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Abstract

Biomedical practice is evidence-based. Peer-reviewed papers are the primary medium to present 

evidence and data-supported results to drive clinical practice. However, it could be argued that 

scientific literature does not contain data, but rather narratives about and summaries of data. Meta-

analyses of published literature may produce biased conclusions due to the lack of transparency 

in data collection, publication bias, and inaccessibility to the data underlying a publication (‘dark 

data’). Co-analysis of pooled data at the level of individual research participants can offer higher 

levels of evidence, but this requires that researchers share raw individual participant data (IPD). 

FAIR (findable, accessible, interoperable, and reusable) data governance principles aim to guide 

data lifecycle management by providing a framework for actionable data sharing. Here we discuss 

the implications of FAIR for data harmonization, an essential step for pooling data for IPD 

analysis. We describe the harmonization-information trade-off, which states that the level of 

granularity in harmonizing data determines the amount of information lost. Finally, we discuss a 

framework for managing the trade-off and the levels of harmonization. In the coming era of funder 

mandates for data sharing, research communities that effectively manage data harmonization will 

be empowered to harness big data and advanced analytics such as machine learning and artificial 

intelligence tools, leading to stunning new discoveries that augment our understanding of diseases 

and their treatments. By elevating scientific data to the status of a first-class citizen of the scientific 

enterprise, there is strong potential for biomedicine to transition from a narrative publication 

product orientation to a modern data-driven enterprise where data itself is viewed as a primary 

work product of biomedical research.

Media Summary

The goal of biomedical research is to produce evidence to understand, prevent, and treat diseases. 

Doing so requires that scientific data are accurate, available, and generalizable enough to support 

reliable decision-making in medical practice. Biomedical data are judged by the imperfect 

process of scientific peer review and published literature rather than raw data sets. Typically, 

studies are evaluated based on summaries and conclusions, and the raw data from individual 

research participants remains inaccessible. Literature-based summaries are subject to biases and 

author interpretations and can mask information hidden in the raw data. Thus, to maximize the 

return from funding the biomedical research enterprise (estimated at U.S. $240 billion in 2009, 
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worldwide) data must be shared. To promote this, the U.S. National Institutes of Health (NIH) 

has recently announced their 2023 data-sharing mandate that adheres to the FAIR (findable, 

accessible, interoperable, reusable) data stewardship principles, guiding researchers, institutions, 

and agencies to elevate scientific data to 'first-class citizen' status as a product of research. The 

authors discuss how making data FAIR will strengthen the evidence for medical practice by 

facilitating the reuse of data from different data sets, an important step in analyzing independent 

studies together. FAIR requires harmonization to ensure fused data elements convey the same 

information, producing interoperability. This article articulates the trade-offs that researchers must 

make during the harmonization process, balancing the level of harmonization of data sets against 

the level of information lost in doing so. Finally, the authors discuss a framework to help manage 

the information loss and to increase the potential for harmonization across shared data, readying 

them for emerging applications of machine learning and artificial intelligence in support of higher 

levels of evidence in biomedicine.

Keywords

FAIR data sharing; data harmonization; standardization; harmonization-information trade-off; 
biomedicine data science

1. Introduction

Data sharing in biomedicine has emerged as one of the solutions to improve scientific 

transparency and reproducibility. The National Institutes of Health (NIH) 2023 Data 

Management and Sharing Policy will accelerate these efforts with the goal of increasing 

the value of federally funded research and reducing waste by providing direct access to data 

for replication and pooled individual participant level (IPD) analysis (Chan et al., 2014; 

Ferguson et al., 2014; Kennedy, 2012; Office of the Director, NIH, 2020; Piwowar et al., 

2007; Pronk et al., 2015; Roundtable on Environmental Health Sciences et al., 2016). To 

help implement data-sharing practice, the National Academies of Sciences, Engineering, and 

Medicine (NASEM) held a series of meetings 2019–2021 with diverse stakeholders across 

funders, universities, libraries, technologists, and researchers from biomedicine and social 

sciences ("Changing the Culture," 2021; NASEM 2020a, 2020b). The present HDSR special 

theme titled “Changing the Culture on Data Management and Data Sharing in Biomedicine” 

focuses on changing the culture of data sharing to facilitate uptake of data sharing at a 

grassroots level in scientific communities. In this review, we address features of biomedical 

data collection and management practices that limit the harmonization, integration, and 

pooling of data in biomedical research communities. Our goal is to articulate current cultural 

norms within biomedicine/biological research with respect to data sharing and to discuss 

structural problems that limit the implementation of data sharing that maximizes its usability 

(Callahan et al., 2017; Chan et al., 2014; “Changing the Culture,” 2021; Fouad et al., 

2019; NASEM, 2020a; Torres-Espín, Almeid, et al., 2021). We argue that researchers make 

a series of compromises from the point of raw data collection through to reporting of 

results in scientific papers and the potential reuse of that data if shared. The use of data 

formatting and collection standards such as Clinical Data Interchange Standards Consortium 

(CDISC, 2022) data standards or NIH Common Data Elements (NIH CDE, 2022) can help 
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support data FAIRness (Wilkinson et al., 2016), although they might not be sufficient in 

their own. Implementation of industry-grade standards is being advanced by initiatives like 

the Coalition for Accelerating Standards and Therapies (CFAST, 2022), a partnership with 

CDISC and the Critical Path Institute for the development of standards for therapeutic areas 

of interest such as Alzheimer's disease (Critical Path for Alzheimer’s Disease; Sivakumaran 

et al., 2020). Yet, the widespread use of data standards in biomedical research is still a need. 

