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DDLSNet: A Novel Deep Learning-Based
System for Grading Funduscopic Images for
Glaucomatous Damage

Haroon Adam Rasheed, BS,1 Tyler Davis, MS,2 Esteban Morales, MS,5 Zhe Fei, MS, PhD,3,4 Lourdes Grassi, MD,5

Agustina De Gainza, MD,5 Kouros Nouri-Mahdavi, MD, MS,5 Joseph Caprioli, MD5

Purpose: To report an image analysis pipeline, DDLSNet, consisting of a rim segmentation (RimNet) branch
and a disc size classification (DiscNet) branch to automate estimation of the disc damage likelihood scale (DDLS).

Design: Retrospective observational.
Participants: RimNet and DiscNet were developed with 1208 and 11 536 optic disc photographs (ODPs),

respectively. DDLSNet performance was evaluated on 120 ODPs from the RimNet test set, for which the DDLS
scores were graded by clinicians. Reproducibility was evaluated on a group of 781 eyes, each with 2 ODPs taken
within 4 years apart.

Methods: Disc damage likelihood scale calculation requires estimation of optic disc size, provided by Dis-
cNet (VGG19 network), and the minimum rim-to-disc ratio (mRDR) or absent rim width (ARW), provided by RimNet
(InceptionV3/LinkNet segmentation model). To build RimNet’s dataset, glaucoma specialists marked optic disc
rim and cup boundaries on ODPs. The "ground truth" mRDR or ARW was calculated. For DiscNet’s dataset,
corresponding OCT images provided "ground truth" disc size. Optic disc photographs were split into 80/10/10 for
training, validation, and testing, respectively, for RimNet and DiscNet. DDLSNet estimation was tested against
manual grading of DDLS by clinicians with the average score used as "ground truth." Reproducibility of DDLSNet
grading was evaluated by repeating DDLS estimation on a dataset of nonprogressing paired ODPs taken at
separate times.

Main Outcome Measures: The main outcome measure was a weighted kappa score between clinicians and
the DDLSNet pipeline with agreement defined as � 1 DDLS score difference.

Results: RimNet achieved an mRDR mean absolute error (MAE) of 0.04 (� 0.03) and an ARW MAE of 48.9 (�
35.9) degrees when compared to clinician segmentations. DiscNet achieved 73% (95% confidence interval [CI]:
70%, 75%) classification accuracy. DDLSNet achieved an average weighted kappa agreement of 0.54 (95% CI:
0.40, 0.68) compared to clinicians. Average interclinician agreement was 0.52 (95% CI: 0.49, 0.56). Reproduc-
ibility testing demonstrated that 96% of ODP pairs had a difference of � 1 DDLS score.

Conclusions: DDLSNet achieved moderate agreement with clinicians for DDLS grading. This novel approach
illustrates the feasibility of automated ODP grading for assessing glaucoma severity. Further improvements may
be achieved by increasing the number of incomplete rims sample size, expanding the hyperparameter search,
and increasing the agreement of clinicians grading ODPs. Ophthalmology Science 2023;3:100255 ª 2022 by the
American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Glaucoma is the leading cause of irreversible blindness
worldwide, with an estimated 80 million people affected in
2020 and a projected rise to 111.8 million people by
2040.1,2 Glaucoma is asymptomatic in the early stages;
untested individuals often remain undiagnosed until
advanced symptoms are present. In developed countries,
up to 70% of patients with glaucoma are undiagnosed, a
number that rises in areas with less access to screening.3

While patients with mild glaucoma have a quality of life
comparable to that of healthy patients, the quality of life
drastically decreases with more advanced glaucoma.4
ª 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
Early diagnosis and treatment allow for preservation of
patient quality of life and are at the forefront of strategies
for reducing disease burden.5

