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Artificial intelligence (AI) has emerged as a fundamental component of global 16 

agricultural research poised to impact many aspects of plant science. In digital 17 

phenomics, AI is capable of learning intricate structure and patterns in large 18 

datasets. Here, we provide a perspective and primer on AI applications to 19 

phenome research. We propose a novel human-centric explainable AI (X-AI) 20 

system architecture, consisting of data architecture, technology infrastructure, 21 

and AI architecture design. We clarify the difference between post-hoc models 22 

and interpretable by design models. We include guidance for effectively using an 23 

interpretable by design model in phenomics analysis. We also provide a direction 24 

to sources of tools and resources for making data analytics increasingly 25 

accessible. This primer is accompanied by an interactive online tutorial. 26 

Approaching plant phenomics from different angles 27 

Crop breeding relies heavily on phenotypic information, which remains a bottleneck for 28 

realizing its full potential. The advent of plant phenomics (topic reviewed in [1–9]), which 29 

broadly can be considered the systematic study of phenotypes, however, marks a 30 

turning point. Phenomics platforms equipped with novel imaging sensors promise to 31 

make it possible to perform phenotyping of a wide range of plant traits, organs, and 32 

environmental situations at scale (Figure 1). These new technological developments 33 

have opened up avenues for automated data acquisition, evolving phenomics to 34 

become a thriving research field of its own [10]. 35 

Embracing digital technology holds tremendous potential for driving transformative 36 

changes in plant phenomics by improving the collection of, access to, and analysis of 37 
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phenomic big data. As such, digital phenomics furnishes tools and resources that aid in 38 

the digitization of plant phenomics. It uses phenome data and metadata to guide 39 

decision-making along the entire data analytics cycle [11]. As data grows in volume and 40 

varies in sources, effective management strategies must be put into place (Figure 2). 41 

Digital phenomics gives rise to computational phenomics, which allows the assembly of 42 

a broad array of methods that aid in the discovery of intricate structure and patterns 43 

from phenotypic data, using technology infrastructure (Figure 3) and artificial 44 

intelligence (AI) architecture design (Figure 4). 45 

In the past decade, AI − the science of studying, designing, and developing intelligent 46 

computer systems that can perform tasks that normally require human intelligence − 47 

finally began to reveal its remarkable power and disruptive potential. Driven mainly by 48 

the advent of machine learning (ML) − a particular approach to AI in which intelligent 49 

systems learn and derive models from training datasets − and deep learning (DL) − a 50 

specialized branch of ML that leverages neural networks to spot patterns in complex 51 

data − AI flexed its muscles by achieving predictive successes in phenomics. For 52 

example, in red–green–blue (RGB) image analysis, convolutional neural networks 53 

(CNNs) were used to predict the yield of individual plants of barley and wheat [12], to 54 

classify and quantify biotic and abiotic stresses in leaves of various fruit and vegetable 55 

crops [13], to segment roots of chicory, wheat, and rapeseed [14–16], and to count 56 

tobacco leaves [17]. A CNN was also used to provide explainable classifications of 57 

biotic and abiotic stresses in soybean leaves by isolating the top-k feature maps learned 58 

by the model [18]. A random forest (RF), a neural network (NN), a k-nearest neighbor 59 

(KNN), a partial least squares (PLS), and a support vector machine (SVM) were 60 
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employed to estimate nitrogen nutrition index for improving nitrogen use efficiency in 61 

rice [19,20]. In wood anatomical images at a microscopic level, a mask region-based 62 

CNN (Mask R-CNN) was used to analyze the intrinsic variability of wood anatomical 63 

features in conifers, alder, beech, and oak [21]. In analyzing multispectral and 64 

hyperspectral data, a CNN was used to provide explainable identification of biotic stress 65 

in individual soybean plants by incorporating saliency maps [22]; a PLS and a RF to 66 

estimate above ground biomass in maize [23]; an SVM, a KNN, and a linear 67 

discriminant analysis (LDA) to detect and segment root decay in wheat [24]; an LDA 68 

and a PLS to detect response to drought stress in bell pepper, courgette, sunflower, 69 

radish, foxtail millet, and sorghum [25]; and a data mining sharpener to guarantee 70 

consistent spatial resolution among heterogeneous remote sensing image datasets to 71 

dissect the latent heat flux signature of poplar in response to drought [26]. In three-72 

dimensional (3D) point cloud analysis, an SVM was applied to estimate yield and 73 

canopy geometric characterization in apple [27]. In thermal infrared (TIR) image 74 

analysis, SVMs and Gaussian processes were used to identify drought stress in spinach 75 

[28] and rotation forests were used to predict plant water status in grapevine [29]. In 76 

chlorophyll fluorescence image analysis, a CNN was used to identify abnormalities in 77 

organelle morphology in Arabidopsis [30]. In X-ray computed tomography (X-ray CT) 78 

analysis, an encoder-decoder network was used to segment wheat roots [31]. 79 

Analyzing data coming from different sensors and imaging techniques of the same 80 

biological sample (i.e., plant) simultaneously can further improve phenotypic trait 81 

predictions. Recent studies demonstrated that fusion of multiple data sources 82 

originating from the same plants (i.e., paired data) perform better than a single source. 83 
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For example, using a deep NN (DNN), the fusion of RGB, TIR, and multispectral data 84 

delivered superior performance over single sensor data analytics for yield prediction in 85 

soybean [32]; similar results were reported for the estimation of soybean chlorophyll 86 

content, nitrogen concentration, leaf area index, and above ground biomass by 87 

employing an extreme learning machine [33]. Now and in the future, rigorous data 88 

integration of phenomics and other different omics datasets that were not originally set 89 

out to be integrated and are of distinct biological samples (i.e., unpaired data) may help 90 

dissecting biological mechanisms that underlie desirable traits and shed light on the flow 91 

of information that underpins plant responses to environmental stresses [10,34–37]. 92 

And because the phenotype of a plant is the result of interaction between its genotype 93 

and the environment (G х E) in which it grows [38], integration efforts should also 94 

include environmental data such as climatypes; this will be crucial for designing new 95 

crop ideotypes that are optimized for niche environments in a world with a rapidly 96 

changing climate [34]. 97 

Importantly, data management strategies should incorporate the findable, accessible, 98 

interoperable, and reusable (FAIR) guiding principles [39] to put those phenome and 99 

envirome data to their most effective use. This requires standards to ensure that 100 

necessary metadata are recorded about data generation methods and the experimental 101 

and environmental conditions in which they were acquired [40]. In this regard, the 102 

minimum information about a plant phenotyping experiment (MIAPPE) standard has 103 

been a great step forward to harmonize data from phenotyping experiments with 104 

controlled vocabulary and ontologies [41,42]. Accordingly, the development of tools for 105 

capturing the complete set of metadata is poised to have high impact on the support of 106 
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FAIR data. As standards and tools become more widely disseminated and explored, we 107 

envisage metadata becoming commonly annotated by users, expected by referees, and 108 

required by journals and data repositories. Furthermore, the workflows that are used to 109 

analyze data should themselves be FAIR [43]. When data sharing is not viable due to 110 

possible privacy or security concerns, federated learning (FL; see Glossary) and 111 

communication-efficient FL offer an unprecedented opportunity to train AI models 112 

without sharing data [44,45]. FL gained traction in medical imaging applications [46–48] 113 

and carries great promise for overcoming data sharing challenges in plant phenomics. 114 

This primer provides suggestions on how to use AI effectively in plant phenomics, on 115 

how to ensure that human-centric explainable AI (X-AI) can benefit all, and discusses 116 

various X-AI approaches and techniques. We have created a central directory of all 117 

publicly available plant imaging datasets, and report their sources, accessibility, and a 118 

summary of species and organ systems represented (Table 1). This review is 119 

accompanied by an interactive tutorial to train an interpretable by design model to 120 

deliver predictive and prescriptive analytics to users. Our primer is intended as an 121 

educational resource for phenomicists who are interested in applying X-AI approaches 122 

and techniques, and plant scientists who seek a high-level understanding of this rapidly 123 

evolving field. Data scientists and information systems (IS) scientists may also use this 124 

primer as an introduction to the promising applications of X-AI in phenomics. 125 

How to use AI effectively: ménage-à-trois between plant science, data science, 126 

and IS 127 
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Plant science has the potential to provide innovative solutions for the world’s most 128 

pressing challenges; however, recent advances in discovery methods have greatly 129 

accelerated our ability to collect data, leaving us with the challenge of analyzing, 130 

interpreting, and integrating the plethora of data [49]. To handle such data, data science 131 

has attracted a lot of attention, promising to turn data into useful predictions and insights 132 

[50]. To do that, data science needs supporting resources including algorithms, 133 

software, and hardware infrastructure. IS combines those resources to create AI 134 

architecture designs, and to transform, store, and distribute data for analysis. While the 135 

relationship between these disciplines has not been reinforced repeatedly in history, 136 

today with the depth of data analysis, the scale and dimension of the data, and the 137 

nature of the scientific questions, an interaction in a ménage-à-trois fashion is highly 138 

needed. 139 

AI and the bias cascade 140 

Multiple sources of bias can affect the performance of AI systems used in phenomics 141 

and can occur across the different development steps of AI applications: data collection 142 

or selection, data preprocessing, model development, model evaluation, and 143 

deployment. Introduced bias can have a domino effect as it propagates from its entry 144 

point to the succeeding development steps, creating a bias cascade. 145 

The bias cascade starts with the data collection or selection step, where experimental 146 

data are collected or selected from publicly available datasets (Table 1). Here, bias can 147 

occur for a number of reasons: (i) ‘measurement’ bias, when data contains faulty 148 

measurements originating from instrumentation malfunctions, wrong values from 149 
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miscalibrated sensors, or errors of precision that result in data distortion [51]; (ii) ‘label’ 150 

bias, when data is laden with subjective judgments of human experts and thus 151 

inconsistently or wrongly labeled [52]; (iii) ‘sample selection’ bias, when the training data 152 

does not represent a random sample from the entire dataset [53], causing a model to 153 

ignore data belonging to classes that were not represented during the data selection 154 

process; and (iv) ‘group attribution’ bias, when a data sample is selected from an 155 

incorrect target population [53], where a model can fail to distinguish between some 156 

classes and consider them the same. 157 

Data preprocessing is performed to eliminate noisy (e.g., blurred images, images with 158 

unfavorable lighting conditions, images that do not represent the object of interest), 159 

incomplete (e.g., unannotated images), duplicate data, and to normalize datasets as 160 

needed to account for batch effects (e.g., groups of images taken under different 161 

lighting conditions or with different camera settings) or systematic experimental artifacts 162 

(e.g., reflections in images). In this step, even if the training set was representative of 163 

the entire dataset, data can be intrinsically unbalanced where certain plant species, 164 

genotypes, or even stresses are underrepresented. Such cases can introduce the ‘class 165 

imbalance’ bias. 166 

Bias may also arise during the model development and evaluation steps, where a model 167 

is trained and its ability to generalize beyond the training set, on new, previously unseen 168 

data is evaluated. As most AI algorithms identify correlations between variables in the 169 

underlying data but without being able to detect causal relations, two biases are likely to 170 

arise: (i) the ‘correlation fallacy’ that confuses correlation with causation [53] where a 171 



9 

model wrongly deduces a cause-and-effect relationship between correlated variables; 172 

and (ii) the ‘apophenia’ when a model sees patterns while none actually exist [54]. 173 

These two biases can be amplified when a massive quantity of training data is used, 174 

mistakenly offering connections that radiate in all directions [54], and producing 175 

probable yet uncertain predictions. Further, training complex models (i.e., models with 176 

many trainable parameters) can capture noise-generated patterns, tricking them into 177 

thinking that the noise encodes real information [55]. This problem introduces the 178 

