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Recent experiences can have a large and automatic 
impact on our current perceptions, thoughts, and actions. 
Studies of priming and serial dependency show that we 
more readily perceive recently encountered objects and 
words, that recent experiences unconsciously influence 
how we categorize people and objects, and that we tend 
to repeat recent actions (Banaji & Hardin, 1996; Bertelson, 
1965; Fischer & Whitney, 2014; Neely, 1991; Tipper, 
1985). Despite the ubiquity of such effects, little is known 
about the mechanisms by which recent experiences that 
are no longer relevant can nonetheless influence the 
processing of current information.

Information from a given event leaves a trace in the 
synaptic connections among neurons (e.g., short-term 
synaptic facilitation; Mongillo, Barak, & Tsodyks, 2008), 
and there are two ways that these activity-silent traces 
could impact subsequent behavior. First, changes in 
synaptic weights could impact behavior indirectly by 
influencing the flow of information for subsequent 
events (Grill-Spector, Henson, & Martin, 2006; Stokes, 
2015). Although these changes in synaptic weights are 

maintained without continued electrophysiological 
activity, and they are therefore invisible in neural 
recordings, they could nonetheless impact behavior by 
altering the neural response to new events. A second 
(but not incompatible) possibility is that activity-silent 
synaptic traces are also used to generate an active rep-
resentation when the next stimulus is presented. This 
active representation could then directly impact process-
ing, much like processing is impacted by active repre-
sentations in working memory. Unlike changes in synaptic 
weights, an active representation should produce record-
able neural signals, and the identity of the previous stimu-
lus should be decodable from these signals.

Prior decoding studies have already shown that 
information can be moved back and forth between 
active and activity-silent states within a single trial of a 
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Abstract
Recent experiences influence the processing of new information even when those experiences are irrelevant to the 
current task. Does this reflect the indirect effects of a passively maintained representation of the previous experience, 
or is this representation reactivated when a new event occurs? To answer this question, we attempted to decode the 
orientation of the stimulus on the previous trial from the electroencephalogram on the current trial in a working memory 
task. Behavioral data confirmed that the previous-trial stimulus orientation influenced the reported orientation on the 
current trial, even though the previous-trial orientation was now task irrelevant. In two independent experiments, we 
found that the previous-trial orientation could be decoded from the current-trial electroencephalogram, indicating 
that the current-trial stimulus reactivated or boosted the representation of the previous-trial orientation. These results 
suggest that the effects of recent experiences on behavior are driven, in part, by a reactivation of those experiences 
and not solely by the indirect effects of passive memory traces.

Keywords
serial dependence, working memory, ERP decoding, previous trial decoding, open data

Received 7/22/18; Revision accepted 11/10/18

http://www.psychologicalscience.org/ps
mailto:gybae@ucdavis.edu
https://sagepub.com/journals-permissions


588 Bae, Luck

working memory task (Rose et al., 2016; Wolff, Jochim, 
Akyürek, & Stokes, 2017). However, reactivation from 
activity-silent representations is thought to be possible 
only for task-relevant information from the current trial 
(Stokes, 2015). Here, we asked whether reactivation 
from an activity-silent representation is also possible 
for information from previous trials that is no longer 
task relevant, which would provide a new potential 
mechanism to explain how priming from previous trials 
impacts behavioral performance on a current trial.

We conducted a decoding study in which we 
recorded event-related potentials (ERPs) while partici-
pants performed a delayed estimation task. On each 
trial, they saw a single teardrop-shaped sample stimulus 
in 1 of 16 possible orientations and then adjusted the 
orientation of a test teardrop to match the remembered 
orientation after a short delay (see Fig. 1a). Because 
the orientation on one trial was independent of the 
orientation on the next trial, there would be no reason 
to intentionally maintain orientation information across 
trials. However, previous research on serial dependency 
has shown that the feature value presented on one trial 
can influence the reported value on the next trial 
(Fischer & Whitney, 2014; Fritsche, Mostert, & de Lange, 
2017), and we expected to replicate this behavioral 
effect. In the ERP analyses, we attempted to decode the 
orientation of the stimulus from the scalp distribution 
of the ERP signal, using the high temporal resolution 
of ERPs to precisely assess the timing of the signal being 
decoded. We have previously shown that we can decode 
the current-trial orientation during the delay period in 
this data set (Bae & Luck, 2018). Here, we tested whether 
we could also decode the previous-trial orientation from 