Glaucoma diagnostic methods can be grouped into 2
categories: (1) techniques that evaluate structural changes in
the eye and (2) techniques that evaluate functional changes
in vision. Among those assessing structural changes, OCT
and fundus photography are most often used in clinical
practice. While OCT has been shown to have a high
sensitivity for detection of structural glaucomatous changes,
the high cost of the technique often restricts the device to
1https://doi.org/10.1016/j.xops.2022.100255
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large eye clinics or centers.6,7 This is especially problematic
given that developing regions have the highest rates of
undiagnosed glaucoma.3 Moreover, the World Glaucoma
Association considers the largest barrier to glaucoma
screening to be cost.8 In contrast to OCT, fundus
photography stands as a lower cost option; new advances
such as telemedicine screening and smartphone
fundoscopy have made fundus photography a feasible and
financially viable option even in remote locations.9,10

While OCT and fundus photography allow for the
structural findings to be captured, a mechanism is needed to
classify such changes and correlate them with functional
glaucomatous damage. The disc damage likelihood scale
(DDLS) is one such approach. The DDLS is a well-
established grading scale to correlate glaucomatous dam-
age with progression of fundus photographs.3,11,12 The
DDLS has been incorporated into the eye health
professional guidelines for optometrists and
ophthalmologists.12,13 The interobserver agreement of
DDLS, even among glaucoma specialists, can vary from
85% based on optic disc photographs (ODPs) to 70%
based on clinical examination, although intraobserver
reliability is high.14 This is especially troubling as DDLS
scores can be used as the basis for referral by a variety of
eye health professionals, and improper grading may result
in missed opportunities for early intervention.12

An ideal screening tool would be high-throughput, ac-
curate, and reliable with high specificity. With the advent of
neural network models and an increase in image processing
capabilities, high specificity with acceptable sensitivity,
together with high throughput, may be achieved with a
neural network-based pipeline.15 In this paper, we present
DDLSNet, a neural network pipeline which aims to
accurately grade DDLS based on ODPs with a
combination of a rim segmentation neural network
(RimNet) and a disc size classification network (DiscNet).
Methods

The DDLS grading criteria was created by Spaeth et al.11 Their
original grading schema is shown as Supplemental Figure 1. The
DDLS score is determined by 2 features of the optic disc: (1) the
disc size and (2) the narrowest rim width. Progression of
glaucomatous damage is seen as enlargement of the optic disc cup
and subsequent thinning of the optic disc rim. This thinning can be
measured by the minimum rim-to-disc ratio (mRDR) in intact rims.
However, in severe glaucoma, the rim can be completely absent in
certain areas. In these cases, the angle for which the rim is completely
lost is measured. We call this the "absent rim width" (ARW) and we
call these rims "incomplete." These 3 features, mRDR, ARW, and
disc size, are the metrics needed to calculate DDLS. The latter is
crucial as the significance of mRDR or ARW varies depending on
disc size.11 Therefore, the DDLSNet pipeline consists of 2
components: (1) RimNet, which performs rim and cup
segmentation and calculates mRDR or ARW, and (2) DiscNet,
which classifies the size of the optic disc into small, average, and
large. This study adhered to the tenets of the Declaration of
Helsinki, was approved by UCLA’s Human Research Protection
Program, and conformed to the Health Insurance Portability and
Accountability Act (HIPAA) policies. Informed consent was
waived by the UCLA Institutional Review Board.
2

Database

Our image database was based on a collection of all the ODPs
available in the University of California, Los Angeles Stein Eye
Glaucoma Division. For the RimNet database, 3 glaucoma spe-
cialists manually created a mask of the optic disc rim and optic disc
cup for each funduscopic image using the image editing program
GIMP. These masks were used as the ground truth. The RimNet
dataset had 2 inclusion criteria. The images had to show signs of
glaucomatous damage and the images had to be in focus and with
discernable posterior pole and vasculature details, both as deemed
by 2 board-certified glaucoma specialists. The exclusion criteria
were concurrent non-glaucoma disease including optic neuritis,
optic disc neovascularization, and vitreous hemorrhage that would
impair visualization of the posterior pole. The demographic in-
formation for the RimNet dataset is presented in Table 1. Table 2
presents the glaucoma diagnoses for the RimNet dataset. These
requirements result in a database that displays the full range of
glaucomatous changes to the optic disc rim, ranging from mild
optic disc rim narrowing in early-stage glaucoma to absent optic
disc rim in severe glaucoma.

