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Building Abstraction: The Role of Representation and Structural Alignment in 

Learning Causal System Categories 

Margarita Pavlova (mvpavlova.nbu.bg) 
Department of Cognitive Science and Psychology, New Bulgarian University, 21 Montevideo Street 

Sofia 1618, Bulgaria 

  
Abstract 

The present study examined the role of detecting the initial 
causal system model followed by engaging in active vs. passive 
structural alignment in recognizing the key causal principles in 
subsequent novel examples. The results echo prior research on 
the benefit of analogical comparison in learning relational 
categories: participants who were prompted to compare 
outperformed participants in the baseline condition. Moreover, 
while the accurate representation of the causal system predicted 
noticing the relational structure in novel examples, making 
more accurate relational mappings made participants more 
likely to notice the structure above and beyond having an 
accurate representation. These findings offer insight into the 
role of active vs. passive analogical comparison and have 
implications for conditions that might support learning of 
relational categories. 

Keywords: relational reasoning; learning; transfer; relational 
categories 

Introduction 

A key goal of education is building transferable knowledge 

that learners can apply in different situations and beyond the 

specific learning context in which they obtained it (National 

Research Council, 2012; OECD, 2016). Such learning 

requires appreciating the underlying common relational 

patters among disparate situations. Moreover, attending to 

relational information is critical to cross-domain transfer 

(Gentner, 1983). Novice learners struggle to recognize these 

patterns because their representations often do not 

incorporate the relational-structural information in a way that 

is independent of the various learning situations which 

contributes to their inert knowledge (Fries et al., 2021). 

Subsequently, they tend to base similarity judgements and 

categorization on surface similarities (e.g., Chi et al., 1981; 

Gentner et al., 1993) and struggle to generalize the material 

to novel situations particularly when there are different 

surface characteristics that might lure them toward incorrect 

inferences (e.g., Gick & Holyoak, 1980, 1983; Holyoak & 

Koh, 1987; Novick, 1988; Trench & Minervino, 2015). In 

that sense, supporting the building of abstract relational 

representations that connect disparate situations and domains 

seems a fruitful avenue in providing education and training 

that builds transferable knowledge (Goldwater & Schalk, 

2016). One way to achieve abstract relational representations 

is via structural alignment, the process by which the relational 

structures of two situations are aligned and compared and 

inferences are carried out from the better known one to the 

lesser known one.  

Teaching Relational Reasoning 

Noticing and applying the underlying relational structure 

among various relational categories is a sign of expertise. 

Structural alignment supports the acquisition of expert-like 

domain knowledge and the construction of schemas (Alfieri 

et al., 2013; Gick & Holyoak, 1980, 1983) and supports the 

organization and representation of knowledge in more 

coherent relational systems which learners can flexibly 

manipulate according to the situation. Structural alignment 

also helps to change the mental representations of one or both 

situations. Thus, relational reasoning can be seen as a means 

as well as an outcome of learning (Richland & Simms, 2015). 

However, learning by analogy is challenging and can be 

sensitive to the conditions of the learning context. 

Representing instructional examples as systems of relations, 

aligning, mapping, and drawing inferences based on these 

systems draws on executive functions such as working 

memory and inhibitory control (Krawczyk et al., 2008; 

Richland & Simms, 2015); relational reasoning correlates 

with individual differences in fluid intelligence (Gray & 

Holyoak, 2020; Kubricht et al., 2017; Vendetti et al., 2014). 

Relatedly, transfer is difficult. People often fail to notice or 

retrieve the appropriate relational information because the 

current situation shares few object or domain similarities with 

the previously encountered information (Gentner et al., 1993; 

Gick & Holyoak, 1980, 1983; Holyoak & Koh, 1987). 

