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Abstract

Sampling—using a stochastically drawn subset of possibilities—has been at the core

of many influential modeling frameworks of human decision making for the last half

century. Although these frameworks all refer to their core operation as “sampling,” they

differ dramatically in the behaviors and inferences they aim to account for. Here we review

this landscape of sampling models under a unified expected utility framework which treats

diverse sampling accounts as approximating different terms in the expected utility

calculation. We show that a broad range of sample-based models in psychology are built

around sampled data, beliefs, or actions and can therefore support downstream expected

utility maximization. To compare these models on even footing, our review focuses on how

the number of samples and the sample distribution differ within each element of the

expected utility calculation. This integrated summary allows us to identify opportunities

for fruitful cross-pollination across sampling domains, and to highlight outstanding

challenges for accounts that might aim to integrate these disparate models.

Keywords: sampling, data, beliefs, actions, expected utility
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Sampling Data, Beliefs, and Actions

Introduction

This volume tackles the ambitious challenge of reviewing the heterogeneous set of

results, phenomena, accounts, and models that fall under the banner of sampling in

judgment and decision making. These accounts address different domains of behavior, in

different contexts, with different constraints, yet the reliance on “sampling” suggests that

they share some central properties. In this chapter we aim to provide an organizing

framework for a sample of this literature, to highlight the conceptual differences and the

core similarities across domains.

What do sampling accounts have in common? Indeed, what constitutes a

“sampling” account of human behavior? In all cases, sampling accounts posit that people

perform some calculation using a small subset of all the values that are relevant for the

calculation. This subset is often generated through stochastic processes over which the

person may not have full control. In recent years, the use of sampling as a mechanism to

explain various forms of inference and decision making has spread across broad domains of

psychology. The most familiar type of sampling account is concerned with observations of

the world (Fiedler & Juslin, 2006). These accounts are motivated by the similarity between

what a statistician must do to draw inferences from limited data, and what individual

humans must do to act based on noisy, sparse observations of their environment. These

accounts formalize the notion that the world is far larger, more complicated, and more

dynamic than any one person can apprehend. Consequently, people must act based on a

small subset of observations—a sample—rather than a complete snapshot of the world

state. Though initially developed to explain inferences about perception and the physical

state of the world (Braddick, 1974), these models have been applied to a range of more

abstract inferences about social structure and the behavior of others (Fiedler, 2000).

However, sampling has also been proposed as a modeling framework for the computations

that people undertake to revise their beliefs, or to generate predictions, about the state of
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the world (Griffiths et al., 2012). On this view, human beliefs are probability distributions

over possible states of the world, and prior beliefs are updated in light of new data via

Bayes’ rule to form posterior beliefs. This belief updating is usually analytically intractable

and in applied settings is often approximated via Monte Carlo methods that draw samples

from the posterior (Doucet et al., 2001). Work in this space has proposed that similar

strategies are adopted by the brain; beliefs about world states are represented as finite sets

of samples. More recently, sampling has also been postulated as a strategy for choosing

actions (Phillips et al., 2019). Under these accounts, the set of possible actions is

impossibly large, so choosing the best one cannot be accomplished by evaluating the

prospective quality of all actions. Instead, we sample a subset of actions to consider and

evaluate, then pick the best action from among those sampled. Far from being a

comprehensive overview, these examples illustrate the wide reach that sampling has

attained in computational models of decision making; the additional role attributed to

samples from memory for instance (Nosofsky & Palmeri, 1997) broadens the purview of

sampling accounts even further.

Given this diversity of sampling models in the literature and the range of research

goals they support, we might ask whether it’s helpful to view them as members of a

coherent class of “sampling accounts” at all. Would we be better off instead choosing

distinct terms for each, to avoid confusion? The premise of this chapter is that a unified

review of these accounts will not only help disentangle their differences, but can also

provide structure for considering their commonalities and identifying opportunities for

cross-pollinating research ideas across fields. We propose that these different sampling

accounts are all approximating different components of expected utility maximization: data,

beliefs, and actions. We review a broad swath of sampling literature within this framework

and show how describing sampling accounts as approximating specific components of

expected utility clarifies how they are related and poses novel questions and comparison

points for seemingly distinct areas of research. We close by highlighting opportunities for
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synthesis across sampling domains and outlining challenges that arise in light of the fact

that in real-world decisions, all of these components must be sampled together.