the current-trial ERP scalp distribution. To establish the 
replicability and generality of the results, we also ana-
lyzed the data from a second experiment in which the 
location and orientation of the sample teardrop were 
independently manipulated (see Fig. 1b).

If the onset of a new trial automatically triggers a 
reactivation of the previous trial from an activity-silent 
state, then we should be able to decode the previous-
trial orientation from the ERP signals following the 
current-trial sample stimulus (just as we have previously 
shown that we can decode the current-trial orientation 
from these signals). However, if information from the 
previous trial is maintained solely by means of activity-
silent mechanisms, then the previous-trial orientation 
should not be decodable from the current-trial ERP 
signals (or should be only briefly decodable as the 
sample stimulus passes through the brain, as in the 
study by Wolff et al., 2017).

In both experiments, we found sustained decoding 
of the previous-trial stimulus orientation that began 
shortly after the onset of the current-trial sample stimu-
lus, indicating that the previous-trial orientation infor-
mation was reactivated. This finding demonstrates that 
the processing of a new input can trigger the reactiva-
tion of a previous experience even when that experi-
ence is no longer relevant to the task, providing a 
potential mechanism by which recent experiences can 
automatically influence current processing.

General Method

This article reports new analyses of previously pub-
lished data (Bae & Luck, 2018). Additional details of 

Previous Trial Current Trial

Delay
1,300 ms

Report
Until Response

ITI
1,000 ms

Sample
200 ms

Fixation
500 ms

b

a

Fig. 1. Example trial sequences from (a) Experiment 1 and (b) Experiment 2. In both experiments, participants first saw a sample 
teardrop drawn in 1 of 16 orientations. After a delay, participants reported the remembered orientation by adjusting the orientation 
of a test teardrop until it matched the remembered orientation. The Experiment 2 task was identical to the Experiment 1 task except 
that the location and the orientation of the sample teardrop were independently manipulated, and the location of the test teardrop 
was independent of the location of the sample teardrop. ITI = intertrial interval.
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the stimuli, task, and analyses can be found in that 
article.

Participants

Two groups of 16 college students between the ages of 
18 and 30 years participated in each experiment (Experi-
ment 1: 10 female, 6 male; Experiment 2: 9 female, 7 
male). The sample size was determined a priori on the 
basis of similar decoding studies (Fahrenfort, Grubert, 
Olivers, & Eimer, 2017; Foster, Sutterer, Serences, Vogel, 
& Awh, 2016). The study was approved by the University 
of California, Davis, Institutional Review Board.

Stimuli and tasks

The stimuli were presented on an LCD monitor at a 
viewing distance of 100 cm. A black fixation dot was 
continuously present in the center of the display except 
during the intertrial interval. In Experiment 1 (see Fig. 
1a), each trial began with a fixation dot (500 ms) 
followed by a black, teardrop-shaped sample stimulus 
(200 ms; 2.17° long, 0.8° maximum width) that was 
centered on the fixation dot. The teardrop was pre-
sented in 1 of 16 equally spaced (22.5°) orientations. 
After a 1,300-ms delay period, a response ring became 
visible, and the participant attempted to reproduce the 
sample orientation. After the participant started moving 
the mouse, a test teardrop appeared at the center of 
the response ring with an orientation that depended 
on the current mouse position. After adjusting the test 
teardrop to match the remembered sample teardrop, 
the participant clicked a mouse button to finalize the 
report and initiate a 1,000-ms intertrial interval. Each 
participant received 40 trials for each of the 16 orienta-
tions, in random order.