On the other hand, recent research suggests that under 

appropriate learning context, relational reasoning can be 

trained. For example, Kubricht et al. (2017) showed that 

presenting learners with instructional materials that facilitate 

comprehension, mediates analogical transfer. Goldwater & 

Gentner (2015) found that interventions that facilitate 

categorization based on relational structure can lead to 

recognizing that schema in novel situations. Most recently, 

Kessler et al. (2023) showed that training by capitalizing on 

the construction of relational category knowledge can lead to 

an ability to recognize the key causal structure and 

subsequently relates to higher performance on complex 

problem-solving. Taken together, these results suggest that 

relational reasoning seems to not be entirely dependent on 

inter-individual differences: it can be practiced and trained.  

Acquiring Expert-like Knowledge 

A key difference between experts and novices seems to be in 

the way they organize their knowledge. Experts tend to 

organize their knowledge in terms of relational-structural 

similarity. For example, in problem/example sorting tasks, 
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experts tend to group examples into relational categories such 

as physics “energy” problems or “positive feedback” 

examples, whereas novices tend to group them into feature-

based categories such as physics “pulley” problems or 

“biodiversity” examples (Chi et al., 1981; Rottman et al., 

2012).  

Prior knowledge interacts with analogical reasoning and 

the ability to extract relevant relations. Experts are thought to 

have a propensity to notice relational similarities between 

disparate domains (Dunbar, 2001; Goldwater et al., 2021; 

Novick, 1988) and to habitually encode new examples in the 

terms of key relational principles in the domain which 

contributes to their ability to retrieve relational matches in 

subsequent transfer tasks (Goldwater et al., 2021). 

Learning Relational Categories  

Members of relational categories share a common relational 

structure (Markman & Stilwell, 2001). Relational categories 

can be divided into role-governed categories which specify 

that members play the same role in a global relational 

structure and schema-governed categories which specify 

relational systems (Markman & Stilwell, 2001 and see 

Gentner & Kurtz, 2005 for a similar discussion). Importantly, 

categorizing phenomena based on an underlying relational 

principle can activate conceptual knowledge about how these 

phenomena exemplify the principle and enable inferences of 

how that principal works in subsequent transfer. Conversely, 

categorizing phenomena based on surface features is unlikely 

to activate such conceptual knowledge and inferences and 

instead can lead to negative transfer (Novick, 1988). In sum, 

categorizing by relational principles activates schemas which 

can be useful in transfer when novel situations share 

relational-structural but not surface information (Novick, 

1988).  

Using an ambiguous card sorting task (ACST), Rottman 

and colleagues (2012) demonstrated that experts but not 

novices spontaneously group novel phenomena in terms of a 

shared relational schema. The researchers concluded  that due 

to their broader cross-domain knowledge and potential 

opportunities to abstract an underlying general principle  

from multiple examples, experts tend to notice and predict 

key relational phenomena.  

A related line of research has investigated whether 

instructional and training conditions can bring about expert-

like knowledge. For example, Goldwater & Gentner (2015) 

found that providing maximum instructional support (e.g., 

full explication of how learning examples fit a causal system) 

coupled with structural alignment lead to more causal sorts in 

the ACST. Importantly, there was an “added” benefit of 

structural alignment: even learners who had accurate 

representations of the learning examples benefited from 

analogical comparison compared to those who were not 

prompted to compare learning examples and more reliably 

recognized the key relational schemas in novel examples.  

Building on that work, Pavlova and Greenhoot (2023) 

found that more minimal instructional support such as 

relational labels and short definitions coupled with analogical 

comparison support recognizing the relational schemas in 

novel examples. Their results echo research on relational 

labels that providing labels of the relational schema can 

support learning and transfer because they invite comparison 

of the learning examples and boost transfer (Goldwater & 

Jamrozik, 2019; Jamrozik & Gentner, 2020). In addition, 

relational labels can support the re-representation of the 

material in terms of a more general relational schema by 

promoting a uniform relational encoding (Gentner, 2010). 