Expected utility framework

We propose that most sampling accounts can be best understood in the context of

choosing an action to maximize expected utility. The computations necessary to pick an

action that maximizes expected utility require combining data, marginalizing beliefs, and

optimizing over actions. Within this framework, existing sampling accounts describe the

consequences of using small subsets of alternatives to approximate each of these operations.

Sampling to approximate expected utility

Many of our everyday decisions revolve around choosing the best action in a given

situation. What will we wear to a friend’s party in the evening and what should we bring?

What will be the best route to drive there? How long should we stay? All of these decisions

involve selecting an ideal course of action from among many. How do people evaluate their

choices and ultimately settle on one? We start with the expected utility hypothesis, the

assumption that for an intelligent agent, the best choice (A∗) is the action that yields the

largest expected utility (U(·)).

A∗ = arg max
A

E[U(A)] (1)

.

This formulation, though intuitive, is ultimately a crude decision making policy

because it disregards context-dependent variation in action outcomes. For intelligent

behavior, we would expect the payoffs of actions to vary as a function of context, as

indicated to the agent by observed data (x).

A∗ = arg max
A

E[U(A | x)] (2)
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.

In this richer formulation, utilities associated with actions vary based on observed

data; we condition on the data x to yield different predicted action outcomes. Expected

utility in Equation 2 is equivalent to the Q-function in reinforcement learning (Watkins &

Dayan, 1992), associating payoffs with specific action-context combinations. While

equating context with observed data is sufficient in settings with simple, unambiguous

observations, in more realistic settings where observations are complex and noisy, it is more

parsimonious to consider payoffs to be contingent on a latent state (s), rather than the

data directly. Under this formulation, the utility function abstracts away from data,

considering utility to be a property of an action in a state. Uncertainty arises from

ambiguity about what state the agent is in.

A∗ = arg max
A

∑
s

U(A; s)P (s | x) (3)

.

Equation 3 emphasizes the different roles that data (x), beliefs (P (s)), and actions

(A) play in decision making: We optimize over actions (arg maxA), we take an expectation,

or marginalize, over beliefs (∑s f(s)P (s)), and we condition on data (P (s | x)).1 Choosing

an action that maximizes expected utility requires that an agent perform all of these

calculations in order to decide what to do. Given an infinite number of available actions

and possible states of the world, these calculations are computationally intractable in their

general formulation. Thus, human behavior is typically seen as approximating the expected

utility maximization described in Equation 3 (S. Gershman et al., 2015).

Broadly, sample-based accounts of behavior and decision making propose that when

1 We rely on this simple formulation throughout the paper. However, a more thorough model-based view of

utility would rewrite U(A; s) based on state transitions arising from actions:

U(A; s) =
∑

s′ U(s′)P (s′ | A, s). This ascribes utilities to particular states, rather than state-action

combinations, and has the advantage of clarifying the role of predictive beliefs—beliefs not just about the

current state (s), but also about future states (s′). This formulation may be further expanded to consider
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solving problems which are intractable via brute force calculation, people rely on a limited

set of samples to approximate the underlying calculation. This can be done for each of the

operations in Equation 3 described above. Instead of considering all the available

information, people make decisions based on a sample of observations, acting as “intuitive

statisticians” (Fiedler & Juslin, 2006). Likewise, instead of considering the full probability

distribution over states of the world, Monte Carlo methods (Robert & Casella, 2004)

demonstrate that one can consider a sample of possible states to achieve the same end.

Finally, numerical optimization techniques show that a global optimum such as the best

action in a given context may be found with high probability by considering a small subset

of alternatives (Karnopp, 1963). In this way, sample-based accounts offer an answer to the

question of how people might maximize expected utility in their decisions; an approximate

solution to Equation 3 can be estimated using samples from the relevant distributions over

data, beliefs, and actions without relying on the full underlying distributions. This

approximation of classical expected utility (Von Neumann & Morgenstern, 1947) contrasts

somewhat with forms of subjective expected utility (Savage, 1954) which argue that the

perceived utility or probability of an outcome may be fundamentally distorted from the

true underlying probability or value (a prominent example is the argument in prospect

theory (Tversky & Kahneman, 1979) that the utility curve for losses and gains is

asymmetric). As we describe below, various distortions to the perceived probability or

utility of an outcome can arise from the process of sampling data, beliefs, or actions, and

some of these may lead to behavior that is consistent with prominent accounts like prospect

theory. However, an approximation that distorts the true probability can be considered

somewhat distinct from maintaining a high fidelity but asymmetric utility curve.

