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Abstract

Introduction: We have a limited understanding of how antagonist muscle coactivation relates to 

measurement of strength in both individuals with and without knee osteoarthritis (KOA).

Objective: We sought to determine if hamstring coactivation during a maximal quadriceps 

activation task attenuates net quadriceps strength.

Design: Cross-sectional cohort analysis was conducted using data from the 60-month visit of the 

Multicenter Osteoarthritis Study (MOST).

Setting: Laboratory

Participants: A sample of 2328 community-dwelling MOST participants between the ages of 55 

and 84 years, with or at elevated risk for KOA, completed the 60-month MOST follow-up visit. Of 

these, 1666 met inclusion criteria for the current study.

Interventions: Not applicable.

Main Outcome Measure(s): Quadriceps strength; percent combined hamstring coactivation 

(HC), medial HC, and lateral HC. Quadriceps and hamstring strength were assessed using an 

isokinetic dynamometer. Surface electromyography was used to assess muscle activation patterns. 

General linear models, adjusted for age, BMI, Western Ontario and McMaster Universities 

Osteoarthritis Index (WOMAC), Kellgren-Lawrence (KL) grade and study site, modeled the 

relationship between antagonist hamstring coactivation and quadriceps strength.

Results: Men had significantly greater quadriceps strength (p<.001), history of knee injury (p 

<.001) and surgery (p=.002), and greater presence of varus malalignment (p<.001). Women had 

greater pain (p<.001) and proportion of KL grade ≥ 2 (p=.017). Sex-specific analyses revealed 
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combined HC (p=.013) and lateral HC inversely associated with quadriceps strength in women 

(p=.023), but not in men (combined HC p=.320, lateral HC p=.755). A non-linear association was 

detected between quadriceps strength and medial HC. Assessment of quartiles of medial HC 

revealed the third quartile had reduced quadriceps strength when compared to the lowest quartile 

of coactivation in both men and women.

Conclusions: Hamstring coactivation attenuates measured quadriceps strength in women with 

or at elevated risk for KOA.

Level II Prospective study

Clinical trial registration number: NCT03033238

Keywords

Electromyography; Knee; Osteoarthritis; Epidemiology

INTRODUCTION:

Knee osteoarthritis (KOA) debilitates millions of people [1,2]. Joint destruction in KOA 

leads to increasing instability, which leads to higher muscle coactivation [3], the 

simultaneous contraction of agonist and antagonist muscles surrounding a joint [4]. 

Antagonist muscle coactivation during agonist contraction may be a stability strategy, both 

in individuals with knee joint disease and in those without knee joint disease. Ligaments are 

aided via adjustment of articular surface pressures and preservation of the joint’s mechanical 

impedance [5]. Hence, coactivation may stabilize the knee to prevent falls, for example, after 

total knee arthroplasty [6]. However, coactivation also may contribute to excessive joint 

loading [7,8]. Prior work has revealed that thigh muscle coactivation occurs in moderate 

[9,10] and severe KOA [11]. This supports the hypothesis that individuals with KOA 

compensate for quadriceps weakness by coactivating hamstrings during movement.

Similarly, quadriceps weakness may be a risk factor for symptomatic [12,13,14,15,16] and 

progressive KOA and pain [17]. A meta-analysis revealed that individuals with quadriceps 

muscle weakness have an increased risk of developing radiographic, symptomatic, and self-

reported KOA 14 years later [15]. However, the relationship between antagonist coactivation 

and quadriceps strength remains unclear.

Muscle strengthening may mitigate against KOA symptoms [18]. However, apparent 

quadriceps muscle weakness could indicate excessive hamstring coactivation. Thus, a more 

complete understanding of how antagonist muscle coactivation relates to measurement of 

strength in both individuals with and without KOA would be informative for formulating 

exercise prescriptions. Therefore, we sought to determine if hamstring coactivation during a 

maximal quadriceps activation task attenuates the magnitude of measured quadriceps 

strength in adults with or at risk for KOA.
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METHODS:

