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The problems of identifying the slow component (e.g., for
weather forecast initialization) and of characterizing slow–fast
interactions are central to geophysical fluid dynamics. In this
study, the related rectification problem of slow manifold closures
is addressed when breakdown of slow-to-fast scales deterministic
parameterizations occurs due to explosive emergence of fast
oscillations on the slow, geostrophic motion. For such regimes,
it is shown on the Lorenz 80 model that if 1) the underlying
manifold provides a good approximation of the optimal nonlinear
parameterization that averages out the fast variables and 2) the
residual dynamics off this manifold is mainly orthogonal to it,
then no memory terms are required in the Mori–Zwanzig full
closure. Instead, the noise term is key to resolve, and is shown
to be, in this case, well modeled by a state-independent noise,
obtained by means of networks of stochastic nonlinear oscillators.
This stochastic parameterization allows, in turn, for rectifying the
momentum-balanced slow manifold, and for accurate recovery of
the multiscale dynamics. The approach is promising to be further
applied to the closure of other more complex slow–fast systems,
in strongly coupled regimes.

multiscale chaos | stochastic parameterization | multiscale closure |
slow manifold | fast oscillations

For complex systems, most models only resolve spatiotemporal
scales, processes, and variables to a certain level of accuracy

because of the high computational costs associated with high-
fidelity simulations. Such truncations of scales, processes, or fast
variables often limit the reliability and usefulness of simulations,
especially for scientific, engineering, and societal applications
where longer-term model predictions are needed to guide deci-
sions. In many applications, the neglected and unresolved vari-
ables along with their interactions with the resolved ones are
often key to include, and parameterizations of these ingredients
are sought to provide “closure models” aimed at faithfully emu-
lating solutions of the fully resolved problem while solving only a
subset of relevant variables (1).

The new advances in data-driven stochastic modeling tech-
niques over the last two decades open up prodigious perspectives
for finding, from observational or high-fidelity simulations data,
a few dynamical equations able to simulate, with efficiency,
datasets with complex spatiotemporal variability such as that
arising in various geophysical applications (see, e.g., refs. 2–7).
The diversity of these applications is explained by a common
thread which is necessary for the derivation of a good data-driven
closure model. In the context of dynamical systems with both slow
and fast variations, its derivation relies on the efficient learning
of fast, stochastic variables along with their interaction laws with
the slow variables, to emulate the missing dynamical information
which is central in the organization of, for example, the observed
larger-scale patterns. This operation is accomplished within a
theoretical framework that guides the search for these hidden
variables and interactions elements, namely, the Mori–Zwanzig
(MZ) formalism (8, 9) from statistical physics, extended to a
modern and general framework by refs. 10–12. This framework
predicts that the theoretical optimal closure model in its general
formulation involves nonlinear terms that provide the average

motion of the observed variables while the (usually fast) fluctu-
ations are parameterized by (possibly nonlinear) memory terms
plus noise terms.

The purpose of this article is to identify 1) situations for which
no memory but noise terms are crucial for accurate closure and 2)
how to model the noise term by a dynamics-informed approach.
To serve and illustrate our purpose, we restrict our attention to
the Lorenz 80 (L80) model from atmospheric science (13–17), in
highly nonlinear regimes in which the rotational Rossby variables
are populated by fast gravity waves which are not only no longer
a functional of the former but correspond to an “explosive”
breakdown of slow-to-fast scales deterministic parameterizations
(16, 17), in contrast with other breakdowns associated with, for
example, exponentially small errors (15, 18). We believe the
approach presented here is not limited to the L80 model and
would actually apply to any slow–fast system for which 1) a
manifold filtering out the fast oscillations in some optimal sense is
known (typically least-square sense) and 2) the residual dynamics
off this manifold is prominently orthogonal to it, namely, mainly
uncorrelated to the slow dynamics.

The Slow Optimal Parameterizing Manifold and Its Relation to
the Conditional Expectation
Recently, in the context of the slow manifold problem for the
atmosphere, the concept of a slow manifold has been revisited
as that of a slow optimal parameterizing manifold (OPM) (16).

Significance

Slow–fast systems arise in many scientific applications, in
particular in atmospheric and oceanic flows with fast inertia–
gravity waves and slow geostrophic motions. When the
slow and fast variables are strongly coupled—symptomatic of
breakdown of slow-to-fast scales deterministic parameteriza-
tions—it remains a challenge to derive reduced systems able to
capture the dynamics. Here, generic ingredients for successful
reduction of such systems are identified and illustrated for
the paradigmatic atmospheric Lorenz 80 model. The approach
relies on a filtering operated through a nonlinear parameter-
ization that separates the full dynamics into its slow motion
and fast residual dynamics. The latter is mainly orthogonal to
the former and is modeled via networks of stochastic nonlinear
oscillators, independent of the slow dynamics.
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Dynamically, the slow OPM provides the manifold on which lies
the average motion of the neglected fast variables as a function
of the resolved scales (ref. 19, theorem 4). It does not assume
nor require any exact relationships between the slow and fast
scales. In that sense, the slow OPM relates, for slow–fast systems,
to the conditional expectation in optimal prediction theories
(10) by providing the optimal closure, when the latter is sought
by conditioning only on the current time value of the resolved
variables (ref. 19, theorem 5).