Recently, Kessler et al. (2023) showed that instructional 

and training materials which support building abstract 

schemas of relational categories supports acquiring expert-

like knowledge. In their study, participants first sorted 

example phenomena using the ACST (Rottman et al., 2012) 

and then underwent different types of training. The training 

consisted of intervention of providing full explication and 

prompting structural alignment (following Goldwater & 

Gentner, 2015) and a tutorial capitalizing on procedural 

knowledge and conceptual understanding of the causal 

models. The results showed that participants who responded 

to the training and successfully shifted to more relational 

sorting (as measured by a parallel ASCT at post-test), also 

performed better on a subsequent complex problem-solving 

task. These results suggest that training of categorization can 

promote transfer, particularly when the learners have 

understood the key concept in a given domain. The 

researchers concluded that categorization training can 

promote transfer because it allows learners to organize their 

knowledge in a way that makes the relevant knowledge more 

accessible (Kessler et al., 2023). 

Overall, the results from these studies are related to a recent 

view on the benefit of categorization for spontaneous transfer 

proposed by Kurtz & Honke (2020) – the category status 

hypothesis according to which “to the extent that the form of 

a knowledge representation is more category-like, the 

knowledge will be easier to access under the critical 

conditions of high structural match and low superficial 

match” (Kurtz & Honke, 2020, p. 805). The researchers 

found that learners who were prompted to categorize 

examples based on a shared relational principle outperformed 

learners who were prompted to compare pairs of examples 

and extract the relational principle (e.g., abstraction by 

comparison) on a subsequent transfer task. Kurtz & Honke 

(2020) interpreted these results in accordance with the 

category status hypothesis that having encoded the learning 

material as a relational category, aids learning and transfer by 

activating the relevant conceptual knowledge, making the 

representations more abstract, but importantly, also providing 

a retrieval path for finding appropriate knowledge later.  

Relational categories bridge disparate domains and are thus 

crucial for learning and in educational contexts (Goldwater & 

Schalk, 2016). Learning relational categories is critical for 

relational discovery and far transfer, which is a fundamental 

goal and outcome of education (Don et al., 2023). A growing 

body of research looks at the role of relational categorization 

and continues to explore the favorable conditions of 
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supporting relational categorization and building expert-like 

knowledge in learners. 

Active vs. Passive Learning  

A large body of research illustrating the benefits of active 

learning (e.g., Freeman et al., 2014; Theobald et al., 2020) 

suggests that when instructors offer active learning 

opportunities, students show greater gains in learning and are 

at lower risk for failing. Conversely, using exposition-

centered methods (i.e., lecturing) is less effective than 

constructivist approaches in which students engage in 

working with the material.  

In their review, Gureckis & Markant (2012) propose that 

active learning is better than passive learning because it 

allows learners to choose which information to receive at 

instruction, thus restricting the search space for hypotheses or 

set sampling and leads to more efficient strategies. On the 

other hand, active learning is related to the learner’s quality 

of representation of the material: if the learner’s 

representation is flawed, that might lead to biased and 

ineffective learning (Gureckis & Markant, 2012). Therefore,  

providing a source of accurate representations (e.g., in the 

form of instructional material, or expert model) might support 

learning while still capitalizing on active exploration. In a 

related study, MacDonald & Frank (2016; see also Markant 

& Gureckis, 2014) showed that while opportunities for active 

learning boost the effectiveness of learning, providing 

passive learning prior to active learning actually leads to 

more advantageous learning. The researchers concluded that 

passive learning might act to constrain the search space for 

strategies and thus allows learners to explore more 

efficiently. Relatedly, work on productive failure (Kapur, 

2009; Westermann & Rummel, 2012) shows that providing 

an opportunity for students to struggle with a task can aid 

subsequent instruction and learning. In doing so, learners 

might engage in compensatory strategies to fill gaps in their 

knowledge which in turn might prepare them for future 

learning.  

A review by Chi (2009) provides a framework for active, 

constructive, and interactive learning and suggests that 

engaging in active and constructive vs. passive activities 

promotes better learning. Active activities include processes 

such as activating prior knowledge, encoding, and storing 

new information, and searching existing knowledge space. 

