a
network disconnection using higher level approaches such as fetching a piece of data
from another location that is still connected. Network operators strive to increase the
reliability of their networks using mechanisms like MPLS Fast Reroute ([54]). All of
these efforts improve the Internet’s reliability, but measurement studies continuously
find it rather low ([34]). One popularly cited number being 2.5 nines of reliability as
compared to 5 nines of the phone system.
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Besides the fact that these solutions do not achieve desired reliability levels, they
complicate network operations and require each company to reinvent the wheel. These
patch solutions raise the barrier for new companies to enter the market and boast
comparable reliability guarantees.

Scalability. The Internet’s poor scalability has been identified as a major problem
by The Internet Architecture Board [50]. The current concern is due to the state and
processing requirements scaling linearly with the number of advertised prefixes, which
in turn has been growing at an increasing rate [36]. The growth of the forwarding
state is problematic because the Forwarding Information Base (FIB) has to be kept in
fast and expensive SRAM memory. The growth of the control plane state is an issue
because maintaining this state requires a proportional number of control messages
and leads to convergence times of several minutes [46, 48].

Poor User Choice. Users have very limited control over the path their data takes
across the Internet. In most cases, users can choose their edge ISP, but the fate of
their packets beyond that ISP is out of their reach. By user choice, we don’t mean a
grandma actively choosing the path her email should take. Rather, we mean giving
the end-hosts, edge routers, or some entities acting on their behalf some control over
the path and its properties.

If users are given more control over the path, the competitive landscape of the
Internet Service Providers (ISP) should become healthier allowing much of the “tus-
sle” to be resolved within the protocol [13]. With rigid protocols like Border Gateway
Protocol (BGP, [59]) different stakeholders have vested interest to push the design to
their benefit, eroding it with time.

Given a choice over the path, users can optimize the metrics they care about.
Currently, everyone gets an average path. There is no distinction between a user who
can tolerate a satellite latency but would prefer larger bandwidth and a user who is
making a voice call, needs only 10kbps, but would appreciate lower latency and loss
rate.

Andersen et al [4] showed that, had users even a small choice over their paths,
they could recover from all the observed outages. Furthermore, 5% of transfers could
double their bandwidth and 5% could decrease their loss rate by 0.05.

1.2 BGP is at the Core of the Problems

A large number of researchers analyzing these problems [44, 64, 42, 46, 48, 50, 31,
35, 17, 45] have shown that BGP plays a significant part in all of them.

Reliability. The evidence for BGP’s hand in poor reliability is abundant. Kushman’s
et al. study [42] of 50,000 VoIP calls found that

• Almost 50% of unintelligible VoIP calls occur within 10 minutes of a BGP
update, while only 1% of all VoIP calls are within 10 minutes of a BGP update.
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• More than 20% of outages correlated to BGP last for more than 4 minutes,
while more than 90% of outages not correlated with BGP last for less than 10
seconds.

Labovitz et al. in [46] showed that a route change causes, on average, 30% packet
loss for as long as 2 minutes. Wang et al. in [64] found that a singe routing event
can produce hundreds of loss bursts lasting up to 20 seconds. Finally, Gummadi et
al. [33] showed that routing through a random node (thus deviating from the BGP
path) can recover over 50% of network outages.

Scalability. The scalability concerns of the Internet are direct consequences of BGP’s
basic design as well as historic events like static address allocations and multihoming.
BGP operates at a network prefix level, i.e. (almost) all of its advertisements and
updates are per-prefix. Hence, both the forwarding and the control plane memory
requirements scale with the number of prefixes.

Being aware of this fact, designers of BGP included an aggregation mechanism
intended to collapse neighboring (in the address space) prefixes into a single prefix.
However, with the recent trend of multihoming and ISPs’ desire for finer control over
their address spaces, the aggregation mechanism becomes less and less effective [36].
In fact, a recent initiative ([19]) aims at removing these reasons by a global address
translation at the network edge.

Poor User Choice. Recall that in a typical scenario, an AS learns a path for each
prefix from one or more neighboring ASes. It then selects only one path to use and
advertise further. Thus, most BGP domains do see multiple paths but they cannot
offer these paths to the users. In fact, [51] suggests a mechanism to expose these
paths and improve user choice.

1.3 Multipath Routing Paradigm

In the previous section, we have seen that the three issues with the current Internet
are intimately related to BGP. The reader, however, should not belittle the design of
BGP (which stood the test of time, gave each AS autonomy in its routing decisions,
and was the pioneer of policy routing). Instead, he should see that interdomain
routing is a rather daunting task with a myriad of stringent requirements.

Luckily, a growing number of researchers [51, 74, 68, 73] have identified and ar-
gued for an approach that has a promise to address all the aforementioned problems,
namely, the multipath routing. The goal of multipath routing research has been to
find a protocol that can build and maintain multiple paths to each destination in
an efficient manner and can expose them to the user. Intuitively, this approach is
attractive because

• By exposing multiple paths to the users, we enable them to respond to network
failures by choosing a working path.
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• If multiple paths are available, the protocol might not be required to take im-
mediate action to repair the broken paths. Thus, alleviating the scalability
problem.

• If multiple paths are exposed to the user, we have improved user choice.

This thesis describes two interdomain multipath routing protocols called Yet An-
other Multipath Routing (YAMR) [24] and Pathlet Routing1 [28]. YAMR stays within
the path-vector paradigm of BGP and shows how a policy-based path-vector protocol
can be made into an efficient multipath one. Pathlet routing on the other hand is a
complete departure from path-vector routing. It is based on new, abstract, and flex-
ible concepts that result in a very efficient, elegant, and extensible protocol. Pathlet
routing shows us that the fundamental question of routing still has jewels laden in its
design field.

Following the descriptions of YAMR and pathlet routing, we look at how pathlet
routing can be a great fit for the interdomain routing protocol for an evolvable Internet
architecture2. Pathlet routing is a great fit because its building blocks provide a high-
enough abstraction level to allow domains to innovate independently. Furthermore,
domains can more easily define and roll out new services on top of pathlet routing’s
building blocks.

1.4 YAMR

Recent multipath routing proposals (e.g. [68, 51]), have made admirable progress
and demonstrated that it is possible to provide a set of alternate interdomain paths
in a scalable and policy-compliant manner.

The only disquieting aspect of these approaches (and many other multipath pro-
posals in the intradomain case) is that the set of alternate paths is somewhat ad hoc;
they cannot systematically compute a set of alternate paths that has a high degree
of path diversity.3 That is, while they provide a tunable number of alternate paths,
these paths may have significant overlap, thereby leaving the possibility that a single
failure could take out the entire set.

YAMR, on the other hand, provides high path diversity in a systematic way. There
are two components to the YAMR approach.

(1) An efficient BGP-like mechanism for computing a diverse family of
policy-compliant paths: This component of YAMR (which we call YAMR Path

1Pathlet routing was originally developed by Brighten Godfrey and I was privileged to work on
the later stages of its design and implementation. In this thesis, I report on the work I contributed
as well as the necessary background.

2Similarly to pathlet routing, the FII project, [41], was led by Teemu Koponen and Scott Shenker.
In this thesis, I report on the work I directly contributed to the project.

3The theory literature has many such algorithms, but they do not lend themselves to scalable,
policy-compliant implementation.
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Construction, or YPC) computes a set of alternate paths that are deviations from
BGP’s default path.4 Each alternate path is computed assuming that a link in the
default path is down. Considered as static set of paths, there is no single failure
that can break all the paths simultaneously, unless that failure disrupts all policy-
compliant paths between the source and the receiver. When protocol dynamics are
taken into account, the story is more complicated (because when BGP recovers from
a link failure, it can break paths that did not contain the failed link). We present
simulation results on the actual resilience achieved under full dynamics, which show
that YAMR improves the reliability of BGP following single link failures by almost
three orders of magnitude.

However, computing this family of paths involves higher control plane messaging
overhead than BGP. We therefore added another component to YAMR.

(2) A technique for reducing churn by localizing routing updates: Much
of the churn created by BGP is due to the fact that every change in a path must be
disseminated to all nodes that use that path. YAMR hides some of these updates,
and it turns out that this “update hiding” technique not only reduces YAMR’s churn,
it also increases (by an order of magnitude) YAMR’s resilience, by largely avoiding
BGP’s problem of recovery causing functioning paths to break.

1.5 Pathlet Routing

In pathlet routing, each autonomous system (AS) constructs a set of virtual nodes
(vnodes) — abstract entities that the AS uses to represent its policies. The AS also
constructs and advertises pathlets—fragments of paths along which the AS is willing
to route. Pathlets are represented as sequences of vnodes. To send a packet, a sender
concatenates pathlets into a full end-to-end path.

Pathlet routing has three key features. First, pathlet routing combines simple
abstract constructs into a clean protocol that can express a vast number of rout-
ing policies and expose a dramatic number of paths to the users. In fact, pathlet
routing is a generalization of both BGP and source routing, in terms of the express-
ible policies (i.e., allowed and prohibited routes). If each pathlet is a full end-to-end
route, the scheme is equivalent to BGP. If the pathlets are short, one-hop fragments
corresponding to links, then the scheme is equivalent to source routing. Moreover,
pathlet routing can emulate the policies of several recent multipath proposals includ-
ing NIRA [72], MIRO [69], and R-BGP [43], in addition to BGP and source routing.
We are not yet aware of any protocol which can emulate pathlet routing, although
there are several that pathlet routing cannot emulate [75, 74, 52].

The second feature is that pathlet routing can very efficiently represent local transit

4This basic idea is borrowed from [21], which computes the cost of the cheapest path that avoids
each link on shortest path. The algorithm for path labeling and its convergence properties were
developed and analyzed for YAMR for the first time.
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(LT) policies. We call an AS’s policies LT if it is only concerned with how traffic travels
through its own network. While BGP is perceived to be the ultimate policy routing
protocol, it actually forces each AS to choose one complete path for each destination
even if the AS is willing to route along any path as long as it traverses AS’s network
in an allowed way. We believe that the majority of ASes would be well satisfied with
local transit policies because the common export policy of valley-free paths is actually
an LT policy. Not only can pathlet routing enable local transit policies, it does so
with the following great benefits. ASes who choose to use local transit policies can
decrease their FIB sizes up to 4 orders of magnitude. This reduction is due to the
FIB size scaling with the number of neighboring ASes as opposed to the number of
destination prefixes. ASes who adopt local transit policies will dramatically improve
the path diversity experienced by their customers, hence improving reliability and
customer satisfaction. Equally important is that the AS that chose to use LT policies
gets all these benefits irrespective of what style of policies its neighbors or any other
ASes choose to follow.

The third key feature of pathlet routing is that pathlet routing does not require
all ASes for follow any particular style of policies. For example, if pathlet routing
is adopted as the interdomain routing protocol, some ASes might quickly recognize
the benefits of local transit policies and switch to them. Other ASes might be more
conservative and continue using BGP-style policies. Yet other ASes might choose to
do something in-between by controlling a few hops of the path after themselves.

1.6 Related Work

In this section we describe existing related proposals and the distinctions of YAMR
and pathlet routing.

1.6.1 NIRA

In NIRA, [73], each tier-1 ISP, named collectively as the core, is assigned an
address prefix. Each core ISP then allocates sub-prefixes to its customer ISPs, which
in turn allocate to their customers, and so on. If a tier-2 ISP has three tier-1 providers,
it will get three prefixes - one from each provider. Smaller ISPs can get exponentially
many prefixes if the network is densely interconnected. Each end-host gets an address
from each prefix of its direct provider. Thus, addresses essentially become AS-level
path descriptors. In other words, given an address of a host, one knows which ISPs
the packet will flow through on its way from the core to the host. This process of
recursive hierarchical address allocation is accomplished through a BGP-like Topology
Information Propagation Protocol (TIPP).

When an end-host wants to send a packet, it looks up all the addresses of the
destination (from a DNS-like system that authors call Name-to-Route Resolution
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Service, NRRS). Then, it chooses one of its own addresses and one of the destination’s
addresses and sends the packet. The source address in the packet determines the AS-
level path from the source to the core, and the destination address determines the
path from the core to the destination. Thus, NIRA provides multipath functionality
by encoding the AS-level path in the addresses.

NIRA is similar to source routing, but it does not have the classical source routing
problem of not being able to enforce policies because all possible routes are computed
by the network and are policy compliant.

While addresses in NIRA are somewhat similar to pathlets, NIRA is distinct from
both YAMR and pathlet routing in that it institutionalizes valley-free routing policy.
While NIRA suggests some ways to accommodate exceptions to valley-free routes,
these mechanisms incur significant overhead and additional complexity. YAMR’s
policy routing machinery is very similar to that of BGP and it does not assume valley-
free routes to be the predominant policy choice. The abstract constructs of pathlet
routing never come close to making any similar assumptions. In fact, many policies
that NIRA has to treat as exceptions are handled smoothly in pathlet routing. If, for
example, an AS wished to provide transit service between two peers or two providers,
this would simply involve connecting the two with pathlets.

1.6.2 MIRO

The main routes in MIRO [68] are constructed using BGP. When AS A wants to
have an alternative path to a certain destination D, it asks its immediate neighboring
ASes for alternative paths they have (recall that with today’s BGP, ASes learn many
paths to each destination, but choose to use and propagate only one). Neighbors
reply. If A does not like any of the paths it gets, it asks its neighbors to ask their
neighbors and so on. Say A discovers a suitable path starting at AS B. A and B
then establish a tunnel between themselves identified by a tunnel id.

Customers that want their packets to be forwarded on the new path somehow
notify A, which then installs filters in its routing tables to select customers’ packets,
to encapsulate them in an extra IP header destined to B, and to include the tunnel
identifier. When that customer’s packet destined to D reaches A, it is selected by the
filters, encapsulated, and directed into the tunnel. When B receives an encapsulated
packet, it knows to decapsulate it (and possibly perform other actions like bill A)
because it sees the tunnel id. Once the packet is decapsulated, it is forwarded using
B’s regular route to D.

Similarly to YAMR, MIRO uses BGP paths as the default ones. However, MIRO
does not describe any systematic way of choosing which paths should be built. It
assumes that some party will request a path and the AS will find and install one
using MIRO’s mechanisms. If paths are installed on-demand, the path establishment
latency can be prohibitive for reliability purposes. If paths are to be preinstalled,
some efficient automatic mechanism similar to YAMR must be added to MIRO.
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While MIRO is arguably easier to deploy in today’s BGP speaking routers than
pathlet routing, it has significantly higher path establishment and forwarding state
overhead if the number of available paths is to be comparable to that of pathlet
routing. In fact, pathlet routing can emulate the set of paths that MIRO can build
using its general and clean constructs.

1.6.3 Routing Deflections

Routing Deflections (RD) [74], as well as Path Splicing (PS) [51], concentrate
on intra-domain multipath routing and handle inter-domain case as an extension.
Currently, forwarding state at each router contains a single outgoing port for each
destination. RD replaces this outgoing port with a carefully selected set of outgoing
ports – a deflection set. Each port in the deflection set is equally good to forward
packets – no matter what port is selected at each router, the packet will be delivered
to the destination without any loops in the path. To ensure this property, authors
design a set of rules that determine which ports are to be included in the deflection
sets. Exact rules are not very important, but as an illustration, first rule states that
if the cost of the path from the next hop router is less than the cost from the router
to the destination, the port to the next hop router is included in the deflection set.
Each router’s deflection sets are computed locally using the information of the router
itself and of its neighbors.

Once the deflection sets are in place, RD allows users to select different paths by
allowing them to include an opaque tag in the packets they send. When a router
receives a packet with a tag, it maps the tag to a port in the deflection set and sends
the packet out on that port. The mapping can be arbitrary but deterministic so that
all the packets with the same tag follow the same path.

Besides the fact that RD’s inter-domain extension is rather limited, RD does not
provide any guarantee about the path diversity it achieves on a general network with
general policies. As [74] shows, RD rules for deflection set construction work well on
certain intradomain topologies with no policies, but there is little analysis of what
happens on interdomain topologies with general routing policies.

YAMR is specifically designed to provide a guarantee of single failure resilience.
Pathlet routing, if not atrociously misused by the ASes, exposes most (or even all) of
policy-compliant paths.

1.6.4 Path Splicing

Similarly to RD, Path Splicing (PS) [51], builds a set of outgoing ports for each
destination and uses tags to allow user path selection. However, the ports in the sets
are not equally good and the mapping from tag values to ports is not arbitrary.

Sets of ports are built by running k instances of the regular routing protocol with
different link costs. For a given destination, each instance builds a minimal cost
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tree rooted at the destination. Because link costs are different for each instance,
the trees are expected to be different and, hence, each router will know k routes to
each destination. The outgoing ports of these routes make up the set and routers
remember which port belongs to which tree.

The tag is interpreted as a sequence of trees to be used. In essence, by choosing
a certain tag, the user says “Route this packet on this tree for this long, then start
routing on that tree for that long, and so on”. Unlike routes in RD, routes in Path
Splicing can have loops, but because each tree provides a path to the destination, the
packet is guaranteed to reach the destination on the last tree specified in the tag.

Similarly to [74], Path Splicing, provides no guarantees on the diversity of the
available paths. Its tunable parameter k gives more control over the path diversity
than in RD, but k is not available in the interdomain case. In the interdomain case,
the tag in the packet is used to select one of BGP-learned paths. Thus, the paths
available through BGP essentially restrict the maximum path diversity.

Another important distinction between PS and YAMR/Pathlet Routing is that
policies must be checked and enforced on the data plane. In interdomain Path Splic-
ing, users can put a tag that would make the packet travel on a non-policy-compliant
path. The solution PS proposes is for routers to check the policies on the data plane.
It is relatively easy to do for valley-free policies (a single extra bit in the packet is
enough), but it remains an open question for more general policies. In YAMR and
pathlet routing, it is simply impossible for a user to construct a packet that would
travel along a non-policy-compliant path.

Finally, both PS and RD use opaque tags to designate paths. While it is sufficient
for reliability purposes, many other uses (e.g. avoiding an AS) require some knowledge
of the path by the sender. Pathlet routing exposes AS-level information about each
path. With an easy extension, pathlet routing can expose arbitrary metadata about
each pathlet allowing a user to construct a path that perfectly satisfied her needs.

1.6.5 IP’s strict source routing and loose source routing

The existing strict and loose source routing extensions to IP [18] enable senders to
control their paths. Pathlet routing borrows this fundamental idea of source routing
but applies it to policy-compliant pathlets rather than to the physical infrastructure.
The main issue with these extensions is that they have limited respect for policies.
For this reason and due to security and privacy concerns, these extensions have been
mostly disabled in today’s Internet. This fact was our primary motivation for con-
sidering interdomain routing policies as the first order requirement in the YAMR and
pathlet routing designs.

Another issue with strict and loose source routing is that each hop is specified as
an IP address (along with other header fields). This representation can have a high
header size overhead in strict source routing and in loose source routing if many hops
are specified. The problem gets exacerbated if IPv6 is used. Realizing this issue, we
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designed forwarding identifiers in pathlet routing to be much more compact. The
header size overhead in YAMR is just 4 bytes.

1.6.6 MPLS

Multiprotocol Label Switching (MPLS) [60] is a mechanism to carry packets along
a preconfigured path. Each path is assigned a label. When a packet enters the path,
the ingress router encapsulates the packet in a small MPLS header that contains the
label. Intermediate routers only look at the label when forwarding MPLS packets.
The labels are short and require only exact matching (which is less expensive than
longest prefix match of IP addresses). The egress router strips the MPLS label and
forwards the packet based on its original header (usually IP).

The tunnels of MPLS are similar to pathlets and the labels are similar to pathlet
routing forwarding identifiers. Moreover, MPLS allows label stacking to concatenate
path segments into longer MPLS paths similarly to concatenating pathlets into a
complete end-to-end path. However, MPLS is not intended to act as a policy-aware
interdomain routing protocol.

While it is true that MPLS has been growing in popularity for intradomain ISP
routing as well as some limited tunneling between neighboring ISPs, the labels are
not globally exposed and there is no abstract notion of vnodes. Without some notion
of vnodes (that allows the abstraction from physical routers), ASes cannot define
policy-compliant path segments that can be concatenated by end-users.

1.6.7 Platypus

Platypus ([57]) is similar to loose source routing except that it uses network ca-
pabilities to ensure policy-compliance. Platypus can achieve high path diversity but
its use of network capabilities and cryptography entails considerable configuration
challenges and run time overhead.

It is interesting to juxtapose how pathlet routing and Platypus solve the pol-
icy enforcement problem of source routing. Platypus uses an external mechanism of
network capabilities, while pathlet routing decides to follow a totally different ap-
proach. Pathlet routing essentially recognizes that it is hard to do source routing
on the physical topology and decides to make up a virtual topology (with vnodes
as nodes and pathlets as edges) that is inherently policy-compliant. In other words,
the logic of pathlet routing is “if we cannot solve the problem on the physical topol-
ogy, let’s change the topology.” Using a virtual topology instead of a physical one
let’s pathlet routing get rid of external enforcement mechanisms - if something is not
policy-compliant it is simply not present in the virtual topology.

YAMR does not need to solve this problem because it is not a variant of source
routing. Like BGP, YAMR constructs a set of paths and makes then available to the
users – it does not allow users to make their own paths.
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1.6.8 LISP

At a high level LISP ([19]) can be viewed as a giant tunneling system. LISP begins
with the current Internet (i.e. running BGP). Each stub network obtains a topolog-
ically significant IP address called a routing locator (RLOCs) from each provider.
To route a packet, a location-independent end-host identifier (EID) is mapped to
a location-dependent RLOC, tunneled across the Internet to the destination’s stub
network, and then de-encapsulated and delivered. LISP can select tunnel ingress
and egress points to produce multiple possible routes, but not an exponentially large
number as in pathlet routing or a provable guarantee as in YAMR.

LISP alleviates the scalability problem with today’s Internet, but does not change
its fundamental characteristics - the control and forwarding table sizes are still pro-
portional to the number of networks making up the translating core of the Internet
(i.e. all but the stub networks). Pathlet routing on the other hand, can make the
scaling behavior proportional to the number of neighboring ASes.

1.6.9 R-BGP

R-BGP [43] represents a small change to BGP that, under valley-free policies
assumption, can guarantee that the connectivity is not disrupted because of a single
interdomain link failure. It is a surprisingly slim mechanism that achieves guarantees
similar to YAMR. However, it is not a multipath solution, as it does not expose the
failover paths to the users. Only the network exercises these paths in response to a
failure. Users cannot use them proactively to improve their path quality.

1.6.10 Discussion

Before we move onto YAMR, we would like to note that both YAMR and pathlet
routing teach us unique design lessons that distinguish them from previous proposals.
YAMR shows that maintaining more can actually cost less. The logic behind this
counterintuitive fact is that when you have more (paths) and one fails, you don’t
need to immediately repair the failure, you can use the still working ones, thus saving
on maintenance costs.