To make more precise this statement, consider an evolution
equation, inspired from fluid motion, of the form

du
dt

= Au + B(u, u) + F , u ∈ E , [1]

in which E denotes a vector space, either infinite or finite dimen-
sional, assumed to be the sum of a reduced state space, Ec, span-
ning the “slow” variables, and of its complement, Es, spanning
the “fast” variables. The forcing term F is considered here to be
deterministic, while A denotes a linear operator not necessarily
self-adjoint (but diagonalizable over the set of complex numbers
C) and B denotes a quadratic operator which may account for a
loss of regularity (such as for nonlinear advection) in the infinite-
dimensional setting (20).

Assuming that Eq. 1 possesses an invariant probability mea-
sure μ that satisfies the right ergodicity assumption (19), the slow
OPM is then obtained as the graph of the mapping Ψ∗ : Ec → Es

which solves the following minimization problem:

min
Ψ∈E

∫
(X ,Y )∈Ec×Es

‖Y −Ψ(X )‖2 dμ, [2]

where E denotes the space of functions from Ec to Es, which are
square-integrable with respect to the “projection” (push forward)
m of the probability measure μ onto Ec.

Under these conditions, the minimization problem Eq. 2 pos-
sesses a unique solution in E : the slow OPM given by

Ψ∗(X ) =

∫
Es

Y dμX (Y ), X ∈ Ec, [3]

where μX denotes the disintegrated probability measure of μ
conditioned on X, the latter denoting, roughly speaking, the
probability distribution (in Es) of the variables Y that project
onto X ; see ref. 19 for more details.

Denoting by F the vector field associated with Eq. 1, that is,
F(u) = Au + B(u, u) + F , by Πc (resp. Πs), the projector onto
Ec (resp. Es), and assuming that B is symmetric for the sake
of simplicity, it is easy to show that the conditional expectation,
Eμ[F|Πc], satisfies

Eμ[F|Πc](X ) = AcX +ΠcB(X ,X )

+ 2ΠcB(X , Ψ∗(X )) + Fc + ζ(X ),
[4]

with ζ(X ) =
∫
Y∈Es

ΠcB(Y ,Y ) dμX (Y ). This latter term pro-
vides the average contribution of the high–high interactions to
the evolution of the low modes. When ζ ≈ 0 [also known as the
centering condition (1)], we observe thus, from Eq. 4, that de-
termining the conditional expectation of F in the MZ expansion
boils down to determining the OPM Ψ∗.

As shown in ref. 19, the interest of this remark is that it allows
for envisioning the determination of the conditional expectation,
via approximations to the (slow) OPM. The latter have been
shown to be efficiently sought as homotopic deformations of
parameterizations known to be relevant for certain regimes (such
as, e.g., invariant/slow manifolds). We then seek for optimal
homotopic deformations to reach dynamical regimes beyond the
domain of validity of the original parameterization, by optimizing
Eq. 2 in the corresponding class of parameterizations. Once a

relevant family E ′ = {Ψτ} of such parameterizations is identified
with τ , the parameter that controls the continuous deformations
(see ref. 19, sections 4.3 and 4.4), the ergodicity assumption and
mixing properties of the system allows us often to bypass the
demanding (and often out-of-reach) knowledge of μ, required
for the minimization of Eq. 2, by minimizing instead the param-
eterization defect

QT (Ψτ ) = ‖us(t)−Ψτ (uc(t))‖2, [5]

estimated from high-fidelity trajectories obtained from integra-
tion of Eq. 1. Here, (·) denotes the time mean over a training
interval of length T, while us(t) and uc(t) denote the projections
of u(t) onto Es and the reduced state space Ec, respectively.

Obviously, shifting the full minimization problem Eq. 2 to the
data-driven minimization of QT (Ψτ ) is subject to a good choice
of T (the length of the training interval), and a good choice of
the parametric family of parameterizations {Ψτ}. When these
two ingredients are well chosen (see ref. 19 for a discussion),
the optimal deformation parameter τ∗ is found by minimizing
QT (Ψτ ) in τ . The corresponding optimal parameterization Ψτ∗

(in E ′) approximates then the OPM given by Eq. 3. We refer
to ref. 19 for OPM examples as obtained by this approach. As
a common denominator, it has been shown in ref. 19 that, by
exploiting homotopic deformations of invariant or slow mani-
fold approximations, analytic formulas for the approximation of
OPMs are accessible for a broad class of nonlinear systems, and
in a variety of dynamical regimes.

The Memory and Noise Correction Terms
Often, the conditional expectation alone (and thus OPM) is
insufficient to provide a satisfactory closure. In this case, the
neglected variables exert fluctuating driving forces on the explicit
variables which are distinct from any exact relationships between
the slow and fast scales or nonlinear functional dependence
that would be conditioned only on the current state of the slow
variables.