Participants and Characteristics

This cross-sectional study was conducted with local institutional review board approval and 

followed US Federal Policy for the Protection of Human Subjects. Individuals were 

recruited into the Multicenter Osteoarthritis Study (MOST), a prospective longitudinal 

cohort study of community-dwelling adults between the ages of 50 and 79 years at baseline, 

with or at elevated risk for KOA (based on any of the following: overweight or obese 

compared with Framingham Study median weight for their age- and gender-specific group,

[19] had a history of knee injury that made it difficult to walk for at least 1 week, or had a 

previous knee surgery), from April, 2003-April, 2005. Prior to study participation, all 

participants gave their written informed consent. All measurements took place at the 60-

month follow-up visit from April 2009-December 2010. Enrollment in MOST was achieved 

through community-acquired sampling, as described previously [13,20]. Figure 1 depicts the 

inclusion and exclusion criteria for this analysis.

Assessments

Body mass index (BMI) was calculated from body mass and body height [20], Varus 

alignment was measured using hip-knee-ankle axis on full-limb radiographs with 

malalignment defined as ≥2° [21], Radiographic Kellgren-Lawrence (KL) grades were used 

for assessing KOA severity [22], Each participant’s radiographs were scored by two 

independent readers (an experienced academically-based musculoskeletal radiologist and 

rheumatologists experienced in the interpretation of knee radiographs per study reading 

protocols ) according to Kellgren-Lawrence scale [23], Readers were blinded to participant 

strength and coactivation levels. For cases in which the two readers disagreed on the 

presence of radiographic tibiofemoral OA, an adjudication panel of 3 experienced readers 

decided. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) 

score [24,25] was used to measure pain.

Strength

We measured strength in the right lower limb, except in participants who had right total knee 

replacement, in which case the left side was measured. Quadriceps and hamstring strength 

was assessed using a computerized isokinetic dynamometer (Cybex 350, Medway, MA, 

USA). Briefly, four repetitions of alternating flexion/extension maximal strength efforts 

were performed at 60°/second. Strength measurements were excluded if the maximal 

quadriceps strength was measured to be less than 20Nm, given that all participants were 

independently ambulatory, which would require greater strength than this nominal value. 

Therefore, measurements this low indicated that participants did not give adequate effort for 

strength and coactivation testing. Further details of the strength testing protocol and 

exclusion criteria have been described previously [26,27,28].

Muscle Activation

Quadriceps and hamstring muscle activation levels were measured using a 4-channel sEMG 

system (Delsys Bagnoli, Boston, MA, USA). Measurements were made during the isokinetic 
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quadriceps strength test and normalized to the maximal extensor or flexor activation level, 

for quadriceps and hamstrings, respectively.

The protocol for sEMG followed internationally developed Surface Electromyography for 

the Non-Invasive Assessment of Muscle (SENIAM) standards [29]. The skin over the vastus 

medialis, vastus lateralis, semitendinosus and biceps femoris muscle mid-bellies were 

cleaned with isopropyl alcohol. Surface electrodes (41x20x5mm) were applied to the skin 

overlaying these muscles, positioned in line with the muscle fibers; thus, 1 cm recording 

bars were perpendicular to the muscle fibers. Hamstring sensors were placed midway 

between the ischial tuberosity and the lateral femoral condyle (biceps femoris) or medial 

condyle (semitendinosus). Sensors were placed in alignment from the anterior superior iliac 

spine to the medial collateral ligament (vastus medialis) or lateral patella (vastus lateralis). A 

reference electrode was placed over the bony prominence of the opposite ankle.

Differential bar electrodes had a fixed inter-electrode spacing of 1 cm, and were pre-

amplified by a gain of 10. Variable post-amplification gains ranged from 100 to 10,000, and 

the signal was bandpass filtered between 20–450 Hz. Signals were collected at a sampling 

frequency of 1000Hz (National Instruments, Austin, TX, USA). Rectified sEMG signals 

were averaged across 200 ms moving windows throughout the middle 1400 ms of each 1500 

ms contraction and standardized to the peak sEMG value obtained for each of the 4 muscles. 