Pathlet routing gives us a novel and quite a beautiful example of how abstraction
is able to solve problems. Pathlet routing represents ASes’ policies as a graph and
the whole Internet becomes one giant policy-representing topology with the property
that every path in this graph is policy-compliant by definition.



12

Chapter 2

Yet Another Multipath Routing

In this chapter we describe the YAMR design in details. As outlined in the intro-
duction, YAMR consists of two basic mechanisms: YAMR Path Construction (YPC)
and the Hiding Technique. In Section 2.1 we present the YAMR Path Construction
algorithm and, in Section 2.2, we present the hiding technique. Following that we
describe our simulation results in Section 2.3. Appendix A contains the formal proofs
of the theorems in this chapter.

2.1 YAMR Path Construction

2.1.1 Overview

The core of YAMR is a policy-based multipath construction mechanism that is
very similar to the way BGP constructs its paths. We borrow all of BGP’s basic
mechanisms including path advertisement, import filters, path selection process, and
export filters. Each mechanism is slightly modified to produce YPC. First, we intro-
duce some notation.

We describe paths by a series of ASes, such as [A,B,C,D]. This path contains
three interdomain links – (A,B), (B,C), and (C,D). We use RIB IN to describe the
set of routes learned from neighbors and RIB LOCAL to describe the set of selected
routes that is actually used for forwarding. For convenience, we use a failure model
where the interdomain links are the units of failure. YAMR can be generalized to
cover domain failures (where all links (∗, A) and (A, ∗) fail for some A) but we choose
to spare the reader of these details as all the basic mechanisms remain the same but
the notation becomes rather cumbersome.

The goal of YPC is to compute a default path pd (that is identical to what BGP
would compute) and for each link L in pd also to compute (if one exists) a policy-
compliant alternate path pL that does not contain the link L. It turns out that we
can only guarantee this under a set of restrictive conditions.
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     Messages                         A                         B                     C                     D                      E 
C->D: (0,0):[C]
C->B: (0,0):[C]
C->E: (0,0):[C]

(0,0):[B,C] (0,0):[D,C] (0,0):[E,C]local pathnone

D->B: (0,0):[D,C]
B->D: (0,0):[B,C]

(0,0):[B,C] (0,0):[D,C] (0,0):[E,C]
(B,C):[B,D,C] (C,D):[D,B,C]

local pathnone

B->A: (0,0):[B,C], 
          (B,C):[B,D,C]

E->A: (0,0):[E,C]

(0,0):[B,C] (0,0):[D,C] (0,0):[E,C]
(B,C):[B,D,C] (C,D):[D,B,C]

local path(0,0):[A,B,C]
(A,B):[A,E,C]
(B,C):[A,B,D,C]

A->E: (0,0):[A,B,C], 
          (A,B):[A,E,C], 
          (B,C):[A,B,D,C]

(0,0):[B,C] (0,0):[D,C]

(0,0):[E,C](B,C):[B,D,C] (C,D):[D,B,C]
local path(0,0):[A,B,C]

(A,B):[A,E,C]
(B,C):[A,B,D,C]

(C,E):[E,A,B,C]

This figure presents a simple run of YPC on the topology shown on the left. 
AS C announces a single prefix and other ASes build their paths to this prefix. 
In the table below, the first column shows the messages send by the protocol. 
The other five columns show the state of the routing tables after all the 
messages in the first column have been processed. Messages are denoted by 
“src->dst : msg”, where msg contains a number of paths. Each path is denoted 
by “label:AS-path”. In this figure, we denote the default path label by (0,0). 
Messages that don't result in changes to the routing tables are omitted. Also, 
note that we picked a particular order of the messages. If another order were 
picked, intermediate routing tables would have been different.

C

A

B E

D

Figure 2.1: A complete run of YPC on a simple topology.

We say that the network is in a canonical condition when the network has con-
verged and all ASes follow next-hop [22] and widest-advertisement [44] policies (these
policies include the customer-peer-provider policy [27]), and there are no dispute
wheels [32]. Under these conditions, we can show:

Theorem 1 Assuming the canonical condition, for any destination D, AS A, and
interdomain link e, if there is a policy-compliant path from A to D that avoids e, then
YPC computes a policy-compliant e-avoiding path to that destination.

We now describe YPC in more detail, starting with the control plane and then
moving to the data plane.

2.1.2 Control Plane

Similar to BGP, ASes in YAMR construct their default and alternate paths from
the paths advertised by their neighbors, applying local policies, import and export
filters and actions. These multiple paths to the same destination are differentiated
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using labels. Default paths have a special label which we denote by d, while alternate
paths are labeled by the link they avoid.

Within this framework, YAMR achieves Theorem 1 by selecting paths as described
in Algorithm 1, where

• pL denotes an L-labeled path

• bestA(U) denotes the A’s most preferred path from the set U

• UL denotes the set of L-labeled paths A knows from its neighbors

• UL
d denotes the set of default paths A knows that avoid link L.

AS A first selects its default path from the default paths it knows from its neigh-
bors. Because default paths are selected only from default paths, the default paths
in YAMR are exactly the same as in BGP. Then, for each interdomain link L on
the default path, A selects an L-labeled alternate path from the set of default paths
avoiding L (the AS can tell whether a path avoids a given interdomain link simply
by looking at the ASes it traverses) and alternate L-labeled paths.

Algorithm 1: YPC path selection run by AS A.

/* select the default path */
pd := bestA(Ud)
foreach link L in pd do

/* select the L-labeled alternate path */
pL := bestA(UL

d ∪ UL)
end

We now walk through a complete run of YPC shown in Figure 2.1. First, C
announces its default path [C] to its neighbors, which then construct their default
paths. None of the neighbors is able to construct an alternate path yet. Next, B and
D send their default paths to each other. Upon processing these messages, each of
them is able to construct the alternate path it needs. Next, B and E send to A the
updates to their RIB LOCALs. A can construct its default path either from [B,C]
or [E,C]. A prefers to have [A,B,C] as its default path and now needs to construct
alternate paths avoiding links (A,B) and (B,C). For the (A,B)-avoiding path A has
the path [A,E,C] as the only choice because the path [A,B,C] goes through (A,B)
and the path [A,B,D,C] cannot be considered because of its label (and would be
unsuitable anyway, since it does not avoid (A,B)). Finally, A sends updates to its
RIB LOCAL to E, which is now able to pick its alternate path.

Putting all this together, we can show:

Theorem 2 If there are no dispute wheels, YPC always converges to a unique final
configuration that has no loops.
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While the formal proof of this theorem is available in Appendix A, we would like
to provide the intuition behind this fact thereby giving the reader a feel for YAMR’s
path construction dynamics. First, note that default paths are constructed completely
independently from the alternate paths. In other words, while default paths serve as
building blocks for alternate paths, the latter never influence default paths in any
way. Thus, the convergence properties of YPC’s default paths are exactly the same
as those of BGP’s paths. As the theorem 2 is true for BGP, it is true for YPC’s
default paths.

To extend this result to alternate paths, we first note that default paths will con-
verge at some point. At this point, they become like a boundary condition (in a
differential equation) for alternate paths. As we noted, these boundary conditions
don’t change after some point. Next, note that alternate paths for each link are com-
pletely independent of each other. In other words, alternate paths for link (A,B) have
no way to influence any alternate path for link (C,D) because (A,B)-labeled paths
are built only from default paths or other (A,B)-labeled paths. Thus, the dynamics
of each set (avoiding a specific link) of alternate paths is completely independent of
other alternate paths and of already converged default paths. Looking at one such set
in isolation, we see that its dynamics are exactly the same as the dynamics of BGP
with the only exception of a more complicated boundary condition. Thus, they will
also converge. The reader should now see the reason behind the peculiar Algorithm
1.

We would also like to draw the readers’ attention to a curious distinction between
YAMR’s alternate paths and BGP paths computed when a link fails. Consider an AS
A, a destination prefix p, and some link (B,C) on the default path from A to p. Let
P1 be the path that BGP would give A were link (B,C) to fail. Let P2 be the path
that YPC gives A as the (B,C)-avoiding path. It is interesting to note that paths
P1 and P2 are not necessarily the same. While the dynamic properties of YAMR and
BGP are very similar they don’t arrive to the same solution. In general, either of P1

and P2 can be “better” than the other, so its hard to compare the path quality, but
in our experiments they were equivalent in the vast majority of cases.

2.1.3 Data plane

YAMR requires a single addition to the IP header: a 32-bit field for the path
label. A packet arriving at AS A destined to D with label L is forwarded along the
L-labeled path towards D if A has such a path in its RIB LOCAL. Otherwise, the
packet is forwarded along the default path towards D (without overwriting the label).
If A does not have a default path towards D, the packet is dropped. Once the control
plane has converged, this algorithm is guaranteed to produce no loops.

For each destination, a YAMR router needs to have a forwarding entry for the
default path and for each alternate path whose next-hop is different from the next-hop
of the default path. Thus, the state requirements of YAMR are roughly 1 + k times
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that of BGP, where k is the average interdomain path length. Recent measurements
suggest that this is around 3.6 [5] in the Internet.

2.1.4 Discussion

We don’t take a firm stance on who should perform the actual label insertion, the
end-host or one of its domain’s routers. If an end-host does not want to worry about
the label insertions, it can place some tag in the packet that will get converted to the
appropriate label by the domain’s router.

As Theorem 1 shows, YPC is guaranteed to give each AS a policy-compliant
path that avoids any given interdomain link (if such a path exists), thus greatly
improving reliability. Moreover, users can use all of the paths simply by inserting the
appropriate path label into their packets. (The default path lists all the AS links,
and so the edge will know which labels will produce different paths; YAMR does
not include mechanisms to tell the edge which of these AS links might be providing
subpar service.) The paths are constructed and made available to users with moderate
increases in the control messaging (or churn) as we will see in Section 2.3, and in RIB
and FIB sizes.

BGP scalability is considered a critical challenge ([50]) and YPC makes it worse.
Among the many dimensions of scalability, churn appears to be the most intractable.
Indeed, the comparison of technology trends and projected growth of RIB and FIB
sizes in [3] suggests that technology advances are expected to satisfy RIB and FIB
memory requirements at a constant cost. We now present a method that reduces
YAMR’s churn below that of BGP. This churn reduction method is based on hiding
path withdrawals and leaving most of the Internet completely oblivious to the failure.

2.2 Hiding Route Updates

2.2.1 Overview

YAMR’s hiding technique is a set of distributed mechanisms that can be applied
to YPC, BGP, or other path-vector routing protocols to confine the effects of a link
failure to a small neighborhood around the failure. The basic idea is for hiding ASes
not to propagate the link failure information to their neighbors if they can safely
reroute around the failure. For example, in Figure 2.1, if link (B,C) fails, B can
reroute around this failure by deflecting all traffic onto [B,D,C] without telling A
that path [B,C] has failed. We call B a hiding AS, path [B,D,C] a deflection path,
and path [B,C] (the failed path being hidden) a lame path.

In the example above, B is able to completely hide the failure so that all other
ASes remain oblivious to it. However, in general topologies and policies, B might
be able to hide the failure only from a subset of its neighbors. The reason being
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that the deflection path that B selects might be non-exportable – B’s export filters
would not allow this path to be advertised to the other neighbors. In such a case, B
withdraws the failed path from the neighbors for whom it can’t hide the failure. These
neighbors then recursively try to hide the withdrawal from their neighbors using the
same mechanism. This process continues until a group of ASes around the failure
is collectively able to hide it. In the worst case, this group of ASes can encompass
the entire Internet if the failure cannot be hidden. In other words, a single failure is
hidden by a dynamically determined bubble of hiding ASes (see Figure 2.2).

Figure 2.2 illustrates a case of two simultaneous failures. D is the destination and
links (A,B) and (C,E) fail. B attempts to hide the failure of (A,B) but does not
fully succeed and the failure news spread to ASes J and H. Similarly, AS E attempts
to hide the failure of (E,C) but has to withdraw the path from some neighbors.
Ultimately, the set of ASes E, G, and H are able to contain the failure. As the figure
illustrates, H is aware of both failures, whereas K and F are not aware of any failure.
Thanks to the densely connected nature of the Internet, as we show later, usually
just a few ASes can completely contain the failure.

When hiding is combined with YPC to produce the full YAMR protocol, the
following results hold:

Theorem 3 If there are no dispute wheels, YAMR always converges.

Theorem 4 In the converged state, YAMR has no forwarding loops or dead ends.
Moreover, if ASes follow next-hop policies, all forwarding paths are policy-compliant.
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Algorithm 2: YAMR default path selection.

/* set the default path to null. If we don’t find one below,
/* we won’t have a default path and will be disconnected */
pd := null
/* while we have at least one default path from the neighbors */
while Ud is non-empty do

/* select the best default path from other default paths */
pd := bestA(Ud)
if pd is lame then

/* If the path we picked is lame, try to find a deflection path for it */
pd.defl := best non lameA()
if pd.defl is null then

/* If we could not pick a deflection path, delete the default path*/
/* so we don’t pick it again and try one more time */
delete pd from RIB IN
continue

end

end
/* If default path was not lame or we found a deflection path, */
/* we are done. */
break

end

Theorem 5 Assuming canonical conditions, for each AS A, if there is a policy-
compliant path from A to the destination, A has a policy-compliant path to the desti-
nation in YAMR.

Theorem 6 When a failed link recovers, all hiding caused by it stops and routing
returns to normal.

As we mentioned earlier, hiding can also be applied to BGP with the theorems
above (with obvious modifications) continuing to hold. These theorems are proved in
Appendix A. Next, we present the four mechanisms that comprise hiding.

2.2.2 Hiding Path Selection

The fundamental mechanism of hiding is to pretend that a withdrawn path is
available. Note that a link failure to a neighboring AS can be treated as a path
withdrawal even though no actual withdrawal message is received. In our subsequent
description of hiding we will only talk about path withdrawals but presume both
withdrawals and link failures.
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When a path currently in the AS A’s RIB IN is withdrawn from A, A does not
delete it from the RIB IN as it would in BGP. Instead, A marks the path as lame
and calls the path selection algorithm. Path selection algorithm (algorithm 1 or the
regular BGP path selection if hiding is applied to BGP) is run not caring whether any
path is lame or not. If, as the outcome of path selection, A selects a lame path, it tries
to choose a deflection path for it from the set of other default and alternate paths.
If there is no suitable deflection path, the lame path is deleted from the RIB IN and
no hiding occurs.

YAMR’s selection of the default path is presented in Algorithm 2. Alternate path
selection follows an analogous algorithm. Here are the definitions of the notation used
in the algorithm.

• pL denotes an L-labeled path, with pd denoting the default path.

• bestA(U) denotes A’s most preferred path from the set U

• Ud denotes the set of default paths A knows from its neighbors

• best non lameA() denotes A’s most preferred non-lame path from the set of all
paths that A knows about.

• pL.defl denotes the deflection path associated with a lame path pL

Path selection ensures that once it is done, each lame path in the RIB LOCAL
(i.e. any selected lame path) has a deflection path associated with it. As in BGP, after
the RIB LOCAL has been updated, YAMR announces the changes to its neighbors.
Export filters and actions are applied to non-lame paths in exactly the same way
as in BGP. However, for lame paths, export filters are applied to the corresponding
deflection paths and export actions are applied to the lame path.

This curious distinction is due to the fact that A will be advertising the lame path
but forwarding along the deflection path. Since A will be advertising the lame path,
A wants to apply the export actions to it before sending it to the neighbor. In the
common case, the lame path will be the one that A has selected and advertised before
the failure. So, after applying the export actions, the resulting path will be the same
as the one A has previously sent and A won’t be sending it again. This is the point
where failure propagation stops.

A applies export filters to the deflection path because A will be forwarding along
it and wants to make sure that the data path is compliant with its policies.

If export filters allow the deflection path to be advertised to a neighbor, the lame
path is actually advertised. Otherwise, a withdrawal message is sent to the neighbor.

2.2.3 Hiding Forwarding

Forwarding in YAMR is the same as in YPC except that the forwarding entries for
lame paths are built based on the corresponding deflection paths. If the lame path’s
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label is different from the deflection path’s label, the labels of packets forwarded along
the deflection path are replaced with the deflection path’s label.

2.2.4 Tokens Overview

In the two previous sections, we described that YAMR advertises lame paths, but
forwards on deflection paths. When there is a single failure, this lie is harmless, but
with multiple failures and multiple ASes hiding, lying can cause forwarding loops
or leave an AS unnecessarily disconnected. These two problems originate from the
following two fundamental issues.

Consider an AS B that advertises a path p to its neighbor A. Because of hiding,
the actual forwarding path p′ can be different from p. The difference between p and
p′ leads to problems in two cases:

1. If A is in p′ but not in p, A can select p and create a forwarding loop.

2. If A is in p but not in p′, A will not accept p and can become unnecessarily
disconnected if p is the only path it was offered.

Hiding solves these two problems by introducing a new message type we call a to-
ken. There are two types of tokens. Loop detection tokens solve the first problem,
while disconnection preventing tokens solve the second. We call the messages tokens,
because their processing resembles passing a physical token - no AS remembers any
state for any token, and when a token is received, it is either dropped or passed on
to a single other AS.

At a high level, the goal of both token mechanisms is to cause some AS to stop
hiding. Informally, hiding tries to hide as much as possible, but it recognizes that
sometimes too much hiding can cause problems. The cure for these problems is to
reduce the level of hiding in the network by asking some AS(es) to stop hiding. In the
distributed environment of the network, the AS that is hurt by a problem is usually
not the AS that is causing the problem. Moreover, the AS that is hurt by a problem
might not know that it is hurt just by looking at its local state. In the loop detection
mechanism, an AS sends a token when there is a possibility that its packets can be
entering a loop. If indeed so, the token is guaranteed to find a responsible AS and
make it stop hiding. In the disconnection preventing token mechanism, the AS creates
a token when it sees that it is possibly unnecessarily disconnected. The purpose of
the token is to find a responsible AS and to ask it to stop hiding. In the next section,
we describe both mechanisms in details.

Hiding has a convenient property that allows us to utilize simple mechanisms to fix
problems. The property is that any AS can decide to stop hiding at any time without
any coordination with other ASes or any impact on the “correctness” (loop freeness
and absence of unnecessary disconnection). This property allows us to use simple
healing mechanisms rather than some complicated distributed coordination schemes.
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By healing mechanisms we mean that hiding proceeds without any distributed coor-
dination between ASes. Instead, ASes sometimes send out token messages to heal
a possible problem. The healing action is always to ask some AS to stop hiding. If
the problem is not fixed when one AS stops hiding, some other AS will send another
token.

The down side of this simple approach is that it might be overly-precocious and
cause too many ASes to stop hiding (hence unnecessarily increasing churn). A possible
alternative would be to use some distributed algorithm to compute the minimal set
of ASes that need to stop hiding to fix the problem. While we did not develop such
a mechanism, we feel that it will likely cause more control messaging overhead than
it saves. From our experiments we saw that tokens do not cause many unnecessary
hiding terminations.

2.2.5 Loop Detection Tokens

The loop detection tokens are quite simple. They are created in a single case -
when a deflection path for a particular lame path changes. In other words, let AS
A have a lame path P and the deflection path P ′ associated with P . When A goes
through the path selection algorithm (that can be initiated because of a new path
announcement from a neighbor, for example) it can again select P ′ or some other
path P ′′ as the deflection path for P . If P ′ is selected again, no loop detection token
is necessary. If another path P ′′ is selected, a loop detection token is generated. The
generated token is forwarded along the newly picked deflection path.

Each loop detection token T contains two pieces of data: a destination prefix p
and a list S of (B,N) pairs, where B is a label and N is an AS number. Each AS
that forwards T appends to S a pair (B,N) containing the label of the path on which
the token is forwarded and its own AS number. Let L denote the label in the last
pair of S.

When a token arrives at AS A, A first looks up the path P along which it would
forward a packet destined to p with label L. Path P can be either a regular path or
a deflection path. Let Q be the label this packet would have when leaving A (recall
that the packet’s label can change if it is different from the label of the deflection
path that the packet is forwarded onto). Then, A checks how many times (Q,A) is
present in S (see algorithm 3 for the pseudocode of the following). If twice, A drops
T . If none, A forwards T along P . If once, A checks if P is lame. If so, A deletes P
from the RIB IN , thus ceasing to hide it, and drops T . If P is not lame, A forwards
T along P .

This token processing can seem somewhat complicated, but there is simple in-
tuition behind it. The loop detection tokens are designed to break stabilized loops
(when no AS in the loop is changing its forwarding table). If A sees the token for
the first time (case 0 in algorithm 3), there is no indication of a loop and A simply
forwards it along. If A see it the second time and its path is not lame, A cannot break
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Algorithm 3: Loop Detection Token Handling.

switch number of times (Q,A) is present in S do
case 0

A appends (Q,A) to S;
A forwards T along P ;

case 1
A checks if P is lame;
if if P is lame then

A deletes P from the RIB IN , thus ceasing to hide it;
A drops T ;

else
A appends (Q,A) to S;
A forwards T along P ;

end

case 2
A drops T ;

end

the loop and so it forwards the token along as it will reach a hiding AS at some point.
If A’s path is lame, the token has served its purpose - A stops hiding. If A receives
the token for the third time, it means that the network was actively changing while
the token was in-flight. It can safely drop the token because someone in the changing
network either already sent another token or the original cause of this token’s creation
is gone.

Note that loop detection tokens keep track of (label, AS number) pairs rather
than simply AS numbers because it is not yet a loop if a packet arrives to the same
AS multiple times with different labels. While unusual, this behavior is possible and
valid in the presence of hiding.

2.2.6 Disconnection Preventing Tokens

The disconnection token mechanism requires a small change to the path selection
process: ASes must not use sender side loop detection and the import filters must
not filter out loopy paths allowing them to be inserted in RIB INs. Sender side
loop detection is a BGP mechanism where AS A that uses a path going through its
neighbor B does not advertise this path to B because B would not be able to accept
it anyway. The second change is to modify the import filters that would normally
filter out loopy paths to allow them. Thus, loopy paths are inserted into the RIB IN
alongside the regular paths. The loopy paths in the RIB IN are never selected into
RIB LOCAL but act as a signal that the AS might be unnecessarily disconnected.
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Algorithm 4: Disconnection Preventing Token Handling.

if if P is lame then
A deletes P from the RIB IN , thus ceasing to hide it;
A drops T ;

else
if if S contains (Q,A) then

A drops T ;
else

A appends (Q,A) to S;
A forwards T along P ;

end

end

Next, we describe the creation and processing of disconnection preventing tokens.
An AS A creates a preventing disconnection token when its path selection cannot

pick a default path (because there are no candidates) but its RIB IN contains at least
one loopy path. A sends the created token along the best loopy path (in terms of
A’s path preference function) and schedules a timer to retransmit the token if the
condition persists at the timer expiration. Disconnection preventing tokens require a
retry timer because the timing of network events can cause tokens to be lost with-
out fixing the problem. There might be another mechanism that does not require
retransmission but we could not find one.