One needs then to rely on guidance as provided by the MZ
theory, namely on the MZ closure of Eq. 1 in Ec which is written
formally as

Ẋ = Eμ[F|Πc](X ) +

∫ t

0

Γ(t − s;F)
[
X (s)

]
ds + η(t). [6]

In Eq. 6, the term η(t) is void of slow oscillations (transversal
dynamics to the OPM), and the kernel Γ(t − s;F) is a time-
lagged damping operator that depends possibly nonlinearly onF ,
while

[
X (s)

]
is used to indicate the dependence of this operator

on the past history of the slow dynamics. Typically, η(t) is sought
as a random force that is uncorrelated with X (t). These memory
and noise terms, when needed to derive an efficient closure, are
often quite challenging to calculate.

Already for weakly coupled nonlinear systems, that is, systems
in which coupled terms are order(s) of magnitude smaller than
the uncoupled terms, these memory and noise terms take a
hierarchical form in which repeated temporal convolutions are
involved. These repeated convolutions, albeit possibly deep in
depth, can be approximated by means of multilayer stochastic
models (MSMs) that add hidden layers of stochastic variables
aimed at learning the corresponding (exponentially decaying)
memory kernels (21, 22). However, for strongly coupled systems
for which the coupled and uncoupled terms are of the same
order of magnitude, and the disparate-scale interactions cover a
wide range of scales, the constitutive elements of MSMs become
challenging to determine, and to find a generic approach for
determining the constitutive terms in the MZ closure Eq. 6
remains still widely open.
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In what follows, we propose a general approach to determine
the noise term in Eq. 6 for closing systems in which the condi-
tional expectation is accurately determined via a slow OPM which
captures most of the slow motion, while the residual dynamics is
mainly fast and “orthogonal” to this OPM. For such situations,
we argue that the memory terms are not required in the MZ
decomposition Eq. 6, while the design of the noise term η(t) plays
a key role to emulate the full dynamics with high fidelity. The
following L80 model (13) serves as an emblematic example to
illustrate these features.

The L80 Model and the Balance Equation Closure
Atmospheric and oceanic flows constrained by Earth’s rota-
tion satisfy an approximately geostrophic momentum balance
on larger scales, associated with slow evolution on time scales
of days, but they also exhibit fast inertia–gravity wave oscilla-
tions. The problems of identifying the slow component (e.g., for
weather forecast initialization) and of characterizing slow–fast
interactions are central to geophysical fluid dynamics, and the
former was first coined as a slow manifold problem by Leith (23).
The L63 model (24) (famous for its chaotic strange attractor) is
a paradigm for the geostrophic component, while the L80 model
(13) is its paradigmatic successor both for the generalization of
slow balance and for slow–fast coupling.

The idea of Leith was to filter out, on an analytical basis, the
fast gravity waves for the initialization of the primitive equations
of the atmosphere. The motivation was that small errors in a
“proper balance” between the fast time scale motion associated
with gravity waves and slower motions such as those associated
with the Rossby waves lead typically to an abnormal evolution of
gravity waves, which, in turn, can cause appreciable deviations in
weather forecasts. This filtering approach has a long history in
forecast initialization (e.g., refs. 25 and 26).

Leith’s idea was appealing for dealing with this filtering prob-
lem, but uncertainty in the definition of a slow manifold for finite
Rossby number has led to a proliferation of different schemes,
on one hand, and to the question of whether a slow invariant
manifold even exists at finite Rossby number, on the other (e.g.,
refs. 15 and 27–30). In this atmospheric context, it was, in fact,
shown that the generation of exponentially small inertia–gravity
oscillations (∼ exp(−c/Ro) for c a constant) takes place for
finite times, synonymous with the breakdown of quasigeostrophic
balance (31) and of other slow-to-fast parameterizations that
would be deterministic.

Actually, even more severe breakdowns of slow-to-fast deter-
ministic parameterizations than through exponential smallness
may occur. This is what was observed in ref. 16 for the L80
model examined in dynamical regimes only explored by a few
by then (32), for which there is ultimately a finite Ro critical
transition that explosively exhibits fast oscillations beyond the
parameter range Lorenz explored (17); see Fig. 1. As discussed
in refs. 16 and 17 and recalled below, such regimes constitute a
harsh impediment to close the L80 model in its “slow” variables.
Whereas these difficult closure problems were identified in ref.
16, they remained open. The present study provides a solution to
such problems, while identifying the generic elements for closing
other slow–fast systems in such regimes.

To better appreciate this solution, recall that the L80 model,
obtained as a nine-dimensional (9D) truncation of the shallow
water equations onto three Fourier modes with low wavenumbers
(13), is written as

ai
dxi
dτ

= aibixj xk − c(ai − ak )xj yk + c(ai − aj )yj xk

−2c2yj yk − ν0a
2
i xi + ai(yi − zi),

Explosive breakdown:

OPM

S
lo

w
 m

an
ifo

ld

stoch. param. of fast oscillations

BE manifold

Slow manifold breakdown: small error

R*o

Fig. 1. Schematic of transitions in the L80 model. For R > R∗
o , an explosive

breakdown of slow-to-fast deterministic parameterizations is observed (16).
After this transition, a stochastic parameterization of the fast oscillations
is required. It is successfully achieved here thanks to the filtering operated
through the BE manifold that separates (nearly optimally) the full dynamics
into its slow motion and a fast residual dynamics.

ai
dyi
dτ

=−akbkxj yk − aj bj yj xk + c(ak − aj )yj yk

−aixi − ν0a
2
i yi ,

dzi
dτ

=−bkxj (zk − hk )− bj (zj − hj )xk + cyj (zk − hk )

−c(zj − hj )yk + g0aixi − κ0aizi + Fi .