The DiscNet database consisted of ODPs with available cor-
responding Cirrus high-definition OCT Optic Disc Cubes
(200 � 200). The size of the Bruch’s membrane as measured by
Cirrus OCT was used as a proxy for disc area and was used to
categorize the disc size into small, average, or large optic discs.
The ODPs had to be of good qualitydin focus with an unob-
structed view of the posterior poledas determined by a board-
certified glaucoma specialist. The OCT images were required to
have a good quality (signal strength > 6) and be free of artifacts
based on the review of printouts. To examine reliability, a database
of nonprogressing glaucomatous eyes was created. Each eye had 2
ODPs available taken < 4 years apart, which were deemed stable
as confirmed by a glaucoma specialist. The time restriction was
imposed to increase the population included but decrease the
chance of glaucoma progression between the 2 photos.
RimNet

RimNet consists of a preprocessing step of contrast enhancement,
an optic disc rim and cup segmentation model, and an image
analysis step to calculate the mRDR for intact rims and ARW for
incomplete rims. This latter case occurs in eyes with severe glau-
comatous damage. The model was optimized by submitting it to a
hyperparameter search with rim intersection over union (RimIoU)
as the metric. The included hyperparameters were the neural
network structure, learning rate, loss function, and optimizer.16e27

Table 3 lists the hyperparameter search space. Fifty total
hyperparameter combinations were trained with the Keras Tuner
Library with RimNet proficiency, measured as an IoU. The Rim-
Net model was trained, validated, and tested on a database of
images from the University of California, Los Angeles Stein Eye
Glaucoma Division with an 80/10/10 split.
DiscNet

DiscNet is a deep neural network developed to assign disc size as
small, average, or large as an essential process in DDLS grading.
The disc photographs included scanned digitized slides and digital
photographs. Disc size information taken from paired OCT data
was used as the ground truth. While the original DDLS grading
defined small, average, and large discs as diameters of < 1.50 mm,
between 1.50 mm and 2.00 mm, and > 2.00 mm respectively,11 we
modified the cutoffs slightly to � 1.44 mm, 1.44 mm to 2.28 mm,
and � 2.28 so that the 3 disc size categories had more



Table 1. Demographic Data for Dataset Listing the Gender, Age, and Racial Distribution by Camera Type

Slide Images Digital Camera 1 Digital Camera 2 Digital Camera 3

Gender distribution
Female 407 119 55 12
Male 302 85 44 11

Age distribution
Mean 60.72 67.13 72.80 66.92
SD 13.48 17.43 12.75 17.71
Median 61.87 71.06 73.91 72.37
IQR 15.79 16.33 12.86 22.54
Min 9.36 6.92 16.19 17.48
Max 90.05 96.10 94.41 86.17

Race distribution
Asian 90 34 24 2
Black 63 22 8 1
Hispanic 66 20 16 6
White 366 100 45 12
Other 53 5 3 0
Unknown 71 22 3 2

IQR ¼ interquartile range; SD ¼ standard deviation
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evenly distributed sample sizes. This sorted our available data into
a 15/70/15 split for small, average, and large discs.

DiscNet was first built with transfer learning with model
weights from ImageNet before submitting it to training.28 In
transfer learning, a subsection of the model’s layers are
"unlocked" to hone the transferred model performance for a
specified task. Often, only the last layer of the model is unlocked
but more can be unlocked if needed. The proportion of the
model layers allowed to be updated is termed the "tuning
fraction" of the model. DiscNet was trained in 2 phases, each
with a unique learning rate. The first phase allowed for only the
last layer of the model to be trained, while the second phase
allowed the weights in a subsection of the model layers, the
tuning fraction, to be updated.