To adjust for baseline noise, the square root of the difference between the squares of the 

measured sEMG and a period of sEMG measured at rest was used to assess all sEMG 

amplitudes as follows:

corrected sEMG = sEMG amplitude 2 − mean baseline amplitude 2

Further, all sEMG signals were standardized to their maximal activation when acting as an 

agonist, thereby controlling for between-subject differences in impedance. This 

standardization allows each muscle’s activation to be assessed as a percent of its maximum 

activation.

The mean hamstring activation during the knee extension strength testing periods was used 

to determine the hamstring coactivation values, considering medial, lateral, and combined 

hamstrings muscles. That is, antagonist amplitude equals the mean medial or lateral 

hamstring activation during repetition of maximal quadriceps torque, as a percent of the 

maximal medial or lateral hamstring activation during flexion contraction (i.e., when acting 

as agonist). If baseline amplitude (i.e., resting sEMG noise level) was greater than measured 

antagonist amplitude, hamstring coactivation was considered to be zero. Combined 

hamstring coactivation (CHC) was calculated as the root mean square of the medial (MHC) 

and lateral (LHC) hamstring coactivation levels [21], In all analyses, coactivation for each 

participant was defined as the median muscle coactivation level for the medial, lateral, and 

combined hamstrings respectively over the 4 peak strength repetitions. Figure 2 shows an 

example of the sEMG signals with hamstring coactivation during the strength 4 repetitions.
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Statistical Analyses

Sex-specific univariate distributions were calculated for age, BMI, and hamstring 

coactivation, and frequencies were calculated for KL grade, WOMAC score, history of 

injury and surgery, and varus malalignment, χ2 tests were conducted to determine sex 

differences in categorical variables. Pearson correlation analysis was conducted to determine 

linear relationships between quadriceps strength and hamstring coactivation. To model the 

relationship between hamstring coactivation and quadriceps strength, we constructed general 

linear models (GLM). We performed GLM analysis adjusted for age, sex, BMI, WOMAC 

scores, KL grade, and clinic site to determine if hamstring coactivation was associated 

independently with quadriceps strength. We then repeated these analyses stratifying by sex. 

Due to finding a non-linear association between MHC and strength, we used quartiles of 

MHC and adjusted for the same set of covariables in all participants and in each sex stratum. 

Analyses were completed using SAS version 9.4 (SAS, SAS Institute, Cary, NC, USA), with 

a significance level of p<.05.

RESULTS:

A total of 2328 participants completed the 60-month MOST visit, of whom 1666 (n=1579 

right knee) met criteria for this study. We excluded 1 participant with non-OA, inflammatory 

arthritis, 2 participants with missing radiographs/KL grades, 4 participants with missing 

WOMAC values, and 655 participants with unreadable hamstring coactivation data. Hence, 

data from 1666 participants (985 female, 681 male) were used in analyses (Figure 1 and 

Table 1). The racial distribution of the sample was 147 (86.5%) White or Caucasian, 212 

(12.3%) Black or African-American, 10 (0.6%) more than one race, 4 (0.2%) other, and 1 

(0.06%) each Asian, American Indian or Alaskan Native, and don’t know/refused to answer. 

Of the limbs studied 827 (49.6%) had radiographic KOA. Men had greater prevalence of 

varus malalignment (χ2=76.1, p<.001), history of knee injury (χ2=21.9, p<.001), and 

history of knee surgery (χ2=9.5, p=.002). Women had significantly higher WOMAC pain 

scores (p<.001) and greater proportion of KL grade ≥ 2 (χ2=5.8, p=.017). Men and women 

did not differ in age (p=.273) or BMI (p=.547).

Table 2 presents hamstring coactivation levels. Women demonstrated significantly greater 

levels of hamstring coactivation than men (p< 0.001) for combined, as well as medial and 

lateral hamstring coactivation separately.

Pearson correlation coefficients indicated significant inverse relationships between 

quadriceps strength and CHC (r= −0.23, p<.001), MHC (r= −0.12, p<.001), and LHC (r= 

−0.22, p<.001). Significant declines in extensor strength related to increasing KL grade (r= 

−0.21, p<.001), WOMAC pain (r= −0.26, p<.001), and age (r= −0.35, p<.001). However, 

quadriceps strength was positively correlated with BMI (r= 0.072, p=.003).