A disconnection preventing token contains the same data as the loop detection
token and this data is updated the same way. Only the processing is different. As
before, let token T contain the destination prefix p and a list S of (B,N) pairs, where
B is a label and N is an AS number. Also, let L be the label in the last pair of S. As
with loop detection tokens, A first looks up P (the path on which a packet destined
to p with label L would have been forwarded) and Q (the label that the packet would
have had when leaving A). If P is lame, A deletes P from the RIB IN and drops T
- the token has found a problem and healed it. Otherwise, A checks if S contains
(Q,A). If so, A drops T . This case means that the network was actively changing
while the token was in-flight. There is no reason to send the token anymore. If S
does not contain (Q,A), A forwards T along P . See algorithm 4 for pseudocode.

2.2.7 Failed Link Propagation

The main intent of failure hiding is to eliminate churn from transient network
events. For example, it would be unfortunate if a permanent link removal would be
hidden for a long time. Also YAMR, as described so far, does not guarantee that
when a failed link recovers all hiding caused by it stops and the network returns
to pre-failure state. One would wish that the protocol itself intrinsically had these
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properties. However, because the dynamics of policy routing are surprisingly complex,
we were unable to find a simple intrinsic modification to YAMR that would achieve
these properties. Having had to resort to an additional mechanism, we opted for
Failed LInk Propagation (FLIP) protocol similar to Root Cause Information in [44],
[38], and Root Cause Notification in [55].

The basic idea of FLIP is to propagate the failed link(s) together with the with-
drawal that it (they) caused. Each AS, for each destination prefix, maintains a list
W = [F1, F2, . . . , F3] of failed interdomain links that it learned from path withdrawals
for this prefix. Recall that when AS A cannot hide a withdrawal for its neighboring
AS B, A sends a withdrawal message to B. With FLIP, this withdrawal message also
contains all the links in W .

Alongside each Fi, each AS stores the path through which it learned about this
link failure. These paths are advertised together with Fis. If some AS learned about
a failure of a link from multiple neighboring ASes, it chooses a single (arbitrary) path
to remember. These paths are needed to reliably remove the link failure records from
all ASes when the link recovers.

The reader familiar with BGP should have already noticed that FLIP can essen-
tially be obtained from BGP by removing all policies and replacing IP prefixes with
link failures. In BGP, ASes announce a prefix, record the announcement propagation
path, and use this path for forwarding. In FLIP, ASes detect failures of neighboring
links and include them in withdrawal messages. The propagation paths of the failure
information are recorded, but used only to ensure that when the link recovers this in-
formation is reliably removed. The “reliably removed” guarantee of FLIP is identical
to the guarantee that when a prefix is withdrawn by the originating AS, all records
of this prefix will soon be erased from all ASes in the Internet.

The only distinctive feature of FLIP is that link failures are propagated only in
withdrawal messages. This crucial distinction ensures that only a few ASes that need
to know about the failures actively participate in FLIP. In other words, only the ASes
that participate in hiding learn about the failures. This fact keeps FLIP’s overhead
minimal.

How do we use FLIP? As we mentioned earlier, FLIP is used to make sure that
only temporary failures are hidden and all hiding state is cleared when the failure
recovers. However, the description of FLIP so far did not tie it to hiding in any way.
Their interaction happens through a very simple rule - an AS can hide a withdrawal
of a path [A1, A2, . . . , An] as long as it knows from FLIP that for some 1 ≤ i ≤ n− 1
link (Ai, Ai+1) has failed. Using this rule and FLIP we can summarize when an AS
can hide and when it has to stop.

[When to Hide] When a failure occurs, FLIP disseminates the failure to some
ASes thus allowing them to hide the failure. If another type of change occurs (e.g.
link is permanently removed), no failure information is disseminated, thus ensuring
that no AS is allowed to hide this change.
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[When to Stop Hiding] Each AS is free to stop hiding at any time for whatever
reason, but it is required to stop hiding a path when FLIP revokes all link failures
relevant to the path. When a failed link recovers, FLIP is guaranteed to revoke the
failure information from all the ASes it originally disseminated this information to.
Thus, when a failed link recovers, all ASes that were hiding this failure are guaranteed
to stop hiding and return the network to the original state.

2.2.8 Discussion

Recalling the high level picture, YPC is able to efficiently construct a set of paths
with provable static diversity guarantee, but incurs higher messaging overhead than
BGP. To decrease the overhead, we developed a hiding technique that, as we will see in
the next section, brings the churn level of YAMR below that of BGP. The surprising
result, again to be discussed in the next section, is that hiding also substantially
improves resilience. Hiding localizes the impact of any routing update and decreases
the chance that the convergence process will interfere with any functioning paths.

However, hiding deprives YAMR of some of YPC’s valuable properties. First, the
set of YAMR paths might not be one-failure resistant because the set of paths might
already be hiding failures (so another failure can cause all working paths to fail). Sec-
ond, YAMR’s advertised paths can be different from the forwarding paths. Because
ASes cannot be sure about the paths beyond the first hop, they cannot implement
policies beyond next-hop policies with 100% confidence. The question is whether the
benefits (described in the next section) of YAMR’s increased resilience and substan-
tially lower churn (compared with YPC) are worth these two disadvantages.

2.3 Evaluation

Recall that YAMR is composed of the path construction algorithm YPC and a
hiding technique. The hiding technique can be applied to BGP, forming what we call
HBGP. To understand the contribution of each of these two components to various
metrics, we run each experiment for four protocols: BGP, HBGP, YPC, and YAMR.

2.3.1 Methodology

To evaluate the behavior of our protocols, we implemented a message-level event
driven simulator. For simplicity, we treated each AS as a single router. Undoubtedly,
this simplifying assumption reduces the simulator’s faithfulness, but we believe that
it captures the interdomain dynamics fairly accurately. Besides the core protocol
algorithms, it also includes important features like MRAI timers (with average value
of 30 seconds), router processing delay, and message propagation delay. We used
annotated the Internet-like topologies generated using [15].
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Our basic experiment is the following. Given a topology and a multihomed stub
AS, we make the AS announce a prefix, let the network converge, fail one of the
provider links from this AS, and let the network reconverge. This basic experiment is
repeated for all multihomed stub ASes and all of their provider links. We use a 1000
node topology for most metrics. To study scalability, we use topologies of sizes from
500 to 5000 in increments of 500.

We selected this experiment, which focuses on failures close to the edge, because
internal failures are substantially less common and more amenable to recovery, even
in BGP. Thus, the edge failures are the most interesting case, and are the dominant
case in practice. We also note that this simulation is similar to the live deployment
experiment of [65]. The study of a broader class of failure models is left for the future
work.

2.3.2 Results

We present and discuss our results for reliability, churn, path stretch, and for-
warding table size.

Reliability
We measure reliability by measuring the number of ASes that experience discon-

nectivity and the time this disconnectivity lasts for. We consider an AS to experience
disconnectivity if there is ever a moment when none of the paths in its forwarding
table are working.

We detect working paths in our simulator in the following way. Recall that our
simulator is event driven. After each event in the simulator that causes a change to
some forwarding table, we send a packet from each AS to the destination prefix using
all the labels in the source AS’s forwarding table. The simulation is paused while
these packets are in-flight, so no forwarding state changes. If a packet reaches the
destination we consider the path that it was originally sent on as working.

Table 2.1 shows the average number of ASes that experience disconnectivity dur-
ing the convergence process. Looking at the percentage of ASes that experience
disconnectivity, we see that YPC is about 75 times more resilient than BGP. An alert
reader would ask why does any ASes experience disconnectivity in YPC? Wasn’t YPC
provably one failure resilient. The answer is that YPC is one failure resilient in the
static sense (recall the introduction). The unfortunate property of BGP-like path-
vector protocols is that convergence process can break even working paths that did
not contain the failed link. This property affects YPC as well. Immediately following
any single link failure, all ASes indeed have a working path. However, as network
starts to reconfigure, a few of these working paths can change creating transient loops
and disconnectivity periods.

The remarkable fact is that when hiding is applied to YPC, these dynamic effects
of convergence all but disappear - only 0.01 percent of ASes experience disconnectivity
in YAMR. That is almost 1000 times better than in BGP. While hiding was originally
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BGP HBGP YPC YAMR
Percentage of Disconnected ASes 9.05 8.43 0.12 0.01
Average Convergence Time 23.8 16.7 44.9 1.16

Table 2.1: Average percentage of ASes experiencing transient disconnectivity (top
row) and average convergence time in seconds (bottom row) following a single link
failure in a 1000 node topology.

developed to decrease churn, it actually helps reduce adverse convergence effects by
more than an order of magnitude. The reason for this improvement is that hiding
dramatically reduces the number of ASes participating in convergence hence lowering
the probability that a working path will change and cause disconnectivity.

Comparing the disconnectivity numbers between BGP and HBGP, we see that
hiding is much less effective when applied to BGP, giving only 7% improvement. The
reason for hiding being less effective in BGP is because BGP has significantly fewer
path choices for deflection paths. This causes the hiding bubbles to grow large.

The table also shows the average convergence times for each protocol. The con-
vergence numbers have similar relations and point to the same underlying reasons
as we described above. First, hiding reduces YPC’s convergence time by almost 40
times, while reducing BGP’s convergence time only by 30%. The reason again is the
scarcity of deflection paths in BGP.

Note that YPC converges almost 90% slower than BGP does. This behavior is
expected because convergence in YPC is a two-step process. First, the default paths
converge. Once the default paths have converged, the alternate paths can safely do so.
These two steps have a significant overlap though - while the default paths far from
the failure are still changing, the alternate paths close to the failure might already
have converged.

Because the simulation evaluations of other interdomain multipath routing pro-
posals [74, 68, 51] were done with different methodologies, we have not been able to
accurately compare YAMR’s reliability with them; however, we can give a very rough
comparison of YAMR to path splicing [51]. Recall that static reliability means that
a routing protocol, at the time of the failure, has an alternate path that avoids the
failure. This is an easier quantity to measure than what we studied in our dynamic
simulations, since it ignores the fact that when a routing protocol converges it can
disrupt functioning alternate paths. Nonetheless, it does provide some measure of
reliability. Eyeballing Figure 7 in [51], we see that path splicing is able to improve
static BGP reliability by about a factor of 15 with 5 forwarding entries per router
per destination (that is, there are 15 times more unnecessary disconnections in BGP
than there are in path splicing). YAMR, on the other hand, has no unnecessary
disconnections when a single link fails, and even in our dynamic simulations, which
allow routing recovery to disrupt alternate paths, it has almost 1000 times fewer
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Figure 2.3: CDFs of number of messages following a link event. On the left side,
only update messages are included. On the right side, all messages are included. The
averages are BGP: 829, YPC: 1828, HBGP: 178 and 249, YAMR: 134 and 286.

unnecessary disconnections than BGP.
R-BGP [44] is another promising approach, achieving both perfect static and

dynamic reliability when a single link fails. However, it is not a canonical multipath
algorithm because it does not make multiple paths available to the users; it only
invokes them upon network-detected failure. It also does not provide these guarantees
under arbitrary policies.

Churn
Figure 2.3 shows the CDFs of the number of messages following a link event. Link

events include both link failures and link recoveries. We present two graphs with
and without tokens because token processing is a much lighter operation than update
message processing and because separating them shows how many updates hiding
eliminated and how many extra messages it introduced.

In both graphs, YAMR and HBGP significantly outperform YPC and BGP, rein-
forcing the conclusion that hiding is effective in reducing the messaging overhead. It
is interesting to note that if tokens are ignored, YAMR has less control messages than
HBGP. This observation again confirms that hiding works best when there are plenty
of candidates to pick for deflection paths. When tokens are included, YAMR per-
forms somewhat worse than HBGP, especially in the higher percentiles. The reason
is that higher percentiles correspond to cases where the network is sparsely connected
around the failure and hiding cannot effectively hide it. In these cases, YAMR tries
to hide much longer than BGP. Each time it tries to hide, it sends a token to check for
problems. HBGP gives up faster and hence sends less token messages than YAMR.

If tokens are ignored, YAMR reduces the message overhead by a factor of 6.2
compared to BGP, and by a factor of 2.9 if tokens are counted. This result is quite
significant because YAMR maintains about 3 times more paths than BGP. YAMR’s
performance greatly depends on the connectivity density of the network - the denser
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Figure 2.4: Average number of messages following a link event versus topology size.
On the left side, all link events are included. On the right side, only half of the events
with lowest number of messages are included, separately for each protocol.

the network, the easier it is to hide, the lower the churn. If the recent trend of
more interconnections at the edges continues, YAMR’s performance will continuously
improve with time.

Note that compared to the protocols without hiding (BGP and YPC), the proto-
cols with hiding (HBGP and YAMR) perform relatively better in the lower percentiles
than in the higher percentiles. For example, at 20th percentile, YAMR has only 5 mes-
sages while BGP has 388 messages. For every failure, BGP requires many messages
to converge. YAMR, in contrast, is more bimodal: when the failure occurs in a
densely connected portion of the network, it recovers with very few messages, but if
connectivity is sparse then recovery is expensive (sometimes more so than BGP).

Scalability
Figure 2.4 shows the number of control messages of the four protocols for different

topology sizes. The most important observation is that all four protocols’ churn scales
linearly with the size of the network (the left graph in figure 2.4). However, if only the
events that cause lower than median number of messages are counted (the right graph
in figure 2.4), we see that protocols with hiding have a constant average number of
messages. This shows that when the network is densely connected and hiding is able
to hide, it does so in a manner independent of the size of the network!

Path Stretch
After each of our basic experiments with a single provider link failure, we measured

the average path stretch for all 4 protocols and found that the average path stretch
was negligible. For example, the average path stretch of YAMR was only 1.02. The
reason is that in the Internet-like topologies, it is almost always possible to find an
alternate path that has the same length as the shortest one.

Forwarding Table Size
Let F be the average number of forwarding entries per router per destination. As
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noted in Section 2.1.3, the pessimal F is 1+k, where k is the average path length. The
pessimal value is reached when all alternate paths are constructed and they are all
different. In our 1000 node topology the average path length is 2.86, so the pessimal
F is 3.86, but in our simulations F = 2.21, 43% less than the pessimal value. If this
holds for the Internet, F for the Internet would be roughly 2.62. So, the forwarding
table would need to grow by a small multiple of the current table size.

2.4 Conclusion

YAMR starts of with the familiar BGP, fortifies it with a provable resilience against
a single interdomain link failure, gives users multiple paths to chose from for each
destination, and reduces churn with an automatic failure localization technique.

The YAMR’s path construction method is surprisingly efficient and is guaranteed
to find a policy-compliant path, if one exists, avoiding any given interdomain link.
But the increase in churn, however small, is node desirable given that the Internet’s
scalability is already a challenge. The failure localization technique cuts the YAMR’s
churn level well below that of BGP and as a side effect greatly improves convergence
time and dynamic availability. Furthermore, failure localization is applicable to any
path-vector protocol and can be of independent interest.

While YAMR made the familiar path-vector into an efficient multipath protocol
and taught us that maintaining more can cost less if done right, it feel like a mainte-
nance release to an aging product. We believe that future interdomain routing should
be more flexible, extensible, and at a higher abstraction level. The following chapter
presents pathlet routing - a flexible, extensible, and surprisingly elegant interdomain
routing protocol.
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Chapter 3

Pathlet Routing

In this chapter, we start by describing the pathlet routing protocol and a possible
design for disseminating pathlets throughout the Internet. We then switch to the
expressiveness of pathlet routing, our implementation, and evaluation. Finally, we
conclude with a discussion of pathlet routing and its comparison to YAMR.

3.1 The Pathlet Routing Protocol

We start off with an example of pathlet routing with the hope of getting the reader
familiar with its abstract concepts. We then introduce the protocol more formally
and talk about pathlet dissemination throughout the Internet.

3.1.1 Example

The figure 3.1 illustrates a few important aspects of pathlet routing. Pathlet
routing is built on two core concepts: a vnode and a pathlet. For now, vnode is just
an abstract entity that AS creates to represent its policies. In this example, ASes have
trivial policies and each of them creates a single vnode. Pathlet are just sequences of
vnodes. Each AS can create pathlets that start at its vnodes. By creating a pathlet,
an AS announces to the world that it is willing to route along it.

Pathlet routing is concerned about delivering packets from one vnode to another
vnode. If pathlet routing is to be used in today’s Internet, vnodes need to be tagged
with IP prefixes so that the sender knows to which vnode its packets should arrive.
Once the vnodes are created and tagged with prefixes (if any), they are globally
advertised.

When ASes learn about other vnodes around them, they can start creating path-
lets. In the figure, all ASes except B create at least one short pathlet. AS C creates
two pathlets. Once the short pathlets are created and advertised, users in AS C can
reach 18.0.0.0/8 network by concatenating two pathlets [c, e] and [e, f ]. Each pathlet
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Figure 3.1: An illustration of pathlet routing.
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has a forwarding identifier (FID) that together with the first vnode uniquely identify
it.

To send a packet along the [c, e, f ] = [c, e] + [e, f ] path, user in C puts two FIDs
into its packet header: 5 and 3. When the packet arrives to vnode c (using some
intradomain routing system), it checks its forwarding table and find that 5 is the FID
of pathlet [c, e]. The forwarding entry instructs the vnode to forward the packet to
vnode e after stripping off 5 from the FID list in the header. Vnode e acts analogously
when the packet arrives to it. When the packet arrives to vnode f it finds the FID list
empty and routes on the destination address using its intradomain routing system.

If the physical connection between ASes C and E fails, the user can immediately
divert its packets by routing them along the [c, d, e, f ] = [c, d] + [d, e] + [e, f ] path.
All she needs to do is to set the FID list of its packets to (4, 2, 3).

In our example, AS B chooses not to construct short pathlets. Instead, it uses
pathlets [d, e] and [e, f ] to construct a long pathlet [b, d, e, f ]. It assigns an FID of 6
to this pathlet and advertises it.

Users in AS A can now reach 18.0.0.0/8. They need to place (1, 6) into the FID
list of their packets. Each packet is processed as we described above except when it
reaches vnode b. Because pathlet 6 is built from two other pathlets, the forwarding
entry for it in vnode b instructs the vnode to not only pop 6 from the packet’s FID
list, but also push 2 and 3. The bottom left illustration in figure 3.1 shows how FID
lists look when the packets arrive at each vnode.

Next, we describe vnodes and pathlets in more details.

3.1.2 Vnodes and Pathlets

As we mentioned earlier, vnodes are virtual entities that AS creates to represent
the routes it wants to allow. The simplest case, which we have seen in example 3.1, is
for each AS to have a single vnode. In fact, with one vnode per AS and only one-hop
pathlets, pathlet routing can emulate source routing.

A vnode has an identifier of the form v = (ASN, v) where ASN is the AS number
and v is the AS’s local ID for the vnode. This naming scheme insures that each AS
has an independent namespace for its vnodes.

A pathlet P is simply a sequence of vnodes [v1, v2, . . . , vn]. P is identified by
a forwarding identifier (FID), denoted by Pfid, that is an opaque, variable-length
sequence of bits. Each AS is free to assign any FIDs to its pathlets without any
coordination with other ASes. The only requirement that it needs to satisfy is:

• Packets arriving to vnode v1 with an FID list that starts with Pfid will reach
vnode vn with Pfid popped from the FID list.

Pathlet routing does not specify the FID encoding scheme. Thus, each AS can
choose a scheme that works best for it given the number of pathlets it has and the
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popularities of these pathlets. For example, to minimize the average packet header
overhead most popular pathlets should be assigned short FIDs.

In our implementation, we use the following encoding scheme for variable-length
FIDs. FIDs that begin with 0, 10, 110, 1110, and 1111 bit sequences have total length
of 4, 8, 16, 24, and 32 bits, respectively. Following the initial bit sequences, are the
actual values identifying the pathlets. We used a special encoding for FIDs of length
4 because most ASes in our simulations had less than 23 = 8 pathlets, so their FIDs
would fit into 4 bits.

Vnodes are mapped to routers in a many-to-many fashion. That is one router
can host multiple vnodes and one vnode can live on multiple routers. The mapping
question is essentially a question about realizing a virtual configuration on a physical
network. While this is a very important and non-trivial question, we keep it outside
of the scope of this thesis as it is largely independent of pathlet routing and would
probably require another thesis.

Besides being used as nodes in pathlets, each vnode has an associated forwarding
table. The physical instantiation of the forwarding table is part of the logical-to-
physical mapping question we mentioned above, but we specify the forwarding table
semantics that pathlet routing depends on.

The forwarding table F at vnode v has one entry per pathlet P that starts at v.
The Pfid is used as the index into F . Thus, pathlets that start at v must have unique
FIDs. This is the only requirement for FID uniqueness. So, a single AS can have
multiple pathlets that are identified with the same FID, as longs as they all start at
different vnodes. This fact can help reduce FID sizes.

The entry at v1 indexed by Pfid and corresponding to pathlet P contains the
following information:

• Next Hop Rule Some directives on how to reach the next vnode v2. The exact
nature of the directives are dependent on the implementation of the logical-to-
physical mapping, but they can include (1) directly submitting the packet to v2
if v2 is resident on the same router, (2) sending the packet out of an interface,
(3) tunneling the packet using an MPLS label, and so on.

• Push FIDs A list of FIDs that must be pushed to the front of the packet’s FID
list after popping Pfid. For one-hop pathlets, this list is empty. for pathlets
built from other pathlets, it will contain the FIDs of these other pathlets. In
example, 3.1, the forwarding table at vnode b for pathlet 6 has (2, 3) as the
push FIDs.

Figure 3.2 shows a high level view of a packet header in pathlet routing with IP as
the intradomain routing system. The first part of the header, we call a transit header,
represents the headers of technologies that are used to deliver packets between vnodes.
It can be an L2 Ethernet header, an MPLS header, or an IP encapsulation header.
Following that is the FID list - the main field of pathlet routing in the header. This
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Figure 3.2: A high level view of a pathlet header.

part of the header contains the list of pathlet ids along which the packet is going to
travel. After the FID list is the IP header. Once the packet reaches the last vnode,
its FID list is empty and the packet is forwarded using intradomain IP routing.

3.1.3 Pathlet construction

After defining the vnodes and designating some of them as ingress vnodes (we
define ingress vnodes in the next section) for its neighbors, an AS announces the
ingress vnodes to the corresponding neighbors.