The task in Experiment 2 (see Fig. 1b) was identical 
to that in Experiment 1, except that the locations of the 
sample and test teardrops varied independently from 
trial to trial. The teardrop was presented at 1 of 16 
equally spaced locations on a notional circle (radius = 
2.17°) centered on the fixation dot. The location and 
orientation of the sample teardrop on a given trial were 
chosen independently and randomly from the 16 ori-
entations and 16 locations (256 combinations). The 
response ring for the test teardrop was positioned inde-
pendently of the location of the sample teardrop.

Analyses of behavioral data

The behavioral response on each trial was transformed 
into a response error (i.e., reported orientation – sam-
ple orientation). Positive values indicated clockwise 
errors, and negative values indicated counterclockwise 
errors. The mean response error was computed for each 

of the 16 stimulus-orientation differences between the 
previous-trial orientation and the current-trial orienta-
tion (i.e., previous-trial orientation – current-trial ori-
entation; see Fig. 1d). The behavioral analyses excluded 
trials on which the response error was greater than 60° 
(0.29% of the total trials in Experiment 1, and 0.18% of 
the total trials in Experiment 2), which were likely to 
reflect lapses of attention.

Following previous research (Bae & Luck, 2017), we 
expected the reported orientation on the current trial 
to be repelled away from the previous-trial orientation. 
In other words, when the difference in orientation 
between the previous and current trials was negative 
(counterclockwise), we expected the reported orienta-
tion to be biased in a positive (clockwise) direction, 
and when the orientation difference was positive 
(clockwise), we expected a negative (counterclockwise) 
bias. We used an approach developed by Fischer and 
Whitney (2014) to quantify the magnitude of this serial-
dependence effect. Specifically, we fitted the single-trial 
response errors over the 16 orientation differences with 
a function defined by the first derivative of a Gaussian. 
This function is given by the following equation:

E wx ce wx= +α × × β−( ) ,
2

where E is the response error for the current-trial ori-
entation, x is the difference between the previous-trial 
and current-trial orientations, α is the amplitude of the 
peak of the curve (α = 0 means no serial dependence), 
w is the scale of the curve width, and β is an intercept 
that compensates for any overall bias away from zero. 
The constant c is t 2 0 5/ .e− . This function was fitted to 
each individual participant’s data, and a set of param-
eters that minimized the root-mean-square error was 
estimated. We then used the alpha parameter to represent 
the magnitude of the serial-dependence effect in our 
statistical analyses. The presence of a serial-dependence 
effect was assessed by determining whether this param-
eter was significantly different from zero using a one-
sample, two-tailed t test.

Electroencephalogram (EEG) recording 
and preprocessing

Using a BrainVision actiCHamp system (Brain Products, 
Gilching, Germany), we recorded from 27 broadly dis-
tributed scalp sites, from the left and right mastoids, and 
from electrodes lateral to the external canthi and below 
the right eye (for additional details, see Bae & Luck, 
2018). Electrode impedances were maintained below  
50 KΩ (and were typically below 10 KΩ). The signals were 
digitized at 500 Hz with a 130-Hz antialiasing filter.

The EEG signals were referenced off-line to the aver-
age of the left and right mastoids. The horizontal 
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electrooculogram was computed as the difference 
between the two lateral canthi, and the vertical elec-
trooculogram was computed as the difference between 
Fp2 and the electrode below the right eye. The data 
were band-pass filtered from 0.1 to 80 Hz and resam-
pled at 250 Hz, and independent component analysis 
was used to remove voltage deflections associated with 
blinks and eye movements. We have previously shown 
that this eliminates any ocular signals that could be 
used to decode the stimuli (Bae & Luck, 2018). The 
EEG was then segmented for each trial from −500 ms 
to 1,500 ms relative to the onset of the sample teardrop. 
The segmented EEG was low-pass filtered at 6 Hz and 
resampled at 50 Hz (one data point per 20 ms) prior to 
decoding.