The GLM analyses evaluating relationships between hamstring coactivation and quadriceps 

strength are presented in Tables 3–5, for combined, only medial, and only lateral hamstring 

muscles, respectively. Study site was not associated with coactivation in any of the analyses 

(all p>.280). For CHC (Table 3), every 1% increase in median coactivation corresponded to 

a 0.141 Nm reduction in quadriceps strength across all participants (p=.026). However, sex-
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specific analyses revealed this relationship occurred primarily in women, with a decline in 

peak extensor strength of 0.147 Nm per 1% increase in CHC (p=.013), but was not 

significant in men (p=.320).

After adjustment for covariates, MHC was not linearly related to measured quadriceps 

strength across all participants (p=.476), in men (p=.431), or in women (p=.805). However, a 

non-linear association was detected between quadriceps strength and MHC (Table 4) when 

analyzing coactivation quartiles. In women, the first quartile had 0% coactivation, the second 

quartile had 0.6–8.1% coactivation, the third quartile had 8.2–14.7% coactivation, and the 

fourth quartile had >14.7% coactivation. In men, the first quartile had 0% coactivation, the 

second quartile had 0.9 – 4.8% coactivation, the third quartile had 4.8–9.3% coactivation, 

and the fourth quartile had >9.3% coactivation. Those in the third quartile of MHC had 

reduced quadriceps strength compared to the lowest coactivation quartile, in all participants 

(p=.0003), in women (p=.022), and in men (p=.011).

Finally, for every 1% increase in LHC, measured quadriceps strength was 0.106 Nm lower 

in women (p=.023), but was not significantly different in men (p=.755) or when considering 

men and women combined (p=.116) (Table 5).

DISCUSSION:

This study revealed significant inverse associations between hamstring coactivation and 

measured quadriceps strength, and these associations were driven by the significant 

association in women. After adjustment for age, BMI, and WOMAC scores, greater CHC 

remained associated with lower measured quadriceps strength, indicating that net quadriceps 

torque measured was likely attenuated by antagonist coactivation, particularly in women. 

Both MHC and LHC were associated with reduced quadriceps strength, but with somewhat 

different relationships. Whereas LHC showed a significant relationship with quadriceps 

strength reductions, but only in women, MHC was associated with reduced strength in both 

men and women, but only in the third quartile (above average coactivation) compared to the 

first quartile (no coactivation). Together, these data demonstrate that antagonist muscle 

coactivation and net quadriceps strength are significantly associated in women, but not in 

men.

A secondary finding was that women had higher CMC, MHC, and LHC than men, 

consistent with previous studies that also found healthy women and women with KOA have 

greater hamstring antagonist coactivation than men [21,30,31]. Here, we report an inverse 

relationship between coactivation and quadriceps strength in women, but not in men. 

Women also have an elevated risk for cartilage loss [32], which is associated with strength 

loss [33,34]. Thus, these previous findings coupled with our results suggest the association 

between lower measured quadriceps strength and cartilage loss may be mediated by higher 

antagonist hamstring coactivation, particularly in women. This would need to be examined 

in future studies, as sex differences may be attributable to multiple factors. Morphological, 

anatomical, structural elasticity, and peripherally- and centrally-mediated pain mechanisms 

may be inherently different between women and men [30].
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Lower levels of quadriceps strength are associated with and predict incident and progressive 

KOA [13,35,36,37], and may leave the knee joint vulnerable to injury [12]. Specifically, 

insufficient quadriceps strength leads to contact stress changes which are detrimental to 

articular cartilage [38] and can increase impulse loading on the knee joint during gait 

[39,40]. Thus, if damage to articular cartilage and increases in impulse loading are predictive 

of KOA, quadriceps strengthening could mitigate knee joint deterioration [12]. However, the 

results from the current study suggest that hamstring coactivation may be important to 

consider in those with or at risk for KOA, particularly when interpreting measures of 

quadriceps strength.