Then, pathlet construction proceeds asynchronously. At any point in time, each
AS knows (1) its own vnodes, (2) ingress vnodes exposed by its neighbors, (3) the
pathlets it constructed (if any), as well as (4) some set of pathlets constructed by
other ASes. Using this information, the AS can construct pathlets of two types:

• One-hop pathlets are pathlets consisting of two vnodes [v1, v2]. v1 must be
a vnode that the AS created itself. v2 can be either a self-created vnode or a
foreign ingress vnode.

• Compound pathlets are pathlets of the form [v1, P1, P2, . . . , Pn] that consist
of one self-constructed vnode v1 and a sequence of pathlets P1, P2, . . . , Pn.

For example, in Fig. 3.1, most of the pathlets are one-hop pathlet, while pathlet
6 of AS B is a compound pathlet - [b, [d, e], [e, f ]].

3.1.4 Packet forwarding

Recall that each router can have multiple forwarding tables: one for each vnode
it hosts. Each forwarding table is an exact-match lookup table keyed by the pathlet
FIDs that begin at this vnode. The FID is mapped to the next hop rule and the list
of push FIDs.

When a packet arrives at a router, the router first determines which vnode the
packet should be given to, if any. An AS is free to chose the mechanism to achieve
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Figure 3.3: A transformation to convert a configuration with multiple ingress vnodes
to a configuration with a single ingress vnode.

this1. Pathlet routing only specifies how vnode identification is done when packets
cross domain boundaries - using the notion of an ingress vnode.

AS A designates one vnode to be the ingress vnode for each of its interdomain
links. The same vnode can be used as ingress vnode for multiple links, but one link
cannot have more than one ingress vnode. When a packet arrives to a router on an
interdomain link, it is given to the ingress vnode designated for this link. The ingress
vnodes are communicated across domains as part of pathlet routing control protocol.

A curious reader might wonder why we limited the number of ingress vnodes to
one per link. The reason is that the design with a single ingress vnode is as powerful
of the design that uses multiple ingress vnodes. The multi-ingress configuration can
be converted to a single-ingress configuration using the trick illustrated in figure 3.3

Having separate ingress vnodes for different neighbors allows the AS to specify
policies that depend on the previous hop AS. In section 3.3.1, we will see an example
where ingress vnodes represent classes of neighbors: customers, peer, and providers.

Once the router determines the vnode to receive the packet, the packet is sub-
mitted to the vnode’s forwarding table. The vnode first checks if the FID list in the
packet header is empty. If so, the vnode checks that the destination address in the
packet header belongs to one of the prefixes that the vnode is tagged with. If so, the
packet is forwarded to the destination address using the AS’s intradomain routing.
If the destination address does not belong to any prefix attached to the vnode, the
packet is dropped.

If the FID list is not empty, the top FID is used to find the forwarding entry in
the vnode’s forwarding table. If the entry is not found, the packet is dropped. If the
entry is found, the top FID is popped from the FID list. The push FIDs from the

1Possible mechanisms to solve the vnode identification question for intradomain case include
using the notion of ingress vnodes for intradomain links, mapping MPLS labels to vnodes, explicitly
tagging the packets with the next vnode it should be delivered to.
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entry are pushed onto the FID list in the header and the packet is forwarded using
the next hop rule from the entry.

Note that the sender cannot violate AS’s policies because it cannot name a path
that is not policy-compliant. If he specifies an FID that does not exist, the packet
will be dropped because there won’t be any forwarding entry for this invalid FID.
Any path that the sender constructs from valid FIDs is a policy-compliant path by
definition.

3.1.5 Route selection

The pathlet dissemination mechanism to be discussed in section 3.2 provides each
AS with a set of pathlets enough to reach all destinations in the Internet. ASes can
use any other external mechanism to learn more pathlets if they desire. For example,
Google can provide a pathlet database service for others to query.

Given a set of pathlets, a sender or someone acting on its behalf (a gateway
router, a DNS-like pathlet server provided by the AS, etc), can construct a path to
a destination in the following way. The sender creates a directed graph with all the
vnodes it knows as the nodes and all the pathlets as the edges (pathlet [v1, . . . , vn]
results in a directed edge v1 → vn). Then, it can run a shortest path algorithm such as
Dijkstra to find the shortest path from itself to a vnode tagged with the destination’s
prefix.

If the pathlets are tagged with pathlet metadata such as the average latency of
the pathlet, or the average available bandwidth, or the average loss rate, the sender
can use this information to optimize his utility function.

While the ability to select paths annotated with their properties is immensely
valuable, it requires having the pathlet map of the whole Internet. There are several
reasons why we don’t see it as an important problem. First, the pathlet map of the
whole Internet is not much more than what BGP disseminates today as we will show
in section 3.5. If all ASes adopt local transit policies (to be introduced later), the
Internet map is just a small multiple of the number of ASes in the Internet. Second,
the pathlet Internet map can be much more stable than the BGP routes. Recall that
pathlets are virtual path segments. An AS should change or withdraw a pathlet only
when its network is partitioned or it is changing its policies. These events are more
rare than arbitrary path element failures that result in BGP updates. Third, if path
computation nevertheless turns out to be more expensive than what some senders are
willing to incur, centralized path computation services can be deployed. A DNS-like
service can compute a path in response to a user’s query or some pathlet proxy can
insert FID list into the packets flowing through it.

Pathlet routing does not limit the options of who (and how) computes the path
and inserts the FIDs into the packet header. Users can utilize a myriad of previous
work on path selection including: learning path properties based on availability or
performance observations [75, 7], commercial route selection products [6]; a path
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monitoring service [72]; third-party path selection services [47].

3.1.6 Pathlet Routing Privacy

In pathlet routing, ASes globally announce their internal vnodes as well as the
pathlets they construct. A reader might be worried that ASes will have to sacrifice
their privacy when adopting pathlet routing. While we did not carry out a rigor-
ous analysis of pathlet routing’s privacy implications, we offer a few arguments that
pathlet routing does not expose much more than what BGP does.

First, the map of vnodes and pathlets that the AS announces is not a physical
map of its network, so the AS should not be worried about revealing its physical
network topology. For example, as we will see later, valley-free policies are always
encoded in the same way, independent of the actual physical topology.

Second, even though BGP does not explicitly reveal AS’s policies, it reveals the
route decisions made using these policies. Many researchers ([26], [16], [63], [2]) have
studied and successfully inferred the ASes’ business relationships. In other words,
ASes implicitly reveal a good extend of their policies even today.

3.2 Pathlet Dissemination

While pathlet dissemination is an independent aspect of pathlet routing - pathlet
routing would work fine if AS operators called each other on the phone and described
their pathlets - a base pathlet dissemination protocol should be standardized to ensure
basic connectivity. In other words, each AS should be guaranteed to have enough
pathlets to reach all destinations. After the basic connectivity is provided, it can be
used to implement other pathlet dissemination schemes.

3.2.1 Design Motivation

We propose a particular pathlet dissemination algorithm that we evaluate in sec-
tion 3.5. Before describing it, let us consider a couple of naive designs.

The simplest possible scheme can be for each AS to propagate all the pathlets
it knows to all of its neighbors. This scheme would work fine, except that pathlet
routing does not bound the maximal number of pathlets an AS can construct. If
many ASes decide to create millions of pathlets, this approach will fail.

The obvious fix is to allow ASes to propagate only a subset of known pathlets to
their neighbors. This solves the scalability problem, but introduces another one. Let’s
say that AS A created a pathlet P and advertised it to AS B, which then advertised
it further to AS C. Also, assume that no other AS advertised P to C. Now, consider
what happens if A withdraws P and the router in C that advertised P to A fails. A
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won’t hear the withdrawal message and can potentially think that P is a valid pathlet
for an arbitrary long time.

While this problem can be solved in several different ways (such as periodically
checking the liveness of all the pathlets), we chose a simple proven mechanism.

3.2.2 Dissemination Algorithm

As ironic as it may seem, we chose a path-vector based dissemination protocol.
As pathlets are advertised, ASes remember the channel through which they received
the advertisement. The channel is just a sequence of ASes leading to the AS that
created the pathlet.

Drawing a parallel with BGP, pathlets are analogous to prefixes and the dissem-
ination channel to the ASPATH attribute of the BGP update messages. The major
difference being that in BGP, ASPATH attribute is used as the data plane path of the
packets, while in pathlet routing, the dissemination channel is needed only to ensure
the liveness of the pathlet.

If the channel is live, the AS can be sure that it will receive the pathlet withdrawal
message if the source AS were to withdraw the pathlet. If the channel is broken - some
element along the channel fails – the AS can be sure to receive an updated channel
(if one exists) or a pathlet withdrawal if no other channels are available. Thus, this
mechanism is guaranteed to clear all stale pathlets from the entire Internet. The
downside is that a working pathlet can be withdrawn from some ASes. This is not a
serious problem because, as we will see later, our dissemination protocol guarantees
that all ASes will be able to reach all destinations (given that a pathlet path exists).

The main disadvantages of path vector based dissemination are (1) that each AS
must remember and advertise not only the pathlet but also the dissemination channel,
leading to higher memory and bandwidth costs, and (2) the messaging overhead from
changes in the dissemination channel.

The extra memory costs are negligible given the current costs of DRAM memory.
The messaging overhead is more problematic, but there is a vast space for possible
optimizations. The simplest optimization is to realize that unlike in BGP, ASes never
need change the dissemination channel to a more preferred one because all channels
are equally good. Furthermore, ASes can use path stability heuristics discussed in [29]
to reduce the number of updates from path failures. Lastly, it is interesting to realize
that the channel actually does not have to be a path (it can be a set) and the update
conditions can be relaxed. We did not investigate any of these theoretically interesting
optimizations because our results in section 3.5 showed that messaging overhead is
not much worse than that of BGP.

Our path-vector based dissemination protocol allows each AS to advertise any
subset of pathlets it knows to any neighbor. In other words, the AS is free to choose
what to advertise much like it is free to choose any export filter in today’s BGP. The
question then becomes which pathlets to choose.
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Suppose v is A’s ingress vnode for neighbor B (all traffic from B to A will be
treated as arriving v). Then, A advertises the following subset S of all the pathlets
it knows.

S =


Pathlets which form a shortest path

tree from v to all destination
vnodes reachable from v

⋃
Up to limit(A) of pathlets
originating from AS A and
reachable from v, for all A


where limit(A) is a function that determines the maximum number of pathlets
originating from AS A that should be advertised. In our experiments, we used
limit(A) = 10 + number of neighbors(A). The pathlet weights for the purposes
of shortest path tree computation are set to the number of vnodes in these pathlets.

The left side of the union is necessary and sufficient to ensure that B can actually
reach all the destinations that it can possibly reach. We added the right side to
provide a level of redundancy to the minimal tree of the left side.

3.2.3 Discussion

We chose to disseminate the set S from among many possible alternatives for the
following reasons. First, because the basis connectivity is a must, we must include
some tree spanning all destinations (similar to the left side of the union). We chose to
include the shortest path tree because it favors shorter pathlets. Shorter pathlets are
better because they result in relatively higher path diversity since they can be mixed
and matched more than longer pathlets. Second, advertising only the minimal tree
can cause B to be disconnected from some destinations after a single pathlet failure.
To avoid this problem we chose to advertise a few more pathlets per originating AS.
We advertise more pathlets from ASes that have more neighbors hoping that these
extra pathlets can significantly increase the path diversity.

There is certainly some algorithm that can maximize the achieved path diversity
for the given number of extra pathlets. However, we found that this simple linear
algorithm performs well enough in our experiments. For example, for most of the
ASes using local transit policies, it advertised all of their pathlets providing very high
path diversity.

3.3 Policy Implementation in Pathlet Routing

In this section, we begin by introducing local transit policies. Then, we describe
how different styles of policies can be implemented in pathlet routing and how they
can coexist at the same time.
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3.3.1 Local Transit Policies

Pathlet routing enables a natural class of policies that we call Local Transit (LT)
policies. We say that an AS A follows local transit policies if A’s willingness to carry
traffic along a path P depends only on the point P enters A and the point P leaves
A.

Local transit policies should come across as one of the most natural classes of
policies. Intuitively, local transit policies allow ASes to control exactly what they
care most about - the way traffic flows through their networks.

Today, most ASes enter into bilateral agreements only with ASes they directly
interconnect with. If an AS does not have any route influencing agreements with
remote ASes it is essentially following local transit policies. We say “essentially”
because the export filter of these ASes probably looks only at ingress and egress
points to decide if the path is allowed - this is the definition of local transit. However,
BGP forcing each AS to choose and advertise only a single path makes the other
paths effectively disallowed.

The common “valley-free” export filter in BGP ([25]) is a special case of local
transit policies. To implement valley-free export policy, ASes label each of their
neighbors as a customer, a peer, or a provider. Then, a path through neighbor A can
be advertised to a neighbor B if and only if at least one of A and B is a customer.

As natural as local transit policies are, we are not aware of any multipath routing
proposal that makes all policy-compliant paths under local transit policies usable
in the data plane. NIRA ([72]) enables the valley-free special case of local transit
policies.

Advantages. Local transit policies have a number of benefits compared to BGP.
First, since LT policies result in short pathlets. These pathlets can be combined
into an exponential number of different paths. A large number of usable paths leads
to higher user utilities, better ISP services market, and the possibility of deploying
critical applications over the Internet.

Second benefit is that LT policies require very little forwarding state. Forwarding
state is proportional to the number of pathlets that the AS constructs (and is inde-
pendent from the pathlets other ASes construct). As we will see shortly, local transit
policies can be implemented with a very small number of pathlets, hence reducing the
forwarding state requirement to just a few entries. Having few required forwarding
entries in routers will lower the pressure to upgrade the routers as the Internet grows.
ASes can also fill the remaining entries with forwarding state to implement other
value-added services.

The third benefit is a bit speculative. Since vnodes and pathlets are a form of
abstraction (or virtualization), they create a vast innovation space for the AS in
actually implementing the pathlet routing guarantees. Just like the layers below
IP have seen great innovation, the algorithms to implement pathlet routing on the
physical network are likely to break new grounds. This hope is particularly true for
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local transit policies because with short local pathlets, the AS has complete control
over how the pathlets are implemented.

The fourth benefit is related to the previous point. Short LT pathlets are likely to
be withdrawn less frequently than BGP paths. A local pathlet needs to be withdrawn
only when the network between its ingress and the egress points is partitioned. This
should happen less frequently than a failure of some physical element along the com-
plete BGP path. Thus, LT pathlets should be more stable resulting in fewer control
messages as well as new functional abilities like pathlet performance monitoring, per
pathlet billing, etc.

Disadvantages. The fundamental disadvantage of local transit policies is that ASes
cannot implement policies based on the destination address. A particular example
of why this can be a disadvantage is the following. Consider an AS A, a destination
prefix d, and three neighboring ASes: B and C customers of A, and D a provider of
A. If it is possible to reach d from A through either B or D, with local transit policies
A cannot enforce that C always sends packets destined to d along [C,A,B, . . .] and
never along [C,A,D, . . . ]. In other words, AS’s customers will be able to use any
path through the AS, not necessarily the cheapest one.

A related disadvantage is that an AS following LT policies might find it harder
to perform traffic engineering. Some external event (e.g. some monitoring service
rates the AS on top) can suddenly draw crowds of senders to switch to using this
AS for their transit. Comparing to today, since users have next to no choice over
their paths, the amount of traffic traversing a given link is considerably stable and
predictable. This allows the ASes to precompute link weights to achieve a relatively
smooth distribution of traffic on their networks. With local transit policies a more
dynamic mechanism might be necessary.

Another disadvantage is that headers in packets traversing LT domain are likely to
be higher than for other styles of policies. For example, a packet traversing n valley-
free LT domains will have 2n FIDs in its header. This can be seen as a disadvantage,
but our experiments show that the FID list in the worst case is expected to be less
than a single IPv6 address (see section 3.5).

One particular aspect of routing that ASes are giving up when switching to LT
policies from BGP is some control over the quality of the whole path to the des-
tination. With BGP, it is possible for ASes to pick shorter paths as well as paths
which they believe to have higher bandwidth or smaller loss rate. ASes might want
to do this to provide better experience for their customers. With LT policies, this
responsibility falls into the hands of the users.

After discussing the cons and pros of local transit policies, we would like to un-
derline the fact that whether ASes choose to use local transit policies or to stay with
the BGP-style policies they can do so within pathlet routing and independently of
other ASes (more on this in the following sections).

Implementation.
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Figure 3.4: Illustration of two ways to implement local transit policies: the naive
way (left), and the class-based way (right). The figures depict the valley-free special
case of LT policies.

A naive implementation of LT policies in pathlet routing can be readily read off
from the definition of LT policies. First, recall that AS A exposes an ingress vnode
denoted by IA(B) to each neighbor B. To implement an LT policy, AS A simply
needs to construct a pathlet from vnode IA(X) to vnode IY (A) if and only if A is
willing to carry traffic from neighbor X to neighbor Y .

This construction is very simple, but it results in the number of pathlets growing
as a square of the number of neighboring ASes. This number can be prohibitively
large for well-interconnected ISPs that have thousands of neighbors.

Luckily, we can use the abstraction power of vnodes to implement local transit
policies more compactly. If a number of neighbors have similar business relations
with the AS, they can be grouped together into a class. All neighbors in a class are
treated the same for the routing purposes. The AS then creates two vnodes for each
class k: vnode kin that represents an ingress from a member of this class, and a vnode
kout that represents an egress to a member of this class.

The kin vnode is exposed as the ingress vnode to all the neighbors in class k.
Then, the AS constructs pathlets from the kout vnode to all the ingress vnodes of the
neighbors in class k. These two steps “put” the neighbors into their classes. Next,
the AS just needs to appropriately connect the classes. For each pair of classes k and
m (k can equal m), the AS constructs a pathlet from kin to mout if it is willing to
route from members of k to members of m.

The class-based implementation has a number of pathlets proportional to the
square of the number of classes and is linear in the number of neighbors. In the case
of valley-free LT policies, the number of pathlets is just 4 + number of neighbors.
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Figure 3.4 depicts these two ways of implementing LT policies on a concrete ex-
ample of valley-free policies. Note that peers and providers can actually be put into
one class and are effectively equivalent for ASes that follow LT policies. They were
distinguished in BGP because ASes could prefer a peer path to a provider path. With
LT policies, ASes can only decide what is allowed not what is preferred. The latter is
in the hands of the users.

3.3.2 BGP-Style Policies

In this section, we describe how BGP-style policies can be implemented in pathlet
routing. We start by describing how BGP in its purest form can be emulated by
pathlet routing. Then, we describe how to implement a better version of BGP where
export filters are enforced at the data plane (as opposed to relying on neighbors not
to know about a path, as is done in BGP today). Finally, we describe how to utilize
the idea of classes in the implementation of BGP for the case of valley-free policies.

Before we begin describing the implementation of BGP variants, we would like to
draw readers’ attention to the BGP path selection process in pathlet routing. Recall
that in ordinary BGP, an AS gets at most one path announcement from each of its
neighbors. Then, the BGP path selection process chooses the best one from these
paths. In pathlet routing, neighboring ASes can be following LT or other kinds of
policies. Thus, the AS will likely receive a bag of pathlets from each of its neighbors
rather than a single path.

The goal of path selection process then is to find the best path given all the
pathlets the AS learned from its neighbors. In this context, it can be impossible to
enumerate all possible paths (as there can be exponentially many of them) and find
the best one by comparing them. A solution would be to construct a graph from all
the known pathlets, assign a weight to each edge, and run a shortest path algorithm
on the resulting graph. For example, small weights can be assigned to customer
pathlets, larger ones to peers, and largest ones to providers. If an AS does not want
to route through some other AS, it can assign an infinite weight to its pathlets.

BGP as-is. In today’s BGP, if an export filter at AS A blocks a path from being
advertised to a neighbor B, B can still use this path if it nevertheless sends a packet
to A. In other words, export filter is enforced simply by not telling about the path’s
existence.

We can implement the same rather weak enforcement strategy in pathlets by
having each AS create a single vnode (as in figure 3.1). The pathlets are built using
the path selection process described above. All pathlets start at the only vnode and
extend all the way to destination vnodes. Once a pathlet is constructed, the AS runs
its export filter and advertises this pathlet only to neighbors allowed by the export
filter. Figure 3.5 illustrates how a domain emulating the as-is BGP constructs a
pathlet using LT pathlets of other domains.
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Figure 3.5: A BGP-style domain with a single vnode building a long pathlet across
three LT domains.

BGP with enforced export policy. Using pathlet routing we can enforce the BGP
export policy in the data plane so that it cannot be violated. Figure 3.6 illustrates
the mechanism and we will describe it by walking through the figure.

Consider AS A with three neighboring ASes B, C, and D. A exposes ingress
vnodes IA(B), IA(C), and IA(D) to these neighbors respectively. For each destination
d, A creates a vnode vd. In the figure, A created vd1 and vd2 for destinations d1 and d2.
Once these vnodes are created, A chooses the paths from the corresponding vnodes
to the destinations. In the figure, these paths are depicted with a dashed red line.
Finally, export filters are implemented by creating pathlets from ingress vnodes to
the vd vnodes. In the figure, there are no pathlets from ingress vnode exposed to B
(i.e. IA(B)) to the vd vnodes. Thus, B cannot use any of these paths. C on the other
hand can use both paths, and D can use on the path to d2.

This scheme is general enough to implement any policy that BGP can implement,
but it can require O(δN) pathlets, where δ is the number of neighbors and N is the
number of destinations.

Using vnodes to represent classes (similarly to the transformation shown in figure
3.4), we can group ingress vnodes and reduce the worst-case number of pathlets to
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Figure 3.6: An illustration of a general mechanism to implement BGP-style policies
with export policy enforcement.

O(NK + δ), where K is the number of classes.
In the special case of valley-free export policies, the representation can be even

shorter. Since there are only two classes (customers and peers/providers) the vd
vnodes are not necessary - paths can start either from pout or from cout. Figure 3.7
shows an illustration of using classes to represent valley-free export policy at a BGP-
style AS. The path that starts at cout is usable by all ASes since cout can be reached
by all classes (customers as well as peers/providers). On the other hand, the path
that starts at pout is reachable only by customers so all customers and no one else can
use this path.

3.4 Policy Expressiveness

In the previous section, we have seen several concrete policies implemented in
pathlet routing. Moreover, pathlet routing is general enough to support different
ASes adopting different policies simultaneously. The reader might wonder about the
extent and the limits of pathlet routing expressiveness as well as what is the intuition
behind its expressive power. In this section we briefly give the intuition, describe the
main limitation, and list a few results for policy expressiveness.