Constructive activities include processes such as inferring 

new knowledge, integrating novel information with existing 

information, organizing one’s knowledge to make it more 

coherent, repairing one’s false beliefs, restructuring one’s 

knowledge (Chi, 2009). According to this framework, 

drawing analogies, comparing and contrasting cases, drawing 

conceptual models are constructive activities.  

Generating information leads to better learning compared 

to passive learning. This effect is called the generation effect 

(Bertsch et al., 2007; Metcalfe & Kornell, 2007) and is 

associated with better recall and greater likelihood that 

learners will notice relevant relations, for example by trying 

explain how exemplars belong to a given category (e.g., 

Edwards et al., 2019). Generating solutions to analogies 

unlocks a relational mindset and predicts performance on 

relational mapping tasks (Vendetti et al., 2014) and retrieval 

of analogous examples (Goldwater & Jamrozik, 2019). 

Relating this to the analogical learning research, generally, 

structural alignment is conceptualized as an active process, 

and not merely a juxtaposition of analogs (Catrambone & 

Holyoak, 1989; Gentner et al., 2003; Kurtz et al., 2001). 

While some work demonstrates that engaging in more 

elaborate analogical comparison (e.g., Goldwater & Gentner, 

2015; Kessler et al., 2023; Kurtz et al., 2001) boosts transfer, 

the role of active vs. passive structural alignment has not been 

systematically studied. This study is an attempt to launch a 

research line exploring the specific conditions that make 

active and passive learning beneficial to learning and transfer.  

The present study sought to investigate whether training 

with active vs. passive structural alignment would (1) boost 

subsequent transfer in a relational category sorting task and 

(2) whether the effect of structural alignment would be in 

addition to having understood the conceptual model of the 

causal systems (thus replicating findings by Goldwater & 

Gentner, 2015). It was hypothesized that active comparison, 

as engaging in an active and constructive type of learning 

(Chi, 2009; Fonseca & Chi, 2010), would support transfer of 

the relational-causal information above and beyond the gains 

of gleaning the causal-relational structure from reading full 

explications of the learning examples.  

Method 

Participants 

One hundred and seven NBU students (Mage =  29.64; SD = 

11.08; 61 females) took part in the study. They were assigned 

to one of three conditions as follows: 37 in Active 

Comparison, 34 in Passive Comparison, and 36 in Baseline. 

Additionally, data from 31 students were removed from 

analyses due to them failing at least one of the two attention 

checks. The data were collected online via Google Forms 

between Spring and Fall 2023. Students received partial 

course credit for participation.  

Design and Procedure 

A factorial design with 3 conditions (Active Comparison, 

Passive Comparison, and Baseline condition) was used; all 

variables were manipulated between participants. All 

participants except those in the Baseline condition were first 

presented with 10 short examples depicting 5 causal systems 

(common cause, common effect positive feedback,  negative 

feedback, and causal chain). Each example was followed by 

a label, definition, and full explication. After reading each, 

participants had to choose a diagram which best depicted the 

causal system in the example. Then, participants in the 

comparison groups were presented with the same examples 

in pairs and were either provided a mapping table with 

corresponding elements from each example (Passive 

Comparison) or were asked to fill a mapping table (Active 

Comparison) where the elements from the 2 examples were 
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provided and participants had to indicate the correct mapping 

between them (i.e., they had to indicate which element of 

Situation 1 corresponded to which element of Situation 2). 

Next, all participants proceeded to the Transfer Phase where 

they solved an ambiguous card sorting task. Participants in 

the Baseline condition skipped the Learning Phase and 

completed only the Transfer Phase. 

 

 
 

Figure 1: Causal diagrams for each of the five causal 

systems. 

 

a)  

 

 
b) 

 
Figure 2: Example of the mapping table. Panel a) Mapping 

table for the Active Comparison condition; panel b) 

Mapping table for the Passive Comparison condition. 