A hyperparameter search was completed to select the optimal
learning rates in both phases, the tuning fraction, the optimizer, and
the network architecture. Table 3 lists the hyperparameter search
space, from which each hyperparameter was selected from. Thirty
Table 2. RimNet Database Diagnosis Listing the 1208 ODPs Used
in RimNet Training, Validation, and Testing in an 80/10/10 Split

Respectively

Diagnosis Count

Primary open-angle glaucoma 530
Glaucoma suspect 403
Chronic angle-closure glaucoma 71
Low-tension glaucoma 47
Secondary open-angle glaucoma 35
Capsular glaucoma with psuedoexfoliation 33
Anatomical narrow angle 27
Glaucoma secondary to eye infection 24
Pigmentary glaucoma 15
Secondary angle closure 11
Congenital glaucoma 7
Juvenile glaucoma 3
Acute angle-closure glaucoma 2

ODPs ¼ optic disc photographs; RimNet ¼ rim segmentation.
total hyperparameter combinations were trained with the Keras
Tuner library, with classification accuracy as the optimized
metric.29

DDLSNet Pipeline

The mRDR and ARW from RimNet and the disc size from DiscNet
were used to calculate the DDLS score. A full diagram of our
pipeline is shown in Figure 1. DDLSNet was evaluated against a
ground truth database of ODPs, which 3 glaucoma specialists
had graded with DDLS. The weighted kappa agreement � 1
DDLS grade between the DDLSNet’s output and the average of
the grades of 3 glaucoma specialists was measured. The average
of the interobserver agreement for clinicians was also measured.

Evaluating DDLSNet reliability is necessary, as physician
intraobserver accuracy for DDLS grading should be matched by
our proposed system for it to be clinically useful. A database of
pairs of funduscopic photos taken no more than 4 years apart of
781 nonprogressing glaucomatous eyes was used to test DDLSNet
reliability. Each image was graded via DDLSNet, and the differ-
ence between the 2 images for each eye was recorded. Glaucoma
specialists verified that the eyes were nonprogressing, based on
evaluation of the disc photos and the visual fields.

Evaluation Criteria

The main evaluation criterion was the weighted kappa agreement
between DDLSNet and physicians with the ground truth database.
Interobserver and intraobserver agreement was also measured as
secondary evaluation criteria.

Results

RimNet was trained, validated, and tested on 1208 ODPs
with an 80/10/10 split respectively. The mean age was 63.7
(� 14.9) years with a male:female ratio of 43:57. DiscNet
was trained, validated, and tested on a database of 11 536
eyes in an 80/10/10 split. The mean age was 67.6 (� 14.5)
and had a male:female ratio of 58:42. DDLSNet was tested
on 120 ODPs from the RimNet test set manually graded
3



Table 3. Hyperparameter Search Space for RimNet: An Incep-
tionV3/LinkNet Architecture, Binary Cross-Entropy Loss Func-
tion, Learning Rate of 10�3, and Adam Optimizer Were Selected,

RimIoU was the Optimized Metric

Hyperparameters

Encoders MobileNetV2, ResNet34, EfficientnetB0,
InceptionV3, ResNet101, VGG16, ResNet50

Decoders U-Net, FPN, LinkNet, PSPnet
Loss function Binary_Crossentropy, Binary_Focal_Los
Learning rate 10�3, 10�4, 10�5, 10�6

Optimizer Adam, SGD

RimIoU ¼ rim intersection over union; RimNet ¼ rim segmentation
model.
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based on DDLS by 3 glaucoma specialists. Reproducibility
of DDLSNet was evaluated on 781 eyes, each with 2 ODPs
available (mean age ¼ 73.8 (�11.4) years, male:female
ratio ¼ 43:57). The eyes were all classified as non-
progressing by a glaucoma specialist based on review of the
ODPs. The demographic data for the 4 cohorts are presented
in Table 4. The code used to train, run, and evaluate
DDLSNet can be found on our public repository at https://
github.com/TylerADavis/GlaucomaML.