The first part of the main intuitive reason to expressive power is that pathlet
routing is built on top of purely abstract concepts - vnodes and pathlets. Pathlet
routing is completely oblivious to the meanings that are attached to vnodes. This
allows us to create vnodes that represent anything from a neighbor ingress point, an
egress point for all the neighbors in a given class, to a remote destination (vnodes vd
in figure 3.6).

The second part is that we are free to build a pathlet connecting any two vnodes.
In other words, we can “connect” any policy-relevant meanings. Overall, pathlet
routing gives us a freedom to build any directed graph - which is a very versatile tool.
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Figure 3.7: A BGP-style domain implementing valley-free export policy using vnodes
that represent classes.

The main limitation of pathlet routing is that it does not support policies that
depend on the route a packet took before reaching the AS. Once a packet arrives at
a vnode, it can take any pathlet starting at this vnode, independent of its previous
hops. One can think of extensions to pathlet routing that can add support for such
policies, but the core of pathlet routing does not support them cleanly.

Paper [28] proposes a formal definition of policy emulation to be able to compare
policy expressiveness of different routing protocols. Figure 3.8 depicts the main find-
ings of the analysis based on the policy emulation framework. As the figure shows,
pathlet routing is able to emulate the policies of a wide range of previous proposals,
while no proposal can emulate pathlet routing to the best of our knowledge. We refer
the readers to [28] for details.

3.5 Experimental evaluation

We implemented pathlet routing in a software router and evaluated it in a cluster
of server machines. We describe our implementation in section 3.5.1, the evaluation
scenarios in section 3.5.2, and the results in section 3.5.3.
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Figure 3.8: Policy expressiveness of different routing protocols. P → Q means that
P can emulate the routing policies of Q. Furthermore, the → relation is transitive.

3.5.1 Implementation

We implemented pathlet routing as a user-space software router, whose compo-
nents are depicted in figure 3.9. Implementation is 8000 semicolon lines of code and
uses standard asynchronous I/O, graph theory, and networking libraries. Each soft-
ware router represents a whole AS. While this simplification does not allow us to test
intradomain performance (and scenarios like domain partitioning), it is sufficient to
understand the interdomain performance characteristics.

Each router runs as a separate process and connects to its neighbors using TCP
connections. For simplicity, the TCP connection is used for both data and control
traffic. Using TCP connections to emulate interdomain links, allows us to easily
simulate link failures by dropping the connection.

Our router contains three main modules: a vnode manager, a disseminator, and a
controller. Through the implementation we found that it is possible to shield the core
policy module (the controller) from the details of pathlet dissemination and vnode
management. This finding reinforced our understanding that pathlet dissemination
and data plane mechanisms – are independent of the interdomain routing policies.
Furthermore, this independence will be handy in practice because ASes will likely
want to tune their policies without touching other parts of the code.

Next, we describe the three modules.
The vnode manager is responsible for managing vnodes together with their

forwarding tables. The controller calls this module to create or delete vnodes as well as
to designate a vnode as the ingress vnode for a neighbor. When a vnode is designated
as an ingress vnode, this module announces the designation to the corresponding
neighbor. On the other hand, when it receives an ingress vnode advertisement from
a neighbor, it notifies the controller.
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Figure 3.9: Structure of the software pathlet router.

Vnode manager is the module through which data packets flow. It installs entries
into vnodes’ forwarding tables upon pathlet creation by the controller module. At
the data plane level, it is responsible for directing incoming data packets to the right
vnodes, performing the forwarding table lookups, executing the instructions in the
found entries, and sending the packets out on the right links.

The disseminator stores the pathlets and sends and receives pathlet announce-
ments and withdrawals. When a new pathlet becomes available or a pathlet is with-
drawn, it notifies the controller. When the controller decides to advertise or withdraw
a pathlet from a particular neighbor, it calls the disseminator to execute the decision.

The disseminator is responsible for keeping track of the dissemination channels,
updating them when current ones fail, and communicating the changes to the neigh-
bors. Because our dissemination protocol is based on path vectors, we used BGP
tricks including the “Minimum Route Advertisement Interval” (MRAI) timer to de-
crease the convergence time and the dissemination churn. All of the dissemination
details are hidden from the controller. So, another dissemination mechanism can be
substituted without any changes to the controller.

The controller module encapsulates the policy logic. The vnode manager and
the disseminator are general and oblivious to the AS’s policies. They only imple-
ment the policy decisions of the controller. The controller implements the policy by
constructing and deleting pathlets and vnodes and by deciding which pathlets to an-
nounce to which neighbors. In our implementation, one makes a router an LT router
or a BGP-style router by picking the corresponding controller.

In a production quality implementation, the controller should provide a high-
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level policy specification language that would allow operators to specify the policies
declaratively. The policies would then to translated by the controller to what vnodes
and pathlets should be created. There are examples of policy languages in research
[11] as well as in IETF [9], but we suspect that a compiler into pathlet primitives
would need to be significantly more complex and leave it out of this thesis.

3.5.2 Evaluation scenarios

[Policies] We ran experiments with three different mixes of policies adopted by ASes.

1. LT policies, where all ASes adopt valley-free local transit policies.

2. Path Vector-like (PV) policies, where all ASes use BGP-style policies (i.e.
create long pathlets) with valley-free export filters.

3. Mixed policies, where a random half of ASes uses LT policies and the rest
uses PV.

The LT policies that we experiment with are the valley-free policies shown in
figure 3.4. The PV policies mimic the common BGP decision process of preferring
routes through customers as a first choice, through peers as a second choice, and
providers last. We then break ties based on path length and router ID.

[Topologies] We used two types of topologies in our experiments.

1. Internet-like topologies annotated with customer-peer-provider relationships.

2. Random graphs generated using theG(n,m) model (random connected graphs
with n nodes and m random edges).

The Internet-like topologies were generated using the algorithm of [14]. Most of our
experiment on the Internet-like graphs were performed on graphs with 400 nodes. To
give the reader a feeling for how our Internet-like graphs look, here are some statistics
about one of them. It has 400 nodes and 748 edges. Seven of the nodes are core nodes
with degrees 133, 125, 87, 52, 47, 35, and 32. There are 339 stub ASes. 155 of which
are single-homed, 151 are dual-homed, and 33 have more than two providers. The
remaining 54 ASes are in-between the stubs and the core and have both providers
and customers.

The random graphs we generated have the same number of nodes and edges as the
Internet-like graphs. The random graphs have no business relationship annotations
on the edges. ASes simply prefer shortest paths and are willing to export any path to
any neighbor. In other words, all paths in the random graphs are policy-compliant.

[Event patterns] We performed experiments and present the results of several event
scenarios.
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Figure 3.10: Forwarding table (FIB) size for the Internet-like topology (left) and the
random graph (right).

1. The convergence process from a clean start until each AS can reach all other
ASes.

2. The static state of the network after this convergence.

3. A sequence of failures and recoveries of all interdomain links one at a time.

In all of our experiments each AS advertises a single destination prefix. The link
failures and recoveries were separated by an 8 second interval making the complete
experiment run for 3.6 hours.

[Metrics] In our experiments, we recorded the following metrics.

1. End-to-end data plane connectivity.

2. Packet header size.

3. Forwarding table size.

4. Control plane memory size.

5. Number of control plane messages.

Each of our experiments was repeated 3 times with a new topology in each round.
Each CDF graph in this section includes all the data from the 3 experiments combined.
So, a given point on a CDF graph essentially says that “given a random graph of
the certain class, this metric value is expected to be at this percentile in the given
scenario.”

3.5.3 Results

In this section, we present the results of our experiments. Because in all of our
experiments ASes were implemented as single routers, we use the words “router” and
“AS” interchangeably.
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Figure 3.11: Probability of disconnection for a varying number of link failures in the
Internet-like topology (left) and the random graph (right)

Forwarding plane memory. Figure 3.10 shows a CDF of the number of forwarding
table entries at each router. This figure confirms our understanding that the forward-
ing table size for LT routers scales with the number neighboring ASes, whereas the
forwarding table size for PV routers scales with the size of the network.

In the Internet-like topologies, we see that a few routers have a rather large number
of forwarding entries. This happens because core ASes in these topologies have a very
high degree of connectivity. In the random graphs, the degree of connectivity varies
much less with the most connected node having only about 20 neighbors.

Figure 3.10 also confirms another fact - the size of forwarding table in LT routers
is independent of the style of policies their neighbors follow. The “LT” and “LT in
Mixed” lines overlap in both graphs. The number of forwarding table entries for LT
nodes in the “LT” case is 5.19 and is 5.23 in the “LT in mixed” case. The small
difference in this numbers is due to random sampling of LT nodes for the mixed case.
In comparison, the PV nodes averaged at 400.5 entries.

We also analyzed an AS-level topology of the Internet generated by CAIDA [10]
from Jan 5, 2009. Using LT policies in this topology results in a maximum of 2, 264
and a mean of only 8.48 pathlets to represent an AS. In comparison, BGP FIBs would
need to store between 132, 158 and 275, 779 entries for the currently announced IP
prefixes, depending on aggregation [5]. Thus, in this case, LT policies offer more than
a 15, 000× reduction in forwarding state relative to BGP.

Route availability. Recall that one of the reason for developing interdomain multi-
path routing was to improve the Internet’s availability. Here we evaluate how much
pathlet routing is able to contribute on this front.

We measure the availability achieved in each of our scenarios as follows. We
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bootstrap the scenario and let the network converge to a stable state. Once converged,
we dump all the vnode forwarding tables and record the pathlets known to each
router. After all this information is collected we load it into a program and perform
the following computation hundreds of times until the results look smooth.

We pick a random set of interdomain links and fail them. Then, for each pair of
ASes (X, Y ), we check if they are still connected in the vnode-pathlet graph. If so,
then X can send packets to Y after these failures and we consider them connected.

This connectivity measurement is the same as the static availability we discussed
for YAMR. Note that for pathlet routing with local transit policies, the static avail-
ability always equals dynamic availability because there is no convergence process
after a link failure. An LT AS simply withdraws the failed pathlet from the Internet.
This withdrawal is entirely decoupled from all other LT pathlets and cannot “break”
any working path.

In treating this computation as a measure of availability, we ignore the question of
how the sender can find a working path. Previous work [51] has shown that a random
search works surprisingly well. One can try further heuristics like choosing the most
disjoined path from the failed one. If the sender wants to achieve ultimate reliability,
she can send several copies of her packets simultaneously on different paths.

The availability results are shown in figure 3.11. The top line corresponding to
all ASes adopting path-vector policies, essentially shows the current availability of
BGP. The “PV in Mixed” line shows the availability seen by path-vector nodes in
the mixed scenario. It is a bit different from the “PV” line in the Internet-like graph
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Figure 3.13: CDF of the number of messages received by a router following a link
state change, for the Internet-like topology (left) and the random graph (right).

due to random distribution of LT and PV nodes in a topology with high variance of
node degrees. Had we run this experiment on 30 as opposed to 3 topologies, these
lines would have coincided as they do for the random graph.

The availability of LT nodes is different between the all-LT and the mixed sce-
narios. This difference comes from the fact that when PV nodes are introduced, they
reduce all the paths that were available through them to a single one that they choose.
Figure 3.12 shows how availability changes as the function of the fraction of LT nodes
in the network. This figure comes from a series of experiments on 5 random graphs
with 80 nodes and 150 edges. For all experiments, the number of failed links was
fixed at 5 and the number of LT nodes was varied from 1 to 40.

The most important observation from these graphs is that local transit policies
greatly improve the route availability. Moreover, even in the mixed scenario, LT nodes
are able to greatly improve their own availability. The improvement that LT nodes see
in the random graph is larger than in the Internet-like graph because random graph
has more policy-compliant paths than the Internet-like graph, where only valley-free
paths are allowed.

It is equally important to look at the difference between the Internet-like topology
and the random graph from a different angle. In all cases, we use pathlet routing.
The availability numbers change depending on the policy style ASes choose: PV is
most restrictive, valley-free LT takes the middle ground, and LT without any policies
gives the ultimate availability. The point to notice is that pathlet routing is able
to support all of these policy styles (even when mixed) and realize their potential
for path availability. In other words, pathlet routing does not artificially restrict the
number of paths usable in the data plane the same way as BGP does.

To see this point more clearly, note that the “LT” line in the Internet-like graph
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actually represents the best possible availability because all of the policy-compliant
paths are usable in the data plane.

The plot for the random graph in figure 3.11 shows one extra line called “LT Tree”.
This line represents the availability achieved by the all-LT scenario when each router
advertises only the shortest path tree of pathlets to its neighbors. This line illustrates
the fact that our availability figures depend on the number of pathlets known to the
routers from our dissemination algorithm. In a practical deployment, if some router
does not have enough pathlets advertised to it through pathlet dissemination, it can
always pull more pathlets itself.

The “LT Tree” scenario achieves a worse availability level than regular “LT” but
it requires less control messages as we will see next.

Control plane messages. Before we look at the figure, let us build some intuition
for the number of control plane messages in different scenarios. Consider the Internet-
like topology. LetN be the number of nodes in the topology andNc(X) be the number
of nodes in X’s customer cone2. Let Q be the average number of pathlets per AS in
the LT scenario.

An LT router X should be announcing at most QN pathlets to each of its cus-
tomers because customers can reach all of the ASes through X but there are some
pathlets which customers cannot use. X should be announcing at most QNc(X)
pathlets to each of its peers and providers because both can reach only the ASes in
X’s customer cone.

A PV router Y should be announcing N pathlets to each of its customers because

2customer cone of X is the set of all ASes that are reachable from X using only
provider→customer links.
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any customer can reach every other AS through Y via a single pathlet. Finally, Y
should be announcing Nc(Y ) pathlets to each of its peers and providers because every
one of them can reach only the customers of Y and only via a single pathlet.

From the analysis in the two paragraphs above, we see that LT routers are ex-
pected to announce about Q times more pathlets to their neighbors than PV routers.
Figure 3.13 shows the experimental results. It presents the CDFs of the number
of messages received by a router following a link failure or recovery event for the
Internet-like and random topologies.

In our experiments, Q is equal to 5.19, but LT scenario results in only 1.69 times
more messages than the PV scenario. There are two reasons explaining this fact:

1. As we already noted above, some pathlets are not reachable even by customers
and they are not advertised. See section 3.2.2.

2. When a link fails or recovers in the LT scenario, only two pathlets need to be
advertised or withdrawn. However, when a link fails in the PV scenario, the AS
next to the link might have to withdraw all the pathlets that used this link. In
addition, this AS will construct new pathlets and announce them as well.

In the random graph topology, the first factor is not true. Not only does every
router learn all pathlets, but it learns them from all of its neighbors. The result is
that LT has 10.3 times as many messages as PV.

This overhead can be reduced by making ASes disseminate less pathlets. In partic-
ular, ASes can advertise only the shortest path tree sufficient to reach all destinations
(see section 3.2.2). The “LT Tree” line in figures 3.13 and 3.11 is based on this dissem-
ination algorithm. Disseminating less pathlets reduces the availability but improves
the control messaging overhead by a factor of 4.6 bringing it to just 2.23 times more
than that of PV in the random topologies.

Figure 3.14 plots the messaging cost for initial convergence as a function of N .
It is evident that both LT and PV scale linearly with the size of the network. This
behavior is expected because both use the same path-vector based dissemination
algorithm and announce a similar number of pathlets across a given link. Over a
given link, PV announces one pathlet per destination (on the order of N total) and
LT announces at most all the LT pathlets in the network (on the order of N × δ,
where δ is the node degree).

Finally, it should be possible to reduce the control plane messaging overhead using
optimizations mentioned in section 3.2.2.

Control plane memory. Asymptotically, if the number of neighbors of an AS is δ,
a PV router’s state is O(Nδ) because it will receive at most N advertisements from
each of its δ neighbors. In LT, there are a total of O(Nδ) pathlets in the Internet. An
LT router, in the worst case, can receive all of these pathlets from all of its neighbors
resulting in O(Nδ2) of state. Thus, control memory grows linearly with the number
of ASes in the Internet in both cases.
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Policies Mean (bytes) Max (bytes)
LT 125,706 835,900

Mixed 120,982 765,104
PV 112,656 519,994

Table 3.1: Mean and Max control plane memory of a router in different scenarios.
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Figure 3.15: CDF of the size of the route field in the packet header, for the Internet-
like topology (left) and the random graph (right).

The asymptotic analysis is confirmed by the right graph of figure 3.14. It shows
the mean (over routers and over three trials) of the maximum (over time for each
of trial) of the control plane state at each router. A trial consists of allowing the
network to converge and then failing and recovering each interdomain link one at a
time. Table 3.1 shows the numbers for a 400 node topology.

Also note that because we disseminate only reachable pathlets, LT never actually
reaches the worst case of being worse than PV by a factor of δ.

Header size. Because pathlet routing headers include the source route, their header
size is not constant and can grow with the length of the path. During our experiments
we sent packets between all pairs of ASes in the network along the shortest path (least
number of pathlets) and recorded the packets’ header sizes (by header size we mean
the size of the FID list). Because FIDs can be popped and pushed along the way, we
report the maximal header size for each packet. Figure 3.15 shows the CDFs of the
maximal header sizes.

Packets in a PV only scenario always have exactly one FID in their FID lists,
which is overwritten at each hop. Thus, the “PV” line in the graphs is the left-most
one. In the mixed scenario, packet’s headers change similarly to the headers of the
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packet sent from AS A to F in figure 3.1. Thus, the “PV in Mixed” and “LT in
Mixed” lines are the middle ones. Finally, headers in the LT-only scenario are the
largest ones because they contain the most FIDs. Nevertheless, average LT header
length for the Internet-like topology is only 4.21 bytes and less than 6 bytes in the
random graph (random graph has larger headers because the average path length is
higher). The maximal header length in all the cases is less than 12 bytes.

Using the fact that header length scales with the path length, we can extrapolate
the numbers that we got from our experiments to the expected numbers for the
Internet. In our Internet-like graph, the mean path length is 2.96. The mean AS-
level path length of the Internet on January 22, 2009 is estimated to be 3.77 [10].
Thus, the average header length for the Internet is expected to be 3.77

2.96
× 4.21 = 5.36

and the maximal header length is expected to be 15.9, which is less than a single
IPv6 address.

Users can obviously construct paths of nearly arbitrary length, which would result
in large header sizes. It does not pose a problem to pathlet routing because the users
constructing long paths will themselves bare the cost (assuming that routers cannot
be DoS’ed by such packets)

3.6 Conclusion

Pathlet routing is a flexible and extensible routing architecture that is able to
efficiently support a wide class of policy styles. Among the various styles it is able
to support, we have proposed and argued for a class of local transit policies. Local
transit policies control the traffic between the ingress and the egress points, reduce
the forwarding tables to a just few entries, and offer exponential number of paths to
the users.

The building blocks of vnodes and pathlets bring the interdomain routing to the
right level of abstraction. The language of vnodes and pathlets succinctly represents
the (exponential) set of allowed paths, abstracts the details of the paths’ implementa-
tion, and allows ASes to easily offer extra services at the vnode or pathlet granularity.
In the next chapter, we will see how the right level of abstraction makes pathlet rout-
ing a forerunner for the interdomain routing in an evolvable Internet architecture.
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Chapter 4

Framework for Evolvable Internet

In this chapter we take a slight side step and look at how pathlet routing can be a
good candidate for interdomain routing of an evolvable Internet architecture. Going
through this exercise, will let us underline some generally valuable principals that
come together in pathlet routing.

4.1 Introduction

The popular attempt to rethink the Internet architecture has borne numerous
fruits that addressed a variety of important challenges facing the status quo. Archi-
tectural proposals suggested how to improve the security (e.g. [3, 57, 66, 70]), how
to make the network more data-oriented (e.g. [37, 40, 23]), how to better support
mobility and middleboxes (e.g. [8, 56]), as well as how to improve the network’s
availability (e.g. [51, 74, 73]) and scalability (e.g. [61, 28, 19, 73]). However, it is sad
to note that none of these great proposals is deployed.

We believe that a large part of the reason is that the current Internet architecture
is not designed for evolution. One familiar manifestation of this fact is that the
Internet Protocol (IP), with its header level details, permeates so many layers of
networking from the applications’ interface through which IP addresses are passed as
32bit integers to the Border Gateway Protocol (BGP) where reachability information
is disseminated and aggregated in terms of IP prefixes. The depth of this entanglement
can be seen in the enormity of effort that IPv6 deployment is requiring.

We argue that any future Internet architecture must be evolvable. A static ar-
chitecture can address all the existing problems, but as time has shown it is rather
hard to predict future challenges. Thus, a long lasting architecture must permit the
introduction of new architectural components to address arising challenges.

We find it mentally easier to call our evolvable architecture a Framework for
Internet Innovation (FII). As the name framework correctly suggests, we envision
that multiple architectures will coexist within the framework. Being a framework,
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the goal of FII is actually to decide as little as possible. We explicitly want to identify
the minimal set of interfaces that need to be fixed to enable diverse architectures to
evolve, coexist, and cooperate.

A detailed analysis of this question is presented in [41]. In this thesis, we concen-
trate on the role of interdomain routing in FII.

4.2 Architectural Anchors

Each architectural component has a fundamental set of entities, a span, that are
dependent on its detailed specification. For example, DNS spans the name resolution
servers, the host stacks, and some applications. TCP spans the host stacks and some
middle boxes. IP spans virtually everything from router hardware all the way to the
applications.

An evolvable framework should minimize the spans of architectural components,
thereby facilitating changes to these components. However, some components have
an inherently large span. We call these components architectural anchors. One
anchor is the interface between the applications and the network because changing
that interface would require recompiling all existing applications. Another anchor is
the interdomain routing.

Interdomain routing is an anchor because it is responsible for basic end-to-end
connectivity. Changing interdomain routing would require all domains in the Internet
to adopt the new scheme. Without adopting the new scheme a domain won’t be able
to talk to its neighbors and communicate the basic reachability information.

Another candidate for an anchor can be a universal packet protocol (the seat
taken by IP today). We believe that it is not an anchor because it does not have to
exist. As we will see, interdomain routing can provide the basic reachability without
requiring a single universal packet protocol.

Readers might also feel that hardware can be an anchor because it has to under-
stand the packet protocol to forward at hardware speeds. However, recent Software-
Defined Networking (SDN) approach transfers protocol understanding from the routers
to the controller, leaving routers as dump lookup-and-forward boxes. It is our hope
that SDN can make router hardware general enough to handle packet format changes
with a possible firmware update.

Since architectural anchors are inherently hard to change, their interfaces must be
as abstract and extensible as possible. By abstract we mean that the interface must be
at the highest possible level, concealing as many implementation details as possible.
By extensible we mean that anchors should be able to absorb new functionality so
that upgraded components are able to utilize this functionality without breaking
compatibility with the old ones. Making the anchor interfaces abstract and extensible
minimizes the chances that they will need to change.
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4.3 Pathlet Routing in FII

In this section, we argue that pathlet routing is extensible, abstract, and is a
generally good fit for interdomain routing in FII.