Decoding analysis

A more extensive description of the decoding approach 
is provided in our previous article (Bae & Luck, 2018), 
in which we demonstrated that the current-trial orienta-
tion could be decoded during the delay interval. The 
only difference was that a more appropriate and less 
liberal statistical approach was used in the present 
analyses (described below).

We used support vector machines (SVMs) combined 
with error-correcting output codes (ECOCs; Dietterich 
& Bakiri, 1995) to classify the previous-trial teardrop 
orientation on the basis of the distribution of the ERP 
signal over the 27 scalp electrodes (collapsed across 
the current-trial teardrop orientation). To take advan-
tage of the temporal resolution of the EEG method, we 
decoded the data independently at each of the 100 time 
points from −500 ms to 1,480 ms (relative to sample 
array onset).

To decode the previous-trial orientation from the 
scalp distribution of the sustained ERP response1 on 
the current trial, we organized the data with respect to 
the previous-trial orientation, irrespective of the current-
trial orientation. Because the previous-trial orientation 
was undefined on the first trial, we removed the first 
trial from the analysis, leaving 39 trials per orientation. 
The decoding used 20 iterations of a threefold cross-
validation procedure. The data set was divided into 
three equal-size groups of trials (three groups of 13 
trials for each of the 16 orientations), yielding a scalp 
distribution at each time point being analyzed (a matrix 
of 3 groups × 16 orientations × 27 electrodes for each 
time point). To increase the signal-to-noise ratio, we 
averaged the 13 trials in a given group, yielding three 
averaged ERP waveforms for each orientation, and the 
averaged ERP voltage at a given time point was fed into 
the SVM-ECOC classifier. Two of the three groups of 
trials for a given orientation were used for training, and 

the third was used for testing. Each of the 16 SVMs was 
trained using a one-versus-all approach, in which each 
SVM was trained to distinguish between 1 orientation 
and the other 15 orientations.

The set of 16 trained SVM-ECOC models was then 
used to predict the previous-trial orientation for each 
of the averaged ERPs that were reserved for testing (1 
for each orientation). A single predicted orientation was 
chosen for each tested ERP (at each time point) by 
minimizing the average binary loss over the 16 SVMs. 
A prediction was considered correct only if it exactly 
matched the true previous-trial orientation. Because 
there were 16 equiprobable orientations, chance was 1 
in 16 (.0625).

This procedure was repeated 3 times at each time 
point, once with each of the three groups of data for a 
given orientation serving as the testing data set. This 
procedure was then iterated 20 times with new random 
assignments of trials to the three groups to minimize 
any idiosyncrasies associated with the assignment of 
trials to groups. After all iterations of the cross-validation 
procedure were completed, decoding accuracy was col-
lapsed across the 16 orientations, across the three cross-
validations, and across the 20 iterations, producing a 
decoding percentage for a given time point that was 
based on 960 decoding attempts (16 orientations × 3 
cross validations × 20 iterations). Because this approach 
involved randomly subdividing trials into training and 
testing sets, there was no way that decoding accuracy 
could consistently fall below the chance level of 1 
in 16.

As noted above, this decoding procedure was applied 
separately at each time point for a given participant, 
producing one decoding accuracy value for each time 
point (aggregated across cross-validations and itera-
tions). To minimize noise in this function, we smoothed 
the decoding accuracy values across time points using 
a 5-point moving window (equivalent to a time window 
of ±40 ms). The smoothed functions were then submit-
ted to statistical analyses (which took into account the 
autocorrelation produced by the smoothing). The tem-
poral precision resulting from the entire data-processing 
pipeline was ±50 ms.