‘overfitting’ bias and causes a steep drop-off in predictive performance at the evaluation 179 

step. Similarly, such performance drop-offs also occur when models are unable to 180 

accurately capture relationships between variables and thus introducing the 181 

‘underfitting’ bias [56]. 182 

Finally, at the deployment step, bias can occur in situations where data used in practice 183 

differs from training data (e.g., different weed or crop species), which is known as the 184 

‘domain shift’ bias. 185 

Creating a human-centric X-AI 186 

It is therefore crucial to mitigate bias to increase the success probability of the AI 187 

algorithm for the task at hand. Let alone that bias mitigation serves as a building block 188 

towards AI trustworthiness [57]. So, what can be done to mitigate detrimental biases 189 

in AI in plant phenomics? There is a consensus on the need to develop a human-centric 190 

X-AI system that will not just aspire to meet human requirements regarding 191 

explainability and trustworthiness, but, more importantly, will actively aim to keep a 192 

human-in-the-loop (HITL) for a harmonious human and AI system symbiosis. We 193 
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believe that such a system should not only put humans at its center, but also integrate 194 

their knowledge into its predictive process. 195 

Designing human-centric X-AI for plant phenomics is not without challenges; it requires 196 

a dedicated and multidisciplinary team effort, involving plant scientists, data scientists, 197 

and IS scientists to bring AI to its most feasible, desirable, viable, and responsible state. 198 

This novel multidisciplinary knowledge is clearly imperative to identify and reduce AI 199 

biases, and to facilitate explainability and accountability. We advocate that such a 200 

system architecture is required to constantly realign data architecture and technology 201 

infrastructure to serve novel AI architecture designs. Phenotyping complex traits 202 

demands the integration of data on different morphological, physiological, temporal, 203 

geospatial, and environmental variables [35,58]. While large datasets are vital for 204 

creating accurate AI models and validating their results, storing them in a FAIR manner 205 

can be challenging. Data architecture plays a fundamental role in meeting these 206 

requirements. It consists of a set of standards that govern which data is collected, 207 

whether it should be transformed (e.g., data cleaning, deduplication, format conversion, 208 

structuring, validation, etc.) before or after storage using extract, transform, load (ETL) 209 

or extract, load, transform (ELT) processes, and where (data warehouses or data lakes) 210 

and how (matrices, cubes, polytopes, or distributed in-memory) it is stored (Figure 2). 211 

Without AI, these data streams would be overwhelming and chaotic [35], but reaching 212 

the full potential of AI-based analysis of large phenomic datasets comes down to the 213 

right technology infrastructure which defines the components that serve as a foundation 214 

for the data life cycle, including hardware infrastructure, network flow, software 215 

frameworks, and programming languages (Figure 3). High performance computing 216 
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(HPC), like pre-exascale supercomputers, is boosting both the accuracy and predictive 217 

power of these approaches. While central processing units (CPUs) maximize the 218 

performance of an algorithm, graphics processing units (GPUs) can dramatically 219 

increase AI training speed thanks to their processing cores initially designed to process 220 

visual data such as images and videos [11]. For example, to take advantage of GPUs, 221 

the compute unified device architecture (CUDA) software framework provides a 222 

development environment for creating and optimizing AI applications on GPU-223 

accelerated local computers or supercomputers. However, CUDA works exclusively on 224 

Nvidia GPUs; alternatively, the open computing language (OpenCL) and openACC 225 

frameworks work on multiple types of GPUs [59]. Another option is to translate 226 

automatically CUDA source code into portable heterogeneous-computing interface for 227 

portability (HIP) using source-to-source translators such as HIPify, so that non-Nvidia 228 

GPUs can benefit from the rapid development of CUDA applications. Additionally, 229 

software libraries such as kokkos, RAJA, open multi-processing (OpenMP), and one 230 

application programming interface (oneAPI) can be leveraged to unlock the promise of 231 

heterogeneous computing where compute nodes employ more than one type of 232 

processors including CPUs, GPUs, and tensor processing units (TPUs), among others. 233 

This enables the development of scalable AI-based applications in a hardware agnostic 234 

way. With the advent of exascale computing, supercomputers will deliver higher 235 

performance in pattern searching in phenomic big data, and thus, will boost AI abilities 236 

in digital phenomics, speeding up crop design (Figure 3A). But, building powerful 237 

supercomputers is a never-ending race, and as new ones get launched, the number of 238 

compute nodes they comprise increases. For example, the first supercomputer to break 239 
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the exascale barrier, Summit, comprises 4,608 compute nodes, while the most powerful 240 

exascale supercomputer that tops the latest TOP500 listi, Frontier, contains 9,472. This 241 

makes it harder to exploit supercomputers efficiently because of their need to transmit 242 

data back and forth between their nodes, running huge numbers of computations at the 243 

same time [60]. Implementing AI algorithms (Figure 4A) for such parallel computing is 244 

not easy. Luckily, emerging free and open-source software frameworks such as 245 

Tensorflow Keras, PyTorch, scikit-learn, and XGBoost, among others, and software 246 

libraries such as cuNumeric are enabling scalability on parallel computing. As more 247 

powerful exascale supercomputers are being anticipated [61], researchers may start to 248 

utilize quantum computers at some point in the future [62]. This will ultimately drive 249 

digital phenomics towards designing faster, better crops and providing sustainability-250 

friendly solutions (Figure 3A). Beside the hardware infrastructure, properly designed 251 

network flows (Figure 3B), such as the ‘science demilitarized zone (DMZ)' that includes 252 

network architecture and performance tools [63], enable high-throughput access to 253 

datasets in a secure and timely manner while conforming with the FAIR data principles 254 

[39]. Software frameworks (Figure 3C) provide a working environment that helps 255 

researchers achieve higher productivity in designing AI algorithms; they support more 256 

than one programming language (Figure 3D), enabling fast and efficient implementation 257 

of algorithms without compromising code quality. 258 

Because data are only as good as the tools and algorithms available to analyze them, 259 

solving complex biological questions requires a creative process during which efficient 260 

AI algorithm architectures are designed and developed. Customized algorithms and 261 

architectures can leverage currently available AI architecture designs (Figure 4) to come 262 
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up with new architecture designs tailor-made to find answers to the questions at hand. 263 

Such promising designs should combine knowledge-based AI, to represent human 264 

expert knowledge, with data-driven AI to discover connections and correlations 265 

automatically in big data. This combination will result in an informed AI that acquires 266 

both tacit and explicit knowledge of its designers (e.g., the interaction between data 267 

scientists, IS scientists, and plant scientists) and users (e.g., breeders and farmers), 268 

and integrates that tacit and explicit knowledge with knowledge discovered from data 269 

and metadata. 270 

It is noteworthy, however, that new architecture designs should also integrate 271 

knowledge into X-AI to enable the monitoring of the inputs and outputs of the 272 

algorithms, provide more human-comprehensible explanations for their decisions, 273 

deliver superior performance, mitigate bias, and aid in verifying models’ adherence to 274 

ethical and socio-legal values. Ensemble methods can, for example, be leveraged to 275 

design new AI algorithms that are both informed and explainable (Figure 4B). 276 

Ultimately, improvements in informed X-AI would help develop novel interpretable 277 

algorithms and are likely to be crucial to enable human-centric X-AI in phenomics. 278 

Mitigating bias in human-centric X-AI 279 

A human-centric X-AI system is emerging, whereby plant scientists, data scientists, and 280 

IS scientists must work together to seize this opportunity to help identify and mitigate 281 

bias by using a number of strategies. 282 

Starting from the top of the bias cascade, at the data collection or selection step, the 283 

minority of data that do not conform to the general characteristics of a given dataset, 284 
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known as outliers, should be removed during data cleaning to mitigate the 285 

‘measurement’ bias. As for the ‘label’ bias, data annotators should be supplied with 286 

detailed instructions containing visual examples of the correct output for a given input to 287 

be able to reduce ambiguities and avoid mistakes that result from incorrect or 288 

incomplete knowledge. For example, when labeling weed species, in addition to their 289 

morphological descriptions, a visual representation of each species could be helpful for 290 

annotators. Next, the ‘sample selection’ and ‘group attribution’ biases can be mitigated 291 

by establishing random sample selection and statistical correction processes [64,65]. 292 

When preprocessing data, intrinsically unbalanced datasets can be balanced by means 293 

of oversampling (i.e., augmenting the number of training examples within the minority 294 

class to be equivalent to other classes) and/or undersampling (i.e., reducing the number 295 

of training examples within the majority class to be equivalent to other classes) [11] to 296 

eliminate the ‘class imbalance’ bias [66]. 297 

Properly sampled and preprocessed data mitigate the risk of ‘correlation fallacy’ and 298 

‘apophenia’ biases, which can occur during the model development step. When training, 299 

‘overfitting’ can be debiased by either increasing the size of training data, decreasing 300 

the model complexity, or ignoring the less important features in a process called 301 

regularization [67]. Whereas ‘underfitting’ bias can be resolved by increasing the 302 

complexity of the model to capture nonlinear relationships in data. During the evaluation 303 

step, models yielding incorrect predictions such as misclassifying crops as weeds or 304 

vice versa should be inspected carefully; X-AI can be leveraged to better understand 305 

how the model reached its predictions which helps identify previously unknown bias. 306 

However, post-hoc approaches to explainability are not necessarily transparent (i.e., 307 
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because they only approximate models’ prediction procedure), and thus, it might be 308 

better to employ interpretable by design models (see next section). 309 

Notably, to avoid the ‘domain shift’ bias and identify unwanted biases in deployment, it 310 

is crucial that the model is carefully monitored to assess whether the data being used in 311 

practice are representative of those used during training. It is important to note that risk-312 

based regulations of AI are on the horizon in the USii and Europeiii,iv. When new 313 

regulations enter into force, post-authorization monitoring of AI applications becomes 314 

crucial to ensure that the performance of models does not degrade in practice. Once a 315 

model has passed regulatory authorization and is implemented in phenomics, it needs 316 

to be retrained periodically using new datasets to prevent it from becoming outdated, 317 

ensuring ‘domain shift’ bias mitigation. 318 

Reducing the risk of bias in AI models requires continuous human attention across the 319 

five development steps, keeping HITL. Studies have shown that human-computer 320 

interaction in HITL AI has improved the predictive performance of AI-based image 321 

analysis and reduced biases [68–70]. HITL can make a significant impact in phenomic 322 

data collection, data preprocessing, model development, evaluation, and deployment. It 323 

plays a critical role in the collection and preparation of data to be used for training an AI 324 

model. As such, model training is often a HITL iterative process that identifies biases or 325 

weaknesses of the model (e.g., images on which the model fails due to incomplete 326 

training sets or inappropriate parameterization) and adjusts the training set and 327 

parameters to reduce any biases and ensure the best model performance. It is 328 

recommended to start each training step with small iterations and plan on how the 329 

feedback of the team of humans can be collected and propagated to other steps, relying 330 



16 

on their intelligence to perform complex tasks. This paradigm allows leveraging the 331 

advantages of AI while having humans at various checkpoints to fill gaps where models 332 

are not confident in their predictions or where they may fall short due to underlying 333 

biases [71]. HITL may also offer advantages to evaluating the accuracy of AI predictions 334 

and interpreting their decisions by interacting with explainable models. The benefits of 335 

HITL extend to deployment by monitoring the model for possible biases and ensuring 336 

the reliability of the AI system. HITL can feedback into itself to respond to changes in 337 

the real-world environment. For example, after data collection and preprocessing, in 338 

each training iteration, plant scientists are shown a list of misclassified images with the 339 

outputs of the AI algorithm to hand-verify predictions and assess false positives and 340 

false negatives. For instance, the model might misclassify crops as weed; but this could 341 

be due to an algorithmic or learning error, or to mislabeled images. They then correct 342 

the wrong labels, if any, to ensure high-quality data. Data scientists evaluate the model, 343 

tune its hyperparameters, and retrain it. Such iterations between humans and AI are 344 

effective to generate training data based on human judgment to increase learning 345 

efficiency and enhance model performance [71]. Data scientists can provide the 346 

expertise necessary to help IS scientists design AI architectures with explanatory 347 

capacity supported by theoretical underpinnings. Finally, HITL monitors the model 348 

outcomes post deployment to ensure that all biases are identified and mitigated. 349 