4.3.1 Abstraction of Pathlet Routing

In some sense, pathlet routing is the epitome of abstraction. Vnodes are tied
neither to the intradomain routing architecture nor to its addressing scheme. For
example, domains can use regular IP, or a recently proposed AIP ([3]) to improve
their security, or can even be flat L2 domains. Vnodes can be used to represent the
domain’s policy independently of the architecture they use. In the pathlet description,
we mentioned that vnodes can be tagged with IP addresses that are reachable from
them. With a trivial extension, we can make vnodes taggable with AIP or MAC
addresses. Pathlet routing simply carries these tags along leaving it up to the users
to interpret them.

Pathlets are specified purely in terms of these vnodes and are independent of the
technology used to implement then. By constructing a pathlet the AS is communi-
cating to the rest of the internet merely that it is willing to carry traffic from the first
vnode to the last vnode. It specifies neither the locations of these vnodes, nor the
technology that will be used to carry the traffic. For example, carrier pigeons are a
perfectly valid technology to implement a pathlet.

4.3.2 Extensibility of Pathlet Routing

As we argued above, vnodes and pathlet have a great policy expressiveness power.
Here, we argue that they are also a great abstraction for ISPs to offer QoS and other
extra services.

Specification and announcement. Recall that destination addresses were carried
in pathlet routing as tags on vnodes. This tagging idea can be extended to arbitrary
metadata attached to either vnodes or pathlets. For example, a domain can decide
to offer low loss rate connection service for Internet conferencing applications. In the
world of pathlet routing, specifying this new service and announcing it is straightfor-
ward. If this type of service is not entirely new, there is probably an existing pathlet
tag1 that is understood by popular videoconferencing applications. The domain then
tags the pathlets on which it would like to offer the new service. As these pathlets
are advertised, users who are interested in this service can pick them and send their
videoconference data along them.

1we refer to pieces of metadata as tags for simplicity. In reality it would probably be a structured
container similar to Google Protocol Buffers or JSON objects.
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Tagging pathlets is most appropriate when the service is offered along the path.
Likewise, domains can tag vnodes with metadata to announce services that are not
associated with a path segment. For example, a domain might offer a virus checking
service and tag a specific vnode with it. Users who would like their incoming packets
to be scanned for viruses can choose pathlets that go through this vnode.

Composability Another advantage of extensibility through pathlet or vnode tagging
is that users can take advantage of new services as soon as they are offered by a few or
even just one domain. Users are able to utilize the services offered by a few domains
because pathlet routing allows them to pick the path that goes through the domains
offering the service. Some services like virus detection need to appear at a single
point along the path. The benefit of other services like Early Congestion Notification
(ECN) grows proportionally with the portion of the path that offers them. Yet other
services like a hypothetical reliable delivery service are only useful when they are
present on the whole path. For all of these services, users in pathlet routing can pick
the path that maximizes the service’s benefit. On the other side, domains that don’t
implement a specific service can carry all packets without even being aware of what
services these packets use in other networks.

To illustrate this point, let us imagine that the current Internet architecture is
augmented with a repository that contains all the services offered by all the ISPs.
Moreover, let us imagine that this repository is rather full with many (but not all)
ISPs offering a variety of services. Furthermore, imagine that there exists an ade-
quate mechanism to signal the network which services are sought for each packet.
Unfortunately, even in this magical world, users won’t be able to extract maximum
benefit from the available services. The path that the network has chosen for them
might not go through the services they desire, or only a fraction of the path might
contain the service that requires presence on the complete path. Thus, being able to
compose the path is critical for a successful extensible protocol.

The immediate usability of new services should encourage innovation because
domains can start collecting revenue as soon as the service is rolled out.

4.3.3 Implementation Freedom

Pathlet routing offers domains the freedom to implement pathlet routing in any
technology they choose. Let us update the figure 3.2 that showed a pathlet packet in
the IP world to figure 4.1 that shows a pathlet packet in the FII world. The difference
between these figures is in change of “IP Header” into “Destination Domain Header”.
This change emphasizes that pathlet routing is actually oblivious to the technology
used in the destination domain. The FID list is the only part of the header that
pathlet routing needs to deliver the packet to the destination vnode. At that vnode,
the FID list is empty and the destination domain uses the “Destination Domain
Header” to deliver the packet to the final destination.
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Figure 4.1: A high level view of a pathlet header in FII.

Likewise, pathlet routing is oblivious to the technologies used to carry the packet
between intermediate vnodes. Transit domains can utilize the technology of their
choice, be it some L2 protocol like Ethernet, or a tunneling mechanism like MPLS,
or an optical link. The “Transit Header” is the placeholder for any transit domain’s
technology.

Another subtler piece of implementation flexibility is that the bits in the pathlet
header, the FIDs, are completely opaque to everyone but the domain that originally
constructed this pathlet. This enables fast innovation and service rollout compared
for example to differentiated services bits (until recently known as Type of Service
(see [53])) that are defined in the IP packet header. The latter requires a global
agreement, changes once in a decade or two, and eats up the bits in every single
packet, even in those that are not interested in differentiated services. In pathlet
routing, the domain is free to decide on the signals that it wants to see in the packet
headers. The whole loop from domains deciding on the signals to the users employing
these signals in their packet headers can be on the order of minutes, versus several
decades in the status quo.

4.3.4 Discussion

Stepping aside from concrete details, let us review the grand picture. Innovation
happens when there are little barriers. Besides the technical ones, there is a barrier of
human coordination, which gets increasingly higher when the parties represent differ-
ent competing organizations. In the context of the Internet, this observation suggests
that to facilitate innovation we must widen the ability of autonomous domains to
innovate independently of other domains.

In recent years, ISPs have successfully adopted MPLS for traffic engineering and
QoS purposes ([62, 67]) showing that ISPs are willing and capable to innovate when
no widespread agreement with other ISPs is necessary. Hence the interdomain routing
protocol in FII must allow each domain to innovate on the widest plane possible.

Pathlet routing can meet this requirement because domains can deploy any in-
tradomain routing architecture and offer new service all without coordinating with
other domains2. Pathlet routing even allows the two ends of a communication to

2Domains must obviously agree on the peering technology for the shared links, but they can
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be residing in domains with different architectures3. Hence we believe that pathlet
routing is a good candidate for an interdomain routing protocol in FII. In the next
section, we present our proof of concept pathlet-based FII implementation.

4.4 Implementation

In this section, we report on a skeleton implementation of FII’s interfaces. While
our implementation barely scratches the surface of what a fully functional prototype
would include, it captures most aspects of the information flow within the frame-
work. Since the purpose of our implementation is to evaluate FII’s ability to support
innovation, not to evaluate its performance or scalability, we feel this degree of im-
plementation is sufficient.

4.4.1 Implementation Details

Our implementation focuses on the core FII interfaces, information flow, and the
main features of implemented architectures. In particular, we do not implement the
detailed mechanisms behind various interfaces. For example, we don’t implement
recursive DNS queries, just the name resolution request and reply between a host
and a server. In the case of CCN [37], we implement the main features of name
registration and name-based routing with simple mechanisms behind them. Also,
note that because no prior architecture was designed with FII in mind, we necessarily
altered their designs to fit them within FII.

The information flow in our working implementation is very similar to the in-
formation flow depicted in Figure 4.2. This figure shows the information flow that a
fully general FII implementation would go through at a client host from the bootstrap
to sending the first packet for a named resource. It shows a few components of FII
that we did not describe in this thesis including Trusted Third Party (TTP), Route
Computation Agent (RCA), network API schemas, protocol negotiation, etc. Please
refer to [41] for details. We included the complete figure to give a visual sense of our
implementation and of some of the features that pathlets can work with.

To capture information flow more explicitly, we implemented FII entities (hosts,
routers, RCAs, name servers, etc.) in separate processes communicating via protocols
defined using Google protocol buffers [1]. We chose to use protocol buffers for all of
our messages to focus on the content and structure of headers rather than their byte-
level formatting. Communication between processes happens over a topology whose
links are implemented as TCP connections. Our experiment described below contains
a total of 22 communicating processes.

utilize any architecture internally.
3Using the “Destination Domain Header”. See figure 4.1
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Figure 4.2: Information flow in FII from the perspective of a client host. Rectangles
represent pieces of information and ovals represent functions that combine information
to yield new information.
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Figure 4.3: The domain topology used in the experiment.

4.4.2 Experiment Setup

We setup an experiment with 4 domains as shown in figure 4.3. The “IP (Source)”
domain is an IP domain that contains the host initiating communication. The “IP
(TTP)” domain is another IP domain that hosts a trusted third party server. The
“CCN” domain runs a content-centric architecture where routing is done on names.
Finally, the “Optical” domain is a domain that has deployed a hypothetical all-optical
architecture.

The hypothetical all-optical architecture differs from other architectures in that
pathlets are setup on-demand (a dedicated lambda might need to be setup along
some path for a high bandwidth data transfer). The all-optical architecture with the
path setup feature acts as yet another illustration of abstractness and extensibility
of pathlet routing. The path setup functionality can also be used on pathlets that
require senders to obtain a capability before using the pathlet.

In our implementation, to perform path setup, a host reads pathlet metadata
indicating the entities (middleboxes or routers) that must be contacted to establish
the path. By sending a path setup request to these parties, the host causes path
establishment and receives the information necessary to construct the “Destination
Domain Header” (see figure 4.1).

In the experiment, we send data transfer requests from the source host to hosts in
each of the three other domains, all within the same experiment. As the experiment
is running, we collect packet traces in all four domains. We then classify the packets
in the traces into one of 7 categories (e.g. bootstrap, key exchange, naming, etc.)
and plot all the packets for each domain and each category on a separate horizontal
line in figure 4.4. Above the graph we denote the five phases of communication in
the experiment.

In the first phase, all entities perform ordinary bootstrap operations, except CCN,
which also registers a name. In the key exchange phase, all end hosts and their routers
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Figure 4.4: Packet traces for the 4-domain experiment. For each of the domains (listed
along the y-axis), we categorize packets into seven types, each of which is a row (from
bottom to top) for each domain: 1) bootstrap, 2) key exchange, 3) naming, 4) pathlet
data, 5) path setup, 6) end-to-end data transfer, and 7) interdomain transit. A dot
appears if packet(s) were observed of that type, in that domain, at that time. Dot
size depicts packet count. We note the communication phases above the graph.

perform key exchange with the TTP. Since the CCN domain and the TTP’s domain
are not directly connected, they use the other IP domain as transit in this phase. The
next three phases involve data retrieval. The first of those, from the source host to
a host in the all-optical domain requires path setup, and subsequently more pathlet-
related messages than other data retrieval requests. This data retrieval uses the CCN
domain as transit.

4.4.3 Discussion

The main point of this experiment is that the abstract and extensible nature of
pathlet routing enabled domains with different architectures to communicate with
each other. Moreover, interdomain transfers successfully utilized transit domains
without knowing the architecture they deployed.

The path setup feature included in this experiment was implemented using pathlet
metadata. We found that using metadata as extensibility vehicle to be natural and
straightforward.
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4.5 Conclusion

Designing for evolution can make facing unforeseeable future challenges less painful.
Inspired by this goal, we tried to reason about the minimal set of architectural compo-
nents that need to be fixed to glue other components together. Interdomain routing
appears to be among the must-be-fixed components as it necessarily spans all domains
and requires global agreement.

Our analysis argued that pathlet routing is a great candidate for the interdomain
routing protocol. Its building blocks – vnode and pathlets – are able to support
evolution and diversity not only in policy styles but also in domain technologies. As
our experiment demonstrates, domains deploying different architectures are able to
communicate and carry each other’s traffic with the help of pathlet routing’s abstrac-
tions.
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Chapter 5

Conclusion

This thesis presented two interdomain multipath routing protocols: YAMR and
Pathlet Routing. Both improve the Internet’s availability, give users choice over their
paths, and improve certain dimensions of the Internet’s scalability, but that is where
the similarities end.

YAMR keeps the default paths the same as in BGP and constructs alternate
paths that avoid links on the default ones. Constructing paths in YAMR requires
more messages that BGP, but YAMR offers a novel hiding technique that is able
to localize failures to small neighborhoods around them. Hiding is fully automatic,
safe, and preserves next-hop policies. If the network around the failure is densely
connected, hiding is able to contain the failure with a small number of messages that
is independent of the size of the network. Together with hiding YAMR keeps the
churn level well below that of BGP and improves BGP’s availability but almost 3
orders of magnitude.

Pathlet routing is a departure from familiar approaches to routing and an em-
bracement of abstraction. Pathlet routing defines abstract constructs of vnodes and
pathlets that encode domains’ policies in a directed graph with the crucial property
that any path in this graph is policy-compliant. Vnodes and pathlets are expres-
sive enough to cover a wide range of policy styles from newly proposed local transit
policies to the familiar BGP-style policies. Domains that follow local transit policies
see their forwarding table state drop to nearly zero, while providing exponential path
choice to the users. The vnodes and pathlets are also convenient concepts for defining
QoS and other services on top of them. Finally, the abstract nature of pathlet routing
makes it a great candidate for an evolvable Internet architecture.

YAMR is a testament that even decades old designs can often be revamped into
surprisingly well-performing constructions. Pathlet routing on the other hand, is a
testament and even decades old problems can hide surprisingly elegant novel solutions.
Whatever the case maybe, it’s worth a second look.
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5.1 Limitations and Future Work

Since the routing system takes one of the center seats in networking, a complete
evaluation requires great effort and depth. Below we describe some of the limitations
of our work and possible future directions.

Anycast and multicast for pathlet routing. Being a kind of source routing,
pathlet routing inherits the source routing’s difficulties with anycast and multicast.
It is theoretically possible to encode a whole distribution tree in the pathlet header.
However, this approach does not scale well. A more promising approach is to adopt
the trick of [58] to encode the multicast tree branches using a bloom filter. In fact, this
approach should be applicable to pathlet routing in a cleaner fashion than to BGP
because pathlets are a natural branching unit. The branching points can probably be
placed at special vnodes whose forwarding rules will differ slightly (i.e. they will send
multiple packets with different FID lists for each incoming packet) from the regular
vnode forwarding. The details of this approach have to be worked out and evaluated.

Optimizing Pathlet Dissemination. As we pointed out in the pathlet discussion,
our path-vector based dissemination scheme can be optimized by using the fact that
path-vectors are needed only to ensure the liveness of the dissemination channel.
Investigating this question can lead to interesting theoretical results.

Deeper study of offering services through pathlet metadata. We have im-
plemented a simple case of utilizing pathlet metadata in our FII implementation.
However, devil is usually in the details. A deeper study of how an AS can offer a
practical service through pathlet metadata would be valuable. In particular, how can
differently parametrized versions of a service be offered without exploding the number
of advertised pathlets.

Consistency benefits of pathlet routing. Recent work [39] has shown that lack of
consistency in routing causes major problems and that other useful mechanisms can
be built on top of consistent routing. It also illustrated that it is challenging to make
BGP consistent. Pathlet routing can be made consistent with high probability fairly
easily, by requiring that ASes do not reuse FIDs until the dissemination mechanism
has withdrawn the pathlet that previously used that FID. We have not evaluated
how this local requirement affects various metrics and what realistic benefits can be
drawn from it, but we believe that consistency has important practical implications
that may be interesting to combine with pathlet routing.

More faithful implementation of FII. FII argues for a microkernel approach to
Internet architecture. However, even the microkernel of the Internet is amazingly
large. In our implementation we necessarily had to take many shortcuts. A down-to-
the-wire implementation of FII in undoubtedly necessary to understand exactly what
types of changes FII can facilitate and where it falls short.
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Appendix A

Proofs for Chapter 2

A.1 Preliminaries

First, we define and discuss several preliminaries.

A.1.1 Policy Assumptions

The proofs of some of our results require two assumptions about ASes’ routing
policies. We assume that ASes follow next-hop and widest-advertisement policies,
which we define below. Neither of these policy classes are new ([22], [44]). We adopt
the definition of former class without change, but clarify the definition of the latter.

We say that an AS follows next-hop policies if its export filter is based solely
on the destination and on the path’s next-hop AS. In other words, all paths for a
given destination from a given peer1 are announced to the same set of peers. We say
that AS A’s policies are widest-advertisement policies if the following is true for all
destination prefixes p (all paths are towards p). If A is willing to advertise a path
from peer B to peer C, then whenever B advertises a path to A, A has to be willing
to advertise its path to C. If A uses a path through C it does not need to advertise
it back to C, but the export filter has to allow A to advertise the path back to C.
Finally, if the AS hosting a destination prefix follows widest-advertisement policies,
it has to advertise the destination prefix to all of its peers.

We make a specific set of assumptions that include valley-free customer-peer-
provider policies. Our results most probably hold under a larger set of assumptions,
but we do not attempt to find the precise class of policies under which our results
hold. In fact, even for BGP the class of policies that are guaranteed to give each AS a
path when there is a policy compliant path is unknown to the best of our knowledge.
Figure A.1 is an example where BGP leaves an AS disconnected when there is a

1We use the word “peer” in appendix to mean a neighbor without implying the peering business
relationship.
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Figure A.1: A announces a prefix and sends it with path [A] to B and C. Both
B and C choose this path and send paths [B,A] and [C,A] to D, respectively. D
prefers path [D,B,A] over path [D,C,A]. D’s export filter allows path [D,C,A] but
path [D,B,A] is blocked. Therefore, D does not send anything to H, which becomes
disconnected even though the path [H,D,C,A] is working and policy-compliant.

working policy-compliant path.

Definition 1 A path P = [An, An−1, . . . , A0] is a policy-compliant path if for each
0 ≤ i ≤ n− 1, Ai is willing to advertise path [Ai, Ai−1, . . . , A0] to Ai+1.

In fact, by contemplating figure A.1 and the widest-advertisement assumption, it
seems that some version of the widest-advertisement assumption is required to ensure
that nodes with policy-compliant paths will not be disconnected in BGP.

A.1.2 Ordering of Peers

The next-hop and widest-advertisement policies imply a useful categorization of
peers that we define and proof here. Next-hop and widest-advertisement policies are
assumed throughout this section.

Fix a destination prefix, i.e. everything in this section will refer to paths to a
single destination prefix. Let p1, p2, . . . , pk be the peers of an AS A. For each pi, let
si denote the set of peers to which A would be willing to advertise a path learned
from pi. The set si is determined solely by the export filter and can contain pi.

Partition peers into equivalence classes based on the equality of corresponding
sets si and order classes in decreasing order of the size of si (for now, break ties
arbitrarily. We will show that there is actually no ties.). Denote the peers in class
j by pj,1, pj,2, . . . , pj,kj . Denote the set si corresponding to the class j by Sj and let
there be a total of c classes.

Lemma 1 For any two classes 1 ≤ i < j ≤ c, Sj ⊂ Si (Sj is a strict subset of Si).

Proof: Pick two peers pi,m and pj,n from classes i and j, respectively. Consider a
case when A gets advertisements only from pi,m and pj,n. There are two possibilities:
either A chooses a path through pi,m or a path through pj,n.
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If A chooses a path through pi,m, by the assumption of widest-advertisement
policies, A has to advertise the path it chose (the path through pi,m) to all of Sj.
Because, the set of peers to which A advertises a path through pi,m is by definition
Si, Sj has to be a subset of Si. Furthermore, Sj cannot have the same number of
elements as Si because then the two sets would be equal and would not represent two
different classes. Thus, Sj ⊂ Si

If A chooses a path through pj,m, by the symmetric argument to the one above,
we get that Si has to be a strict subset of Sj, which is impossible because |Si| > |Sj|
by the choice of ordering. Therefore, A cannot prefer a path through pj,m if it follows
widest-advertisement and next-hop policies. The impossibility of this case implies the
next lemma.

Lemma 2 For any two classes 1 ≤ i < j ≤ c and any two peers pi,m and pj,n from
these classes, a path through pi,m is more preferred than a path through pj,n. Further,
we call class i a more preferred class than j.

Proof: Follows from the proof of the previous lemma.

A.2 YPC Convergence

In this section, we prove theorem 2. We use the framework and results presented in
[32]. Unfamiliar readers should read this work if they desire to rigorously understand
our arguments. Otherwise, the basic ideas should be clear.

First, we extend the SPVP definition of [32] to YPC and call it SYPC. Because
the extension is an obvious one, we present only the salient differences and omit the
details. The rib and rib in of SYPC contain not a single path as in SPVP but
multiple paths - one per label. Each message still contains a single path, but it also
contains a label for this path. The same policies are applied to all paths, independent
of their labels. The path selection process is the same as described in the YPC design
above. We restate it in the next paragraph.

When a node processes a message with a default path, it updates the default
path entry of the peer’s rib in. Then, it chooses the best default path from all the
available default paths in rib ins. If the best path has changed, it is sent to all the
peers and the path selection is run for all the labels on the new default path. When a
node processes a message with an alternate path, it inserts this path into the rib in

and runs path selection on the path’s label. Path selection for an alternate label
is the following process. The node chooses the best path from all the default and
like-labeled paths in rib ins. If this path is different from the current path with the
same label in the rib, the rib is updated and the path is sent to the peers.

Proof of Theorem 2: First of all, notice that the processing of alternate paths
results in some extra state, messages, and processing, but does not impact the dy-
namics and processing of the default paths. In particular, given an instance of SYPC
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Figure A.2: An illustration of e-brother. Node D is the destination. The subtree of
nodes in the shaded area together with thick edges is the T e. All the nodes together
with thick edges is the default path tree T . The only change to the policies in e-
brother is that nodes outside of T e that have peers in T e (nodes M , J , K, H), don’t
accept any paths from these peers. The only structural change is that link e ((G, J))
is removed. These changes cannot introduce a dispute wheel and they preserve the
widest-advertisement and next-hop policies.

and an analogous instance of SPVP (with the same graph, the same policies, equiva-
lent initial configuration, and equivalent activation sequence), they will have exactly
the same evolution (same state changes and messages). Therefore, because we know
that SPVP converges in the absence of dispute wheels, we can conclude that the
default paths of SYPC converge in the same conditions. Moreover, because we know
that SPVP always converges to a unique configuration, the default paths of SYPC
converge to a unique configuration. This argument is a restatement of the fact that
the default paths of YPC are constructed in exactly the same way as default paths
of BGP. Next, we show that alternate paths also converge.