Statistical analysis of decoding accuracy

If the pattern of voltage over the 27 electrodes at a 
given time point contained information about the pre-
vious-trial orientation, then decoding accuracy would 
be greater than chance (.0625). To compare decoding 
accuracy with chance at each time point while control-
ling for multiple comparisons, we used a nonparametric 
cluster-based permutation technique (Groppe, Urbach, 
& Kutas, 2011). This method provides an intelligent 
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correction for multiple comparisons and does not 
require normally distributed data. Note that this 
approach was slightly different from and more conser-
vative than that used in our previous study (Bae & Luck, 
2018), in which we used a Monte Carlo approach rather 
than a permutation approach and did not fully account 
for temporal autocorrelation in the EEG data.

We first used one-sample t tests to determine whether 
the decoding accuracy at each individual time point 
during the entire 2,000-ms epoch was greater than 
chance. One-tailed tests were used at this step because 
below-chance decoding accuracy was not meaningful 
in our decoding analysis. We then found clusters of 
contiguous time points for which the single-point t tests 
were significant (p < .05), and the t scores within each 
cluster were then summed to produce a cluster-level t 
mass.

We then determined whether the observed t mass 
was greater than the 95th percentile of a null distribu-
tion that was created by randomly permuting the true 
target labels when testing the accuracy of the decoder. 
For each iteration of the permutation procedure, we 
randomly shuffled the labels indicating the previous-
trial orientation and then computed the accuracy of the 
decoder at predicting these shuffled labels. This pro-
cedure simulated the accuracy values that would be 
obtained by chance if the decoder had no information 
about the orientation. Importantly, we used the same 
shuffled labels for all the time points in a given trial, 
instead of using different shuffled target labels for each 
time point independently, to reflect the temporal auto-
correlation of the continuous EEG data. As in our main 
decoding procedure, accuracy was computed 960 times 
(16 directions × 3 cross-validations × 20 iterations) for 
a given time point, and these values were then aggre-
gated to compute the decoding accuracy at that time 
point for that permutation iteration. The time course of 
the permutation-based decoding accuracy was then 
smoothed with the same 5-point running average filter 
that was applied to the real decoding accuracy values. 
For each iteration, this procedure was performed sepa-
rately for each of the 16 participants. We then per-
formed one-sample t tests against chance for each time 
point and computed the sum of the t values (the t mass) 
of the largest cluster (with a mass of 0 if there were no 
significant t values). If there was more than one cluster 
of individually significant t values, we took the mass 
with the largest summed t values.

This procedure was iterated 1,000 times, yielding one 
maximum cluster mass per iteration, to produce a null 
distribution of t mass values (yielding a resolution of  
p = 10–3). The p value for a t mass from the actual data 
set was then computed from the percentile of this value 
within the null distribution (using linear interpolation; 

we report p < 10–3 if the observed mass was greater 
than all masses in the null distribution). We concluded 
that the decoding was significantly above chance for a 
given cluster if the t mass for that cluster was in the top 
95th percentile of the null distribution.

The decoding procedure and statistical analysis were 
identical for Experiments 1 and 2. In Experiment 2, we 
collapsed across sample locations when we decoded 
the previous-trial orientation. Because orientation and 
location were completely counterbalanced, the decod-
ing of orientation could not have been influenced by 
information about location.

Results

The behavioral data from Experiment 1 are summarized 
in Figure 2a, which shows the direction of the response 
error as a function of the difference in orientation 
between the current trial and the previous trial. A serial-
dependence effect was clearly present: The orientation 
reported on the current trial was biased away from the 
orientation presented on the previous trial. In other 
words, when the current-trial orientation was counter-
clockwise to the previous-trial orientation, the reported 
orientation was shifted further counterclockwise, and 
the converse was found for clockwise differences. This 
effect was tested statistically by fitting the data with the 
first derivative-of-Gaussian function (Fischer & Whitney, 
2014). A one-sample t test indicated that the amplitude of 
this function was significantly greater than zero, t(15) = 
−9.731, p = 7.143e–08.