Furthermore, ensembles of models can be used in the HITL process. An intrinsically 350 

interpretable model such as an iterative RF [72,73], can be used initially for feature 351 

engineering to determine the variables (e.g., wavelet decomposition in RGB and 352 

hyperspectral images) that will then be used in a deep learning predictive model. 353 
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This three-way collaboration can amplify knowledge about domain-specific feature 354 

engineering and selection to reach a level of augmented intelligence that can help 355 

discovering new ways to make AI more efficient, less biased, and explainable. It also 356 

creates new opportunities for human-centric X-AI to predict desirable phenotypic traits 357 

and aid efforts to breed climate-proof crops fast enough. 358 

How to move from data inputs to outcomes: opening the black box or designing a 359 

transparent glass box for explainability 360 

AI continues to permeate plant phenomics as recently reviewed in [74–76]. However, 361 

complex AI models are difficult to explain even among data scientists; they operate as 362 

black boxes and require a leap of faith to believe their predictions [35]. Explainability of 363 

AI models would not only increase the trust of users in why and how predictions were 364 

made but also help data scientists enable better diagnostics and enhance their 365 

performance. Although these desirable properties of explainability have led to a recent 366 

growing interest in X-AI research [77], its origin traces back to the early 1970s when 367 

Edward Shortliffe introduced the AI-based antimicrobial therapy consultation system for 368 

assisting physicians who need advice about appropriate therapy. The system made use 369 

of a set of decision rules coded, categorized, and hand-entered into it to give advice and 370 

explain the reasons behind its predictions [78]. In 1979, Jon Doyle introduced the truth 371 

maintenance systems (TMS), an independent module that constructs explanations of 372 

predictions by recording and maintaining a representation of the knowledge acquired by 373 

an expert system [79]. TMS research and development continued until the 1990s, when 374 

researchers began to study the possibility of extracting meaningful explanations from 375 

non-hand-coded rules that are generated by trained models such as NN [80]. 376 
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The rise of DL in the 2010s [11] increased the complexity of AI models and 377 

consequently, the demand for X-AI algorithms. To address this issue, researchers have 378 

been developing new approaches and techniques to make these models explainable. 379 

Unfortunately, the rush in X-AI development has caused confusion on its various 380 

approaches in the literature, where they are not accurately described and are often 381 

confused together [81]. While all those approaches revolve around allowing humans to 382 

observe how predictions of an AI model came to be, we can technically distinguish 383 

between research involving post-hoc models and interpretable by design models. 384 

As current AI models are often developed with only predictive performance in mind, 385 

post-hoc algorithms can be used to explain them. They are employed after a black box 386 

model is trained and are not connected to its internal design; they can either be model-387 

specific or model-agnostic [82]. In principle, model-specific algorithms are limited to 388 

certain black box models. For example, DL important features (DeepLift) is a model-389 

specific algorithm that can explain DNNs and does not work for any other algorithm. On 390 

the other hand, model-agnostic algorithms such as the local interpretable model-391 

agnostic explanations (LIME) [83] and Shapley additive explanation (SHAP) [84] are 392 

more general and can be applied to any black box model. Commonly, post-hoc 393 

algorithms work by: (i) probing or inspecting the trained parameters to understand what 394 

has the black box model learned; (ii) employing data perturbation strategies which 395 

involve modifying the input data and observing the changes in the black box model 396 

predictions; or (iii) using a more interpretable model (e.g., decision tree) referred to as a 397 

surrogate model to approximate and provide explanations of predictions made by the 398 

black box model. Recently, researchers started applying post-hoc algorithms in plant 399 
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phenomics to identify, classify, and quantify plant stresses [11,85–89] and to count 400 

leaves [90]. However, as post-hoc algorithms approximate the inner workings of black 401 

box models, it is possible that their generated explanations do not provide enough detail 402 

to understand what the black box model is actually doing [91]. On the other hand, 403 

interpretable by design algorithms do not need an additional (post-hoc) algorithm to be 404 

explainable; they provide their own explanations, which are faithful to what the model 405 

actually computes [91]. 406 

These algorithms have existed since the development of expert systems in the 1970s. 407 

They have, however, been labeled as less accurate because scientists argue that there 408 

is a tradeoff between accuracy and explainability in a way that, the highest performing 409 

algorithms are the least explainable, and the most explainable ones are less accuratev. 410 

This belief proved to be imprecise, especially when analyzing structured data with 411 

meaningful features [91]. This also depends on the algorithms being compared. For 412 

example, according to [91] it would not be fair to compare the 1984 decision tree 413 

algorithm to a more recent DL one and conclude that interpretable by design models are 414 

not as accurate. Indeed, the recently developed interpretable by design ‘this looks like 415 

that’ algorithm, derived from a CNN, proved to be as accurate as the non-explainable 416 

CNN [92]. Figure 5 highlights the two categories of X-AI, their corresponding 417 

representative algorithms, and the explainable outcomes associated with their 418 

implementation. 419 

Regardless of whether a post-hoc or an interpretable by design algorithm is used, 420 

model explanations can occur on a global or local level. While the former describes the 421 
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overall extracted relationships based on the entire model behavior, the latter reveals the 422 

rationale behind a specific prediction [93]. 423 

Finally, it is worth noting that, just as different X-AI techniques exist, there exists a range 424 

of approaches to explainability since different contexts give rise to different explainability 425 

needs [94]. For example, when training and evaluating an AI model, plant scientists 426 

might want to understand which data features are being used for prediction and how 427 

they are correlated together, while data scientists might require technical details about 428 

how the model functions to help in its testing, debugging, bias identification and 429 

mitigation, hyperparameter tuning, and evaluation; IS scientists can leverage details 430 

about the model training process to help optimize the architecture of the algorithm using 431 

suitable design approaches and methods (Figure 4B). At the model deployment step, 432 

regulators might require assurance about how data is being processed to assess its risk 433 

level by inspecting its reliability, as well as the impact of its predictions on its users to 434 

ultimately decide whether or not it requires authorization and regulation. Similarly, 435 

farmers and breeders might require explanations to understand why and how the model 436 

came to a prediction and to ensure its trustworthiness. 437 

Presently, the hope for human-comprehensible explanations for black-box algorithms to 438 

increase technical confidence, generate trust, and make better informed choices 439 

remains an open challenge. In light of this challenge, we strongly recommend that a 440 

single prediction might therefore need to be explained in various ways, reflecting the 441 

requirements of all stakeholders. 442 

How to devise X-AI-driven analytics for phenomics questions 443 
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Interpretable by design models 444 

X-AI bears great potential for the analysis and interpretation of phenomic data. In what 445 

follows, we provide an example of an X-AI workflow design and describe for the first 446 

time, the steps needed to foster practical applicability of interpretable by design 447 

algorithms in phenomics image analysis (Figure 6). We have also accompanied this 448 

review by an interactive online tutorial that acts as an educational resource, intended for 449 

readers with little to no knowledge of X-AI algorithms; it also serves as a good starting 450 

point for self-learning and raises an early awareness that computational phenomics 451 

need not be intimidating. In addition, we have created a set of self-test quizzes and 452 

hands-on practice exercises to provide users with opportunities to augment their 453 

learning by practically applying the concepts explained in order to assess their acquired 454 

knowledge. The code and computational notebooks are open source and freely 455 

accessible through our GitHub repositoryvi. Collectively, this will accelerate the rate of 456 

discovery and move toward open science and AI ethics in digital phenomics. 457 

In our tutorial, we train ‘this looks like that’ algorithm to classify diseases using the 458 

crowdsourced cassava disease classification dataset. This choice is motivated by the 459 

importance of cassava, being a key food security crop grown by smallholder farmers in 460 

Africa, Asia, and South America. However, diseases that plague the crop are a major 461 

cause of poor yield [95]. Existing methods to identify diseases require governmental 462 

agricultural experts to visually inspect and diagnose the plants [96]. This labor-intensive 463 

process makes it difficult to monitor and treat disease progression. With the help of X-464 

AI, we can identify and classify cassava diseases and monitor their progression rapidly 465 

enough to address these current limitations in disease surveillance. Our model, 466 
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initialized with transfer learning (TL), was trained to predict five classes, and provide 467 

corresponding prototypical explanations by marking activated patches with bounding 468 

boxes and generating heatmaps to show which parts of the image are similar to the 469 

prototypes. The resulting confusion matrix illustrates the percentage of correctly 470 

classified images in each class. The overall accuracy was 88.7% after cycling through 471 

the training set 240 times (Figure 6). 472 

A more detailed description of all steps of the analysis, including the computational 473 

notebook and code to train, validate, and test/replicate our models, is provided on the 474 

tutorial website. This description covers, as relevant, data preprocessing, image classes 475 

and format, architecture of the model, model training and evaluation, prototypical 476 

explanations, and the computer cluster used for training. 477 

Dealing with small datasets 478 

As some phenotyping experiments generate small amounts of data, X-AI models get 479 

fewer training examples to learn from. But how can models learn well from small 480 

datasets? Using low complexity models that have a small number of trainable 481 

parameters can perform better than complex ones as they are less prone to overfitting 482 

and generalize better [97]. Additionally, TL can be employed to transfer knowledge 483 

acquired while learning a different but related task from a model trained on a large 484 

dataset to fit a new model using a small dataset [98]. When TL is not powerful enough 485 

due to the absence of large datasets, cumulative learning (CL) can be used to train a 486 

model over various small datasets and accumulate knowledge in the resulting network 487 

representation (i.e., model weights) [99]. Even when pretraining a model with TL or CL 488 
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is not possible, the cosine loss function can substantially improve the predictive 489 

performance of the model [100]. While the loss function of the model measures the error 490 

between the input and predicted output, the cosine loss function maximizes the cosine 491 

similarity between them. One-shot or few-shot learning can also be used to train a 492 

model from one or a handful of training image data by basing predictions on a similarity 493 

metric (e.g., cosine similarity) that compares training data to new inputs [101]. Most 494 

recently, with the embedding of human knowledge into AI, it will be possible to 495 

supplement small training datasets. Representation of such knowledge can be 496 

incorporated into AI by means of changes to the input data and loss function [102], to 497 

the architecture of the algorithm [103], or to a combination thereof. Alternatively, 498 

oversampling can be another workaround that produces new sample data to augment 499 

small datasets. These new data, however, should be meaningful, sufficient, and 500 

realistic, and should contribute for better performance of predictive models [104]. 501 

Oversampling can be achieved by: (i) performing geometric transformations on existing 502 

images using primitive data manipulation techniques, including flipping, rotation, 503 

shearing, cropping, and translation [105]; (ii) generating new synthetic data with 504 

generative adversarial networks (GANs), which are powerful models for learning 505 

complex distributions to synthesize semantically meaningful samples from an actual 506 

training set [104]. GANs can be employed for image-to-image translation, fusion image 507 

generation, label-to-image mapping, and text-to-image translation [104]; (iii) simulating 508 

real-world scenarios, by making use of virtual reality [106] or other extended reality 509 

technologies, including augmented and mixed reality, to create immersive 3D virtual 510 

environments, in which cameras can automatically collect photorealistic synthetic 511 
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images; and (iv) pairing existing images using methods such as cut-and-paste [107] or 512 

CutMix [108], which automatically ‘cut’ objects of interest from training images and 513 

‘paste’ them on random backgrounds or on other training images, respectively. 514 