And even when studies are designed to implement standards, interoperability and reusability 

can break down at several steps of the data lifecycle (Kush et al., 2020). Acknowledging 

and formalizing the intermediary steps in the path from raw to literature-reported data has 

potential to improve data-sharing practice for biomedical researchers, clinicians, journals, 

universities, funders, and the general public whose tax dollars support scientific discovery.

In this article, we discuss data sharing throughout the biomedical data lifecycle. The article 

is divided into five sections. Section 2 introduces the problems of publication bias and data 

inaccessibility and the threats they cause for high-quality evidence and bench-to-bedside 

translation of scientific findings. We present open sharing of IPD as a possible solution. 

Section 3 introduces the issue of data granularity, a balance between increasing sample 

size and the number of features collected in biomedicine, and its implications for IPD 

harmonization. Section 4 offers an overview of best practices to promote interoperability 

and reusability and improve the harmonization of IPD. Section 5 conceptualizes the loss 

of information that occurs when harmonizing IPD as a harmonization-information trade-off 

that should be actively managed. Section 6 concludes with a summary. Box 1 provides 

operational definitions for the terms used throughout.

2. Publication Bias, Its Effect on Levels of Evidence, and the Need for 

Data Access

Current medical practice is evidence-based, requiring scientific publications be weighed and 

synthesized by expert committees according to levels of evidence ranking systems prior 

to translating biomedical research into the clinical practice (Burns et al., 2011; Canadian 

Task Force on the Periodic Health Examination, 1979; Guyatt et al., 1992). For regulated 

medical interventions, the Food and Drug Administration (FDA) requires submission of 

raw data using specific data standards (FDA, 2021). However, outside of this specific 

regulatory context, decisions to implement medical interventions rely on published evidence 

synthesis and guidelines derived from the available published literature. Meta-analysis is 

considered the top of the pyramid of levels of evidence, establishing the gold standard for 

medical implementation of scientific findings (Burns et al., 2011; Debray et al., 2015; Glass, 

1976, 2000). Classic meta-analysis is carried out by aggregating summaries and descriptive 

statistics from numerous studies, usually extracted by systematic review of peer-reviewed 

publications, which assumes that all available studies provide sufficient evidence for a 

scientific finding (Glass, 1976; McNamara & Scales, 2011). However, literature-based meta-

analysis has several drawbacks, including the fact that only published papers and reports are 

considered in levels of evidence ranking systems. This fails to account for the fact that the 

published literature represents a small fraction of the total data collected by the biomedical 

research enterprise. Moreover, the small fraction of data published in manuscripts may 
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reflect a highly biased subset of the data that happen to support the hypotheses of the 

authors, enabling them to tell a strong enough story about their findings to survive peer 

review. This is known as ‘publication bias’ or the ‘file-drawer phenomenon’ whereby only 

large effects appear in the peer-reviewed literature, and results with smaller effects are 

relegated to file drawers within faculty offices around the world.

Metanalyses have suggested that publication bias violates a common scientific assumption 

that the peer-reviewed published literature provides a representative sample of findings 

from all studies, including unpublished studies, conducted on a topic (Scargle, 1999; 

Sterling et al., 1995). Sterling et al. make a compelling argument through a systematic 

review suggesting that 20% of studies should demonstrate the null effect hypothesis, yet 

the published literature show a much lower proportion of null findings (Sterling et al., 

1995). Meta-analytic techniques (funnel plots and egger regression) (Duval & Tweedie, 

2000; Peters, 2006) and systematic reviews on the topic demonstrate that effect sizes in the 

published literature are substantially skewed toward large effects, with the largest effects 

being seen in studies with the smallest sample sizes and lowest power, suggesting that 

many reported ‘large effects’ in the literature may actually reflect random noise in statistical 

distributions of effect sizes (Sena et al., 2010; Sterling et al., 1995; Watzlawick et al., 

2014, 2019). By imputing missing small-effect sizes to restore expected normal distributions 

of effect sizes, it is possible to quantify the degree to which the published literature 

overestimates true effect sizes (Duval & Tweedie, 2000; Sena et al., 2010; Watzlawick 

et al., 2019). Beyond biased effect sizes, published papers leave out important information 

required to accurately gauge results, as has been exemplified in meta-analyses comparing 

peer-reviewed publications versus unpublished clinical study reports from the same trials 

(Doshi et al., 2012). Ioannidis (2005) and others have argued that the published literature 

in biomedicine reflects prevailing biases rather than generalizable findings (Holman et al., 

2016; Ioannidis, 2005; Sena et al., 2010; Watzlawick et al., 2019). Support for this idea 

comes from recent reports that biomedicine has a reproducibility crisis, and that most large 

effects in the published literature cannot be independently replicated (Baker, 2016). In 

this context, literature-based meta-analysis and the levels of evidence ranking systems in 

biomedical research may fall prey to the endemic problems of publication bias.