We applied a machine-learning approach to the ERP 
data to decode the previous-trial sample orientation 
from the current-trial scalp distribution, independent 
of the current-trial orientation. Because there were 16 
possible orientations, and we required an exact match 
for a classification to be considered correct, chance was 
1 in 16 (.0625). We found that the decoding accuracy—
assessed on data not used for training—was above this 
chance level (three significant clusters of time points 
according to a cluster mass permutation test, with p < 
.001, p = .030, and p < .001 for the individual clusters, 
respectively) starting approximately 100 ms after the 
onset of the current-trial sample stimulus (see Fig. 2cF 
This shows that new information about the previous-
trial orientation became available in the current-trial 
EEG shortly after the onset of the current-trial sample 
stimulus and that this information was maintained dur-
ing the delay interval of the current trial. Moreover, the 
decoding was not limited to the first few hundred mil-
liseconds after the onset of the current-trial sample 
stimulus, as would be expected if an activity-silent rep-
resentation of the previous-trial orientation modulated 
the neural response to the sample stimulus (as in Wolff 
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et al., 2017). Instead, statistically significant decoding 
was present throughout much of the 1,500-ms period 
following the current-trial sample stimulus.

It is possible that this above-chance decoding 
reflected location information (i.e., the location of the 
tip of the teardrop) rather than bona fide orientation 
information. To address this possibility and assess the 
replicability of the Experiment 1 finding, we performed 
a similar decoding analysis on the data from Experiment 
2. In this experiment (see Fig. 1b) the location and the 
orientation of the sample teardrop varied indepen-
dently, and the location of the sample and test tear-
drops also varied independently, eliminating the 
possibility that location information could be used to 
remember the sample orientation (see extensive discus-
sion in Bae & Luck, 2018). Again, we found a serial-
dependence effect in the behavioral responses, t(15) = 
−2.326, p = .034 (one-sample t test on the amplitude of 
the first derivative-of-Gaussian function; see Fig. 2b) 
As has been shown previously (Fischer & Whitney, 
2014), this effect was weaker when the stimulus location 
varied across trials (Experiment 2) than when it remained 
fixed (Experiment 1), t(30) = −3.224, p = .003 (two-sample 
t test comparing the amplitude of the first derivative-of-
Gaussian function across the two experiments).

We attempted to decode the previous-trial orienta-
tion from the ERP data in Experiment 2, independently 
of the current-trial location and orientation and inde-
pendent of the previous-trial location. As can be seen 
in Figure 2d, decoding accuracy was again significantly 
above chance in two clusters of time points (p = .002 
and p < .001), extending more than 500 ms after the 
sample stimulus. This demonstrates both the replicabil-
ity and the location independence of the previous-trial 
orientation decoding. However, there was some hint 
that decoding was weaker when location information 
was removed (e.g., smaller clusters of significant decod-
ing accuracy in Experiment 2 than in Experiment 1). This 
may reflect the fact that many orientation-specific cells 
in the visual cortex are also spatially specific, decreasing 
the consistency of the orientation-specific scalp topog-
raphy when the location varies across trials.

It is important to note that the ERP data in both 
experiments were baseline corrected by subtracting the 
mean voltage during the prestimulus baseline of the 
current-trial sample stimulus, eliminating any informa-
tion about the previous-trial orientation that was pres-
ent in the EEG prior to the sample stimulus. Thus, the 
finding that previous-trial decoding accuracy rose 
above chance shortly after the onset of the current-trial 
sample stimulus indicates that new information about 
the previous-trial orientation became available at this 
time. Thus, the previous-trial orientation representation 
was either reactivated from a completely activity-silent 

representation or boosted above the pretrial activity 
level. Consistent with this conclusion, results also 
showed no significant decoding of the previous-trial 
orientation during the intertrial interval when we used 
the prestimulus period of the previous trial as the base-
line (see the Supplemental Material available online).