Specifically, measurement of net quadriceps torque, the magnitude of quadriceps torque 

minus concurrent hamstring torque, is frequently used as a measurement of quadriceps 

strength. Given this understanding, it is important to interpret quadriceps strength in the 

context of the degree to which hamstring coactivation attenuates net torque measurements, 

so that true quadriceps weakness can be differentiated from excess hamstring antagonist 

coactivation in developing therapeutic interventions. Some investigators have suggested that 

quadriceps strengthening is indicated to correct strength deficits [35,41,42]. However, older 

adults with or at risk for KOA may have adequate quadriceps strength, yet may have 

excessive hamstring coactivation that accounts for the lower magnitude of net quadriceps 

torque measured. In such cases, attention might be better directed towards addressing 

coordination of neuromuscular activation, rather than focusing on strengthening quadriceps 

muscles that may already have sufficient strength, but are working against excessive 

antagonist muscle activity.

Hamstring coactivation stabilizes the knee joint by opposing agonist contraction against a 

range of joint angular displacements and ligament loading [43]. By counteracting the 

quadriceps’ anterior pull on the tibia and assisting the stabilization action of the ACL, 

hamstring coactivation likely maintains the distribution of articular contact stress within 

normal limits while also preventing ACL strain [5,21,43,44]. Therefore, our results are not 

meant to suggest that hamstring coactivation should be eliminated. In conjunction with 

strengthening the quadriceps, physiological levels of hamstring coactivation are necessary to 

mitigate against knee cartilage damage [40].

There were several design elements that strengthen ability to draw meaningful conclusions 

from this study. The relatively large sample size allowed sex-stratified analyses as well as 

sensitivity analyses to confirm both the main and sub-group findings. In addition, in this 

study, we measured sEMG and knee extensor torque bilaterally in the initial 321 

participants. Neither the level of coactivation, nor the knee extensor torque significantly 

differed between limbs and including both lower limbs would have added covariance to 

analyses without contributing additional useful variance in the data. Therefore, in subsequent 

participants, these measurements were made in the right lower limb except in participants 

with a right TKA, in which case we measured the left lower limb. While isokinetic strength 

testing is not a functional activity performed in daily life, the standardization of joint angle, 

speed, testing conditions, placement of sEMG leads, and ability to encourage maximal 

agonist muscle activation strengthened ability to pool participant data and maximize clarity 

in interpretation of the data.
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Study Limitations

The current study findings are generalizable to the population studied (i.e. with risk factors 

for knee OA, such as overweight, obese, or a history of knee injury or surgery) and the 

conditions of testing, however, limitations exist due to both design and measurement 

methods. For example, associations between antagonist coactivation and net quadriceps 

torque may have been influenced by body position during isokinetic testing. Specifically, 

testing participants while seated on the sEMG electrodes may have introduced noise during 

movement, potentially affecting the signal-to-noise characteristics. However, signals were 

adjusted for baseline noise and all participants were set-up similarly using standardized 

methodology.

Isokinetic dynamometers have been used in many studies of quadriceps and hamstring 

torque. This relies on the participant exerting maximal effort to measure maximal quadriceps 

strength. It is possible some participants provided less than maximal effort due to pain, 

unfamiliarity with the movement or machine, or fatigue. Additionally, a seated isokinetic 

quadriceps task is not a functional movement used in daily life. Thus, isokinetic quadriceps 

torque may be a suboptimal measurement of functional strength, although it allows for 

isolated strength assessment with reduced risk of compensatory movements and is 

convenient and reliable for large studies. In contrast, isometric quadriceps testing is an 

alternative that would require participants to produce maximal voluntary contractions. One 

coactivation study used isometric testing and showed individuals with radiographic knee OA 

had significantly lower quadriceps strength, but not hamstring strength, when compared to 

controls [45]. Further, there were no differences in coactivation between individuals with 

radiographic knee OA and controls. However, the authors of that study cautioned that their 

interpretation could change if an isokinetic test was used. Specifically, maximal voluntary 

contraction depends on the knee flexion angle, so it is possible hamstring coactivation differs 

between individuals with knee OA and controls at different flexion angles. Therefore, the 

study authors advocated the use of isokinetic testing as a follow up to their investigation 

[45]. Other tests aside from isokinetic or isometric exercise, such as walking, standing from 

a chair or some other frequent physical task, may better model coactivation during usual 

functional activities, but may also rely on greater compensatory mechanisms, such as hip 

extension, to avoid quadriceps activation.