[7]

The above equations are written for each cyclic permutation of
the set of indices {(1, 2, 3)}, namely, for

(i , j , k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. [8]

The parameters are those used in Lorenz’s original paper (13)
except for F1 (see refs. 14 and 16 and Materials and Methods).
In Eq. 7, and for small Rossby numbers, the slow variables are
made of the components of y(t), whereas the fast ones are made
of those of x(t) and z(t).

As shown in ref. 16, whereas fast oscillations are absent from
the solutions to Eq. 7 for small and moderate Ro , they develop
brutally, in the course of time, once a critical Rossby number R∗

o

is crossed, in contradistinction with fast oscillations emerging ac-
cording to an exponential smallness scenario such as mentioned
above. This transition corresponds to the emergence of fast
gravity waves that can contain a significant fraction of the energy
(up to ∼40%) as time evolves and that may either populate
transient behaviors of various lengths or persist in an intermittent
way. Such a substantial transfer of energy between the “slow” and
“fast” variables is acting against the existence of deterministic
parameterizations, unlike what is observed for slow–fast systems
often placed in regimes for which the fast variables represent
only a small fraction of the energy (19, 33). Past this transition,
the consequences of the closure problem for the slow rotational
variables are thus drastic. It was shown indeed, in ref. 16, that
parameterizations conditioned on the current state of the slow
variables are no longer sufficient to close the system: The fast
oscillations need to be parameterized differently for R > R∗

o .
Nevertheless, among the possible deterministic, nonlinear pa-

rameterizations, the balance equations (BE) manifold, based on
a minimalistic simplification of the horizontal momentum curl
and divergence equations, plus hydrostatic balance (14, 34), is
conspicuously more accurate than the others in providing an
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Fig. 2. (A) Illustration of the BE parameterization (red curve) averaging out the fast oscillations for regimes of spontaneous generation of “explosive”
fast oscillations on the x and z variables, here shown for the z1 variable (black curve). (B and C) Normalized parameterization defects Qxj (τ) =

|xj(t) − Ψj(τ , (y(t))|2/|xj|2 for continuous deformations of the BE parameterization. The parameter τ is here a dummy parameter that controls the
deformations according to Ψj(τ , y) = m + (1 − exp(τ))Φj(y) (as inspired by ref. 19, section 4.4), where Φj denotes the jth component of the BE
parameterization for the x variable, while m = p − (1 − exp(τ))Φj(y), with p being the xj variable which is parameterized. The same applies when xj

is replaced by zj and Φj is replaced by Gj . We observe that the minima of the Qxj (τ) and Qzj (τ) are close to the values for τ → −∞ corresponding to the BE
manifold. The BE manifold is thus nearly optimal in this class of deformations; see ref. 16 for more elements about “BE≈ OPM.” (D–F) Times series composing
the residual dynamics r(t) defined in Eq. 9.

approximation of the slow OPM beyond the critical Rossby
number, that is, for R > R∗

o , when the fast gravity waves contain
a large fraction of the energy. This was shown in ref. 16 via
detailed numerical computations (see also ref. 19, section 3.4)
and rigorous error estimates (ref. 16, proposition 3.1), from
which we report here a homotopic deformation analysis (Fig. 2
B and C) to further support that the BE manifold is indeed close
to the OPM that averages out the fast oscillations for regimes of
spontaneous generation of “explosive” fast oscillations on the x
and z variables (Fig. 2A). Details about the BE closure based on
the BE manifold are provided in Materials and Methods.

By forming the corresponding residual dynamics r(t), whose
components are given by

rj = (xj − Φj (y), zj −Gj (y))
T, j = 1, 2, 3, [9]

Fig. 3. Representation of the BE manifold and the transversal residual
dynamics r(t). A substantial part of the L80 dynamics (black curve) lies very
close to the BE manifold shown by blue dots, while the residual dynamics
r(t) (defined in Eq. 9) is mainly transversal to this manifold. It is this residual
dynamics that is sought as the noise term η(t) in Eq. 6. We refer to ref. 19,
section 3.4 for further details about the representation shown here.

we observe that the deviation from the BE manifold (also mea-
sured by the parameterization defect) is mainly transversal, even
orthogonal to this BE manifold; see Fig. 3 and Table 1. The
corresponding time series constituting the rj (t) are shown in
Fig. 2 D–F, after normalization by their respective SDs. It is this
residual dynamics that is sought as the noise term η(t) in Eq. 6.

We emphasize that it is the prominent orthogonality of the
residual dynamics r(t) that makes its identification with η(t) in
Eq. 6 possible. Otherwise, if r(t) would display prominent cor-
relations with y(t), the memory terms in the MZ decomposition
Eq. 6 should be part of the constitutive ingredients of an emulator
of r(t), or, alternatively, the latter should be sought as a noise
depending on the state y(t). Here, we thus only need to look
for a stochastic generator of η(t), which is independent of the
slow rotational variables y. This is accomplished via analysis of
the Ruelle–Pollicot (RP) resonances to infer the corresponding
stochastic differential equations (SDEs).