To illustrate this sample-based account of approximate expected utility

sequential decisions. The proposal in this chapter, that diverse sampling accounts support approximate

expected utility maximization, applies equally to expanded versions of Equation 3, but for our purposes the

version in Equation 3 is sufficient.
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maximization, imagine the familiar and sometimes daunting task of deciding what to wear

to a party. Here, selecting the action that maximizes expected utility amounts to choosing

the best outfit. A brute force solution would require examining every item of clothing that

may already be available in one’s closet, or which might be purchased in advance of the

party. One must then calculate the expected utility of each combination of garments.

However, we often opt for a simpler solution: sample a set of actions, i.e., candidate outfits

from our wardrobe, and evaluate those. Formally, the arg maxA in Equation 3 is evaluated

over a sample of actions in A. But here too, we face a challenge in calculating the expected

utility of a given outfit because it will be impacted by incidental information about the

state of the world, like what sort of party we are going to. To calculate the expected

success of a candidate outfit, we would need to consider how well that outfit would be

received in every conceivable party: a pool party or a drunken wake, a reception by an

ambassador or a birthday party for a three-year old, etc. To calculate the expected utility

of a given outfit, a rational agent must marginalize over all of these possible states

weighted by their probability in light of all the information they have about the party in

advance. Obviously, we do not do anything so thorough. In this case, we might begin by

sampling data from the external world which supports our decision making: who else is

going to this party? What does the invitation look like? Is it somebody’s birthday? If it’s

outside, what will the weather be like? And how late will it go? These data samples are

used to update beliefs about what kind of party we are attending, which impact the

expected utility estimation. This means that the P (s | x) in Equation 3 is evaluated based

on only a sample of data points in x—we do not ask all of our friends whether they will be

going, but just a few. Further, we do not then consider every possible belief we might have

about the party. Instead, we consider just a few different prospective party environments,

sampled with frequency proportional to their probability under P (s | x). This set of

samples is an approximate representation of P (s | x), and allows us to estimate the

expected value of an outfit without considering infinitely many party possibilities. This
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makes our expected utility calculation in (3) computationally much simpler. We choose the

best of a subset of possible actions (outfits), based on its utility averaged over a subset of

possible states (party environments), sampled according to their probability in light of a

sample of relevant data (e.g., who is attending): A∗ = arg maxa∈A
∑n

i=1 U(a; si)/n, where

si ∼ P (s | x). This process is illustrated in Figure 1. Critically, decisions such as this are

sometimes difficult when we choose to evaluate our options carefully, yet they are fairly

commonplace2 and people, for the most part, do them well.

How do people regularly make such rich, sample-based inferences and what are the

limitations in this ability? We propose that the many sampling accounts in the psychology

literature offer insights into these questions when viewed within the context of sampling

data, beliefs, and actions to maximize expected utility. This framework may not cleanly

encompass every sampling model or example of sample-based inference in decision making,

and some important classes of sampling models, such as sampling from memory, may be

cross-cutting categories that play a role in multiple terms of the expected utility

calculation. Nonetheless, we argue that framing a large swath of existing models and their

contributions as supporting expected utility approximation provides both a unified

perspective on sampling research, and, critically, a means of guiding future research in

these areas: how can prior work on data sampling accounts inform belief sampling research?

And what does the literature on belief sampling tell us about models of action sampling?

Comparing sample-based accounts

Though a diverse set of sample-based accounts might in theory be integrated under

expected utility calculation as described above, comparing them with this lens is only

useful if it provides novel insights or future research directions. However, evaluating the

2 This process may arise not just in one-off decisions but in repeated decisions or those made over a longer

time frame. We thank a reviewer for pointing out that the iterative process of behavioral research itself

relies on sampling data which approximates an underlying distribution, sampling beliefs about the data to

formulate or refine hypotheses, and choosing from among sampled actions to pursue further inquiry.
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Figure 1

The expected utility framework for sample-based models in decision making, shown here for

the decision about what to wear to a party. Left: when making decisions, we typically

sample a subset of options from the infinite space of possible actions (A), e.g., a handful of

possible outfits. Top right: actions are evaluated based on their utility averaged over

possible world states, sampled according to the agent’s beliefs (probabilities of states s), such

as what kind of party it will be. Bottom right: beliefs are informed by data (x) sampled

from the external world, such as what the weather will be like and what time the party is.

shared constraints and challenges across different sampling domains is itself non-trivial.