How to ensure that human-centric X-AI benefits all: team science, open science, 515 

open education, and embedded ethics 516 

AI in phenomics can potentially impact many aspects of plant science, from basic 517 

research discovery to translational research. It is critical that these advances in 518 

technology broadly benefit society as a whole. 519 

So, how do we effectively ensure that human-centric X-AI benefits and does not harm 520 

individuals and communities? This can be done in several ways. 521 

First, we suggest that pivoting toward multidisciplinary team science is necessary to 522 

tackle the most pressing scientific, societal, and ethical problems of plant digital 523 

phenomics. Over the last decade, funding agencies across the US and Europe 524 

dedicated resources to facilitating team science. This work is evidenced by 525 

interdisciplinary and multidisciplinary team requirements in funding announcements and 526 

programs. For example, addressing the problem of bias in phenomics AI requires the 527 

integrated knowledge of socially and intellectually diverse researchers who specialize in 528 

plant science, plant phenomics, plant pathology, data science, computer science, IS, 529 

social science, and bioethics, just to name a few. 530 

Second, we emphasize the crucial importance of an open science system that aspires 531 

to open access not only to research outputs, but the whole research process, and posit 532 
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that all phenomics and data centers should participate in these practices. Promotion of 533 

open science and team science are synergistic goals, both of which are essential for 534 

improving our knowledge and scientific rigor. 535 

Third, we call for mobilizing open educational resources relevant to AI in phenomics that 536 

advocate digitized materials offered freely and openly for educators, students, and 537 

interested learners worldwide, including developing countries to use and reuse for 538 

teaching, learning, training, and research. Open education holds great promise to create 539 

knowledge and put it to use, promote content quality through sharing of materials for 540 

feedback and continuous improvement, and achieve competencies. 541 

Fourth, we propose the development of socially and ethically responsible AI in 542 

phenomics by reforming curricula and embedding bioethicists into the technology 543 

development team. Ethical concerns around AI regarding handling of data, data bias, 544 

transparency, explainability, and responsibility, have prompted us to consider how AI 545 

technology can be designed, implemented, deployed, and monitored post deployment in 546 

an ethical manner. Embedding bioethicists into the AI development team can ensure 547 

that developers be practically assisted in anticipating, identifying, and addressing ethical 548 

issues through critical ethical reasoning and bioethical decision-making. Universities 549 

across the US and Europe have recently joined the effort to develop socially responsible 550 

AI by reforming curricula. For example, Harvard University initiated an ‘Embedded 551 

EthiCS’ curriculum that integrates ethical issues into the core computer science 552 

curriculum. We advocate that universities around the world implement similar 553 

approaches to empower students and early-career scientists to think ethically as they 554 

develop algorithms and build AI systems, in their studies, in their new business 555 
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ventures, and as they pursue technical work in their careers. These free and open 556 

courses should be taught by interdisciplinary teams of computer scientists, social 557 

scientists, and bioethicists. 558 

We encourage the scientific community to embrace a growth mindset regarding team 559 

science, open science, open education, and embedded ethics, which altogether can be 560 

harnessed to create extraordinary phenomic resources that benefit all. The rewards to 561 

these efforts come from investments of energy, time, and action. 562 

Concluding remarks and future perspectives 563 

We are experiencing an unprecedented time where the availability of vast amounts of 564 

phenomic data, combined with advances in AI, is providing the opportunity to 565 

turbocharge the data to insight journey. This opportunity is an incentive to not only 566 

design and implement effective and reliable data management strategies but also to 567 

improve visibility, accessibility, and usability of publicly available datasets that can 568 

support research and innovation in plant digital phenomics. 569 

Although AI has demonstrated impressive potential in phenomics, risks due to bias and 570 

lack of transparency of models should be considered. Reducing these risks entails 571 

multidisciplinary science and technology teams working together. The involvement of 572 

plant scientists, data scientists, and IS scientists during the complete lifecycle of AI 573 

analysis is integral to ensure explainability and to identify bias in the predictive models. 574 

Interpretable by design models can potentially be leveraged to mitigate bias and provide 575 

transparency into the decision-making process. 576 
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In the past, AI research focused on a one-way interaction, from AI to humans; today, 577 

human-centric X-AI aims to enable bidirectional interaction so that human intelligence 578 

and AI are brought together to collectively achieve superior results and continuously 579 

improve by learning from each other. Human-centric X-AI will have an extraordinary 580 

impact on phenomics in the near future, and we should do all we can to ensure that it is 581 

designed, implemented, deployed, and regulated in a way that maximizes benefits for 582 

breeders, farmers, and consumers. In this regard, the academic and AI communities 583 

should ensure that computational phenomics, in addition to social and ethical analysis, 584 

are integrated into plant science curriculum as a step toward this goal (see Outstanding 585 

Questions). 586 

Acknowledgements 587 

The authors are grateful to the editor and three anonymous reviewers for their 588 

constructive and insightful comments which greatly helped improve the manuscript. 589 

Partial support for this work was provided by the EU FP7 project WATBIO, grant no. 590 

311929; the EU H2020 project EMPHASIS-PREP and its Italian node, PHEN-ITALY, 591 

grant no. 739514; the Italian Ministry of University and Research Brain Gain 592 

Professorship to A.L.H; the Center for Bioenergy Innovation, a U.S. Department of 593 

Energy (DOE) Bioenergy Research Center, the Plant Microbe Interface SFA, and the 594 

integrated Pennycress Resilience Project, all supported by the Biological and 595 

Environmental Research in the DOE Office of Science; the Oak Ridge Leadership 596 

Computing Facility, a DOE Office of Science User Facility supported under Contract 597 

DE-AC05-00OR22725; and the DOE, Laboratory Directed Research and Development 598 

funding ORNL AI Initiative ProjectID 10875 at the Oak Ridge National Laboratory. 599 



28 

Resources 600 
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Figure legends 973 

Figure 1. Phenomics platforms and sensors for high-throughput plant phenotyping in 974 

controlled environments and field conditions: collecting relevant data from a wide range 975 

of sources. A network of comprehensive automated weather stations collects hourly 976 
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weather and soil data, including, among others, rainfall, air temperature, solar radiation, 977 

relative humidity, and soil moisture and temperature. Varying phenotyping scales allow 978 

for precise and consistent monitoring of individual plants, plots, and fields. Ground-979 

based and aerial platforms can mount a variety of cameras and sensors for non-980 

invasive, high-throughput (HTP) phenotyping: visible light camera for RGB imaging; 981 

LiDAR sensor and 3D laser scanners for 3D imaging; multispectral cameras and 982 

hyperspectral sensors for spectral imaging; TIR cameras for thermal imaging; and 983 

chlorophyll fluorescence sensor for chlorophyll fluorescence imaging. Automated and 984 

environmentally controlled platforms, growth chambers, and multifunction printers can 985 

be used for HTP in controlled environments. Root phenotyping in the field can be 986 

invasive (e.g., shovelomics and its automation with root excavating robots); minimally 987 

invasive (e.g., minirhizotrons); or non-invasive (e.g., ERT, electrical capacitance, GPR 988 

mapping, and electromagnetic inductance mapping). Field deployable linear X-ray CT 989 

cart, and handheld X-ray fluorescence elemental mapping are being explored for non-990 

invasive field root phenotyping. Multispectral, hyperspectral, RGB, and EIT imaging can 991 

be used to phenotype roots in soil-filled rhizotrons (rhizoboxes) in controlled 992 

environments. Similarly, NMR, X-ray CT, and PET imaging can be used to phenotype 993 

roots in soil-filled pots. RhizoTubes, which are cylindrical rhizotrons, allow full 994 

visualization of the root system of a single or up to six plants simultaneously. The 995 

RhizoCab is designed to take images of the entire root systems of plants growing in 996 

RhizoTubes. These platforms and sensing technologies are generating a massive 997 

amount of data, which creates a need for proper data management and processing – 998 

the first step of the data life cycle in digital phenomics (Figure 2). Abbreviations: EIT, 999 



47 

electrical impedance tomography; ERT, electrical resistance tomography; GPR, ground 1000 

penetrating radar; LiDAR, light detection and ranging; NMR, nuclear magnetic 1001 

resonance; PET, positron emission tomography; RGB, red–green–blue; TIR, thermal 1002 

infrared; UAVs, unmanned aerial vehicles; X-ray CT, X-ray computed tomography. 1003 

Figure 2. Data architecture blueprint to drive human-centric explainable artificial 1004 

intelligence (X-AI) innovation. Phenomics data can be structured, semistructured, or 1005 

unstructured. Structured (e.g., spreadsheet files) data (blue line) are typically ‘at-rest’, 1006 

transformed into rows and columns, and loaded into relational databases in data 1007 

warehouses using a process known as ETL. Semistructured (e.g., extensible markup 1008 

language files) and unstructured (e.g., flat files) data (red line) are streamed ‘in-motion’, 1009 

loaded into non-relational databases, and stored in data lakes in their raw form; their 1010 

transformation occurs on-demand using a process known as ELT. As ELT loads data 1011 

immediately, it prevents any slowdown that often occurs at the transformation step, and 1012 

thus, enables near real-time analytics for fast and practical decision-making. Whether 1013 

ETL or ELT is used, data warehouses and data lakes store data as matrices, cubes, 1014 

polytopes, or distributed in memory. A well-designed data architecture results in higher-1015 

quality phenomic datasets that allow plant scientists to ask biological questions and to 1016 

devise data-driven analytics, searching for answers. Abbreviations: ELT, extract, load, 1017 

transform; ETL, extract, transform, load. 1018 

Figure 3. Technology infrastructure to support human-centric explainable artificial 1019 

intelligence (X-AI). The technology infrastructure consists of the hardware, network flow, 1020 

software frameworks, and programming languages that enable data transmission, 1021 

transformation, storage, access, and analysis. (A) Computing hardware supporting data 1022 
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analysis. Pre-exascale supercomputers (e.g., University of Waterloo’s Graham, and 1023 

Lawrence Livermore National Laboratory's Sierra) reach a performance of a million 1024 

billion FLOPS. With a similar hardware architecture but an increased number of CPUs 1025 

and GPUs, exascale supercomputers (e.g., Oak Ridge National Laboratory’s Summit 1026 

and Frontier) reach a billion billion FLOPS and can deliver higher performance in 1027 

pattern searching in phenomic big data, and thus, speeding up crop design. Quantum 1028 

computers (e.g., International Business Machines’ System One and Quantinuum's H1-1029 

2) represent a new paradigm in computation that leverages the fundamental principles 1030 

of quantum mechanics to perform calculations. They employ quantum bits (qubits) that 1031 

can be entangled, giving them the ability to manipulate vast amounts of data with few 1032 

operations, and thus, the capacity to solve problems polynomially faster than classical 1033 

computers (i.e., pre-exascale and exascale supercomputers) to ultimately design faster, 1034 

better crops. Researchers can simulate quantum circuits on classical computers using 1035 

free and open-source software development kits such as Cirq or Qiskit, and the 1036 

cuQuantum software library to leverage the power of GPUs and parallel computing to 1037 

perform faster calculations. Examples of classical and quantum computers are 1038 

compared based on their peak performance that is the theoretical highest processing 1039 

power they can reach. For classical computers, the LINPACK benchmark tests the 1040 

performance in double precision (64-bit) compute capabilities while HPL-AI scores 1041 

performance based on mixed precision (16- and 32-bit). As quantum computers use 1042 

QPUs to manipulate the quantum states of qubits to perform computations, their 1043 

performance is measured using QV. (B) Network flow to enable high-throughput access 1044 

to and sharing of phenomic datasets. Requests coming from the wide area network are 1045 
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forwarded through a router to one of two paths: (i) the data query and browse path (red 1046 

line) where requests to browse or search phenomic datasets are filtered through a 1047 

firewall and processed by the hosting server; and (ii) the data transfer path (green line) 1048 

where requests to download or upload phenomic datasets are inspected in the DMZ for 1049 

access control, and are forwarded to the transfer nodes (typically Linux servers) to 1050 

reach the filesystem where data can be transformed before or after storage using ETL 1051 

or ELT, respectively (see Figure 2). (C, D) Representative free and open-source 1052 

software frameworks and their supported programming languages used to implement AI 1053 

algorithms. Abbreviations: CPU, central processing unit; ELT, extract, load, transform; 1054 