Inferring Noise: RP Resonances Analysis
The theory of RP resonances is encountered in many branches of
physics (scattering resonances, statistical mechanics) and mathe-
matics (zeta functions, dynamical systems) (e.g., refs. 35–40).

These resonances, obtained as eigenvalues of the Perron–
Frobenius operator [or its adjoint, the Koopman operator (41)],
characterize fundamental properties of dynamical systems, such
as mixing properties and decay of correlations (37, 39, 41),
coherent structures (41, 42), or sensitivity to perturbations (43,
44). They also inform on the generator of the dynamics, as

Table 1. Orthogonality between the BE manifold and the residual
r(t)

Mean SD

θx 89.89◦ 19.05◦

θz 97.57◦ 20.71◦

Here θx(t) (resp. θz(t)) denotes the angle between the vectors Φ(y(t)) and
x(t) − Φ(y(t)) (resp. G(y(t)) and z(t) − G(y(t))), with Φ (resp. G) defined
in Eq. 15 (resp. Eq. 14) in Materials and Methods.
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they naturally relate to the Liouville operator in the case of
deterministic (autonomous) flows (43, 45).

The estimation of these resonances is accessible from time
series, as eigenspectrum of the underlying transition probability
(or Markov) matrix, and several schemes exploiting the Ulam’s
method (46) have been designed to do so (e.g., refs. 45, 47,
and 48).

When the observed time series are sought to be obtained from
an SDE,

dX = F (X ) dt +G(X ) dWt , X ∈ R
d , [10]

withWt , a Wiener process, the RP resonances inform on the drift
F and the diffusion matrix G(X ), for d = 1, 2 (49).

When the observations of X lie in a reduced state space V,
while X evolves in a higher-dimensional state space, the esti-
mated resonances from time series become reduced RP reso-
nances (50). The latter may still approximate the RP resonances,
but they more generally inform on a coarse-grained version of
the SDE generator in V and actually characterize the generator
of the optimal reduced system in V obtained by averaging out
the contribution of the unobserved variables (ref. 50, theorem 3).
These reduced resonances can be also estimated using spectral
data from time series following the Ulam’s method; see Materials
and Methods.

Thus, reduced RP resonances provides an efficient tool to
address a “dynamics-informed” inference of stochastic processes
aimed at modeling a set of observed time series. These features
of (reduced) RP resonances have been recently illustrated in
ref. 51 for characterizing, from time series, nonlinear stochas-
tic oscillations, such as those produced from stochastic Stuart–
Landau oscillators (SLOs) (see also ref. 52). In its simplest form,
a prototypal SLO is given by

ż = (α+ iω)z − βz |z |2 + σẆ , [11]

where Ẇ denotes a complex white noise, while σ, α, and
ω denote real scalars, and β denotes a complex coefficient,
with a positive real part. Typically, �z (t) and �z (t) are
time series which are in phase quadrature, modulated in
amplitude, and narrowband in the Fourier domain. However,
other stochastic processes may share similar temporal (and

Fourier) features such as, for instance, rotational but damped
(linear) Ornstein–Uhlenbeck (OU) processes, and thus a better
discriminatory criterion is required to identify an SLO from time
series.

This is what RP resonances allow for: An SLO has a clear
signature in terms of the geometric organization of the (re-
duced) RP resonances in the complex left half-plane. It has been
shown, in ref. 51, proposition 5, that RP resonances for SLOs
are organized in the left half-plane, into an array of shifted
parabolas, at least for most of these eigenvalues, whose imagi-
nary parts are given as multiples of the fundamental frequency
contained in the signal (see also refs. 52 and 7, appendix C).
The first parabola passes through the eigenvalue zero, which is
the only eigenvalue with zero real part. The RP resonances of
any OU process are instead organized into a triangular array of
resonances (53).

It turns out that such SLOs are actually key to provide a
stochastic model of the time series r(t), obtained as the residual
between the BE manifold and a high-fidelity solution to the L80
model. Indeed, for each 2D residual variable rj (t) from Eq. 9,
the estimated reduced RP resonances in their corresponding 2D
reduced state space V show unambiguous signatures for mod-
eling r1 and r2, as these resonances are organized according to
parabolic structures, symptomatic of SLOs associated here with
the same frequency ω1; see Fig. 4. The latter is obtained as the
fundamental frequency corresponding to the smallest nonzero
imaginary part of the (discrete) parabola of resonances passing
the eigenvalue zero (see ref. 51, equation 4.7). In the case of r3,
we observed, however, some slight deviations from a parabolic
arrangement of resonances which, as noted in other studies (ref.
7, appendix D), serve as an indication of the need for coupling
terms to the SLO formulation.