Model Architecture and Hyperparameter Search

After exploring 30 different combinations of hyper-
parameters through random search, the following hyper-
parameters were identified as providing the highest
classification accuracy for DiscNet: VGG19 architecture,
Figure 1. DDLSNet pipeline showcasing both the rim segmentation and disc s
pipeline, rim segmentation (RimNet) calculates the minimum rim-to-disc ratio
while disc size classification (DiscNet) estimates the disc size. The disc size and m
scale (DDLS) score.
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phase 1 learning rate of 1�4, phase 2 learning rate of 1�5,
tuning fraction of 0.5, and Adam optimizer.18,22e24,27,30,31

VGG19 is a 19-layer convolutional neural network pub-
lished in 2015 that has previously been used in medical
image analysis.22,32,33 For RimNet, 50 different
combinations were examined through a random search,
which resulted as follows: (1) InceptionV3/LinkNet
architecture, (2) binary cross-entropy loss function, (3)
learning rate of 10�3, and (4) Adam optimizer.16e27

InceptionV3 was first published in 2015, outperforming
popular encoders at the time with a fraction of the compu-
tation costs.27 It has been previously used in medical
segmentation.34,35 LinkNet is a lightweight decoder first
published in 2017.26 Given the computational restrictions
of our workstation, which uses NVIDIA RTX 2080 Ti
graphics cards, these were appropriate choices.
RimNet

The RimNet evaluation criteria were the mean absolute error
(MAE) for mRDR for intact rims and the MAE for ARW for
incomplete rims between physician grading and RimNet
grading, with a secondary evaluation criterion of the
RimIoU. The intersection over union (IoU) is a commonly
used measure for segmentation accuracy. RimNet achieved
an mRDR MAE of 0.04 (� 0.03), an ARW MAE of 48.9
(� 35.9), and a RimIoU of 0.68.
DiscNet

DiscNet raw classification accuracy was found to be 73%
(95% confidence interval [CI]: 70, 75) across a test set of
ize classification results. Once optic disc photographs are submitted to the
(mRDR) for intact rims, or absent rim width (ARW) for incomplete rims,
RDR ratio or ARW are then used to calculate the disc damage likelihood

https://github.com/TylerADavis/GlaucomaML
https://github.com/TylerADavis/GlaucomaML


Figure 2. DDLSNet Results on sample optic disc photographs. The white indicates the physician or DDLNet rim segmentation. The blue line on the rim
indicates the shortest rim width detected. The green line indicates the disc diameter. Left-most column: raw optic disc photographs. Middle column:
delineation of the disc and cup margin by clinicians. Right-most column: DDLSNet grading. The absent rim width is calculated in eyes with complete rim
loss in certain regions. The minimum rim-to-disc ratio is calculated in eyes with intact optic disc rim. The annotations above the photographs on the middle
and right-most columns represent the disc size, absent rim width or rim-to-disc ratio, and disc damage likelihood scale (DDLS) grade.
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1137 images, which included both scanned slides and
digitally acquired ODPs. Broken down by category, Dis-
cNet had a classification accuracy of 62% (95% CI: 55, 70)
for small discs, 77% (95% CI: 74, 80) for average discs, and
60% (95% CI: 52, 68) for large discs. Notably, only 3 small
discs out of 234 (1.2%) were mistakenly classified as large
and only 2 large discs out of 146 (1.3%) were mistakenly
classified as small.