Inaccessible data (‘dark data’) is estimated to comprise between 30% to 50% of the data 

collected by the biomedical research (Chan et al., 2014; Galsworthy et al., 2012; Scherer 

et al., 2018). This is a major contributor to estimates that 85% of the biomedical research 

investment worldwide is wasted (Chalmers & Glasziou, 2009). To solve the problems of 

publication bias and inaccessible data, we and others have argued in favor of transparent data 

sharing at the individual participant level (Chan et al., 2014; Ferguson et al., 2014; Macleod 

et al., 2014), independent of how ‘publishable’ a study is. Individual participant data meta-

analysis seeks to mitigate some of the issues of traditional meta-analysis by pooling raw data 

from individual research subjects on a large scale instead of relying solely on data extracted 

from published reports. Sharing data across research projects for IPD meta-analysis allows 

for more robust analysis, circumventing publication bias if data is systematically accessible 

(Burke et al., 2017; Debray et al., 2015; Riley et al., 2010; Thomas et al., 2014). The 

first step in IPD co-analysis of data from separate studies is to integrate or harmonize 

distinct data sets, ensuring the comparability of measures across studies. For effective pooled 
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IPD analysis, data from different studies must be findable and accessible independent of 

their chance for manuscript publication and have sufficient detail and documentation about 

data collection and data format. This documentation itself must be obtained for each study 

to control for biases, confounding variables, and sources of heterogeneity in subsequent 

meta-analysis. In addition, most biomedical research studies are statistically underpowered 

due to small sample sizes (Button et al., 2013; Dumas-Mallet et al., 2017). Pooled IPD 

can overcome underpowered studies by increasing sample sizes beyond that of individual 

studies to resolve robust effects from a family of similar studies (Riley et al., 2010, 2020). 

However, determining the similarity of different studies requires interpretation and reporting 

of variables collected, and becomes a problem of data harmonization that we will cover in 

greater detail in Section 3.

3. Data Granularity and Harmonization

Every decision made during data collection and data sharing affects data reusers’ ability to 

harmonize data sets, and ultimately to derive high-level evidence for accelerating biomedical 

research and medical implementation. This can be thought of as a trade-off between 

summary knowledge reported in scientific literature and information contained in granular 

data at the level of individual variables and participants (Figure 1). An illustrative example 

comes from traumatic brain injury (TBI) studies, where functional tests are commonly 

performed to evaluate different subject’s neurological ability (Nelson et al., 2017). For 

instance, verbal learning and memory can be tested through the California Verbal Learning 

Test (CVLT) or Rey Auditory Verbal Learning Test (RAVLT). Although similar, these 

two tests are not interchangeable (Stallings et al., 1995). These tests usually have three 

levels of synthesis: the level of the individual item (i.e., values of each test and question 

performed), the level of the domain that groups of items represent (e.g. Attention span, 

Learning efficiency, Delayed recall, Inaccurate recall)(Wiegner & Donders, 1999), and at 

the level of summary scores derived from all items to describe subject’s performance in 

a single metric. Two TBI studies performing one of these tests each could be harmonized 

at the level of the single summary score, which captures the semantic meaning of the 

test (e.g., learning and memory), at the level of the variable domain, or at the individual 

item level. In general, it would be easier for studies to find ways to harmonize at the 

common semantic level of two tests that are designed to measure the same concept, which 

we refer to as ‘shallow harmonization,’ rather than domain or item levels, which we call 

‘deep harmonization.’ In biomedicine this often translates into a trade-off in the number 

of research participants available for analysis and the number of harmonized variables 

(Naselaris et al., 2021), as well as the accuracy of the harmonization (Griffith et al., 2013). 

Because epidemiological approaches emphasize high sample sizes to boost statistical power, 

the biomedical literature is filled with large but information-poor (shallow) data sets that 

feature a small number of variables with high numbers of subjects. In the emerging fields of 

digital health and precision medicine, the emphasis is on gaining an information-rich (deep) 

data set capturing a more detailed picture of each individual subject. This results in high 

granularity in multiple variables, but generally low numbers of participants who are deeply 

phenotyped using multidimensional disease features (Naselaris et al., 2021). Efforts such 

as the NIH All of Us million-person precision health study are poised to generate deeply 
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harmonized data that are both high volume and high variety, leading to unprecedented big 

data that are both information rich and high in sample size (Lyles et al., 2018; “‘All of 

Us’ Research Program,” 2019). A few other studies such as the Framingham Heart Study, 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and Transforming Research and 

Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) are notable examples of data 

that are both big in volume and wide in variety (Andersson et al., 2019; Donohue et al., 

2017; Huie et al., 2018; Jack et al., 2013; Kannel et al., 1972; Mahmood et al., 2014; 

Yue et al., 2019; Yuh et al., 2021). The authors have direct experience with two of these 

major efforts (TRACK-TBI and ADNI), and our perspectives in the current article have been 

influenced by our roles as data scientists working in this area. Harmonization for advanced 

IPD analysis is not a foregone conclusion even in these large-scale prospective studies. 