The BE–SLO Closure of the L80 Model
Many types of networks of SLOs have been proposed in the
literature to address coupling (e.g., refs. 54 and 55). We adopt
here the coupling framework of ref. 56 that assumes linear
coupling between the SLOs, and coupling through the driving
white noise (via a covariance matrix), each aimed at respecting
phase coherence among the different time series constituting
r(t). Furthermore, as the pattern of the time series of r3(t)

Fig. 4. (Left) The 2D time series r1(t) = (x1(t) − Φ1(y(t)), z1(t) − G1(y(t)))
T (black points), along with its Markov partition according to Voronoi cells

(cyan lines). (Right) Reduced RP resonances estimated from this Voronoi tessellation; see Materials and Methods.
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suggests a combination of tones (Fig. 2F), we propose to model
the residual dynamics r(t) by the following system of SLOs:

η̇1 = (α1 + iω1)η1 − β1η1|η1|2 +
∑
j �=1

c1jηj +

3∑
j=1

Q1jẆ
j
t

η̇2 = (α2 + iω1)η2 − β2η2|η2|2 +
∑
j �=2

c2jηj +
3∑

j=1

Q2jẆ
j
t

η̇3 = (α3 + iω2)η3 − β3η3|η3|2 +
∑
j �=3

c3jηj +
3∑

j=1

Q3jẆ
j
t .

[12]
Here, the first two equations are associated with one frequency
ω1, whereasω2 is passed into the third equation to account for the
combination of tones. Each ηj (t) is a complex-valued time series
such that �ηj (t) (resp. �ηj (t)) is aimed at emulating xj (t)−
Φj (y(t)) (resp. zj (t)−Gj (y(t))), after normalization by the SD.
The value of ω1 is estimated by looking at the dominant peak of
the power spectrum of r1(t), while ω2 is taken to be ω2 = 2ω1

which corresponds to the second dominant peak in r3(t). The
rest of the coefficients in Eq. 12 are then simply estimated via
regression of the right-hand side against dr/ dt , over the training
period; see Materials and Methods. Once these coefficients are
estimated, Eq. 12 is used to simulate (out of sample) the high-
frequency residual dynamics by η(t) solving Eq. 12.

Taking into account the structure of the y equation in Eq. 7,
the resulting BE–SLO closure is then given by

dYi

dt
=−a−1

i akbk
[
Φj (Y ) + �ηj (t)

]
Yk

− a−1
i aj bjYj

[
Φk (Y ) + �ηk (t)

]
+ ca−1

i (ak − aj )YjYk −
[
Φi(Y ) + �ηi(t)

]
− ν0aiYi ,

withY = (Y1,Y2,Y3)
T,

[13]
for any (i , j , k) as in Eq. 8, in which the η� are rescaled by the
corresponding SDs. Note that, in Eq. 13, the nonlinear stochastic
parameterization, Φ�(Y ) + �η�(t), is used to emulate x� in the
y equation. This BE–SLO parameterization provides a stable
and accurate closure of the y variable. Not only the global
geometry of the (projected) attractor in the y variable is very
well reproduced (Fig. 5) but also the statistics accounting for
the time variability such as the power spectral density (PSD),
capturing, in particular, very well the dominant peaks associated
with the Rossby and gravity waves (Fig. 6). In contradistinction,
the BE attractor from the BE closure Eq. 16 alone (without SLO
noise rectification) fails to even capture the coarse skeleton of
the L80 attractor (blue curve in Fig. 5), unlike for other regimes
(cf. ref. 16, figure 9). It shows how crucial are the correction
features brought by the η-noise term as simulated by Eq. 12, in
order to rectify the BE closure. This rectification is even more
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Fig. 5. Attractors comparison: A shows the attractor projected onto the slow variables (y2, y3) for the L80 model (black curve), while B shows the attractor
from the BE–SLO closure Eq. 13 (red curve) and the BE closure Eq. 16 (blue curve), projected onto the corresponding slow variables. The BE–SLO closure
reproduces the L80 chaotic dynamics, whereas the BE dynamics is only periodic.
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Fig. 6. PSD comparison for the y variable. The dominant frequency of the Rossby wave is fRo = 0.31 d−1, and that of the gravity waves is fGW = 3.76 d−1,
corresponding, respectively, to a period of TRo = 3.2 d and TGW = 6.3 h. As a comparison, the BE closure (blue curves) only captures fRo (and its subharmonics),
while the BE–SLO closure recovers the full multiplicity of time scales.

striking when looking at the time variability details of the BE–
SLO solutions which reproduce to a high fidelity the multiplicity
of time scales of the y solution obtained from the full L80 model;
see Fig. 7.

Discussion
Thus, the L80 model has been placed in a hard regime for closure
for which we have presented an accurate solution based on a
stochastic SLO rectification of the BE parameterization, and
where the latter alone (or any other nonlinear parameteriza-
tion) is insufficient for closure. The reasons underpinning the
success of the resulting stochastic BE–SLO parameterization lies

in two main elements: 1) the ability of the BE in capturing the
slow motion of the coupled dynamics; 2) the prominence of the
residual dynamics to be orthogonal to the BE manifold (Table
1), displacing the learning efforts for the MZ decomposition to
the noise term only, and, of lesser importance, the centering
condition ζ = 0 in Eq. 4 naturally satisfied for the y equation of
the L80 model.