DDLSNet

DDLSNet was evaluated on a testing database of 120 ODPs.
Results for a representative sample of ODPs are displayed in
Figure 2. Three glaucoma specialists also graded the same
120 funduscopic images with DDLS. The weighted kappa
agreement between the average grading of the 3 glaucoma
specialists and DDLSNet was 0.54 (95% CI: 0.4, 0.68). A
full breakdown of the results can be found in Table 5. The
model matched the kappa scores between physicians, which
included 0.49, 0.52, and 0.56, averaged at 0.52. DDLSNet
reproducibility was measured by evaluating pairs of
nonprogressing ODPs. Of the 781 pairs of eyes, 485
(62%) had DDLS difference of 0, 267 (34%) had a DDLS
difference of 1, 28 (4%) had a DDLS difference of 2, and
1 (0.1%) had a DDLS difference of 3 (Table 6).
Discussion

We present an automated pipeline for estimating the DDLS
score with ODPs in patients with suspected or established
glaucoma to facilitate detection and monitoring of the dis-
ease. The DDLSNet weighted kappa agreement of 0.54
(95% CI 0.40e0.68) demonstrated moderate agreement
with clinician grading and matching interclinician agree-
ment. Moreover, the DDLSNet reproducibility was high
with 96% of 781 nonprogressing eyes found to have � 1
DDLS grade difference on stable pairs of ODPs.

Automated glaucoma grading with ODPS has been
evolving. Most experimental approaches focus on accurate
5



Table 4. Demographics Characteristics for the Datasets Used for RimNet, DiscNet, DDLSNet, and the DDLSNet Reliability

DDLSNet Test Set RimNet DiscNet DDLSNet Reliability

Total no. of images 120 1208 11 536 1562
Total no. of eyes 109 1021 5213 781
Gender: male/female 45:55 43:57 58:42 43:57
Age: mean (SD) 65.9 (� 14.8) 63.7 (� 14.9) 67.6 (� 14.5) 73.8 (� 11.4)
DDLS grading by physician
1 0
2 12
3 29
4 30
5 12
6 19
7 12
8 4
9 2
10 0

DDLS ¼ disc damage likelihood scale; DiscNet ¼ disc size classification; RimNet ¼ rim segmentation; SD ¼ standard deviation. The DDLS distribution for
our test set of 120 images, graded by glaucoma specialists.
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detection of the cup-to-disc ratio with techniques ranging
from thresholding to level setting to artificial intelligence
models.36 As early as 2001, Chrástek et al offered an
automated method of optic disc segmentation with
filtering and edge detection, which achieved a
segmentation accuracy of 71% with accuracy subjectively
defined as "good" or "very good."37 More recently, Kumar
and Bindu used U-Net,38 a segmentation neural network
architecture, to achieve an IoU of 87.9% in optic disc
segmentation.39 Our algorithm for measuring mRDR,
RimNet, combines both the image processing techniques
used in older segmentation studies and the artificial
intelligence of newer studies to achieve a high-efficacy
segmentation on a variety of ODPs.

Cup-to-disc ratio has been repeatedly shown to be infe-
rior to DDLS in grading glaucomatous damage.40 Several
papers addressed detection of the minimum optic disc rim
width, an important component of calculating the DDLS
score.41e43 However, few have used automated DDLS
calculation due to the complexity of the challenge. Two
studies examined the results of proprietary software built
into a 3-dimensional stereographic camera (Kowa Nonmyd
WX 3D, Kowa).44,45 The camera automatically displays the
DDLS grade in its final report. The study by Han et al
showed moderate agreement (weighted kappa value, 0.59)
with 1 glaucoma specialist.44 This study has 2 limitations
compared to our study. First, the study only evaluates the
Table 5. Kappa Agreement between DDLSNet and Glaucoma
Specialist Grading

Graders Kappa (95% CI)

Grader 1 versus Grader 2 0.52 (0.32, 0.72)
Grader 1 versus Grader 3 0.56 (0.35, 0.77)
Grader 2 versus Grader 3 0.49 (0.29, 0.7)
Grader average versus DDLSNet 0.54 (0.4, 0.68)