Given that the scalp EEG consists of small neural 
signals that are filtered through the skull and mixed 
with both biological and nonbiological noise, it is 
remarkable that we could decode not only the working 
memory representation of the current-trial orientation 
but also the task-irrelevant orientation from the previ-
ous trial. To push this even further, we attempted to 
decode the orientation of the N – 2 trial, but we found 
that decoding accuracy was near chance (see the Sup-
plemental Material). This may indicate that more distant 
experiences are not reactivated or may instead reflect 
the limitations of scalp EEG decoding.

Discussion

In Experiment 1, we found that the orientation of the 
stimulus on the previous trial could be decoded from 
the ERP scalp topography on the following trial after 
the onset of the sample stimulus, demonstrating that 
the presentation of the current-trial sample stimulus 
reactivated or boosted a representation of the previous-
trial stimulus. In Experiment 2, we replicated this effect 
in a task in which the location and orientation of the 
stimulus were independently manipulated, demonstrat-
ing that the reactivation of the previous-trial orientation 
was not location specific.

These findings are inconsistent with the hypothesis 
that task-irrelevant information from the previous trial 
is maintained solely in a passive, activity-silent manner. 
Such synaptic storage would not produce decodable 
ERP signals and could not directly underlie the sustained 
decoding of the previous-trial orientation that was 
observed after the onset of the current trial. Because 
ERPs reflect neural activity (primarily from postsynaptic 
potentials; see Buzsáki, Anastassiou, & Koch, 2012), the 
observed decoding necessarily reflects an active repre-
sentation of the previous-trial orientation. Reactivation 
of previously silent representations has been observed 
in working memory tasks (Rose et al., 2016; Wolff et al., 
2017), but reactivation was thought to be impossible 
when the trial is over and the information is no longer 
relevant (Wolff et al., 2017). The present study demon-
strated that it is indeed possible to reactivate information 
that is no longer relevant, providing a potential mecha-
nism for serial dependence and other priming-like effects. 
Note, however, that these results do not argue against the 
possibility that activity-silent representations of previous 
experiences also impact current-trial behavior.

https://journals.sagepub.com/doi/suppl/10.1177/0956797619830398
https://journals.sagepub.com/doi/suppl/10.1177/0956797619830398
https://journals.sagepub.com/doi/suppl/10.1177/0956797619830398
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In addition to producing a decodable signal in the 
ERP data, the previous-trial orientation also impacted 
the behavioral report of the current-trial orientation. 
The present study could not establish a causal relation-
ship between the decoding effect and the behavioral 
effect, but it did demonstrate that previous experiences 
can be automatically reactivated by new stimuli, provid-
ing a potential mechanism by which previous experi-
ences can automatically impact current behavior (as 
previously hypothesized by Logan, 1990). That is, if a 
given stimulus reactivates a representation of previous 
episodes involving stimuli of the same general class, 
including the behavioral response that was produced 
during the previous episode, this may be an efficient 
means of responding quickly to a stimulus. Additional 
research will be necessary to provide a firm link between 
the reactivation observed in the present study and the 
broad range of priming-related behavioral effects that 
have been reported in the literature.

We previously showed that the current-trial orienta-
tion could also be decoded during the current-trial 
delay period in this same data set (Bae & Luck, 2018). 
Thus, the EEG contained concurrent multiplexed signals 
about both the current-trial and previous-trial orienta-
tions. The EEG also contained concurrent information 
about the location of the current-trial stimulus, even 
when this information was task irrelevant (Bae & Luck, 
2018; Foster, Bsales, Jaffe, & Awh, 2017). These findings 
are consistent with the hypothesis that multiple represen-
tations can be in an active state simultaneously (Sutterer, 
Foster, Adam, Vogel, & Awh, 2018), which contrasts with 
the hypothesis that only a single representation can be 
active at a given moment (McElree, 2006; Olivers, 
Peters, Houtkamp, & Roelfsema, 2011). However, addi-
tional research is necessary to rule out alternative 
explanations for the concurrent decoding, such as rapid 
switching between representations.
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Note

1. We also conducted the same decoding analyses using alpha-
band oscillatory activity but found no significant decoding for 
either experiment (see the Supplemental Material).
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