It was shown in ref. 16 and recalled here that the BE manifold
approximately equals the OPM, and thus allows for approximat-
ing the conditional expectation via Eq. 4. Indeed, since ζ = 0
for the L80 model, Eq. 4 is satisfied (up to a negligible error)
when the OPM, Ψ∗, therein is replaced by BE. Nevertheless,
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Fig. 7. Rotational y(t) variable from the L80 model (black curves) Eq. 7 and Y (t) variable from the BE–SLO closure (red curves) Eq. 13. Here Ts = 420 for
the L80 model, and Ts = 500 for BE–SLO closure Eq. 13, to show episodes with comparable patterns. The BE–SLO closure is able to reproduce accurately the
multiscale chaotic dynamics of the L80 model; see also Fig. 6.
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we emphasize that, when the conditional expectation is poorly
approximated by, say, another nonlinear parameterization Ψ 	=
BE, the residual dynamics is no longer orthogonal to the mani-
fold formed by this parameterization, and is thus contaminated
by slow frequencies. In such a situation, the residual contains
too many frequencies, which makes difficult their resolution by
(blind) data-driven modeling techniques (57) or other methods
based on Ruelle response theory (58), exploiting, essentially, ei-
ther polynomial libraries of functions or specific interactions laws
between the slow and fast variables to learn the ingredients of the
MZ decomposition. Another impediment for these techniques to
operate here lies in the strongly coupling nature of the slow–fast
variables in the dynamical regime considered here. As pointed
out in ref. 21, such strong couplings require, indeed, going beyond
these approaches.

It is thus this remarkable ability of the BE manifold to capture
the slow motion which allows for filtering out the residual dynam-
ics from slow frequencies which is the basis of the success of its
efficient parameterization by the proposed networks of stochastic
oscillators. This fundamental understanding goes beyond the L80
model analyzed here as soon as, for other slow–fast systems,
the BE manifold is replaced by a nonlinear parameterization
that allows for approximating the dynamics’ slow motion, while
operating a separation of variables, the residual dynamics being
essentially void of slow oscillations. Lately, much effort has been
devoted to the learning of memory and noise terms in MZ
decompositions (59–61). Our results teach us that, for slow–fast
systems, the good capture of the slow motion is key to achieve
before embarking on sophisticated learning of the memory and
noise terms, and that, actually, the learning of the latter terms
can be greatly simplified once a good approximation of the
conditional expectation is known.

It is also worth noting that our closure approach relates to
strategies other than MZ closures. Thinking of the quadratic
terms in the L80 model as proceeding from nonlinear advective
terms, we may interpret the corresponding nonlinear terms in the
stochastic BE–SLO closure Eq. 13 as stochastic advective terms
compared to the BE closure Eq. 16. Other recent approaches
have shown the relevance of such stochastic advective terms
to derive stochastic formulations of fluid flows as well as for
emulating, suitably, the coarse-grained dynamics (62–64).

Finally, as a low-dimensional model, we think that the L80
model for regimes such as those analyzed in this study can serve to
test other closure methods and ideas for strongly coupled slow–
fast systems and to gain usefulness as the more known Lorenz 96
model did over the last two decades (see, e.g., refs. 65–67).

The latter has been, indeed, pointed out recently in ref. 68
as too simple for closure, emphasizing the need for more chal-
lenging low-dimensional models to test and analyze emerging
machine learning methods for closure. More generally, we be-
lieve that regimes exhibiting a mixture of fast oscillations super-
imposed on slower time scales, such as those displayed on the
y solutions shown in Fig. 7 for the L80 model, will seemingly
provide a challenging ground for closure in more-sophisticated
fluid problems. Such regimes are known to arise in (multilayer)
shallow water models (see, e.g., ref. 69, figure 5). It is theoretically
expected that, for rotating stratified flows, the slow manifold, in
particular as represented by the BE, will fail to provide (close to)
exact parameterizations at some finite value of Ro (70, 71), even
if the particular form of the breakdown manifested in the L80
system might not be generic.

Materials and Methods
The L80 Data. The parameters are chosen such that a1 = a2 = 1, a3 = 3, ν0 =

κ0 = 1/48, g0 = 8, bi = (ai − aj − ak)/2, and c =
√

b1b2 + b2b3 + b3b1. Fi-
nally, h1 = −1, and h2 = h3 = F2 = F3 = 0. These parameter values corre-
spond to those used in ref. 13. Our analysis takes place for F1 corresponding
to a parameter regime for which Ro > R∗

o , on a rescaled version of Eq. 7

(see ref. 16, equation 2.5). More precisely, the regime of ref. 16, figure 11
is considered here, which corresponds to F1 = 0.3027 by using the rescaling
given by ref. 16, equation 2.4 mapping the L80 model onto this rescaled
version.