Attention to the harmonization granularity required for analysis provides a critical roadmap 

for sharing data across centers and studies. In general, more granular harmonization makes 

data more Artificial Intelligence (AI)-ready by providing rich features for these data-hungry 

analytic methods.

The FAIR data principles (Wilkinson et al., 2016) provide an important framework to 

guide data-sharing processes across these levels of granularity, stating that scientific data 

must be findable, accessible, interoperable, and reusable. The first two principles are 

relatively easy to accomplish in today’s data-sharing landscape, as the plethora of sharing 

repositories expands. However, the interoperability and reusability of data are more difficult 

to achieve as they require both a cultural uptake by the data collectors, as well as the 

development of tools, policies, standards, and infrastructures, beyond simple access to the 

data (Fouad et al., 2019; Kush et al., 2020; Nielson et al., 2014; Torres-Espín, Almeida, 

et al., 2021). Therefore, during the journey from initial data collection to data sharing, 

several compromises must be made by different stakeholders, affecting the harmonizability, 

interoperability, and reusability of the shared data, and ultimately our ability to conduct 

pooled IPD analysis. While interoperability means that data can be integrated, it does 

not ensure that the information and meaning of the pooled data resources are sufficiently 

similar for analysis, which is achieved through data harmonization. The following sections 

will explain our understanding of the relationship between interoperability, reusability, and 

harmonizability. We advocate for FAIR and harmonizable data (FAIR+H) to accelerate 

medical implementation.

4. Interoperability, Reusability, and Harmonizability

Data harmonization requires a systematic process similar to systematic literature reviews 

for validity and robustness (Fortier et al., 2017). Recommendations, guidelines, and tools 

have been developed to harmonize data from studies with distinct designs. When the 

studies do not follow exact same standards across all variables, we can consider the 

process of harmonization as ‘retrospective harmonization’ (Fortier et al., 2017). When 

studies are designed to maximize harmonization and integration from the beginning of study 

conceptualization, it is known as ‘prospective harmonization’ (Fortier et al., 2017; Hicks et 

al., 2013; Meeuws et al., 2020). In reality, there is a continuum between full retrospective to 

full prospective harmonization, in which different standards, interoperability, and reusability 

practices may affect the ease of harmonization.
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4.1. Retrospective Harmonization

Retrospective harmonization requires studies considered for harmonization share enough 

similarity in their data collection that information across data sets is “inferentially 

equivalent,” meaning that original variables or derived variables during the process of 

harmonization convey the same information, regardless of differences in measurement 

methods (Fortier et al., 2011, 2017). The qualification of equivalence varies depending 

on the nature of the data and the subject of study (Fortier et al., 2017; Griffith et al., 

2013; Kalter et al., 2019). However, a general consideration is to find balance between 

only considering strictly equivalent variables (i.e. that have been collected using the same 

specifications, methods, tools, and constraints) on the one hand, and providing some 

flexibility in considering data across diverse data collection mechanisms (Kalter et al., 2019) 

on the other. The more heterogeneous a research field is in their data collection process, 

the more difficult retrospective harmonization becomes, reducing the chances for inferential 

equivalence. For example, in the field of traumatic brain injury, researchers collect brain 

images, clinical features, neuropsychological evaluations, and molecular biomarkers on the 

same subject. This results in extreme heterogeneity in variable formats even within the 

same study. In the preclinical literature, there is even wider heterogeneity, with different 

laboratories collecting entirely different subsets of measures using homegrown methods and 

customized assessment tools. A few examples of heroic data recovery from dark data records 

do exist, but these efforts typically take both deep domain knowledge and uncommon 

tenacity to convert raw data into an interoperable format for IPD analysis. For example, 

Marmarou et al. (2007) harmonized data from over 11 clinical trials into a single database 

to develop the IMPACT prognostic model for traumatic brain injury (Marmarou et al., 2007; 

Steyerberg et al., 2008). Similarly, researchers in the spinal cord injury field recovered and 

digitized 20-year-old data from a multicenter animal spinal cord injury study and deployed 

modern machine intelligence tools to discover new predictors of neurological recovery 

(Almeida et al., 2021; Nielson et al., 2015), that were later successfully translated into 

clinical studies (Torres-Espín, Haefeli, et al., 2021). However, these undertakings required 

years of targeted effort and funding that are unlikely to scale. Designing studies at the 

outset for future data harmonization and integration provides an attractive alternative to 

retrospective harmonization.

4.2. Harmonizable by Design, Standards, and Prospective Harmonization

Prospective harmonization considers data sharing as part of the study design process 

by adopting standard methods for data formatting, definition, and collection (Box 2). 