For one, because of the unique questions motivating each of these research traditions, these

different types of sampling have largely been considered in isolation. Further, out of

practical considerations, researchers studying data, belief, or action sampling mostly ignore

the other variables to provide greater experimental control. For example, researchers

interested in data sampling typically design tasks where state estimates are determined by

the data (i.e., there is little role for priors or uncertainty arising from internal models), and
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where the set of available actions is small and explicitly provided. Consequently, all the

behavioral variability may be attributed to the data sampling process and calculations

about beliefs or actions may be safely ignored. Research on belief and action sampling

place similar restrictions on the other facets of expected utility maximization so as to

effectively isolate the component under study. This raises the question of how to compare

these distinct sampling paradigms with the goal of integrating them into a more unified

account of sampling in decision making. Can we view data, belief, and action sampling as

solving the same kinds of problems or operating within similar constraints? Or are they

better understood as solving sufficiently different problems that their similarities stop at

the use of samples? If the latter is the case, the mere inclusion of these models in a broader

expected utility paradigm offers little additional ability to compare them or make progress

on one by appeal to the others.

We believe that models of data, belief, and action sampling face a number of similar

constraints which allow them to be usefully compared, and the successes of one potentially

applied to the others. The constraints they share, and the point of departure for comparing

them in this chapter, draws on what we consider to be essential aspects of any sampling

model. Critically, a sampling-based account of behavior is only useful insofar as it makes

divergent predictions from what would be expected if people were not sampling but instead

considering the full set of possible alternatives. For instance, action sampling is only

interesting insofar as it predicts something different than considering all possible actions.

Where sampling accounts make identical predictions as inference based on complete

information, we may have little reason to prefer the sampling models. What then

differentiates a sampling model from one based on complete analytical inference? We

propose that nearly all sampling models can be compared along two key dimensions that

distinguish their predictions from alternative accounts: the number of samples and the

sampling distribution. These features are central to what it means to be a sampling

account and, critically, form the basis of a sampling account’s unique predictions in
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decision making contexts.

Consider first the number of samples. Under all sampling accounts, if infinitely

many samples are used, this is no different from relying on the full set of possibilities, so

nothing is gained from postulating sampling. In contrast, when a decision maker relies on

only a small number of samples, their inferences may be biased in various ways by the

limits in their sampling. Therefore, the number of samples used, and the considerations

that influence this, are central to the predictions that a sampling account offers. Here, we

aim to show that how many samples are drawn and how this number is determined can be

asked equally of data, belief, and action sampling models, and the answers provided by one

can be useful for the others. Second, the distribution generated by sampling is similarly

critical for a sampling account to make concrete predictions. Under optimal conditions,

independent and identically distributed samples might lead to decisions consistent with use

of the full distribution, in which case sampling models may not be identifiable. However, in

many cases it is simply impossible to generate idealized samples, and whatever algorithms

are used to obtain the samples will necessarily create some systematic deviation in the set

of samples which will affect downstream behavior (Juni et al., 2016; Sanborn, 2017).

Further, even samples obtained optimally for one purpose are likely to yield systematic

biases with respect to another goal (Fiedler, 2008). For instance, when sampling in

low-probability, high-stakes situations, one might either correctly estimate the probability

of each outcome (by sampling according to probability), or correctly estimate the utility

maximizing action payoffs (by sampling according to probability weighted by utility), but

no adjustment strategy can allow both decisions to be unbiased using a small number of

samples (Lieder, Griffiths, & Hsu, 2018; Vul et al., 2014). Thus, the sample distribution,

like the number of samples taken, is a critical feature of sampling models that determines

the particular ways in which sample-based decisions deviate from optimal behavior.

Given the fundamental role that the number of samples and the sample distribution

play in sample-based models, we use these two characteristics as a basis for reviewing data,
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belief, and action sampling accounts of behavior under the umbrella of expected utility

maximization. In what follows, we discuss how results in data, belief, and action sampling

vary along these axes, and critically, how each one can inform future research in the others.