CI ¼ confidence interval; DDLS ¼ disc damage likelihood scale.
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camera against 1 glaucoma specialist rather than the 3 in
our study. Second, such camera-specific software does not
offer the generalizability of DDLSNet. While functional on
certain cameras, such software would not offer the gener-
alizability of DDLSNet. A third study provided clinical
validation for RIA-G, an automated cloud-based optic nerve
head analysis software that has been reported to be able to
grade ODPs based on DDLS.46 This study showed a
moderate Kappa agreement of 0.62 (0.55, 0.69) between 3
glaucoma specialists and the software. However, the
validation set favored photographs of mild glaucoma
(average DDLS grade 3, DDLS 1e7 included) and
required fundus photographs with a 30-degree field of
view.46 Our validation set has a wider spectrum of
glaucomatous damage (average DDLS grade 4.5, DDLS
2e9) and DDLSNet does not require a 30-degree field of
view. Moreover, the RIA-G optic disc cup and disc detec-
tion software operates based on contrast detection which
would be impaired in photographs with bright artifacts and
abnormal pathology.46 A fourth study implemented a
partial-DDLS grading using active discs, where a circular
disc shape was assumed and DDLS grades were grouped
into normal, moderate, and severe categories.47 The model
achieved a category accuracy of 89%.47 DDLSNet
improves upon this study by directly comparing 10 DDLS
grades rather than 3 categories. Additionally, our network
Table 6. Difference in DDLSNet Grading between Paired Images
of Nonprogressing Optic Disc Photographs.

DDLS Difference Number of Images

0 481
1 267
2 28
3 1

DDLS ¼ disc damage likelihood scale. All photographs were taken within
4 years of each other (total number of images ¼ 781).
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accounts for disc size variations through DiscNet and intact
and incomplete rims through RimNet. It is unclear if and to
what extent the above studies included optic discs with areas
of absent optic disc rim widths, which constitute the most
severe DDLS grades.

DDLSNet is the most accurate and generalizable
approach developed to date for several reasons. First, it was
validated on ODPs with a wide breadth of glaucomatous
damage. This included ODPs with areas of absent optic disc
rims. Second, it makes no assumptions of the size or shape
of the optic disc when grading size. Third, it is built on a
neural network model rather than thresholding or contrast-
based algorithms, which are limited in learning capacity.
Finally, it is not restricted to specific fundus cameras,
making it more amenable for use in mobile settings where
smartphones or portable fundus cameras can be used for
fundus photography.

The shortcomings of our study need to be considered.
Expanding the dataset could improve performance of both
RimNet and DiscNet. The models will also have to be
trained on images with significant concurrent pathologies,
such as severe diabetic retinopathy and macular degenera-
tion. The hyperparameter search was limited by the pro-
cessing power and memory constraints of our NVIDIA RTX
2080 Ti graphics cards, which were used to train the model.
A more extensive hyperparameter search can be done using
larger architectures, such as ResNet152, with more powerful
computing hardware. Following the hyperparameter search,
the selected DiscNet model and RimNet model had the
highest accuracy and RimIoU respectively. However, their
loss functions had evidence of possible overfitting. This
would need to be addressed in a future study. Finally, the
number of physicians grading and segmenting funduscopic
images could be increased to allow DDLSNet to learn a
wider consensus of gradings.

In conclusion, DDLSNet offers a unique, high-efficacy,
high-throughput, reliable DDLS grading system, which is
well-suited to perform as a screening, diagnostic, and
prognostic tool for identifying and classifying glaucomatous
damage and monitoring disease progression. DDLSNet is
also well-suited for mobile applications in a variety of set-
tings, including use by individuals without extensive
ophthalmic training, such as a neurology resident using a
phone camera attachment or optometrists seeking to better
evaluate their patients’ funduscopic images. Future study
directions include increasing the number of physician
graders and examining the implementation in remote areas
with limited access. With powerful computing technology,
glaucoma screening could be enhanced and widely
disseminated, improving clinical outcomes for patients.
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