Prospective application of standards improves equivalence across studies (Fortier et 

al., 2017; Hicks et al., 2013; Meeuws et al., 2020), facilitating the process of data 

integration and harmonization. While the use of standards is common in clinical trials, 

and recommendations for the sharing of IDP data from such studies have been suggested 

(Ohmann et al., 2017), adoption of data-sharing standards in small laboratory studies are 

rare. Ideally, standards should include three components to ensure maximal reusability 

and painless harmonization: 1) a common data models (CDM) specifying formatting to 

increase interoperability; 2) common definitions and representations (i.e., terminologies, 

vocabularies, coding schemes); and 3) standard procedures for data collection. An example 

of a common data model is the Observational Medical Outcome Partnership (OMOP) CDM 
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(Overhage et al., 2012; Stang et al., 2010), which provides a standard for interoperable 

formatting in relation to specific standardized medical vocabularies. Several other CDMs 

exist, such as i2b2 (Deshmukh et al., 2009), PCORNet (2022), and CDISC CDM standards 

(CDISC, 2022). Mapping algorithms that ensure data format interoperability between these 

CDMs have been developed (Klann et al., 2016, 2019). Even then, further harmonization 

may be needed (Haendel et al., 2021). One example of a common vocabulary and data 

collection standards is the U.S. National Institutes of Neurological Diseases and Stroke 

(NINDS) common data elements (CDEs), a set of well-defined variables and examples 

of data collection tools (clinical research forms or CRFs)(Biering-Sørensen et al., 2015; 

Hicks et al., 2013; LaPlaca et al., 2021; Meeuws et al., 2020). To date, NINDS CDEs 

been developed for 21 disorders including stroke, epilepsy, traumatic brain injury, spinal 

cord injury, among others (NINDS, 2022). Designing and collecting data that implements 

CDEs, reduces the barrier for downstream data harmonization. Yet, CDEs only provide 

the semantics that facilitate variable interpretation and ‘inferential equivalence.’They do 

not provide standards for data formatting and structure, limiting interoperability and 

harmonization (Kush et al., 2020). This creates sources of variation introduced in the 

process of study execution such as site-specific database schemas, data collection tools 

(e.g., custom CRFs), data cleaning practices, data improvements, and knowledge-based 

annotations during the point of data reuse. These require attention during the harmonization 

process. On the other hand, the use of CDM without proper common representations or 

semantic data collection standards such as CDEs would facilitate the digital joining of data 

but fail to provide assurance on the inferential equivalence across data sets. These issues 

must be actively managed throughout the data lifecycle to ensure continued interoperability, 

reuse, and harmonization of biomedical data sets. Considering FAIR practices at the point 

of study design, before data collection, can greatly reduce the cost and effort of downstream 

sharing and increase the interoperability, reusability, and harmonizability of shared data 

(Box 2).

One must consider that even when data is collected and organized under some standards, 

pooling data from sources using different standards may require harmonization. An example 

is the NIH National Center of Advancing Translational Science (NCATS) National COVID 

Cohort Collaborative (N3C) initiative (covid.cd2h.org). N3C systematically and regularly 

collects data derived from the electronic health records for the study of COVID-19 (Haendel 

et al., 2021). Different medical institutions and health care organizations provide data 

sets in four different CDMs. In order to ingest and integrate the data, the N3C data 

harmonization team developed a workflow to harmonize definitions and transform all four 

CDMs to a common one (OMOP). Quoting their work “Simply aggregating those data 

together is insufficient. Not only does each model have different structures and values, 

but heterogeneity exists within models” (Haendel et al., 2021, p. 433). The harmonization 

workflow was conducted over several review meetings and with the presence of subject 

matter experts from the source data. This work illustrates that even in situations where 

data might be collected under robust standards such as CDMs, new research questions 

may require further harmonization. Other examples come from the neuroimaging field, 

where multisite projects such as ADNI (Jack et al., 2008; Petersen et al., 2010), the 

Human Connectome Project (HCP) (Glasser et al., 2013; Van Essen et al., 2012), and 

Torres-Espín and Ferguson Page 8

Harv Data Sci Rev. Author manuscript; available in PMC 2022 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://covid.cd2h.org


the Adolescent Brain Cognitive Development (ABCD) study (Bjork et al., 2017) were 

prospectively designed with data sharing in mind, yet pooling data still required additional 

work. Overall, although the use of standards by design substantially reduces the effort of 

data pooling, additional harmonization may still be needed depending on the goals and 

objectives at the point of data reuse.

It should be noted that legal and ethical challenges may also affect the ability to perform 

prospective harmonization at the IPD level. For example, in neuroscience research, a field 

with an increasing volume of shared data from small and large projects, differences in 

international and state laws threaten data sharing, pooling, and reuse. This has triggered 

efforts to define international data governance for neuroscience (Eke et al., 2021) that could 

be adopted and generalized to other fields. The NIH 2023 data-sharing policy will also likely 

spur development of new legal frameworks to assist in design of prospective harmonization 

and data management policies.