Another potential limitation is that 28% of participants had sEMG data that were 

uninterpretable and therefore could not be included in analyses of coactivation. This analysis 

is part of a large, multicenter longitudinal study. The sEMG data collected for this analysis 

was captured from two sites and from more than 2,000 possibly eligible participants. 

Research nurses, not kinesiology-trained experts, obtained the sEMG data along with 

hundreds of other variables [13,20]. Nonetheless, no associations were found between 

missingness and participant characteristics. Antagonist coactivation was measured while 

seated for efficiency during a multi-hour visit with many other measurements in this study of 

over 2,000 individuals at two clinical sites. While focused study of coactivation during 

functional activities could provide different insights, studies using other modalities have 

produced conflicting results. A recent study [46] contradicted previous work, showing that 

greater lateral coactivation was associated with greater knee joint damage [47]. Hodges and 
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colleagues showed that coactivation of the medial muscles may be associated with medial 

tibial cartilage damage, and coactivation of the lateral muscles may protect against medial 

tibial cartilage loss [46]. Prolonged lateral muscle coactivation during walking was 

protective against cartilage volume loss over one year, in contrast to prolonged medial 

coactivation being associated with increased risk for medial tibial cartilage volume loss over 

one year. Hence, greater hamstring coactivation medially, but not laterally, may predict in 

which individuals knee OA will progress. However, it is plausible there is heterogeneity in 

medial and lateral muscle coactivation in those with and at risk for KOA [46,48].

Finally, we did not obtain subcutaneous fat measurements. Fat content can be higher in 

women [49], and different fat distributions between the anterior and posterior thigh could 

bias sEMG interpretation [50]. Fine wire [51]could be useful in reducing differences in 

signal amplitude between participants with varying amounts of subcutaneous adipose. 

Because women have greater thigh adipose tissue than men and, in this study, also had 50% 

greater coactivation than men, it is possible that this coactivation difference was even 

greater, considering the insulator between the leads and the motor end plates.

Conclusions

Hamstring coactivation was associated with lower measured quadriceps strength in women 

with or at risk for KOA. Women also demonstrated greater antagonist hamstring coactivation 

than men. These findings suggest that hamstring coactivation may attenuate measures of 

quadriceps strength, in a sex-dependent manner. Further research is needed to determine 

whether net quadriceps torque or hamstring coactivation account for elevated risk for knee 

joint deterioration, particularly in women.
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Figure 1. 
Flow chart depicting the MOST participants included in and excluded from analyses.
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Figure 2. 
Flexor activation (blue) during extensor bursts (red). Yellow arrows indicate hamstring 

coactivation during quadriceps maximal strength testing.
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Table 1:

Participant Characteristics

All Participants (n = 1666) Men (n = 681) Women (n = 985)

Age (years) 67.2 ± 7.6 67.0 ± 7.7 67.4 ± 7.5

BMI (kg/m2) 30.6 ± 5.7 30.7 ± 5.3 30.5 ± 5.9

WOMAC Pain 2.5 ± 3.1 2.1 ± 2.8 2.8 ± 3.2**

Varus Malalignment, n (%) 763 (46.6) 398 (59.5)** 365 (37.6)

Injury, n (%) 485 (29.1) 241 (35.4)** 244 (24.8)

Surgery, n (%) 263 (15.8) 130 (19.1)* 133 (13.5)

KL Grade ≥ 2, n (%) 827 (49.6) 314 (46.1) 513 (52.1)*

Quadriceps Strength (Nm) 90.4 ± 38.7 119.3 ± 38.1** 70.4 ± 23.3

Means±SD and counts (percent) are presented. KL=Kellgren-Lawrence. Comparison between women and men:

*
=p <.05;