Materials 

Instruction Materials The instruction materials consisted 

of 10 short examples depicting 5 causal systems from two 

domains (e.g., electrical engineering and biodiversity; 

adapted from Rottman et al., 2012). For the first part of the 

Learning Phase, where participants had to select a diagram, 

5 diagrams depicting the 5 causal systems were drawn 

(Figure 1). For the second part of the Learning Phase, a 

mapping table was designed (adapted from Kurtz et al., 

2001). Participants in the Active Comparison condition had 

to indicate the corresponding elements between Situation 1 

and Situation 2 (Figure 2, panel a). Participants in the 

Passive Comparison condition had to read the mapping table 

and indicate they have done so by selecting an 

“Understood” button below it (Figure 2, panel b). 

Assessment Materials Assessment materials consisted of 

the Ambiguous Card Sorting Task (ACST; adapted from 

Rottman et al., 2012). The materials were translated into 

Bulgarian using independent backwards and forwards 

translations. The ACST consisted of 20 example phenomena 

composing a matrix of five causal systems crossed with five 

content domains. Because there were two types of sorts (e.g., 

according to domain or causal system), participants sorted the 

examples twice. 

Results 

The data were cleaned and processed using R version 4.3.0 

(R Core Team, 2023) and statistical analyses were conducted 

in JASP version 0.16.3.0 (JASP Team, 2022). For each 

correctly identified diagram, participants received 1 point; 

thus, diagram accuracy was calculated as a proportion of 

correctly identified diagrams. Similarly, for each correctly 

selected element in the mapping task, participants (in Active 

Comparison) received 1 point; thus, relational mapping 

accuracy was calculated as a proportion of correctly selected 

relational matches. For each sorting, the types of sorting 

(causal, domain, error) were calculated as a proportion of the 

total number of cards sorted. 

Effects of Structural Alignment 

The first set of analyses were conducted among the 3 groups 

without considering the rate of accurately recognized 

diagrams and the accuracy of the mapping task. The aim was 

to see how the comparison groups perform relative to the 

baseline group. 

 A repeated measures ANOVA on the rate of causal sorts 

between Sorting (Sort 1 and Sort 2) as within-subjects factor 

and Group as between-subjects factor was conducted. The 

Levene’s test for equal variances showed a violation of 

equality of variances in Sorting (p < .05). Nevertheless, post-

hoc tests with Bonferroni corrections were conducted since 

these tests are independent from this assumption (Hsu, 1996). 

These revealed significantly more causal sorts in the 

comparison groups compared to the baseline group: Active 

Comparison vs. Baseline: t(106) = 3.769, p < .001; Passive 

Comparison vs. Baseline: t(106) = 3.120, p = .007. There was 

no difference between the two comparison groups. A 

Friedman Test revealed no difference between Sort 1 and Sort 

2 (p = .210).  

A repeated measures ANOVA on the rate of domain sorts 

between Sorting (Sort 1 and Sort 2) as within-subjects factor 

and Group as between-subjects factor revealed a main effect 

of Sorting: F(1, 104) = 4.509, p = .036, η2 = .005 and a main 

effect of Group: F(2, 104) = 13.639, p < .001, η2 = .183. There 

was no interaction between Sorting and Group (F(2, 104) = 

.599, p = .551. Post-hoc tests with Bonferroni correction 

revealed that there were more domain sorts in the second sort: 

t(106) = -2.124, p = .036. These also revealed significantly 

more domain sorts in the baseline group compared with the 
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comparison groups: Active Comparison vs. Baseline: t(106) 

= -4.808, p < .001; Passive Comparison vs. Baseline: t(106) 

= -4.156, p < .001.  

A repeated measures ANOVA on the rate of error sorts 

between Sorting (Sort 1 and Sort 2) as within-subjects factor 

and Group as between-subjects factor revealed no main 

effects, nor interaction: Sorting: F(1,104) = 2.032, p = .157; 

Group: F(2,104) = .210, p = .811; interaction: F(2,104) = 

1.289; p = .280. 

Effects of the Causal System Representation in 

Addition to Structural Alignment 

The next set of analyses are linear regressions and consider 

only the first sorting. These analyses were conducted among 

the two comparison groups only, since the participants in 

these groups completed the Learning Phase. The goal of these 

analyses was to understand whether the accuracy of the 

representation of causal systems of the learning examples 

predicts recognizing the causal systems in novel examples. 