5. The Information Lost

A classic practice for data harmonization in biomedicine is to start by defining a hypothesis, 

a narrow scientific question, and then selecting which data sets and specific variables 

require harmonization to answer the specific question at hand (Fortier et al., 2017). This 

approach ensures robust harmonization by focusing on a small and manageable set of 

variables. However, with the ever-increasing data resources and computational capabilities, 

high volumes of data are becoming available for data-intensive analytics such as machine 

learning, that do not necessarily conform to hypothesis-driven investigation (Huie et al., 

2018; Margolis et al., 2014; Obermeyer & Emanuel, 2016). In addition, with the rise of 

precision medicine and omics-based clinical studies, biomedicine is moving away from 

narrow hypothesis-driven questions and increasingly toward data-driven-discovery that is 

broad and information rich. Therefore, different scientific questions may be asked using the 

same list of data sets, but they may require different levels of harmonization. For instance, 

consider the problem of age-related degenerative diseases. An epidemiology researcher 

could build a clinical prediction model from IPD metadata with a small set of desired 

covariates such as age, brain volume, and cognitive decline by narrowly harmonizing data 

from multiple publicly available data sets such as those made available through ADNI 

(Petersen et al., 2010). On the other hand, a digital health researcher with the goal of 

deeply phenotyping brain degeneration with complete electronic health records, wearable 

smartwatch monitors, and multi-omics (genome, transcriptome, proteome, metabolome) 

would benefit from harmonizing as many variables as possible on each patient across 

studies. Therefore, data harmonization efforts to answer hypothesis-driven vs. data-driven 

questions have a different scope and may need different approaches. A researcher may 

harmonize the data to answer a hypothesis-driven question and then later perform a new 

harmonization for asking the second question. In practice, there are a dizzying number 

of potential questions and approaches that could be considered and applied to the same 

harmonized data set, and predicting all of them at the point of data sharing is near-

impossible. Having to reharmonize the same data sources every time a new question is to 

be tested (i.e., incorporation of new variables) is tedious and time consuming. An alternative 

is a tiered framework for dealing with different levels of data granularity that may conform 
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with different harmonization needs. This requires expanding the harmonization task from 

an afterthought to a flexible and living harmonization process that may be particularly 

productive for biomedical research consortia.

5.1. Harmonization-Information (H-I) Trade-off

In this section we describe the Harmonization-information (H-I) trade-off encountered 

when pooling data across studies (Figure 2). In the following section we describe a 

tiered system for managing harmonization, with clear-eyed acknowledgment that IPD data 

pooling requires compromises to maximize both the number of subjects and the number of 

harmonized data elements used in analysis. During the harmonization process, there is a 

potential loss of information in derivative data sets, depending on the degree of similarity 

(e.g., number of harmonizable variables) between the different data sets. Our goal is to 

provide a practical approach for prioritizing variables for data harmonization to enable 

pooled data reuse for data-driven and hypothesis-driven questions.

Let us consider a simple example of a demographic variable such as the level of education 

of participants. A study in Europe and another in the United States may ask participants 

the same question, ‘What is your highest level of education?’ Semantically, these two 

studies are collecting the same information in the same way, however, given international 

differences in education systems, harmonizing this variable between studies may require 

finding a common ground of lower information (e.g., binning granular levels of education 

into ‘primary,’ ‘secondary,’ ‘postsecondary’), or developing rules to infer bins of years of 

education. No matter which transformation is applied, the new harmonized variable will 

contain less granular information than the original ones. This constitutes a trade-off between 

the level of harmonization we target, and the amount of information lost. Ideally, two 

perfectly matching data sets would not need harmonization, and would not lose information 

when pooled together. This rare situation would not require any effort other than recoding 

variable names in cases where naming conventions differ across countries of origin. In 

practice, there will always be a choice between retaining the maximal information from the 

original set of data versus gaining the advantages of a harmonized data element for pooled 

analysis.

For example, in a study of cardiovascular disease we may determine that rescaling 

continuous numerical variables, such as height, blood pressure, and walking speed, into 

z-scores is an acceptable loss of information (losing the original scale for each variable), 

if it allows us to pool data across hospitals for analysis. However, compressing a 15-point 

ordinal neurological coma score collected in one hospital into a two-category (alive, dead) 

score collected at another hospital may be too much of an information loss for our 

purposes, and therefore we would decide to drop these variables from the harmonization, 

thereby excluding this information from all downstream analyses. Establishing the level 

of information loss that one is willing to trade for harmonization provides a strategy for 

developing tiered data products for use in subsequent analyses.
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5.2. Managing the H-I Trade-Off With Data Harmonization Levels

To manage the H-I trade-off, we recommend that biomedical researchers plan their FAIR 

data curation around data harmonization levels (Figure 2, Box 3), analogous to the 

data-processing levels that NASA uses for earth-observing satellite data (EarthData, n.d., 

earthobservatory.nasa.gov). The lowest level of harmonization (L0) contains the maximal 

information possible and consists of the original collective set of data sets considered for 

pooling. The next levels are defined by different grades of harmonization with increasing 

transformation, and therefore greater information loss. For example, L1 data might consist 

of joined data from all L0 components, pooling data for all those variables that are 

identical across L0, and maintaining the remaining variables untransformed or annotated 

as noncollected (coding for ‘missingness’) for each data element. The next level (L2) builds 

from L1 by performing the next set of defined transformations on those variables that data 

were not pooled in the previous level but that can be harmonized across data sets. This 

sequence proceeds through as many steps as required until all harmonizable variables are 

harmonized (including new derived variables if required), obtaining intermediate levels of 

H-I trade-off with increasing loss in information as data sets become more harmonized. 