ETL, extract, transform, load; FLOPS, floating-point operations per second; GPU, 1055 

graphics processing unit; HPL-AI, high performance LINPACK for accelerator 1056 

introspection; LINPACK, linear equations software package; PB, petabyte; QPU, 1057 

quantum processing unit; Qubit, quantum bit; QV, quantum volume. 1058 

Figure 4. Artificial intelligence (AI) architecture design to unleash the power of human-1059 

centric explainable AI (X-AI). (A) Representative AI algorithms that are used for AI tasks 1060 

in digital phenomics including classification and regression (supervised learning), and 1061 

clustering and dimensionality reduction (unsupervised learning). Reinforcement learning 1062 

algorithms can be applied to search optimal architecture designs and improve their 1063 

performance. (B) Representative AI algorithm design approaches and methods, a 1064 

higher level of abstraction that help scientists in their efforts to design and implement 1065 

novel AI algorithms to answer complex biological questions. The knowledge-based AI 1066 

approach represents human expert knowledge as a collection of rules to form a 1067 

knowledge base that is applied to solve a specific problem. It offers a consistent answer 1068 
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for a repetitive problem and its decisions are explainable. It can be implemented using 1069 

rule-based methods. The Data-driven AI approach discovers connections and 1070 

correlations automatically in a large amount of data and learns a black box model. It can 1071 

be implemented using various methods including CNN, ensemble, or statistical 1072 

methods, among others. The Informed AI approach combines knowledge-based AI with 1073 

data-driven AI by leveraging human knowledge with knowledge acquired from data to 1074 

make faster, more accurate decisions. It can be implemented using ensemble or rule-1075 

based methods. Finally, X-AI approaches provide meaningful explanations of decisions 1076 

made by X-AI models to humans through a decipherable decision-making process. 1077 

They allow the monitoring of inputs and outputs with the purpose of verifying X-AI 1078 

models’ adherence to ethical and socio-legal values by: (i) opening the black box of 1079 

data-driven or informed AI models using ensemble methods; or (ii) designing new, 1080 

transparent glass box algorithms that are interpretable by design using ensemble or 1081 

CNN methods. Abbreviations: CNN, convolutional neural network; DBSCAN, density-1082 

based spatial clustering of applications with noise; DNN, deep neural network; GAN, 1083 

generative adversarial network; GMM, Gaussian mixture model; HMM, hidden Markov 1084 

model; KNN, k-nearest neighbors; NN, neural network; PCA, principal component 1085 

analysis; RNN, recurrent neural network; RF, random forest; SAE, sparse autoencoder; 1086 

SARSA, state–action–reward–state–action; SSAE, stacked SAE; SVM, support vector 1087 

machine. 1088 

Figure 5. Cultivating conditions for explainable artificial intelligence (X-AI) to flourish in 1089 

plant digital phenomics. Data preprocessing prepares input data for X-AI algorithms: 1090 

descriptive data analysis provides statistical summaries about a dataset in order to spot 1091 
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anomalies; data annotation and standardization is done by labeling and adding relevant, 1092 

structured information about the data such as its source and other details known as 1093 

metadata; and feature engineering uses existing features to create new ones while 1094 

feature selection extracts relevant features from the complete set of features in a 1095 

dataset, increasing the predictive precision of learning algorithms. X-AI can be achieved 1096 

by either opening the black box or designing a transparent glass box. X-AI can be 1097 

interrogated to understand why a decision has been made, keeping human-in-the-loop 1098 

(HITL) of such decision-making, and allowing a two-way transfer of knowledge where on 1099 

the one hand, experts assist in the training of X-AI and on the other hand, explanations 1100 

can be used to generate scientific hypotheses that can result in new discoveries. An X-1101 

AI that takes into account the requirements of all stakeholders interacting with it will 1102 

drive successful adoption among agricultural technopreneurs, plant biologists, 1103 

policymakers, and funders. This will help bridge the gap between science, policy, 1104 

embedded ethics, and entrepreneurship, allowing for responsible TT, and leading to 1105 

technological, regulatory, and social and ethical outcomes. Abbreviations: AI, artificial 1106 

intelligence; CNN, convolutional neural network; DeconvNet, deconvolution network; 1107 

DeepLift, deep learning important features; FAIR, findable, accessible, interoperable, 1108 

reusable; IPP, intellectual property protection; LIME, local interpretable model-agnostic 1109 

explanations; SHAP, Shapley additive explanation; TT, technology transfer. 1110 

Figure 6. Planning, training, and interpreting an explainable artificial intelligence (X-AI)-1111 

based analysis in plant digital phenomics require careful consideration at each stage of 1112 

the analysis. This figure sheds light on all the elements of designing such a workflow 1113 

using cassava leaf disease classification task as an example. For data preparation, (i) a 1114 
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dataset shared on Kaggle by the AI lab at Makerere University was used for analysis; 1115 

(ii) data cleaning was carried out to eliminate outliers and mislabeled images; (iii) the 1116 

dataset was randomly split for training, validation, and testing; (iv) another shared 1117 

version of the dataset with images cropped to leaf boundaries using a trained YOLO 1118 

model was used to minimize noise in training images; and (v) the training dataset was 1119 

augmented and balanced by oversampling, creating random transformations to image 1120 

geometries. An alternative solution to oversampling is synthesizing leaf images; 1121 

OpenCV can be used to segment leaves to train a deep convolutional generative 1122 

adversarial network (DCGAN) to generate synthetic data. ‘This looks like that’ 1123 

interpretable by design algorithm, implemented in Python and PyTorch was carefully 1124 

chosen for the classification task; its training time was approximated and compared on 1125 

different hardware, showing the advantages of GPUs over CPUs and exascale over 1126 

pre-exascale supercomputers. However, increasing the number of GPUs comes at the 1127 

price of increased network communication and input-output (I/O) operations to 1128 

synchronize the model over cluster nodes. Such overheads can cause a delay in the 1129 

training time. For example, while the algorithm is expected to complete 1000 training 1130 

epochs in 31 hours using 26 Nvidia Tesla V100 GPUs, it is still expected to take an 1131 

approximation of eight hours using the full power of Summit supercomputer (27,649 1132 

GPUs). ‘This looks like that’ algorithm uses transfer learning to import convolutional 1133 

layers from pre-trained models and during training, the prototype layer extracts parts of 1134 

training images (prototypes) and learns a similarity metric between them; the final class 1135 

prediction is based on the weighted sum of similarities between the input and 1136 

prototypes. For some prototypes, the nearest image patches come from different 1137 
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classes, often corresponding to a background patch, and thus should be pruned. For 1138 

interpretation, the model tries to find evidence for a test image to belong to a specific 1139 

class, marking activated patches by bounding boxes. While heatmaps show which part 1140 

of the image is similar to a prototype, the confusion matrix illustrates the percentage of 1141 

images of a true class classified into the class indicated by the predicted class column, 1142 

indicating an overall accuracy of 88.7% after 240 training epochs. Abbreviations: CPU, 1143 

central processing unit; DenseNet, dense convolutional network; GPU, graphics 1144 

processing unit; OpenCV, open source computer vision library; ResNet, residual 1145 

network; VGG, visual geometry group; YOLO, you only look once.1146 
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Table 1. Publicly available global datasets and their characteristics as valuable resources for plant digital phenomics researcha,b 1147 

Dataset Country of 
origin 

Plant speciesc Plant 
organ 
systems 

No. of 
images 

Platform Sensors Image 
annotation 
typesd 

Potential 
applications 

Access 
typee 

Data access 
details 

Data PIDf Link to dataset File 
formatg 

Refs. 

Supporting data for 
"deep machine 
learning provides 
state-of-the-art 
performance in 
image-based plant 
phenotyping" 

UK Triticum aestivum Root 2697 Controlled 
environment 
stationary 
platform 

RGB Point 
annotations of 
root tips, leaf 
tips, leaf bases, 
ear tips, ear 
bases 

Identification and 
localization of root 
tips, leaf, and 
wheat ear tips 

OA Downloadable tar 
file 

http://doi.o
rg/10.5524
/100343 

http://gigadb.or
g/dataset/1003
43 

JPG [109] 

Shoot 1664 

Wheat 2017 UK T. aestivum Shoot, 
spikes 

520 Controlled 
environment 
stationary 
platform 

RGB Point 
annotations of 
spikelet, base 
and tip of each 
ear 

Localization and 
counting of wheat 
spikes and 
spikelets 

OA Register for link 
to download zip 
file 

− https://plantima
ges.nottingham.
ac.uk/ 

JPG [110] 

Global wheat head 
detection (GWHD) 

Japan, France, 
Canada, UK, 
Switzerland, 
China, 
Australia 

Wheat Shoot 1094 Manned mobile 
platform 

RGB Bounding boxes Detection and 
localization of 
wheat heads 

OA Downloadable 
zip file 

http://doi.o
rg/10.5281
/zenodo.4
298502 

https://zenodo.o
rg/record/42985
02 

PNG [111] 

678 Handheld 
visible light 
camera in the 
field 

447 Rail-based field 
automated 
gantry 

Global wheat head 
detection (GWHD) 
2021 

Japan, France, 
Canada, UK, 
Switzerland, 
China, 
Australia, 
USA, Mexico, 
Republic of 
Sudan, 
Norway, 
Belgium 

Wheat Shoot 2307 Manned mobile 
platform 

RGB Bounding boxes Detection and 
localization of 
wheat heads 

OA Downloadable 
zip file 

https://doi.
org/10.528
1/zenodo.
5092309 

https://zenodo.o
rg/record/50923
09 

PNG [112] 

2684 Handheld 
visible light 
camera in the 
field 

1429 Rail-based field 
automated 
gantry 
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Supporting data for 
"high throughput 
phenotyping with 
deep learning gives 
insight into the 
genetic architecture 
of flowering time in 
wheat" 

KS - USA Wheat Shoot >400000 Ground-based 
field robot 

RGB Image-level 
annotations 

Estimation of plant 
morphology and 
developmental 
stages 

OA Downloadable 
zip file 

http://dx.d
oi.org/10.5
524/10056
6 

http://gigadb.or
g/dataset/view/i
d/100566 

JPEG [113] 

RootNav 2.0 UK T. aestivum Root 3630 Controlled 
environment 
stationary 
platform 

RGB Segmentation 
masks, image-
level annotations 

Root segmentation 
and species 
classification 

OA Download each 
image separately 

http://doi.o
rg/10.5524
/100651 

http://gigadb.or
g/dataset/1006
51 

JPG [15] 

Brassica napus 120 NIR PNG 

Arabidopsis 
thaliana 

277 

Cosegmentation for 
plant phenotyping 
(CosegPP) 

USA Buckwheat  Shoot 56 Controlled 
environment 
stationary 
platform 

RGB Segmentation 
masks 

Plant segmentation OA Downloadable 
zip file 

https://doi.
org/10.528
1/zenodo.
5117176 

https://zenodo.o
rg/record/51171
76 

PNG [114] 

56 IR 

56 CF 

Sunflower 104 RGB  

112 IR 

112 CF 

Aberystwyth leaf 
evaluation dataset 

UK A. thaliana Shoot 56 Controlled 
environment 
stationary 
platform 

RGB Semantic 
segmentation 

Plant and leaf 
segmentation 

OA Downloadable 
zip file 

http://doi.o
rg/10.5281
/zenodo.1
68158 

https://zenodo.o
rg/record/16815
8 

PNG  

Deep phenotyping 
dataset 

Australia A. thaliana Shoot 2134 Controlled 
environment 
stationary 
platform 

RGB Image-level 
annotations 

Genotype 
classification 

OA Downloadable 
zip file 

− https://figshare.
com/s/e18a978
267675059578f 

JPG [115] 