This system is numerically integrated using a standard fourth-order
Runge–Kutta method with time stepping given by δt = 4.2 × 10−3

(corresponding to 45 s). Throughout the numerical experiments (including
for the BE–SLO closure), we have taken the initial data to be very close to
the Hadley fixed point (see ref. 16, section 2.5). The training period consists
of 5 × 105 data points corresponding to 260 d (after removal of 2 × 105

transient data points) to learn the coefficients of the SLO system Eq. 12 via
regression after normalization by the SD of the rj . The validation period
consists of 5 × 106, out-of-sample, simulated data points from the BE–SLO
closure model Eq. 13, corresponding to 10 × 260 d. The coefficients cij in Eq.
12 are complex, and the real part of each βj is enforced to be larger than
a small positive threshold chosen here to be 10−3 to ensure stability of the
BE–SLO closure model Eq. 13, while the Qij forms a positive definite matrix
and is obtained as the Cholesky decomposition of the covariance matrix of
the noise. The BE–SLO closure Eq. 13 is integrated using an Euler scheme.
The L80 data and BE parameterization (see next subsection) are provided in
SI Appendix.

The BE Manifold and BE Closure. Mathematically, the BE manifold aims at
reducing the 9D system of ordinary differential equations (ODEs) Eq. 7 to a
3D system of ODE, by means of nonlinear parameterization of the variables
x = (x1, x2, x3)

T and z = (z1, z2, z3)
T, in terms of the variable y = (y1, y2, y3)

T

(see ref. 14). By analyzing the order of magnitudes of the different terms
in the xi equations [and after rescaling (16)], we arrive at the following
parameterization of the z variable in terms of the rotational y variable,

zi = Gi(y) = yi −
2c2

ai
yjyk. [14]

Further algebraic manipulations show that, under an invertibility con-
dition of a matrix M(y, G(y)) conditioned on the y variable, one obtains
(implicitly) x as a function Φ of y given by

Φ(y) =
[
M(y, G(y))

]−1

⎛
⎝ d1,2,3(y, G(y))

d2,3,1(y, G(y)))
d3,1,2(y, G(y)))

⎞
⎠ , [15]

where the di,j,k are given explicitly (see refs. 14 and 16). The function Φ(y) =
(Φ1(y),Φ2(y),Φ3(y))

T corresponds to the BE manifold; it aims to provide a
nonlinear parameterization between x and y when the latter exists.

The BE closure is then

dyi

dτ
= −a−1

i akbkΦj(y)yk − a−1
i ajbjyjΦk(y)

+ ca−1
i (ak − aj)yjyk − Φi(y) − ν0aiyi ,

[16]

for which (i, j, k) once more is as in Eq. 8.

Estimation of Reduced RP Resonances. We recall below the estimation pro-
cedure of reduced RP resonances (see ref. 50, section 3.3). Here, the reduced
state space V consists of the plane in which evolves the 2D component rj(t)
of residual r(t) given by Eq. 9. This projected trajectory lies within a domain
D that is discretized as the union of M disjoint boxes or cells Bj , forming
thus a partition. Unlike previous studies such as refs. 43 and 50 using a
uniform meshing, we adopt a Voronoi tessellation to generate this partition.
The interest in doing so is that the Voronoi cells become naturally more
numerous over, for example, small regions with a high-density population
of points, resulting, in turn, in better estimation of transitions matrices.

We assume that our observations are made at discrete time instants t =
tn, given as a multiple of a transition time τ , that is, tn = nτ with 1 ≤ n ≤ N,
with N assumed to be large enough. We denote, by Yn, any of the rj(tn).

In practice, the counting of the transitions between the cells is highly de-
pendent on the transition time τ , and the latter has to be chosen as guided
by, for example, the physics of the problem to obtain interpretable results
(50, 51). In the case of the L80 model, we used a τ -value corresponding to
20 min. The entries of the M × M transition matrix Γτ are then estimated
according to

(Γτ )ij =
#

{(
Yn ∈ Bj

)
∧ (Yn+1 ∈ Bi)

}
#

{
Yn ∈ Bj

} , [17]

where the Bj form the Voronoi partition (composed of M disjoint Voronoi
cells) of the domain D in V (see, e.g., refs. 43 and 47). In Eq. 17, the notation
#{(Yn ∈ Bk)} gives the number of observations Yn visiting the cell Bk, and
the logical symbol “∧ ” means “and.”

8 of 9 PNAS
https://doi.org/10.1073/pnas.2113650118

Chekroun et al.
Stochastic rectification of fast oscillations on slow manifold closures

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113650118/-/DCSupplemental
https://doi.org/10.1073/pnas.2113650118


EA
RT

H,
AT

M
OS

PH
ER

IC
,

AN
D

PL
AN

ET
AR

Y
SC

IE
NC

ES

The reduced RP resonances are then obtained as the eigenvalues λk(τ)

obtained from the eigenvalues ζk(τ) of the Markov matrix Γτ , accor-
ding to

λk(τ) =
log

(
|ζk(τ)|

)
τ

+ i
arg

(
ζk(τ)

)
τ

, 1 ≤ k ≤ M, [18]

where arg(z) (resp. log(z)) denotes the principal value of the argument (that
we adopt to lie in [−π,π) in this article) (resp. logarithm) of the complex
number z. Note that |ζk(τ)| ≤ 1 as eigenvalues of the Markov matrix Γτ ,

and thus the λk(τ) given by Eq. 18 lie naturally within the left half complex
plane.

Data Availability. All study data are included in the article and/or
SI Appendix.
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