Intuitively, after the default paths have converged, alternate paths for each label
behave just like regular BGP path on a subgraph (the subgraph of nodes whose
default paths go through the edge corresponding to the label) of the whole graph.
The reasons for this similarity are that the processing of each label is isolated from
the processing of any other label (i.e. there is no interdependence between labels),
and that the nodes don’t change their interest in any label (because the default paths
don’t change). Therefore, intuitively, all alternate paths should converge. To show
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this fact more rigorously, for each label e, we define an instance of SPVP that evolves
in the same way as the e-labeled paths in SYPC. We call such an instance of SPVP
an e-brother of SYPC (see figure A.2 for an illustration).

Consider the state S of SYPC after all default paths have converged. Let G =
(V,E) be the AS graph from the given instance of SYPC. Let the fixed destination
prefix p be hosted by AS D. Consider the tree T of converged default paths to D
in S. Let T e denote the subtree of T consisting of the ASes whose default paths go
through e. T e is the tree of ASes that are interested in e-labeled paths. Next, we
first define the state of ASes in the e-brother, then the state of edges, and finally, the
permitted path sets.

For each AS A in T e, its rib in e-brother contains the e-labeled path from A’s rib
in S. For each peer AS B of A, the rib inA(B) in e-brother contains the e-labeled
path from rib inA(B) in S, if B is in T e. If B is not in T e, then rib inA(B) in
e-brother contains the default path from rib inA(B) in S.

For each AS A not in T e, its rib in e-brother contains the default path from A’s
rib in S. For each peer AS B of A, the rib inA(B) in e-brother is empty, if B is in
T e. If B is not in T e, then rib inA(B) in e-brother contains the default path from
rib inA(B) in S. If any of the paths is not available, the corresponding entry in
e-brother is empty.

The links of e-brother are the same as the links of S except for link e, which is
not present in e-brother. For two ASes A and B, the link from A to B contains the
following based on whether A and/or B are in T e:

• A ∈ T e, B ∈ T e: the link A → B in e-brother contains all the e-labeled paths
in link A→ B in S.

• A ∈ T e, B 6∈ T e: the link A→ B in e-brother is empty.

• A 6∈ T e, B ∈ T e: the link A→ B in e-brother contains all the default paths in
link A→ B in S (there is actually no such paths because all default paths have
converged in S).

• A 6∈ T e, B 6∈ T e: the link A→ B in e-brother contains all the default paths in
link A→ B in S (there is actually no such paths because all default paths have
converged in S).

Finally, we describe the permitted path sets and complete the definition of e-
bother. The permitted path sets in e-brother are exactly the same as in S except
that for each AS A 6∈ T e and all of A’s peers B ∈ T e, we exclude all paths through
B from PA. The reason for this exclusion is to prevent e-labeled paths from T e from
affecting default paths outside of T e. This is a feature of YPC and the e-brother
should simulate it.

Given the definition of e-brother, it is obvious that it will evolve in the same way
as the e-labeled paths in S. Therefore, to show that e-labeled path converge in S,
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we need to show that e-brother converges. The e-brother is guaranteed to converge
because it has the same given policies, which don’t have dispute wheels. We only need
to note that shrinking permitted path sets cannot introduce a dispute wheel because
no new paths are allowed and no preferences between paths have changed. Moreover,
since the e-brother converges to a unique final configuration, S will converge to the
unique analogous final configuration. Because the argument above can be repeated for
each edge e, the whole SYPC is guaranteed to converge to a unique final configuration.

A.3 YPC Path Diversity Guarantees

In this section, we proof theorem 1 that we also call a path diversity guarantee.
Our path diversity guarantee for YPC follows from a feature of widest-advertisement
policies. We first state the feature in a lemma below and proof that BGP (SPVP)
has this feature. Then, we apply this feature to YPC.

Recall that in section A.1.2 we proved two lemmas (1, 2) partitioning AS’s peers
into classes. We now introduce two new notions: a nicest possible class and a nice
path.

Definition 2 Consider an instance Z of SPVP (or SYPC) with no dispute wheels
and each AS following next-hop and widest-advertisement policies. For each AS A in
Z, let C be a set of classes c such that there exists a path p = [A,An−1, An−2, . . . , A0]
such that p is policy-compliant and An−1 ∈ c. Then, the nicest possible class for A is
the most preferred class in C.

Definition 3 A path p = [An, An−1, . . . , A0] is a nice path of An if p is policy-
compliant and An−1 is a peer in An’s nicest possible class.

Lemma 3 Let Z be a converged instance of SPVP with no dispute wheels and each
AS following next-hop and widest-advertisement policies. Then, for each AS A, if
there exists a policy-compliant path from A to the destination, then A is connected in
Z through a nice path.

Proof: Note that this lemma actually makes two separate points and it can be
of independent interest because it is about BGP. First, each AS that can possibly
be connected (there is a policy-compliant path from it to the destination) will be
connected. Second, it will actually be connected through a nice path.

First, note that nodes that have no policy-compliant paths to the destination, will
obviously be isolated and won’t affect any of the formed paths. Thus, without loss of
generality we can assume that there are no such nodes.

We first show the following sublemma. Let A be an AS that is not connected
through a nice path in Z (from now on the specification “in Z” is assumed and we
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don’t write it explicitly). Let p = [A,An−1, An−2, . . . , A0] be a nice path of A. Then,
at least one of An−1, An−2, . . . , A1 is not connected through a nice path.

Assume the contrary, that all of the intermediate nodes have a nice path. There
are two possible cases: either A is disconnected or A is connected. If A is disconnected
n has to be at least 2. Consider An−1. By assumption, An−1 is connected through a
nice path. Because An−1 is willing to advertise a path through An−2 to A and it is
connected through a nice path, An−1 has to be willing to advertise its current path
to A. Thus, A has to be connected. This contradiction proves the sublemma in the
case that A is disconnected. Next, we consider the case when A is connected.

In the case that A is connected, we show that the paths of An−1, An−2, . . . , A0 has
to go through A, which is a contradiction because the path of A0 is [A0]. Let pnX and
pcX denote a nice and the current path of X, respectively. Further, let p(Y ) denote
the suffix of path p starting at Y . First, note that since all Ai’s have a nice path,
they all must be connected. If pcAn−1

does not go through A, An−1 has to advertise
pcAn−1

to A because it is a nice path, because An−1 is willing to advertise p(An−1) to
A, and because we assume widest-advertisement policies. But then, A would have a
nice path. Therefore, pcAn−1

has to go through A.
Assume pcAn−2

does not go through A. Because it does not go through A, it does
not go through An−1. Then, An−2 is advertising pcAn−2

to An−1. Because pcAn−2
6=

pcAn−1
(An−2) (one goes through A and one does not) and because An−1 current path

is pcAn−1
, λAn−1([An−1]p

c
An−2

) < λAn−1(pcAn−1
). Recall that because A’s current path is

not nice, λA([A,An−1]p
c
An−2

) > λA(pcA). These four paths and nodes A and An−1 form
a dispute wheel, which we assumed does not exist. Thus, pcAn−2

goes through A.
The argument above can be repeated inductively. At the step for An−i, the fol-

lowing holds:

λAn−i+1([An−i+1]p
c
An−i

) < λAn−i+1(pcAn−i+1
)

λA(pcA) < λA([A,An−1, . . . , An−i+1]p
c
An−i

)

and these four paths together with A and An−i+1 form a dispute wheel. This finishes
the proof of the sublemma. Next, we prove the lemma.

Assume the contrary, that there exists an AS A0 whose path is not nice. Then,
pick a nice path p1 = [A0, Bn−1, Bn−2, . . . , B0] from A0 to the destination. On this
path, pick a node Bi, 0 ≤ i ≤ n− 1 such that

• Bi’s path is not nice

• Path [Bi, Bi−1, . . . , B0] is not a nice path of Bi.

Such Bi can be found in the following way. By the sublemma, there is an AS Bj

whose path is not nice. If for this Bj, the path [Bj, Bj−1, . . . , B0] is nice, we can
apply the sublemma to Bj and its nice path [Bj, Bj−1, . . . , B0], to find a node Bk,
k < j, whose path is not nice. If the path [Bk, Bk−1, . . . , B0] is a nice path of Bk, we
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can continue analogously. Because the original path [A0, Bn−1, Bn−2, . . . , B0] is finite
and on each iteration it gets smaller, this process cannot continue forever. Therefore,
there exists such a Bi. Rename it to A1.

Define A2, A3, . . . analogously until some Aq is not the same as a previously found
Ar. Without loss of generality, assume that r = 0 (because we could have started
at Ar). Let pi be the nice path of Ai we used to find Ai+1. Interpret the subscripts
module q and let Ri be the prefix of the path pi until and including Ai+1. Let Qi be
the suffix of the path pi−1 starting from and including Ai. Let R = R0, R1, . . . , Rq−1,
Q = Q0, Q1, . . . , Qq−1, and A = A0, A1, . . . , Aq−1. Then, W = (A,Q,R) is a dispute
wheel. This contradiction, proves the lemma.

We are now ready to proof theorem 1.
Proof of Theorem 1: For the proof, we will use the e-brother defined in the
proof of theorem 2. While constructing an instance of e-brother from an instance
of SYPC involves many details, here we consider only converged instances of SYPC
and e-brother and many of the details become irrelevant. The only details we need
are the structural and policy changes. These changes are described in the caption of
figure A.2.

In the proof of theorem 2, we have already noted that the structural and policy
changes in e-brother cannot obviously introduce a dispute wheel, because they merely
cut down on policy-compliant paths. We now show a lemma that if all ASes in an
instance S of SYPC follow widest-advertisement and next-hop policies, then all ASes
in S’s e-brother follow widest-advertisement and next-hop policies.

At the high-level widest-advertisement policies say that if an AS A is willing to
advertise some path to its peer B, than A has to advertise a paths to B under some
conditions. Because the changes in e-brother are that some ASes never advertise
any path to some other ASes (deletion of edge e is equivalent to the ASes at e
ends not advertising anything to each other), the “if” clause of the definition never
happens for these pair of ASes. For other pairs of ASes, e-brother does not change
their interactions at all. Therefore, widest-advertisement policies are preserved in
e-brother.

The preservation of next-hop policies is obvious. Given an AS A and its path p,
in S, A would advertise p to a set of peers determined by p’s next-hop. In e-brother,
A advertises p to the same set of peers, possibly minus some peers to whom A does
not advertise anything. Thus, the set of peers to whom p is advertised in e-brother
is also determined just by the next-hop of p. This completes the proof of the lemma.
This lemma allows us to apply lemma 3 to e-brother.

First, we show that if BGP gives A a path p after failure of e, then there is a policy-
compliant path from A to the destination in the e-brother. This is not immediately
obvious because p itself might not be a policy-compliant path in e-brother. To show
the existence of such a path q, we construct it based on p in the following way.

If A 6∈ T e, then A’s default path in e-brother does not go through e and is obviously
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a policy-compliant path. In this case, q is A’s default path. If A ∈ T e, let B be the
last AS along p starting from the destination that is not in T e. Let C be the AS after
B. By definition, C ∈ T e. Then, q = st is a concatenation of two paths, where s is the
prefix of p from A to B, and t is B’s default path (there are actually no ”alternate”
paths in e-brother, we still use the qualifier ”default” to indicate that the path is the
same as the default path in SYPC). We only need to show that st is policy-compliant.
Because we assumed next-hop policies, to show that st is policy-compliant we only
need to show that B is willing to advertise t to C. By lemma 3, B’s default path
exists and, moreover, is a B’s nice path (in SPVP, not only in e-brother). Therefore,
B has to be willing to advertise t to C.

Thus, we have showed that there exists a policy-compliant path q in e-brother
from A to the destination. By existence of q and lemma 3, node A will have a path
pA in the e-brother’s converged state. Because paths in e-brother correspond one-
to-one to the e-avoiding path of YPC, pA is the e-avoiding path that A has in YPC
before the failure of e, as desired.

A.4 Hiding Convergence

In the paper, we introduced the hiding technique and applied it to BGP and YPC.
We now define a formal model for hiding and prove its convergence properties. Also,
the description of hiding in the paper contained many details. The model we define
and study here strips many of the details exposing the core of hiding. We hope that
the core hiding model can be of independent interest.

A.4.1 HPV Definiton

We first define the formal model for hiding, which we call Hiding Path Vector
(HPV). HPV and the framework around it are based on SPVP [32], where from we
borrow most of our definitions. We repeat them here for completeness of presentation.

The HPV algorithm is defined over an undirected graph G = (V,E), where V =
{0, 1, 2, . . . , n} is a set of vertices (also called nodes and E is a set of edges. Vertex 0
is a special destination vertex. Each edge in E represents two reliable FIFO message
queues - one in each direction. For a vertex v, we denote the set of v’th neighboring
vertices by N(v).

Definition 4 Path P = [uk, uk−1, . . . , u1, u0] is a sequence of nodes ui ∈ V such that
(ui, ui−1) ∈ E. There is a special empty path denoted by ε. Path P is called simple
if all of its nodes are pairwise different. Nodes uk, uk−1 and u0 are called the first
node, the next-hop, and the last node of P , respectively. Paths P = [uk, . . . , u0] and
Q = [vm, . . . , v0] can be concatenated into a path PQ = [uk, . . . , u0, vm−1, . . . , v0] if
u0 = vm. Concatenation with the empty path ε is the identity operation.
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Definition 5 For each node v ∈ V , a set of simple paths P v such that ε ∈ P v is a
set of permitted paths at node v. We also require that P 0 = {[0]}. P is the set of all
sets P v.

Note that sets P v let us model several different characteristics of BGP. First, we
model both import and export filters using permitted path sets. Modeling of import
filters is obvious - paths that are rejected by the import filters are not permitted.
Modeling of export filters is done in the following way: the case when node u does
not export path P to its neighbor v, is modeled by not including path P in P v. Second,
we model the loop detection of BGP by including only simple paths in permitted path
sets.

Definition 6 Each node v ∈ V has a ranking function λv that assigns a non-negative
number (preference) for each path in P v. The higher the value of λv(P ), the higher is
v’th preference for P . Furthermore, for all v ∈ V , we require that λv(ε) = 0 and for
P ∈ P v, P 6= ε, λv(ε) > 0. Finally, we assume that for P1 6= P2, λ

v(P1) 6= λv(P2). A
weaker form of this injectivity assumption is sufficient for the proofs, but since this
assumption is true for BGP, we might as well assume this strong version. Λ denotes
the set of all λv

Each node in HPV has two data structures: rib - corresponding to Loc-RIB in
BGP specification, and rib in - corresponding to the Adj-RIB-In in BGP specifica-
tion. Like BGP, rib(u) always contains the most preferred path among the paths
in {[u, v]P : v ∈ N(u), P = rib inu(v)}. We denote this most preferred path by
best(u). Unlike BGP, the rib inu(v) in can contain not only the last path received
by u from v, but also the last permitted path (in P u) received by u from v or the
empty path ε. The case when rib inu(v) contains last path received by u from v
corresponds to the regular BGP-like situation. The case when rib inu(v) contains
the last permitted path received by u from v corresponds to the case when u is hiding.
The case when rib inu(v) contains the empty path corresponds to the case when u
was hiding, stopped, and have not yet received a permitted path from v.

As in [32] and [30], to model the distributed nature of HPV we introduce a notion
of an activation sequence. Activation sequence specifies when which node does what.
Different activation sequences model different execution orders of the true distributed
version of HPV. HPV executes by processing one activator from the sequence at a
time. We say that i’th activator is processed at time i. Each activator in an activation
sequence is tuple a = (u, v, t) where u is the node being activated, v is a neighbor of
u towards which u is activated, and t is the type of the activator. HPV has two types
of activators: a regular activator and a revealing activator, which are handled with
algorithms 5 and 6. Each algorithm is run atomically.

Regular activator for u towards v is handled (algorithm 5) by first removing a
pending message from v (if there is no message the activator results in a nop) con-
taining a path P . If P is not a permitted path, the current path in the rib inu(v)
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Algorithm 5: Algorithm for node u when it is activated by a regular activator
towards v

if there is a pending message m from v to u then
remove m from the link queue
P := path in m
if P ∈ P u then

rib inu(v) := P
if rib(u) 6= best(u) then

rib(u) := best(u)
foreach w ∈ N(u) do

send rib(u) to w
end

end

else
mark rib inu(v) as lame

end

end

is marked lame and P is discarded. If P is permitted, it is handled in the standard
BGP fashion - it is put into rib inu(v); the current best path is computed; if the
current best path is not in the rib(u), rib(u) is updated and the change is sent to
the neighbors. Thus, regular activators are essentially the same as the activators in
[32], with the only difference that a non-permitted path is not put into rib in, which
is marked as lame instead.

Revealing activator for u towards v is a nop if rib inu(v) is not lame. If rib inu(v)
is lame, the lame path is deleted (by setting rib inu(v) to the empty path) and the
standard BGP path selection is carried out. Revealing activator essentially brings
the rib inu(v) into a state that is equivalent to the one SPVP would have brought
it into.

We call an activation sequence fair if for each pair of neighboring nodes (u, v) it
contains infinitely many regular activators (u, v, ”regular”). In our presentation, all
activation sequences are assumed to be fair.

In a truly distributed HPV, regular activators correspond to an arrival of a message
from a neighbor, while revealing activators correspond to the node deciding to stop
hiding. This decision can be caused by many factors such as a reception of a token
(described earlier) or an expiration of a timer. These factors are intentionally left
out of the model. The fact that our convergence result for HPV is valid for arbitrary
activation sequences shows that it is safe for operators to stop hiding any path at any
time.

The last piece that we need to formally talk about HPV is the state consistency.
The state of HPV is said to be consistent if all of the following hold
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Algorithm 6: Algorithm for node u when it is activated by a revealing activator
towards v

if rib inu(v) is lame then
rib inu(v) = ε
if rib(u) 6= best(u) then

rib(u) := best(u)
foreach w ∈ N(u) do

send rib(u) to w
end

end

end

1. For all u ∈ V , rib(u) = best(u), i.e. rib(u) contains the best possible path
given the values of rib in’s.

2. For each pair (u, v) of neighboring nodes, if the link from v to u is not empty,
the last message in this link contains the path in rib(v).

3. For each pair (u, v) of neighboring nodes, if the link from v to u is empty, then
one of the following is true

(a) rib(v) ∈ P u and rib inu(v) = rib(v)

(b) rib(v) 6∈ P u and rib inu(v) = ε

(c) rib(v) 6∈ P u and rib inu(v) contains the last permitted path that v sent
to u.

Throughout the paper we assume that the initial state is consistent. It is easy to check
that any activation sequence (not necessarily fair) takes the system in consistent state
into consistent state.

Thus, we have finished defining HPV. Its inputs are a graph, a collection of ranking
functions, a collection of permitted path sets, an activation sequence, and an initial
state. This 5-tuple of inputs defines an instance of HPV.

A.4.2 Dispute Wheels

Next, we restate the definition of a dispute wheel from [32].

Definition 7 A sequence of nodes U = u0, u1, . . . , uk−1 together with two sequences
of nonempty paths Q = Q0, Q1, . . . , Qk−1, R = R0, R1, . . . , Rk−1 constitute a dispute
wheel W = (U,Q,R) if

1. Ri is a path from ui to ui+1
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2. Qi ∈ P ui

3. RiQi+1 ∈ P ui

4. λui(Qi) < λui(RiQi+1)

where all subscripts are to be interpreted modulo k. For an illustration of a dispute
wheel see figure 9.a of [32].

A.4.3 HPV Convergence

Given an instance of HPV, we say that rib inu(v) converges if rib inu(v) does
not change after some time t0. We say that a node u converges if rib(u) does not
change after some time t0. Finally, we say that HPV converges is all nodes converge.
Next, we state the main theorem, discuss why we choose to prove this theorem, prove
a number of lemmas, and finally prove the theorem.

Theorem 7 An instance of HPV converges if it does not have a dispute wheel.

Even through the analogous result for BGP convergence is not the sate of the
art ([20]), it is well-known and relatively simple result. At the same time, it is
powerful enough to guarantee convergence in at least two important classes of policies
- the customer-peer-provider policies and the generalized shortest-path based policies.
Finally, this result is particularly appealing because the proof exposes the effects of
hiding on the dynamics of the model.

Let value(u) be a set of paths that node u picks infinitely many times. C is the
set of nodes that converge (whose value() has a single path), R is the set of converged
rib in’s, and O is the set of oscillating nodes (whose value() has at least two paths).
It is obvious that O and C are disjoined and cover V .

Lemma 4 Given nodes u and v, if rib inu(v) 6∈ R, then v ∈ O.

Proof: We prove the contrapositive - if v ∈ C, then rib inu(v) ∈ R. By definition,
because v ∈ C, rib(v) does not change after some time t0. Because rib(v) does not
change after t0, v does not send any messages to u after t0. Thus, the link from v to
u is always empty after some time t1 (because we always assume that the activation
sequence is fair). Then, regular activators for u towards v in a nop after t1 and
the rib inu(v) cannot change during regular activator processing after t1. Moreover,
rib inu(v) can change at most once during a revealing activator processing after t1.
Thus, there is a time after which rib inu(v) does not change, i.e. rib inu(v) ∈ R as
desired.

Lemma 5 If u0 ∈ O and P0 = [u0, u1, . . . , uk−1, uk = 0] ∈ values(u0), then for some
0 ≤ i ≤ k − 1, rib inui

(ui+1) ∈ R. In other words, there is a convergent rib in

along P0.
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Proof: If rib inu0(u1) ∈ R, we are done. Assume rib inu0(u1) 6∈ R. Then, by
lemma 4, u1 ∈ O. We next show that P1 = [u1, . . . , uk−1, uk = 0] ∈ values(u1)

First, because P0 ∈ values(u0) and rib inu0(u1) 6∈ R, P1 has to appear in (and
disappear from) rib inu0(u1) infinitely many times. The only way for P1 to appear in
rib inu0(u1) replacing another path is for u0 to process a message containing P1 from
u1. Therefore, u1 sends P1 infinitely many times, which implies that P1 ∈ values(u1).

Thus, we have showed that if rib inu0(u1) 6∈ R, then u1 ∈ O and P1 ∈ values(u1).
Applying the same argument, we can show that if rib inu1(u2) 6∈ R, then u2 ∈ O
and P2 ∈ values(u2). Continuing analogously, if no rib in along the path converges,
then uk = 0 has to be oscillating, which is impossible. Thus, for some 0 ≤ i ≤ k − 1,
rib inui

(ui+1) ∈ R.

Proof of Theorem 7: We prove the contrapositive statement - if an instance of
HPV does not converge, there is a dispute wheel. Since HPV does not converge, O is
nonempty. Let u ∈ O and P ∈ values(u). Then, by lemma 5, there is a convergent
rib in along P . Let u0 be the first node along P , whose rib in from the downstream
node is convergent. Then, u0 ∈ O because otherwise the node upstream of u0 would
have a convergent rib in from u0 (and hence u0 would not be the first node with
convergent downstream rib in).