Supporting data for 
"ChronoRoot: high-
throughput 
phenotyping by deep 
segmentation 
networks reveals 
novel temporal 
parameters of plant 
root system 
architecture" 

France A. thaliana Root 331 Controlled 
environment 
stationary 
platform 

RGB Segmentation 
masks 

Root segmentation OA Downloadable tar 
file 

http://dx.d
oi.org/10.5
524/10091
1 

http://dx.doi.org
/10.5524/10091
1 

PNG [16] 

Plant phenotyping 
datasets 

Italy A. thaliana Shoot 6287 GARNICS 
controlled 
environment 
robot gardener 

RGB Segmentation 
masks, bounding 
boxes, point 
annotations of 

Plant and leaf 
segmentation, leaf 
counting, species 
classification 

OA Fill in a form and 
get access and 
download a zip 
file 

− https://www.pla
nt-
phenotyping.or
g/datasets-

HDF5 [116] 
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Germany Nicotiana tabacum 165120 leaf centers home 

Multi-modality plant 
imagery database 
(MSU-PID) 

MI - USA A. thaliana Shoot 576 Controlled 
environment 
stationary 
platform 

RGB, 
RGB-
depth, 
CF, NIRh 

Polygon and 
point annotations 
of leaves and 
leaf tips 

Leaf segmentation, 
counting, 
alignment, and 
tracking 

OA Downloadable 
zip file 

− http://cvlab.cse.
msu.edu/multi-
modality-
imagery-
database-msu-
pid.html 

PNG [117] 

Phaseolus vulgaris 175 

Plant segmentation Hungary A. thaliana Shoot 16i Computer 
scanner 

RGB Segmentation 
masks 

Segmentation and 
length 
determination of 
hypocotyl 

OA Downloadable 
zip file 

− https://www.kag
gle.com/tivadar
danka/plant-
segmentation 

PNG [118] 

Brachypodium 
distachyon 

8i Handheld 
visible light 
camera in a 
controlled 
environment 

Sinapis alba Shoot and 
root 

15i 

Eschikon plant 
stress phenotyping 
dataset 

Switzerland Beta vulgaris Shoot 496 Controlled 
environment 
stationary 
platform 

HS (NIR) Image-level 
annotations, 
bounding boxes 

Classification of 
biotic and abiotic 
stress 

OA Downloadable 
zip file 

− https://projects.
asl.ethz.ch/data
sets/doku.php?i
d=2018plantstr
essphenotyping 

PNG [119] 

992 RGB-
depth 

496 RGB 

Remote sensing 
2018 weed map 
dataset 

Switzerland, 
Germany 

B. vulgaris, weed Shoot 18746 UAV MS (NIR), 
4 and 5 
bandsj 

Semantic 
segmentation 

Identification and 
segmentation of 
crops and weeds 

OA Downloadable 
zip file 

− https://projects.
asl.ethz.ch/data
sets/doku.php?i
d=weedmap:re
motesensing20
18weedmap 

TIF [120] 

Sugar beets 2016 Germany Sugar beet, weed Shoot 300 Ground-based 
field robot 

RGB, 
RGB-
depth, 
MS (NIR), 
4 bandsh 

Semantic 
segmentation 

Identification and 
segmentation of 
crops and weeds 

OA Download each 
image separately 

− https://www.ipb.
uni-
bonn.de/datase
ts_IJRR2017/ 

PNG [121] 

Images of soybean 
leaves 

Brazil Soybean An intact 
leaf, shoot 

6410 Handheld 
visible light 
camera in the 
field, UAV 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Downloadable 
zip file 

https://doi.
org/10.176
32/bycbh7
3438.1 

https://data.me
ndeley.com/dat
asets/bycbh734
38/1 

JPG [122] 

Data for: weed 
detection in soybean 
crops using 
ConvNets 

Brazil Soybean, weed Shoot 400 UAV RGB Segmentation 
masks 

Identification and 
segmentation of 
crops and weeds 

OA Downloadable 
zip file 

https://doi.
org/10.176
32/3fmjm7
ncc6.2 

https://data.me
ndeley.com/dat
asets/3fmjm7nc
c6/2 

JPEG [123] 

Crop vs weed 
discrimination 
dataset 

UK Onion, weed Shoot 20k Manned mobile 
platform 

RGB, MS 
(NIR), 2 
bandsh 

Semantic 
segmentation 

Identification and 
segmentation of 
crops and weeds 

OA Downloadable 
zip file 

− https://lcas.linco
ln.ac.uk/wp/res
earch/data-
sets-
software/crop-
vs-weed-
discrimination-
dataset/ 

PNG [124] 

Carrot, weed 20k 

Crop/weed field 
image dataset 
(CWFID) 

Germany Carrot, weed Shoot 60 Ground-based 
field robot 

MS (NIR), 
2 bands 

Segmentation 
masks, semantic 
segmentation 

Identification and 
segmentation of 
crops and weeds 

OA Downloadable 
zip file 

− https://github.co
m/cwfid/dataset 

PNG [125] 

Table 1. (continued) 
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Cassava leaf 
disease classification 

Uganda Manihot esculenta Shoot 9436 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Create Kaggle 
account to 
download zip file 

− https://www.kag
gle.com/c/cass
ava-
disease/data 

JPG [96] 

Cassava disease 
classification 

Cassava 21397 https://www.kag
gle.com/c/cass
ava-leaf-
disease-
classification/da
ta 

 

Cassava root cross-
section images 

Uganda, 
Tanzania 

Cassava Root 10052 Handheld 
visible light 
camera in the 
field 

RGB Semantic 
segmentation 

Quantification of 
root damage 

OA Downloadable 
zip file 

https://doi.
org/10.176
32/gvp7vs
hvnh.3 

https://data.me
ndeley.com/dat
asets/gvp7vshv
nh/3 

JPG [126] 

Plant pathology 2020 
- FGVC7 

NY - USA Apple An intact 
leaf 

3651 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Create Kaggle 
account to 
download zip file 

− https://www.kag
gle.com/c/plant-
pathology-
2020-
fgvc7/data 

JPG [127] 

Plant pathology 2021 
– FGVC8 

23000 https://www.kag
gle.com/c/plant-
pathology-
2021-fgvc8 

 

LFuji-air dataset Spain Malus domestica Shoot 88 Ground-based 
field robot 

LiDAR Bounding boxes Identification and 
localization of 
fruits, estimation of 
yield, canopy 
geometric 
characterization 

OA Downloadable 
zip file 

− https://repositori
.udl.cat/handle/
10459.1/68782 

MAT [27,1
28] 

MinneApple MN - USA Apple Shoot 1000 Handheld 
visible light 
camera in the 
field 

RGB Polygon 
annotations 

Identification, 
segmentation, and 
counting of fruits 

OA Downloadable tar 
file 

http://doi.o
rg/10.1302
0/8ecp-
3r13 

https://conserva
ncy.umn.edu/ha
ndle/11299/206
575 

JPG [129] 

Data from: multi-
species fruit flower 
detection using a 
refined semantic 
segmentation 
network 

WV - USA Apple Shoot 18i Manned mobile 
platform 

RGB Segmentation 
masks, image-
level annotations 

Classification of 
species from fruit 
flowers 

OA Downloadable 
zip file 

http://doi.o
rg/10.1548
2/USDA.A
DC/14234
66 

https://data.nal.
usda.gov/datas
et/data-multi-
species-fruit-
flower-
detection-using-
refined-
semantic-
segmentation-
network 

JPG [130] 

130 Handheld 
visible light 
camera in the 
field 

Peach 24i 

Pear 18i 

DiaMOS plant 
dataset: a dataset for 
diagnosis and 
monitoring plant 
disease 

Italy Pear Shoot 3505 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Downloadable 
zip file 

https://doi.
org/10.528
1/zenodo.
5557313 

https://zenodo.o
rg/record/55573
13#.Yv5JrXZBy
Mo 

JPG [131] 

PlantaeK: A leaf 
database of native 
plants of Jammu and 
Kashmir 

Jammu, 
Kashmir 

Apple A single 
detached 
leaf 

351 Handheld 
visible light 
camera in a 
controlled 
environment 

RGB Image-level 
annotations 

Identification of 
biotic stress, 
classification of 
plant species 

OA Downloadable 
zip file 

http://doi.o
rg/10.1763
2/t6j2h22j
px.1 

https://data.me
ndeley.com/dat
asets/t6j2h22jp
x/1 

JPG  

Apricot 270 

Cherry 212 

Cranberry 212 
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Grapevine 171 

Peach 331 

Pear 228 

Walnut 378 

Data for: 
identification of plant 
leaf diseases using a 
9-layer deep 
convolutional neural 
network 

FL - PA - NY - 
USA 

Multiple cropsl A single 
detached 
leaf 

54305 Handheld 
visible light 
camera in a 
controlled 
environment 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Downloadable 
zip file 

http://doi.o
rg/10.1763
2/tywbtsjrj
v.1 

https://data.me
ndeley.com/dat
asets/tywbtsjrjv/
1 

JPG [13] 

ACFR orchard fruit 
dataset 

Australia Apple Shoot 1120 Ground-based 
field robot 

RGB Bounding boxes, 
circle 
annotations 

Identification and 
classification of 
fruits 

OA Downloadable 
zip file 

− http://data.acfr.
usyd.edu.au/ag/
treecrops/2016-
multifruit/ 

PNG [132] 

Almond 620 

Mango 1964 

Dataset for pest 
classification in 
Mango farms 

Indonesia Mango An intact 
leaf 

510 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Classification of 
pest 

OA Downloadable 
zip file 

https://doi.
org/10.176
32/94jf97jz
c8.1 

https://data.me
ndeley.com/dat
asets/94jf97jzc
8/1 

JPG [133] 

Berries in vineyards-
color (BIVcolor) 

Germany Vitis vinifera Shoot 500 Ground-based 
field robot 

RGB Image-level 
annotations 

Detection of grape 
size and color 

OA Downloadable 
zip file 

http://doi.o
rg/10.5073
/jki-
data.2015.
1 

https://www.ope
nagrar.de/recei
ve/openagrar_
mods_0002192
5 

TIF [134] 

Supporting data for 
"a novel ground truth 
multispectral image 
dataset with weight, 
anthocyanins and 
Brix index measures 
of grape berries 
tested for its utility in 
machine learning 
pipelines" 

Spain V. vinifera Fruit 1283 Controlled 
environment 
stationary 
platform 

MS Image-level 
annotations 

Prediction of grape 
variety 

OA Downloadable 
zip file 

http://dx.d
oi.org/10.5
524/10222
0 

http://gigadb.or
g/dataset/1022
20 

TIF [135] 

ESCA-dataset Italy Grapevine Shoot 1770 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Downloadable 
zip file 

http://doi.o
rg/10.1763
2/89cnxc5
8kj.1 

https://data.me
ndeley.com/dat
asets/89cnxc58
kj/1 

JPG [136] 

An annotated image 
dataset of downy 
mildew symptoms on 
Merlot grape variety 

France Grapevine Shoot 99 Ground-based 
field robot 

RGB Semantic 
segmentation 

Identification of 
downy mildew 

OA Downloadable 
zip file 

− https://ars.els-
cdn.com/conten
t/image/1-s2.0-
S23523409210
05345-
mmc1.zip 

JPEG [137] 

The MangoNet 
semantic dataset 

India Mangifera indica Shoot 49i Handheld 
visible light 
camera in the 
field 

RGB Semantic 
segmentation 

Identification and 
counting of fruits 

OA Downloadable 
zip file 

− https://github.co
m/avadesh02/M
angoNet-
Semantic-
Dataset 

JPG [138] 
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Leaves: India’s most 
famous basil plant 
leaves quality 
dataset 