Maintaining separate study data sets in isolation will allow for zero information loss but 

also zero harmonization of variables across data sets (Figure 2, L0). On the other extreme, 

keeping only equivalent variables (that do not need harmonization) across data sets with no 

required transformation produces a pooled data set, but at the expense of losing most of the 

information by dropping most of the variables (Figure 2, Lf). In the middle (Figure 2, L1, 

L2, L3, etc.) we find a wide range of harmonization levels, depending on the amount of 

transformation we are willing to accept for each variable.

In practice, performing several of these incremental steps might be unworkable or 

unnecessary, although this might be at the discretion of the harmonization team. In our 

own efforts we have found that L1 to L3 of these intermediate steps are reasonable. The 

final level (Lf) data constitutes the most harmonized data set, with the maximal level of 

information loss we are willing to consider. Each harmonization step can be fully automated 

using open source software, and harmonization code itself can be made FAIR and publicly 

available to ensure reproducibility. If done using a version control system for data such 

as Git, it is possible to arbitrarily traverse across levels of harmonization from raw data 

to fully harmonized pooled data sets. In this way, the data lifecycle from the point of 

collection through to analysis can be viewed in a version control context as a series of 

‘forks’ in new data harmonization tasks as data are readied for reuse in a diverse set of 

analysis contexts (Figure 3). For example, DataLad (Halchenko et al., 2021), a free open 

source distributed data management system that builds on Git can be used to capture 

data transformations that track data provenance through the lifecycle, enabling automatic 

computation and reproducible data harmonization and pooling.

6. Conclusion

In this article we have discussed practical issues for FAIR data reuse, data harmonization, 

and analytics for biomedicine. We have argued that emerging data sharing policies such as 

the NIH 2023 policy are likely to result in more actionable insights if research communities 
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take on the problem of data standardization and harmonization as a flexible and scalable 

framework. We conceive of this as productionized workflow for scientific data where 

raw data materials are taken in and processed into harmonized derivative data products, 

enabling a wide variety of potential reuses and analysis workflows. Understanding data 

refinement as a trade-off between information content and harmonization level has potential 

to allow researchers to flexibly manage the data lifecycle from the point of data collection 

of individual variables through to large-scale knowledge discovery through analysis and 

semantic workflows. By elevating scientific data to the status of a first-class citizen of 

the scientific enterprise there is strong potential for biomedicine to transition from a 

narrative publication product orientation to a modern data-driven enterprise where data 

itself is viewed as a primary work product of biomedical research. The 2023 mandate is 

poised to accelerate discovery and lead to new types of scientific careers, especially for 

young scientists who are digital natives and are comfortable traversing the boundaries of 

the harmonization-information trade-off. The transition is likely to create shockwaves in 

biomedical research communities. However, research communities that effectively manage 

data harmonization will be able to harness the energy of this shock with machine learning 

and artificial intelligence tools, leading to stunning new discoveries that augment our 

understanding of diseases and their treatments.
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Box 1.

Operational Definitions

Data: Factual information (e.g., measures) collected in a study that is the basis for scientific claims or 
assertions (e.g., narratives about data or papers). The more granular the features (i.e., the greater the number of 
possible values or states of a variable), the more information contained by the data.

Variable: Measure, quantity, or element that defines a set of data collected in a study.

Individual Participant Data (IPD): Data that is available at the level of the individual participant (human) or 
subject (animal) in a study, constituting the smallest independent unit of analysis. IPD data is used to produce 
aggregated summary measures for groups of subjects (e.g., mean; standard deviation).

Data Sharing: The process by which data are made available to others for (re)use. Manuscript publication and 
statistical reports are not considered Data, but rather narratives about and summaries of data.

FAIR: Stewardship principles that state that data must be findable, accessible, interoperable, and reusable, 
providing a guided framework on how to share data on the Web (Wilkinson et al., 2016).

Standards and standardization: Data standards are rules and specifications to assure consistency and 
regularity in collection of data. Standardization is the process of conforming data to concrete standards.

Data harmonization: The process by which data from different sources and studies are transformed to make 
them as comparable as possible, with the goal of integrating them together. This may include changes in 
naming conventions, statistical transformations, data reformatting, semantic crosswalking, among others.

Data integration or pooling: The act of combining data from different sources that are deemed comparable, 
either after the results of data harmonization, or by a priori study design. We refer to pooling and integration 
interchangeably.

Semantic interoperability: The capacity to integrate data that have the same meaning. A variable collected in 
different studies that has the same meaning across studies is said to have semantic interoperability. Common 
terminologies and vocabulary can set standards for semantic interoperability.

Data format interoperability: The capacity to exchange data because they are formatted in the same way or in 
forms that can be interchanged (mapped to each other). Format interoperability can be promoted using the same 
formatting standard. Note, format interoperability does not guarantee semantic interoperability.
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Box 2.