A linear regression predicting causal sorts from diagram 

accuracy and group (active or passive comparison) revealed 

that the proportion of accurately selected diagrams predicted 

more causal sorts: F(1,68) = 6.883, p = .002, R2 = .168; t(68) 

= 3.709, p <.001. The group was not a significant predictor: 

t(68) = .454, p = .651. A separate linear regression on the 

domain sorts from diagram accuracy and group (active or 

passive comparison) revealed that the proportion of 

accurately selected diagrams predicted less domain sorts: 

F(1,68) = 5.485, p = .006, R2 = .139; t(68) = -3.244, p =.002. 

The group was not a significant predictor: t(68) = .169, p = 

.866. Finally, a linear regression on the rate of error sorts 

revealed that the model was not significant: F(2,68) = 1.534, 

p = .223. 

These results suggest that regardless of being prompted to 

compare examples actively or passively, the reliable 

predictor in recognizing the causal system in novel examples 

(i.e., sorting more causally or less by domain) is the accuracy 

of the initial causal system representation of the learning 

examples (see Table 2 for the types of sorts among the 

groups). 

Effects of Relational Mapping in Addition to 

Causal System Representation  

The final set of analyses were conducted withing the Active 

Comparison group and examined whether the established 

effect of accuracy of the representation of the causal system 

initially boosted performance in the mapping task, and 

whether there were combined effects of representation and 

mapping on subsequent causal sorting.  

To better understand the role of the causal model 

representation and structural alignment in recognizing the 

causal model in novel situations, two separate hierarchical 

linear regression models on the rate of causal and domain 

sorts in the first sorting with Diagram Accuracy and 

Relational Mapping Accuracy as predictors were conducted. 

Model 1 included Diagram Accuracy only and Model 2 

included the Relational Mapping Accuracy added as a 

predictor together with Diagram Accuracy.  

Regressing causal sorts on diagram accuracy showed that 

Model 1 was significant (F(1, 35) = 8.341, p = .007) and 

explained 19.2% of the variance in the causal sorts. 

Regressing causal sorts on diagram accuracy and mapping 

accuracy showed that Model 2 was also significant (F(2, 34) 

= 7.801, p = .002) and explained 31.5% of the variance in the 

causal sorts and registered a significant change in R2 (ΔR2 = 

.122, p = .019). Regressing domain sorts on diagram 

accuracy showed that Model 1 was significant (F(1, 35) = 

6.049, p = .019) and explained 14.7% of the variance in the 

domain sorts. Regressing domain sorts on diagram accuracy 

and mapping accuracy showed that Model 2 was also 

significant (F(2, 34) = 8.027, p = .001) and explained 28.1% 

of the variance in the domain sorts and registered a significant 

change in R2 (ΔR2 = .173, p = .006). See Table 3 for the 

regression analyses. 

These results suggest that accurately matching relational 

correspondences across the learning examples predicts 

subsequent recognition of the key causal structure above and 

beyond the accurate detection of the causal schema from the 

learning examples.  

 

Table 2: Means and Standard Deviations of Types of Sorts 

among the Groups 

 

  Sort 1 Sort 2 

Group 

Type of 

Sort 
M SD M SD 

Active 

Comparison 

Causal 0.319 0.216 0.335 0.233 

 
Domain 0.253 0.178 0.273 0.201 

 
Error 0.428 0.175 0.392 0.171 

Passive 

Comparison 

Causal 0.313 0.257 0.284 0.247 

 
Domain 0.278 0.159 0.296 0.195 

 
Error 0.409 0.176 0.421 0.187 

Baseline Causal 0.151 0.177 0.133 0.17 

 
Domain 0.442 0.202 0.493 0.23 

 
Error 0.407 0.18 0.374 0.207 

Discussion 

The present study examined the role of comprehension of 

causal systems models and structural alignment in 

subsequently recognizing key relational principles in novel 

examples. The results showed that training in structural 

alignment (passive or active) leads to more causal sorts 

compared to baseline. Across the full dataset, this advantage 

was explained by the accuracy of the initial causal model 

representation (e.g., diagram accuracy). Importantly, within 

the active comparison group, participants who had made 

accurate relational mappings in addition to having accurate 

causal model representations, were more likely to recognize 

the causal system in novel examples. Taken together, these 
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results support and extend prior work on the benefit of 