India Basil Shoot 1131 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Download each 
image separately 

https://dx.
doi.org/10.
21227/a4f
6-4413 

https://ieee-
dataport.org/op
en-
access/leaves-
india%E2%80%
99s-most-
famous-basil-
plant-leaves-
quality-dataset 

JPG  

A database of leaf 
images: practice 
towards plant 
conservation with 
plant pathology 

Jammu, 
Kashmir 

Multiple speciesm A single 
detached 
leaf 

4503 Handheld 
visible light 
camera in a 
controlled 
environment 

RGB Image-level 
annotations 

Identification of 
biotic stress 

OA Downloadable 
zip file 

http://doi.o
rg/10.1763
2/hb74ynkj
cn.4 

https://data.me
ndeley.com/dat
asets/hb74ynkj
cn/4 

JPG [139] 

A citrus fruits and 
leaves dataset for 
detection and 
classification of 
citrus diseases 
through machine 
learning 

Pakistan Citrus Shoot 150 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Downloadable 
zip file 

http://doi.o
rg/10.1763
2/3f83gxm
v57.2 

https://data.me
ndeley.com/dat
asets/3f83gxmv
57/2 

JPG [140,
141] 

A single 
detached 
leaf 

609 

Supporting data for 
"morphometric 
analysis of Passiflora 
leaves: the 
relationship between 
landmarks of the 
vasculature and 
elliptical Fourier 
descriptors of the 
blade" 

Brazil 40 Passiflora 
speciesn 

A single 
detached 
leaf 

5767 Multifunction 
printer 

RGB Point 
annotations of 
leaf edges 

Classification of 
species 

OA Download each 
image separately 

http://doi.o
rg/10.5524
/100251 

http://gigadb.or
g/dataset/1002
51 

TIF [142,
143] 

QuinceSet: dataset 
of annotated 
Japanese quince 
images for object 
detection 

Latvia Chaenomeles 
japonica 

Shoot 1515 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations, 
bounding boxes 

Identification and 
localization of fruits 

OA Downloadable 
zip file 

https://doi.
org/10.528
1/zenodo.
6402251 

https://zenodo.o
rg/record/64022
51 

JPG [144] 

Thermal images - 
diseased & healthy 
leaves 

India Oryza sativa An intact 
leaf 

636 Handheld TIR 
camera in the 
field 

TIR Image-level 
annotations 

Classification of 
biotic stress 

OA Create Kaggle 
account to 
download zip file 

− https://www.kag
gle.com/sujarad
ha/thermal-
images-
diseased-
healthy-leaves-
paddy 

JPG  

Date fruit dataset Saudi Arabia Phoenix dactylifera Shoot 8079 Handheld 
visible light 
camera in the 

RGB Image-level 
annotations 

Detection and 
maturity 
classification of 

OA Create IEEE 
DataPort account 
to download zip 

http://doi.o
rg/10.2122
7/x46j-

https://ieee-
dataport.org/op
en-access/date-

JPG [145,
146] 
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Fruit bunch 152 field fruits file sk98 fruit-dataset-
automated-
harvesting-and-
visual-yield-
estimation Date fruit 256 

Image set for deep 
learning: field 
images of maize 
annotated with 
disease symptoms 

NY - USA Zea mays Shoot 7669 UAV RGB Line and spline 
annotation of 
lesions 

Identification of 
northern leaf blight 
infected plants 

OA Downloadable 
zip file 

− https://osf.io/p6
7rz 

JPG [147] 

10533 Handheld 
visible light 
camera in the 
field 

Vegetable crops 
dataset for proximal 
sensing  

France Z. mays Shoot 1065 Manned mobile 
platform 

RGB Image-level 
annotations, 
bounding boxes, 
point annotations 

Identification and 
localization of crop 
stems 

OA Downloadable 
zip file 

https://doi.
org/10.176
32/d7kbzjr
83k.1 

https://data.me
ndeley.com/dat
asets/d7kbzjr83
k/1 

JPG [148] 

P. vulgaris 779 

Allium 
ampeloprasum 

601 

Pheno4D Germany Maize Shoot 84 Controlled 
environment 
stationary 
platform 

3D laser 
scanner 

Semantic 
segmentation 

Estimation of plant 
traits, growth 
analysis 

OA Downloadable 
zip file 

− https://www.ipb.
uni-
bonn.de/data/p
heno4d 

XYZ [149] 

Tomato 140 

JMuBEN Kenya  Arabica coffee A single 
detached 
leaf 

22591 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Downloadable 
zip file 

https://doi.
org/10.176
32/t2r6rsz
p5c.1 

https://data.me
ndeley.com/dat
asets/t2r6rszp5
c/1 

JPG [150] 

JMuBEN2 35964 https://doi.
org/10.176
32/tgv3zb
82nd.1 

https://data.me
ndeley.com/dat
asets/tgv3zb82
nd/1 

BRACOL - A 
Brazilian Arabica 
coffee leaf images 
dataset 

Brazil Arabica coffee A single 
detached 
leaf 

1747 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Downloadable 
zip file 

https://doi.
org/10.176
32/yy2k5y
8mxg.1 

https://data.me
ndeley.com/dat
asets/yy2k5y8
mxg/1 

JPG [151] 

RoCoLe: a robusta 
coffee leaf images 
dataset 

Ecuador Robusta coffee An intact 
leaf 

1560 Handheld 
visible light 
camera in the 
field 

RGB Image-level 
annotations 

Identification and 
classification of 
biotic stress 

OA Downloadable 
zip file 

https://doi.
org/10.176
32/c5yvn3
2dzg.2 

https://data.me
ndeley.com/dat
asets/c5yvn32d
zg/2 

JPG [152] 

KOMATSUNA 
dataset for instance 
segmentation, 
tracking and 
reconstruction 

Japan B. rapa Shoot 180 Controlled 
environment 
stationary 
platform 

RGB Semantic 
segmentation 

Leaf segmentation 
and plant growth 
measurement 

OA Downloadable 
zip file 

− https://limu.ait.k
yushu-
u.ac.jp/~agri/ko
matsuna 

PNG [153] 

60 RGB-
depth 

Single tree point 
clouds from 
terrestrial laser 
scanning 

Germany, OR 
- USA 

Quercus petraea Shoot 22k Terrestrial laser 
scanner 

3D laser 
scanner 

Image-level 
annotations 

Classification of 
tree species 

OA Downloadable 
zip file 

https://doi.
org/10.256
25/FOHUJ
M 

https://data.goe
ttingen-
research-
online.de/datas
et.xhtml?persist
entId=doi:10.25
625/FOHUJM 

XYZo [154] 

Fraxinus excelsior 39k 

Picea abies 158 

Pinus sylvestris 25k 

Q. rubra 100 
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aAbbreviations: ACFR, Australian center for field robotics; CF, chlorophyll fluorescence; FGVC7/8, the seventh/eight workshop on fine-grained visual categorization; GARNICS, gardening with 1148 

a cognitive system; HDF5, hierarchical data format version 5; HS, hyperspectral; JMuBEN, Jepkoech, Mugo and Benson; JPG, joint photographic experts group; LiDAR, light detection and 1149 

ranging; MAT, Matlab; MS, multispectral; MSU-PID, Michigan State University-plant imagery database; NIR, near infrared; OA, open access; PID, persistent identifier; RGB, red–green–blue; 1150 

TIF, tag image file format; TIR, thermal infrared; UAV, unmanned aerial vehicle. 1151 
bWe identified 56 publicly available global datasets and their characteristics using Google’s search engine and Google Dataset Search. The search combined terms describing various plant 1152 

organ systems, sensors, artificial intelligence (AI) techniques, as well as dataset and database. All pages for each search were systematically collated and screened. Additional datasets are 1153 

available in repositories containing large amounts of OA imaging data. Repositories such as the National Ecological Observatory Network (https://data.neonscience.org/data-1154 

products/explore), Leafsnap (http://leafsnap.com), the Institut National de la Recherche Agronomique (https://data.inrae.fr), the United States Geological Survey 1155 

(https://www.usgs.gov/products/data-and-tools/science-datasets), the National Aeronautics and Space Administration earth science data (https://earthdata.nasa.gov), the plant genomics and 1156 

phenomics research data repository (https://edal-pgp.ipk-gatersleben.de), the computer vision and biosystems signal processing group (https://vision.eng.au.dk/data-sets), the Transportation 1157 

Energy Resources from Renewable Agriculture Phenotyping Reference Platform (https://terraref.ncsa.illinois.edu/clowder), figshare (https://figshare.com), Dryad (http://datadryad.org), the 1158 

International Maize and Wheat Improvement Center (https://data.cimmyt.org) and the Arabidopsis thaliana phenotyping database (Phenopsis DB, http://bioweb.supagro.inra.fr/phenopsis) 1159 

provide datasets in downloadable zip files. Similarly, the Oak Ridge National Laboratory Distributed Active Archive (https://daac.ornl.gov/get_data/#themes) provides datasets in 1160 

downloadable zip files after registering for an account, as well as the University of Nebraska-Lincolin Plant Vision Initiative (https://plantvision.unl.edu/dataset) and the X-Plant (http://www.x-1161 

plant.org) after filling a form. Other sources such as the online database for plant image analysis software tools (https://www.quantitative-plant.org/dataset) and the registry of research data 1162 

repositories (https://www.re3data.org) are designed specifically for the discovery of datasets in various repositories. 1163 
cPlant species were reported whenever they were available in the corresponding referenced paper(s); common names were reported otherwise. 1164 
dImages of datasets with semantic segmentation annotations are completely annotated images, where a class is assigned to each pixel. 1165 
eNo datasets were excluded on the basis of access type (i.e., OA, data available on request, or OA with barriers – datasets fulfilling criteria for OA but being inaccessible because of 1166 

unpredictable reasons such as broken hyperlinks). 1167 
fData PID is a long-lasting digital reference to a dataset, such as a digital object identifier (DOI). A dash (−) indicates that no PIDs are available. DOIs for datasets can be issued automatically 1168 

by the hosting repositories (e.g., Zenodo, GigaDB, Mendeley Data, and IEEE DataPorts). As datasets should be cited to ensure credit to those who produced and curated them, we 1169 

recommend that they should include a PID and the minimum metadata suggested by DataCite (a non-profit membership organization that provides DOIs for research data) and FORCE11 (a 1170 

community of scholars, librarians, archivists, publishers and research funders), i.e., author, year, title, and repository. Data producers can be inferred based on the author contributions of the 1171 

corresponding referenced paper(s) while data curators can be inferred based on the author(s) that published the dataset to a repository. 1172 
gFile format defines the structure and encoding of the data stored in it and thus guides researchers on how to programmatically input such data to their AI algorithms. 1173 
hThe same number of images was taken with each sensor. 1174 
iDatasets containing more than one object per image (e.g., multiple hypocotyls, fruits, flowers). When segmented, each image could become hundreds of samples to train an AI algorithm. 1175 
jTwo multispectral cameras were used: a five-band RedEdge-M camera in Germany and a four-band Sequoia camera in Switzerland. 1176 
kFor datasets with small image number, transfer learning can be applied, giving an AI model a warm start by applying information learned from another previously trained model. 1177 
lCrops and their corresponding number of images: Apple, 3171; blueberry, 1502; cherry, 1906; corn, 3852; grapevine, 4062; orange, 5507; peach, 2657; pepper, 2475; potato, 2152; 1178 

raspberry, 371; soybean, 6925; strawberry, 1565; tomato, 18160. 1179 
mSpecies and their corresponding number of images: M. indica, 435; Terminalia Arjuna, 452; Alstonia Scholaris, 433; Psidium guajava, 419; Aegle marmelos, 118; Syzgium cumini, 624; 1180 