Increasing FAIRness and Harmonizability of Shared Data

Study stage Recommendations for increasing FAIRness and
harmonizability of shared data

Design Choose a data format with common data model (CDM) compatibility. While designing 
the experiment, a data format that adheres to formatting standards would facilitate to 
share the data under a common data model. Software transforming data from one format 
to another through a common data model can reduce the cost of harmonization by 
automating the data extraction, transform, load (ETL) process required for integrating 
different datasets.

Choose a standard vocabulary and measures. Collecting data under semantic standards 
allow for better reusability of the data, facilitating the process of variable alignment and 
increasing ‘inferential equivalence’ between studies to harmonize. Considering vocabulary 
standards in the field of study during the design phase would improve the value of the 
shared data and increase the pool of studies that the research community can reuse.

Choose standard procedures and protocols. The same metrics can be collected with 
variation even under the same standard vocabulary if the procedures, protocols, and 
tools for data collection are different. Determining standard operating procedures (SOP) 
common in a field of study can reduce deviations introduced during data collection.

Data 
Collection 
and 
Curation

Minimize variations in protocols, data entry, and data management tools. Document 
any changes made in data values, data format, vocabularies, and protocols. This 
information facilitates identification of potential inconsistencies during harmonization. 
Using data version control systems can reduce the documentation effort.

Data 
Sharing

Release documentation together with the data. Data dictionaries or codebooks are 
necessary for documenting the meaning of the data to promote reusability and downstream 
harmonization efforts. The use of standard vocabularies can facilitate data dictionaries. If 
the study data is formatted with compatibility to a CDM, providing the documentation, and 
scripts if available, would reduce the barrier for interoperability. Documentation should 
also include protocols, SOPs, data collection tools, as well as potential deviations from 
these.
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Box 3.

Levels of Data Harmonization

Level 0 (L0): Collection of raw data sets accessible for each shared study. At this level there is no 
harmonization beyond the one produced by design, and data sets may be presented in different formats, files, 
schemas, and so on, as different software are used to collect and store the original data. This level contains the 
maximal information possible among the considered data sets.

Level 1 (L1): This data set contains a combination of all the variables from the original data sets after 
formatting to a common data model (CDM). Harmonization is attempted at face value, aligning variable 
name of those variables and instruments that might be comparable by design. For instance, demographics and 
standardized measures are likely to be pooled at this level. At this stage, no variables are dropped, producing 
a sparse data set. This allows for new data sets to be incorporated in future efforts. Codifying for missingness 
such as ‘not collected’ would provide further information on potential harmonization steps in subsequent levels. 
This is the minimal level of harmonization feasible, with no loss of information.

Level n (Ln): Subsequent levels build on the previous level (L2 from L1) by considering further 
transformations of the data such as aggregation to common denominator or statistical transformations, or 
deriving new harmonized variables as needed. As transformations are produced, the level of harmonization 
increases at the expense of losing information.

Level final (Lf): The final level of harmonization is reached when no more transformations are possible and 
the nonharmonizable variables are dropped. Theoretically, there are different points at which the process can 
be considered at the maximal level of harmonization (i.e., new derivative variables are almost always possible). 
Practically, a researcher may want to set a criterion beyond which no further harmonization is attempted. The 
maximal harmonization level is achieved when only the equivalent variables are considered, producing the 
maximal loss of information.
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Figure 1. Levels of data granularity at different harmonization goals.
The more granular and deep the harmonization is (at the single variable/participant level), 

the more information is available. In pooled analysis, deeper harmonization often comes 

at the cost of reducing the number of participants that can be potentially harmonized. 

Harmonizing at the level of aggregate measures or summaries that represent a semantic 

domain (e.g., memory deficits) can increase the number of subjects in a harmonized data 

set since there may exist several ways to measure that same semantic domain. As we dive 

deeper into the variable levels, finding methods for accurate harmonization can be more 

challenging, and lower numbers of subjects may be available in the harmonized data set.
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Figure 2. The harmonization-information trade-off can be managed through a tiered system 
of increasing harmonization, allowing for flexibility to choose different levels of the trade-off 
depending on the analytical goal.
At the L0 level of the trade-off distinct data sets to be pooled are represented by different 

colors. At the L1 level the data sets are combined to produce a pooled data set where orange 

variables represent those that can be pooled without harmonization, harmonizable values 

with transformation are represented in grey, and mismatches are represented in red (not 

harmonizable). Through transformations (e.g., changing in scale, finding a set of minimal 

common categories, binning) different levels of harmonization (L2, L3, …, Ln) can be 

achieved prior to arrival at the final data harmonization for analysis (Lf). The number of 

levels in this workflow might depend on study goals and complexity of harmonization.
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Figure 3. FAIR principles through a live harmonization.
Adopting FAIR improves harmonization (a). Designing studies for interoperability 

reduces the cost and time of data formatting to a common model, and using common 

vocabulary during data collection ensures higher alignment and reusability of the data sets. 

Harmonization through data version control (b). It is possible to traverse or slide across 

levels of harmonization from raw data to fully harmonized derivative data sets. The data 

lifecycle from the point of collection through to analysis can be viewed in a version control 

context as a series of ‘forks’ in data harmonization as data are readied for reuse in a diverse 

set of pooled analysis contexts.
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