Let H0 be a path starting at u0 such that P = [u, . . . , u0]H0. Because, the
downstream rib in from u0 is convergent, the path H0 is always available to u0 after
some point in time. Because H0 is always available and u0 is an oscillating node, H0

has to be the least preferred path by u0 from among all the paths in values(u0). Let
J0 ∈ values(u0) be a more preferred path than H0.

Now, we have an oscillating node u0 and a path J0 ∈ values(u0). Using the same
argument as we did for u and P ∈ values(u), we can find an oscillating node u1 and a
path J2 ∈ values(u1). Continuing in this fashion, for some value of k, a newly found
uk will be equal to an already found uj. Notice that an oscillating node can have at
most one path it picks infinitely many times that comes from a convergent rib in -
the least preferred path in values() of this node. Therefore, Hk = Hj.

Now, lets rename ui to ai−j and Hi to Qi−j for i = j, j + 1, . . . , k − 1. Also, for
i = 0, 1, . . . , k− j−1, let Ri be such a path that Jj+i = RiHj+i+1. In other words, Ri

is the prefix of Jj+i until and including uj+i+1. Finally, let m = k− j− 1. With these
definitions, we now have a dispute wheel, W = (A,Q,R), where A = a0, a1, . . . , am,
Q = Q0, Q1, . . . , Qm, R = R0, R1, . . . , Rm. The first three conditions for the dispute
wheel in definition 7 are obviously satisfied by construction. The last condition holds
because Ji was picked to be a more preferred path than Hi for i = 0, 1, . . . , k−1, and
because Hk = Hj. This completes the proof.

In this section, we defined a HPV and proved that it converges under any fair
activation sequence as long as the policies don’t contain dispute wheels. HPV can
be viewed as an application of the hiding technique to SPVP. The hiding technique
simply says that when a node’s peer withdraws a path from it, the node can pretend
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that it continues to have the path until the peer announces another path or until
the node decides to stop pretending. An intuitive reason why hiding does not affect
convergence of SPVP is because hiding does not introduce anything new into the
dynamics of SPVP - it simply delays the processing of a withdrawal. SPVP processes
the withdrawal immediately, while HPV processes the withdrawal when it decides to
(or never if the peer sends a new path before the node processes the withdrawal). In
some sense, the fact that SPVP converges under any activation sequence means that
SPVP’s dynamics are invariant under the timing of events. Thus, it seems reasonable
that if the timing of withdrawal processing is made variable (what hiding does to
SPVP), SPVP will still converge.

In the next section, we show how the convergence result for HPV can be applied
to YAMR to prove its convergence. To avoid boring the reader with pages of formal
details, we present only the main constructs and arguments of the proof.

A.4.4 HSYPC Convergence

In the previous sections we defined SYPC to be the formal model for YPC. SYPC
for YPC is what SPVP is for BGP. In this section, we talk about HSYPC, which is
the result of applying the hiding technique to SYPC, just like HPV was the result of
applying the hiding technique to SPVP. Throughout the discussion, we consider an
instance of HSYPC, Z, with no dispute wheels and a consistent initial configuration.
We assume that there are no link events and policy changes after some moment. Our
goal is to prove that HSYPC converges. Note that HSYPC is a simplified model
YAMR. Thus, in this section we come very close to proving that YAMR converges
(i.e. proving theorem 3). In the next section, we actually prove theorem 3.

First of all, the default paths of HSYPC are constructed in exactly the same way
as the paths of HPV. Therefore, by theorem 7, the default paths of HSYPC converge.

After convergence of default paths, the dynamics of paths with a given label are
completely independent from the dynamics of other labels. Therefore, it is sufficient
to show that paths with a given label e converge.

Let Se be the set of nodes whose (converged) default paths contain e. Let S be the
set of all nodes whose default paths don’t contain e. If Z contains nodes that don’t
have default paths, these nodes are completely isolated and we can assume there are
no such nodes without loss of generality. Therefore, S∪Se = V , where V is the set of
all nodes as usually. Using the notation from the previous section, we can note that
S ⊆ C and O ⊆ Se.

Note that because of hiding the set Se does not have to be a tree. However, similar
arguments that we used in the previous section apply here as well. For the remainder
of a section, when we talk about the path of a node u, we mean u’s default path if
u ∈ S and u’s e-labeled path if u ∈ Se. Further, when we talk about rib inu(v), we
mean the default path in rib inu(v) if v ∈ S and the e-labeled path in rib inu(v) if
v ∈ Se. In other words, rib inu(v) contains the path that we are concerned with for
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node v.
Thus, for each node we have at most one path that we are concerned with and

there is a single path in rib inu(v) for each connected ordered pair (u, v) of nodes
that we are concerned with. The interdependence of these paths is not the same as
the paths in HPV - the paths at different nodes affect each other as was described in
the YAMR’s design. However, the dynamics are sufficiently similar to HPV that we
can use the same notation and the same arguments.

Lemma 6 Given nodes u and v, if rib inu(v) 6∈ R, then v ∈ O.

Proof: The meaning of this lemma in the new context is somewhat different from the
meaning of lemma 4. However, the unchanged proof of lemma 4 proves this lemma
as well.

Lemma 7 If u0 ∈ O and P0 = [u0, u1, . . . , uk−1,
uk = 0] ∈ values(u0), then for some 0 ≤ i ≤ k − 1, rib inui

(ui+1) ∈ R. In other
words, there is a convergent rib in along P0.

Proof: First of all, u0 ∈ Se because u0 ∈ O. If for any i, 0 ≤ i ≤ k, ui ∈ S, the
statement is obvious. Thus, we can assume that for all i ui ∈ Se. Then, the proof of
lemma 5 applies here unchanged.

At this point, we have repeat the proof of theorem 7 verbatim (but obviously using
the new meanings for paths and rib ins) to show that e-labeled paths converge. As
mentioned earlier, repeating the same argument for all labels, show that HSYPC
converges when there are no dispute wheels.

A.4.5 YAMR Convergence

In this section, we finally prove theorem 3. We restate it here in a more rigorous
way.

Theorem 8 Consider an instance Z of YAMR with consistent initial configuration,
no dispute wheels, and all ASes following widest-advertisement and next-hop policies.
Assume there are no policy changes and link events after time t. Then, there exists a
time t′ > t after which no update messages are sent, no tokens are sent, and no state
changes occur. In other words, YAMR converges completely.

Proof: Consider an instance X of HSYPC that corresponds to Z. In the previous
section, we showed that X converges. This implies that after some time t0 no update
messages are sent and no state changes occur Z. Therefore, we only need to show
that no tokens are sent after some time.

Before showing that tokens cease to be sent, we need to realize that no state
changes after t0 implies that after t0 no AS changes what it hides. In other words,
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no AS can decide to stop hiding some path after t0 by definition of t0. ASes have
complete freedom deciding what to hide and when to stop hiding, but whatever they
do, they cannot continue forever as was shown in the previous section. Thus, there
exists a time, t0, after which no hiding changes occurs. This logical point that gives
complete freedom to ASes and yet claims that all ASes stop after some point can be
hard to understand. We further illustrate it with an example.

Consider a finite set of integers C. Then, in any infinite sequence S of integers
from C, there exists an index after which S contains only integers that appear in it
infinitely many times. Think of constructing a sequence S0 that will contradict this
statement. We have complete freedom to choose how many elements of C will appear
in the sequence finitely many times. Further, we have complete freedom to choose
how many times each of these elements will appear in S0. Even further, we can put
each occurrence of each of these elements as far in the sequence as we want. Yet,
despite all these freedoms, there is an index after which there is none of our elements.
The convergence of state in hiding has the same logic. ASes have a lot of freedom,
but after some point they all stop. Next, we show that loop and disconnection tokens
stop.

Recall that loop detection tokens are sent only at the end of path selection. Path
selection can only be triggered by an update message or by a decision to stop hiding
(because of a reception of another token or inability to find a deflection path). We
know that no update messages are sent after t0. We also argued above that no AS can
decide to stop hiding after t0. Therefore, no loop detection tokens can be sent after
some time t1 > t0 when all the updates message sent before t0 have been processed
(no new ones can be sent after t0).

Lastly, we show that disconnection tokens cannot be sent forever. Assume the con-
trary that there exists an AS A that sends disconnection tokens forever. In particular,
A sends tokens after t1 when all the state has converged and no update messages are
sent. Because A sends disconnection tokens A must choose a loopy path. Because the
state has converged and the control path is loopy, the forwarding path corresponding
to it has to contain a hiding AS B. Upon reception of A’s disconnection token B has
to stop hiding, thus changing its state. This contradiction completes the proof.

A.5 Hiding Loop-Freeness

In this section, we prove theorem 4 that guarantees loop-freeness of YAMR (and
HBGP as a special case).

As before, we fix a destination prefix. We say AS A has an e-labeled path if A’s
rib contains an e-labeled path (even if this path is lame). We also introduce the
notion of label L’s forwarding path starting at node A. Given a node A and a label L,
the forwarding path of L starting at A is the path on which a packet leaving A with
label L will travel. The label can change along the forwarding path. The forwarding
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path can contain a loop, in which case it is infinite. Next, we restate theorem 4 more
rigorously and prove it.

Theorem 9 Assume after some time t0, there are no link events and policy changes
for a sufficiently long time that the network converges at time t1. Then, if an AS has
an L-labeled path at time t1, the forwarding path of L starting at the AS is finite and
ends at the destination. In other words, if the AS sends a packet with label L the
packet will reach the destination (ignoring practicalities like data corruption).

Proof: Assume the contrary, that there is an AS that has a path for a label but
whose forwarding path for this label does not reach the destination. Note that since
the network is in the converged state at time t1, the forwarding path cannot be finite
and not end at the destination. If the forwarding path ends at a node X that is not
the destination and the previous nodes is Y , then Y forwarding table is not consistent
with X RIB, which is impossible in the converged state. Thus, the forwarding path
has to be infinite and hence contain a loop.

Let a supernode (A,L) be a pair, where A is a node and L is a label. Intuitively, a
supernode (A,L) is a node A and its path for L. It is useful because we can talk about
the path of a supernode and the forwarding entry of the supernode without specifying
the label. Using supernodes, we can represent the loop F in the forwarding path as
a sequence of supernodes [(A0, L0), . . . , (Ak−1, Lk−1), (Ak, Lk) = (A0, L0)], where each
supernode (Ai, Li) represents the fact that packet sent on the forwarding path arrives
at node Ai with label Li. Whenever we use indices of supernodes in F , they are
to be interpreted module k. We call a supernode (Ai, Li) a hiding supernode if the
path for label Li at node Ai is lame. We say that a supernode (Ai, Li) sent a loop
token we mean that node Ai sent a token along its Li-labeled path. We say that a
supernode (Ai, Li) changed its forwarding state if the next-hop supernode of (Ai, Li)
has changed. Note that if the label changed the next-hop node can be the same.

Because the network state has converged and there is a loop F in the forwarding
path, F has to contain a hiding supernode. Without loss of generality let (A0, L0) be
the last hiding supernode in F that sent a loop token T , say at time t2 (if there are
multiple such supernodes, let (A0, L0) be an arbitrary one of them). Next, we show
that there exists a supernode in F that changed its forwarding state after it processed
T (not necessarily because of T ).

Recall that a hiding supernode always sends a token after it changes its forwarding
state. Because T is the last token (A0, L0) sent, it did not change its forwarding state
after sending T and T was sent to (A1, L1). Now, if there is no supernode in F that
changed its forwarding state after processing T , then the token must have traveled
around F and must have come back to (A0, L0). (A0, L0) would then have changed
its forwarding contrary to the fact above. Thus, there is a supernode that changed
its forwarding after processing T , say at time t3. Let (Aj, Lj) be the supernode that
changed its forwarding last among all the supernodes in F , say at time t4 (if there
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are multiple such supernodes, choose one randomly). Then, t4 ≥ t3 > t2 and hence
there are no tokens sent by supernodes in F after t4.

Because (Aj, Lj) did not send a token after updating its forwarding state at time
t4, it is not a hiding supernode. Therefore, it must have sent an update to (Aj−1, Lj−1)
because no forwarding changes happen after t4. Because (Aj−1, Lj−1) also did not send
a token after receiving this update, it is not a hiding supernode and it must have sent
an update to (Aj−2, Lj−2) (because no forwarding changes happen after t4). We can
continue this argument until we conclude that (A0, L0) is not a hiding supernode,
which contradicts our choice of (A0, L0). This contradiction completes the proof.

A.6 Hiding Connectivity

In this section, we formally prove theorem 5. Note that it is enough to prove that
an AS that can be connected is connected though its default path. Thus, it is enough
to prove theorem 5 for HBGP. We start with some definitions:

• control path - a path that the AS has in its RIB or RIB IN. Control path can
be lame. Then, it has a deflection path. For an AS A, we denote, its control
path by cA. By cA(u) we denote the control path of A were it to choose the
peer u’s control path as best.

• forwarding path - a path that the packets actually travel from an AS. For an AS
A, we denote, its forwarding path by fA. By fA(u) we denote the forwarding
path of A were it to forward through peer u. Note that fA(u) can be infinite if
the packet comes back to A.

• Given a forwarding path p, the corresponding control paths is denoted by
ctrl(p). Given a control path p, the corresponding forwarding paths is denoted
by fwd(p)

• nice forwarding path - like nice path but referring specifically to a forwarding
path.

• class(p) - is a class of a path p, which is the class of the next-hop peer in p.

• fine forwarding class c of some AS A is defined as follows. Let U be the set
of all peers of A that announce a path to A (including peers that announce a
loopy path to A). Then c is the highest class in the set {class(fA(u)) : u ∈
U, fA(u) is finite}. If the set is empty, we say that c is null.

• fine forwarding path p is a path whose class is the fine forwarding class.
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• A path advertised by a peer u to A is called misaligned if it contains A but
the suffix of u starting at A is not the same as any of A’s paths from which it
could have originated. In the case of HBGP, there is a single originating path
- the path in the RIB. In the case of YAMR, a default path can only originate
from another default path and an alternate path can originate from the default
path and from a labeled path with the same label. We also say a misaligned
advertisement if it contains a misaligned path. If a path is not misaligned, we
say it is aligned.

Notice that for ASes that don’t hide, the next-hop ASes for corresponding forwarding
and control paths are the same. Therefore, a control path is nice if and only if the
forwarding path is nice. Thus, we can simply talk about a nice path without specifying
which we mean. Also, we can talk about the next-hop without specifying on which
path the next-hop is.

Lemma 8 Let Z be an instance of HBGP with no dispute wheels and all ASes fol-
lowing widest-advertisement and next-hop policies. Assume that there has been no
policy changes and link events for a long enough time that Z has converged. Then,
for each AS A, fA is in the fine forwarding class of A. In particular, if fA is null,
the fine forwarding class is null.

Proof: First, consider the case when fA does not exist. If A does not forward
anywhere, either no peer advertises a path to A or there is a path advertised to A
that A cannot forward on (if there are multiple such paths, choose the most preferred
one). In the first case, we have nothing to show. In the second case, the only reason
A cannot forward on a path advertised to it is that this path is loopy. However,
because A does not have any path in its RIB, this loopy path must be misaligned
and A must be sending disconnection tokens along this path. This contradicts the
assumption that Z has converged and concludes the case when fA is null.

Consider the case when fA exists. Assume the contrary that fA is not in the fine
forwarding class c of A and let the next-hop along fA be B. If fA is not in c, then
class of fA must necessarily be less preferred that c, by definition of c. Let f ′A be
a forwarding path of A that is in c and let C be the next-hop along f ′A. Because
f ′A is in the more preferred class than fA, A would prefer any path through C to
any path through B. However, since A does not prefer the path pC advertised by
C (the control path whose corresponding forwarding path is f ′A), pC must be loopy.
Moreover, pC has to be aligned. Indeed, if pC were misaligned, it would be considered
in A path selection, would be preferred over pB (the control path whose corresponding
forwarding path is fA) and A would send a disconnection token contradicting our
assumption that Z converged.

Because pC goes through A but f ′A does not, there is an AS along f ′A that hides.
Let D be the first AS along f ′A starting from A that hides. Then, D prefers the path
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pC(D) more than q - the control path corresponding to the suffix of f ′A starting at D.
Now, we can identify a dispute wheel.

Let us rename some paths and nodes to illustrate the dispute wheel. Let A
be u0. Let D be u1. Let the control path corresponding to fA be Q0. Let q be
Q1. Let [A,C, . . . , D], the prefix of f ′A until D be R0. Let the prefix of pC(D)
until and including A be R1. Now, the dispute wheel is W = (U = u0, u1, Q =
Q0, Q1, R = R0, R1). Verifying that W is indeed a dispute wheel is straightforward.
This contradiction finishes the proof of the lemma.

In the presence of hiding nodes, advertised control paths are different from the
forwarding paths. Therefore, ASes don’t have enough knowledge to choose the best
available forwarding path. However, as the lemma 8 states, the disconnection token
mechanism ensure that ASes end up with almost the best available paths. Even
though this result is quite promising, under the general assumptions we have been
using, the small imperfection of the mechanism can prevent some ASes from getting
a nice forwarding path. To guarantee that each AS gets a nice forwarding path, we
have to narrow the class of possible AS policies to those for which these imperfections
cannot cause any harm. We call this class of policies dispute circlet free policies, or in
other words, policies that don’t have dispute circlets. Luckily the common customer-
peer-provider policies don’t have dispute circlets, if we assume that there are no cycles
made entirely from provider-to-customer links.

The only difference between dispute circlets and dispute wheels is the path prefer-
ence relation they use. For dispute wheels, the preference relation is the same relation
that ASes use to rank paths based on the ranking function. For dispute circlets, the
preference relation RA of an AS A is a general binary relation that is not necessarily
a partial order defined as follows. Given the AS graph, the ranking functions of all
ASes, an AS A, and two paths p1 and p2 from A to the destination, (p1, p2) ∈ RA if
and only if class(p1) ≤ class(p2). If (p1, p2) ∈ RA, we write it as p1 �A p2.

If λA(p1) ≥ λA(p2), class(p1) ≤ class(p2) and (p1, p2) ∈ RA. Therefore, all
preference relations based on ranking function are included in RA, from which it
immediately follows that every dispute wheel is a dispute circlet.

Lemma 9 If there are no dispute circlets, each AS in Z has a nice forwarding path.

Proof: We first show the following sublemma. Let A be an AS that does not have
a nice forwarding path in Z (from now on the specification ”in Z” is assumed and
we don’t write it explicitly). Let p = [A,An−1, An−2, . . . , A0] be a nice path from A.
Then, at least one of An−1, An−2, . . . , A1 does not have a nice forwarding path.

Assume the contrary, that all of the intermediate nodes have nice forwarding
paths. There are two possible cases: either A is disconnected or A is connected. If
A is disconnected n has to be greater or equal to 2. Consider An−1. By assumption,
An−1 has a nice forwarding path. Because (1) An−1 is willing to advertise a path
through An−2 to A (namely p), (2) An−1 has a nice forwarding path, An−1 has to be
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willing to advertise its control path to A. Therefore, the fine forwarding class of A is
non-null. By lemma 8, A is connected. This contradiction proves the sublemma in
the case that A is disconnected. Next, we consider the case when A is connected.

In the case thatA is connected, we show that the forwarding paths ofAn−1, An−2, . . . , A0

has to go through A, which is a contradiction because the path of A0 is [A0]. Let pnX
and pcX denote a nice and the current forwarding paths of X, respectively. Further,
let p(Y ) denote the suffix of path p starting at Y . First, note that since all Ai’s have
a nice forwarding path, they all must be connected. Because An−1 forwards through
a nice peer, it has to advertise its control path to A. If pcAn−1

does not go through
A, A’s fine forwarding class is equal to the nice forwarding class. By lemma 8, A’s
forwarding path is a nice forwarding path. This is a contradiction. Therefore, pcAn−1

has to go through A.
Assume pcAn−2

does not go through A. Because it does not go through A, it does
not go through An−1. Then, An−2 is advertising pcAn−2

to An−1. Because pcAn−2
6=

pcAn−1
(An−2) (one goes through A and one does not) and because An−1’s current

forwarding path is pcAn−1
, [An−1]p

c
An−2

≺An−1 pcAn−1
. Recall that because A’s current

forwarding path is not nice, [A,An−1]p
c
An−2

�A pcA. These four paths and nodes A
and An−1 form a dispute circlet, which we assumed does not exist. Thus, pcAn−2

goes
through A.

The argument above can be repeated inductively. At the step for An−i, the fol-
lowing holds:

[An−i+1]p
c
An−i
≺An−i+1 pcAn−i+1

pcA ≺A [A,An−1, . . . , An−i+1]p
c
An−i

and these four paths together with A and An−i+1 form a dispute circlet. This finishes
the proof of the sublemma. Next, we prove the lemma.

Assume the contrary, that there exists an AS A0 whose forwarding path is not
nice. Then, pick a nice path p1 = [A0, Bn−1, Bn−2, . . . , B0] from A0 to the destination.
On this path, pick a node Bi, 0 ≤ i ≤ n− 1 such that

• Bi’s forwarding path is not nice

• Path [Bi, Bi−1, . . . , B0] is not a nice forwarding path of Bi.

Such Bi can be found in the following way. By the sublemma, there is an AS Bj

whose forwarding path is not nice. If for this Bj, the path [Bj, Bj−1, . . . , B0] is nice,
we can apply the sublemma to Bj and its nice path [Bj, Bj−1, . . . , B0], to find a node
Bk, k < j, whose forwarding path is not nice. If the path [Bk, Bk−1, . . . , B0] is a
nice forwarding path of Bk, we can continue analogously. Because the original path
[A0, Bn−1, Bn−2, . . . , B0] is finite and on each iteration it gets smaller, this process
cannot continue forever. Therefore, there exists such a Bi. Rename it to A1.
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Define A2, A3, . . . analogously until some Aq is not the same as a previously found
Ar. Without loss of generality, assume that r = 0 (because we could have started
at Ar). Let pi be the nice path of Ai we used to find Ai+1. Interpret the subscripts
module q and let Ri be the prefix of the path pi until and including Ai+1. Let Qi be
the suffix of the path pi−1 starting from and including Ai. Let R = R0, R1, . . . , Rq−1,
Q = Q0, Q1, . . . , Qq−1, and A = A0, A1, . . . , Aq−1. Then, W = (A,Q,R) is a dispute
circlet. This contradiction, proves the lemma.

To show theorem 5, we simply apply lemma 9 to default path of YAMR.

A.7 Hiding Recovery

The Theorem 6 is obvious because of the failed link propagation mechanism.
Recall that having a failed link information gives an AS a permission to hide the
failure. When the link recovers, all failure information is guaranteed to be withdrawn
from every AS that had it. When the failure information is withdrawn, all ASes stops
hiding and routing returns to normal.
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