Jatropha curcas, 257; Pongamia Pinnata, 598; Ocimum basilicum, 149; Punica granatum, 559; Platanus orientalis, 223; C. limon, 236. 1181 
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nPassiflora species and their corresponding number of images: P. coriacea, 208; P. misera, 215; P. biflora, 105; P. capsularis, 118; P. micropetala, 68; P. organensis, 84; P. pohlii, 16; P. 1182 

rubra, 87; P. tricuspis, 257; P. caerulea, 99; P. cincinnata, 84; P. edmundoi, 111; P. gibertii, 192; P. hatschbachii, 132; P. kermesina, 113; P. mollissima, 69; P. setacea, 189; P. suberosa, 1183 

352; P. tenuifila, 113; P. amethystina, 119; P. foetida, 304; P. gracilis, 81; P. morifolia, 57; P. actinia, 95; P. miersii, 133; P. sidifolia, 145; P. triloba, 295; P. alata, 235; P. edulis, 119; P. 1184 

ligularis, 139; P. nitida, 62; P. racemosa, 194; P. villosa, 58; P. coccinea, 169; P. cristalina, 220; P. galbana, 161; P. malacophylla, 168; P. maliformis, 156; P. miniata, 129; P. mucronata, 116. 1185 
oA point cloud data file in XYZ format contains rows of data, each consisting of x, y, and z coordinates of a point. 1186 
pSpecies and their corresponding number of images: Ziziphus mauritiana, 1125; Lantana camara, 1064; Parkinsonia aculeata, 1031; Parthenium hysterophorus, 1022; Vachellia nilotica, 1187 

1062; Cryptostegia grandiflora, 1009; Chromolaena odorata, 1074; Stachytarpheta spp., 1016. 1188 
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Glossary 1189 

Bias: systematic errors in the ability of AI models to make correct predictions. 1190 

Compute node: a backend node used for computing in a cluster and reached via a 1191 

frontend node. 1192 

Computer cluster: a group of interconnected computers working together as a single, 1193 

integrated computing resource. 1194 

Confusion matrix: a visual representation that describes the complete performance of 1195 

an AI model, summarizing its predictions in four categories: true-positives, true-1196 

negatives, false-positives, and false-negatives. 1197 

Crowdsourced: the act of collecting data by soliciting contributions from a large group 1198 

of people rather than from traditional experiments. 1199 

Explicit knowledge: the human knowledge that can be readily assembled and passed 1200 

on by written or verbal instruction. Metadata is explicit knowledge about data. 1201 

Federated learning (FL): a collaborative AI training paradigm in which copies of a 1202 

model are distributed to devices, where data is stored, for local training, and the 1203 

resulting model weights, rather than the data, are sent back to a central server to 1204 

update the main model. 1205 

GPU-accelerated: a backend node used mainly for accelerating computing, connected 1206 

in a heterogeneous matter in a computer cluster. 1207 
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Human-in-the-loop (HITL): an approach that aims to achieve what neither a human 1208 

nor a machine can do on their own; it leverages a continuous feedback loop between 1209 

them to train, evaluate, and deploy AI models that continuously learn and improve their 1210 

prediction accuracy. 1211 

Hyperparameters: a group of variables whose values cannot be estimated from data 1212 

and are manually tweaked to determine the optimal configuration to train a specific 1213 

model (e.g., learning rate, batch size, number of training epochs). 1214 

Notebook: a web browser-based interactive computing environment that can be used 1215 

to combine software code, computational output, explanatory text, and multimedia 1216 

resources in a single document. 1217 

Parallel computing: a form of computation in which multiple compute nodes operating 1218 

simultaneously are used to solve a large problem broken into independent smaller parts 1219 

that can be processed concurrently. 1220 

Quantum bit (qubit): the quantum analogue of a classical bit; it may adopt the states 0, 1221 

1, or any possible combination of both states. 1222 

Quantum processing unit (QPU): a computational unit that leverages quantum 1223 

mechanical phenomena to manipulate information, relying on qubits. 1224 

Quantum volume (QV): a metric that measures the performance of a quantum 1225 

computer taking into account its number of qubits and error rates. 1226 
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Synthetic data: data generated artificially using AI algorithms when real data cannot be 1227 

collected in sufficient amounts. 1228 

Tacit knowledge: the know-how, skills, and intuition that live in the individual’s 1229 

experiences and are hard to impart or transfer to others. It can be shared through 1230 

advances in information and communications technology, and thus becomes explicit. 1231 

Transfer learning (TL): a technique in which an AI algorithm reuses parts of a 1232 

previously trained model on a new model to perform a different but similar task. 1233 

Trustworthiness: a quality of an AI model working reliably in ways that anyone can 1234 

trust; it should be (i) lawful, ensuring compliance with all applicable laws and 1235 

regulations; (ii) ethical, demonstrating adherence to ethical principles and values, (iii) 1236 

robust, able to deal with bias during all of its lifecycle; and (iv) explainable. 1237 

Unbalanced dataset: a dataset having certain classes contain substantially more 1238 

training examples than other classes, misleading the classifier algorithm to overlearn 1239 

the majority classes and to perform poorly in the prediction of the minority classes. 1240 



RGB imaging

TIR imaging

Chlorophyll 
fluorescence 

imaging

Spectral 
imaging

LiDAR 
sensor

Hyperspectral 
sensor

TIR camera

Chlorophyll fluorescence 
sensor

3D imaging

Multispectral 
camera

ERTRoot excavating 
robot with RGB 

imaging

Shovelomics
and imaging

Linear X-ray
CT cart

Sh
oo

t p
he

no
m

ic
s

R
oo

t p
he

no
m

ic
s

Pl
at

fo
rm

s
Se

ns
or

s

Satellite, 
minisatellite and 

cubesat

Manned aerial
vehicles

UAVsRail-based automated 
gantry

Fixed towerManned mobile 
platforms

Automated and 
environmentally 

controlled platform 
and growth 
chamber

Weather 
environmental station

Individual plant

Plot level

Field level

Electromagnetic
inductance mapping

GPR mapping

Pl
at

fo
rm

s 
an

d 
se

ns
or

s

Ground-based robots

Electrical 
capacitance

X-ray 
fluorescence 

elemental 
mapping

EIT imaging 
using a 

rhizotron 
fitted with 
electrodes

Multispectral, 
hyperspectral, 

and RGB 
imaging through
windows of soil-
filled rhizotrons 

(rhizoboxes)

RGB imaging 
through 

RhizoTubes
loaded into the 

RhizoCab
imaging 
cabinet

Invasive 
phenotyping

Minimally 
invasive 

phenotyping

Noninvasive 
phenotyping

Visible light camera

Handheld 
camera

NMR 
imaging 

through soil-
filled pots

PET 
imaging 

through soil-
filled pots

x
y

λ

X-ray CT 
imaging 

through soil-
filled pots

A
T
A

D3D laser 
scanner



Distributed 

in-memory

Polytopes

cubes

Matrices

Ask biological 

questions
Relational 

databases

Rows and 

columns

‘At-rest’ 

structured data

Non-relational 

databases

Data warehouse

Divise data-driven 

analytics

‘In-motion’ 

semistructured and 

unstructured data

ETL

Data lake

D
a
ta

 s
o

u
rc

e
s
 a

n
d

 t
y
p

e
s

ELT

Data architecture



Tensorflow Keras Python, JavaScript, C++, Java

PyTorch Python, C++, Java

scikit-learn Python

XGBoost Python, C, C++, Java, Julia, R, Ruby, Swift

Apache MXNet Python, C++, Java, Scala, Julia, Clojure, R, and Perl

Wide area 
network

Router Firewall Hosting 
server

Demitilarized 
zone

Data transfer nodeData transfer path

Query/browse path

ELT

ETL Filesystem
(data store)

(C) Software frameworks

Quantum computerExascale supercomputerPre-exascale supercomputer

Features

Performance 
measures

Benefits

Storage capacity (e.g., 
Summit: 250 PB; 
Frontier: 700 PB)

Classical bits 
(0 or 1)

Floor space (e.g., Summit:  520 m2; 
Frontier:  372 m2)

CPUs (e.g., Summit: 
9,216; Frontier: 9,408)

GPUs (e.g., 
Summit: 27,648; 
Frontier: 37,632)

CPUs (e.g., 
Graham: 2,532; 
Sierra: 8,640)

GPUs (e.g., 
Graham: 520; 
Sierra: 17,280)

Storage capacity 
(e.g., Graham: 50 
PB; Sierra: 154 PB)

Double precision LINPACK 
benchmark (e.g., Graham: 2.6 
petaFLOPS; Sierra: 125 
petaFLOPS)

A billion billion (1018) FLOPS

Mixed precision HPL-AI benchmark (e.g., 
Summit: 1.4 exaFLOPS; Frontier: 6.86 
exaFLOPS)

Debugging millions of 
lines of software code

Providing sustainability-
friendly solutions

QV (e.g., System One: 32; H1-2: 4,096)

Quantum entanglement
QPU made of qubits 
and adjustable couplers

Qubit (0, 1, or a 
superposition of 0 
and 1)

Boosting AI abilities for digital phenomics

Speeding up crop design

Bloch sphere representation 
of the quantum states of a 
qubit

Faster pattern searching in big 
phenomics data

Leveraging AI abilities for 
digital phenomics

Crop design

Pattern searching in big 
phenomics data

Searching big phenomics data to uncover patterns in seconds;
Accessing all items in a database at the same time in seconds

(B) Network flow (D) Programming languages

Technology infrastructure
(A) Hardware

Supercharging AI abilities 
for digital phenomics

Designing faster, 
better crops

Classical bits 
(0 or 1)

Floor space (e.g., Graham: 
 160 m2; Sierra:  650 m2) 

Floor space (e.g., System One and H1-2: room-sized computers)

A million billion (1015) FLOPS



Weighted connection

Informed AI approach

Ensemble methods

Rule-based methods

X-AI approaches

Ensemble methods

Ensemble methods

CNN methods

Post-hoc 
explainability

Interpretable by 
design explainability

Supervised learning Reinforcement learningUnsupervised learning

AI architecture design
(A) AI algorithms

Naive Bayes

Classification and Regression

Bayesian methods

Decision tree

KNN

Logistic regression SVM

Classification Regression

SARSA

Q-learning

Linear regression Regularization 

RF RNN

Clustering

DBSCAN GMM

HMM

Dimensionality reduction

SAE SSAE

PCA

Input node Hidden node Output node

(B) AI algorithm design approaches and methods
Knowledge-based AI approach

Rule-based methods

Data-driven AI approach

GAN methods Instance methods Ensemble methods Statistical methods

DNN methods CNN methodsNN methods

Input node Hidden node Output node Weighted connection



Descriptive data analysis Data annotation and standardization Feature engineering and selection

O1. Promoting ethically 
responsible use of AI

Data preprocessing

O2. Turning FAIR 
principles into reality

What it means to look inside the X-AI box – The seven outcomes of X-AI

O3. Hypothesizing
new knowledge

O4. Ensuring 
regulatory compliance

O7. Harnessing the 
power of X-AI for 

sustainable development

O5. Guaranteeing 
provability

O6. Building trust 
and value

How do I 
correct 

the error?

Does the 
explanation 
make sense 

to you?

Did you take 
human 

knowledge into 
consideration? Is your 

model 
bias-free?

Knowledge transfer

O
ut

co
m

es

Model-agnostic
Post-hoc explainable models

Model-specific

Opening the black box

Interpretable by design models

Designing a transparent glass box

In
pu

ts

Monitoring inputs, outputs, and outcomes in plant digital phenomics 



• Does the algorithm need to perform a classification or a regression task?
• How much training data does the algorithm require?
• Can it handle missing values?
• What programming language and software framework to choose?
• Are there sufficient compute resources to train the algorithm?
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