analogical comparison on learning and transfer (Alfieri et al., 

2013; Gadgil et al., 2012; Gick & Holyoak, 1980, 1983; 

Goldwater & Gentner, 2015; Kessler et al., 2023; Kurtz et al., 

2001; Loewenstein et al., 2003).  

The current findings also accord with the category status 

hypothesis (Kurtz & Honke, 2020). The present study found 

that accuracy of the causal systems diagrams predicted causal 

sorts in the ACST. Identifying the correct diagram can serve 

as evidence of having a more accurate representation of the 

relational structure in the learning examples. Thus, it is 

possible that these participants might have learned the 

learning examples as “types of relational categories” which 

allowed them to encode the phenomena described as 

examples of such categories and subsequently recognize it in 

novel situations.  

A somewhat surprising finding was that, overall, it seemed 

that there was no difference between the active and passive 

comparison. One explanation might be that conducting an 

online unmoderated study might have attenuated the positive 

effects of comparison. It is possible that participants were less 

engaged with the learning material. Alternatively, it is 

possible that the processes of having to read vs. select 

matching elements in the mapping task are not that different. 

More work is needed to systematically examine the role of 

exposure vs. engagement in structural alignment in learning 

and transfer. Nonetheless, the results from within the active 

comparison group support the notion that actively engaging 

in the material boosts learning and transfer. Indeed, 

participants who responded to the training in the intended 

way and selected more correct corresponding relational 

elements, were more likely to recognize the key relational 

patterns in novel situations above and beyond the accurate 

detection of the causal system in the learning examples.   

A few limitations of this study are worth noting. First, the 

learning phase omitted a crucial aspect of generating the 

underlying principle between the two learning examples 

(e.g., as in Goldwater & Gentner, 2015). In future work we 

plan to include a multistep abstraction by comparison 

procedure (e.g., Kurtz & Honke, 2020) during learning to 

boost the conceptual understanding of the key phenomena 

and potentially boost transfer to novel situations. Second, 

when participants selected the diagrams, the labels, together 

with the explications were visible. It is thus possible that they 

simply matched the diagram to the provided information and 

did not have to rely on extracting the structure from the 

learning examples themselves. In future work, we plan to test 

the representation of the causal models directly following 

exposure to the learning examples prior to any additional 

information. This would provide a more accurate test of the 

learners’ initial causal model representations. 

 

  

Table 3: Regression Coefficients of Diagram and Relational Mapping Accuracy on Causal and Domain Sorts

A: Causal Sorts       

Variable Model 1   Model 2   

 B β SE B β SE 

Constant -0.13 
 

0.159 -0.225 
 

0.153 

Diagram 0.511** 0.439 0.177 0.397 0.341** 0.172 

Relational Mapping  
   

0.405 0.363** 0.165 

R2 0.192 
   

0.315 
 

ΔR2 
    

0.122 
 

       

B: Domain Sorts       

Variable Model 1   Model 2   

 B β SE B β SE 

Constant 0.576***  0.134 0.67***  0.126 

Diagram -0.368** -0.384 0.15 -0.256 -0.267 0.141 

Relational Mapping     -0.398 -0.432** 0.135 

R2 0.147    0.321  

ΔR2     0.173  

Note.   * p < .05, ** p < .01, *** p < .001.  Panel A: Causal Sorts in Sort 1. Panel B: Domain Sorts in Sort 1. Model 1 includes 

only Diagram Accuracy as predictor; in Model 2, Mapping Accuracy was added as a predictor. 
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