**
=p<.001
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Table 2:

Hamstring Coactivation Levels

Hamstring Coactivation Level Distributions

Mean ± SD% p-value

Combined Hamstrings
Men 10.9 ± 9.2

p<.001
Women 16.6 ± 10.9

Medial Hamstring
Men 6.4 ± 8.4

p<.001
Women 9.8 ± 10.5

Lateral Hamstring
Men 12.5 ± 11.7

p<.001
Women 19.8 ± 13.7
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Table 3:

Association between Combined Hamstring Coactivation and Quadriceps Strength

Covariate β Standard Error R2 p-value

Total

Age −1.6 0.09 <0.001

BMI 0.43 0.12 <0.001

Sex, female −45.3 1.4 <0.001

WOMAC −2.4 0.22 <0.001

KL grade ≥2 −5.3 1.4 <0.001

Combined Coactivation −0.14 0.06 0.026

Full Model 0.54 <0.001

Women

Age −1.2 0.09 <0.001

BMI 0.43 0.11 <0.001

WOMAC −1.8 0.21 <0.001

KL grade ≥2 −5.3 1.4 <0.001

Combined Coactivation −0.15 0.06 0.013

Full Model 0.27 <0.001

Men

Age −2.1 0.17 <0.001

BMI 0.45 0.25 0.070

WOMAC −3.6 0.48 <0.001

KL grade ≥2 −5.2 2.7 0.054

Combined Coactivation −0.14 0.14 0.320

Full Model 0.27 <0.001

BMI=body mass index; WOMAC=Western Ontario and McMaster Universities Osteoarthritis Index; KL=Kellgren-Lawrence
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Table 4:

Association between Medial Hamstring Coactivation Quartiles and Quadriceps Strength

Covariate β Standard Error R2 p-value

Total

Age −1.6 0.009 <0.001

BMI 0.43 0.12 <0.001

Sex, female −46.4 1.3 <0.001

WOMAC −2.4 0.22 <0.001

KL grade ≥2 −5.4 1.4 <0.001

Medial Coactivation

Highest Quartile 1.5 1.8 0.408

Third Quartile 6.2 1.7 <0.001

Second Quartile 2.7 2.0 0.163

Full Model 0.55 <0.001

Women Age −1.2 0.9 <0.001

BMI 0.41 0.11 <0.001

WOMAC −1.8 0.21 <0.001

KL grade ≥2 −5.4 1.4 <0.001

Medial Coactivation

Highest Quartile 0.86 1.8 0.635

Third Quartile 4.1 1.8 0.022

Second Quartile 0.86 1.9 0.644

Full Model 0.27 <0.001

Men Age −2.1 0.17 <0.001

BMI 0.48 0.25 0.052

WOMAC −3.5 0.48 <0.001

KL grade ≥2 −5.4 2.7 0.044

Medial Coactivation

Highest Quartile 2.5 3.3 0.442

Third Quartile 8.4 3.3 0.011

Second Quartile 6.5 4.2 0.118

Full Model 0.28 <0.001

BMI=body mass index; WOMAC=Western Ontario and McMaster Universities Osteoarthritis Index; KL=Kellgren-Lawrence
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Table 5:

Association between Lateral Hamstring Coactivation and Quadriceps Strength

Covariate β Standard Error R2 p-value

Total

Age −1.6 0.09 <0.001

BMI 0.42 0.12 <0.001

Sex, female −45.6 1.4 <0.001

WOMAC −2.4 0.22 <0.001

KL grade ≥2 −5.4 1.4 <0.001

Lateral Coactivation −0.079 0.05 0.116

Full Model 0.54 <0.001

Women

Age −1.2 0.09 <0.001

BMI 0.42 0.11 <0.001

WOMAC −1.8 0.21 <0.001

KL grade ≥2 −5.4 1.4 <0.001

Lateral Coactivation −0.11 0.05 0.023

Full Model 0.27 <0.001

Men

Age −2.1 0.17 <0.001

BMI 0.43 0.25 .083

WOMAC −3.6 0.48 <0.001

KL grade ≥2 −5.3 2.7 0.048

Lateral Coactivation −0.035 0.11 0.754

Full Model 0.27 <.001

BMI=body mass index; WOMAC=Western Ontario and McMaster Universities Osteoarthritis Index; KL=Kellgren-Lawrence
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