In restricting the scope of our review to consider only the number of samples and the

sample distribution, we do not intend to overlook other meaningful aspects of sampling

models, such as the costs and benefits of samples, the algorithms that yield them, or how

explicit the sampling process is. Instead, we propose that the consequences of these and

other noteworthy sources of variation in sampling procedures are largely captured by virtue

of their role in the number, and the distribution, of samples. As we show, comparison of

sampling accounts along these dimensions alone offers fertile ground for identifying the

major contributions of existing sampling models, as well as opportunities for future work

which might improve our understanding of how people use samples to maximize the

expected utility of their decisions.

Overview of sampling models in the literature

This chapter proposes that sampling accounts of behavior can be fruitfully

examined within a unified framework of expected utility maximization. Here, we illustrate

this process, reviewing a large range of sample-based models that are consistent with data,

belief, and action sampling in sequence. For each of these sampling domains, we address

considerations of the number, and the distribution, of samples, and how these results might

inform or benefit from the other classes of sampling model.

Data sampling

At their core, models of data sampling are about gathering information which will

reduce uncertainty about the present environment to support better (i.e., more informed)

downstream decisions. In the example we provided at the outset (Figure 1), in which a

person seeks to maximize the expected utility of possible clothes to wear to a party, data

sampling amounts to seeking information which will refine their belief about the sort of
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party they are attending, e.g., what will the weather be like and who else will be there?

From an expected utility standpoint, the role of each piece of data, x, is to improve

posterior estimates over states. In most simple settings, each datum constrains the

posterior distribution, P (s | x), multiplicatively: P (s | x) ∝ P (s) ∏
x P (x | s). Given this

broad formulation, we consider any process that obtains information from the outside

world and supports subsequent decision making to be an instance of data sampling.

Because acquiring information about the surrounding environment is a critical behavior for

most if not all animals, some of the earliest sample-based models in psychology—and, as

we’ll discuss, some of the most well-formalized—have concerned data sampling.

The number of samples in data sampling

Data sampling models are rooted in Fechner (1860)’s two-alternative forced choice

(2AFC) experimental paradigm, in which observers make repeated binary classifications of

stimuli. In a canonical example, random dot kinematograms (Braddick, 1974) present

participants with a field of dots each moving to the left or right. People are asked to judge

the prevailing direction of the dots in each image as quickly and accurately as possible.

Typical behavior in the task reflects a speed-accuracy tradeoff ; intuitively, responding more

quickly on any given trial decreases the probability of answering correctly, while increasing

the number of subsequent trials that can be completed.

The 2AFC paradigm provides a precise and highly controlled environment for

examining how people sample data from the external world. Computational accounts of

behavior in the 2AFC task fall into the broad class of drift diffusion models (DDM)

(Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004) (see Voss et al. (2013) for a practical

guide), which owe their origins to the sequential probability ratio test (SPRT) (Wald &

Wolfowitz, 1948). Using speed and accuracy data for each participant, DDMs fit a decision

threshold a which represents the level of certainty required to choose either option

(essentially the desired level of accuracy), and a drift rate v which corresponds to the rate
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at which people accumulate evidence in the task (related to their task speed). The decision

threshold indicates how much evidence people accumulate before making a decision, which

imposes a distribution on the number of stimulus samples they consider in their choice (Vul

et al., 2014). In this way, DDMs provide a descriptive account of how different contextual

or environmental features, e.g., the proportion of left and right stimuli (Ratcliff & McKoon,

2008), impact the number of samples a subject uses to make a decision.

Critically, DDMs not only allow for precise characterization of the number of

samples taken in data sampling settings, but also lend themselves to rational analysis: how

many samples should one take in a given context? The decision policies adopted by the

SPRT and DDM are optimal in the sense that they yield the fastest decision times for a

given level of accuracy (Bogacz et al., 2006). This in turn reflects an optimality of data

sampling; these models minimize the number of samples needed to achieve a desired level

of accuracy. Critically, optimal thresholds in these models must reflect the objective or

utility functions of the specific tasks: what are the relative benefits of speed and accuracy?

Thus, decision thresholds connect an optimal agent’s objectives and the number of samples

they take. For instance, one often used objective function is maximizing reward rate, as

determined by task specific parameters. Given a particular time cost of samples, fixed

non-decision processing time, and inter-trial delays associated with both correct and

incorrect responses, one can find a threshold function that optimizes the rate of reward.

This function will in turn dictate an optimal number of samples. Other objective functions

like minimizing Bayes risk can similarly be mapped onto specific threshold functions

(Bogacz et al., 2006). Broadly, the SPRT and DDM therefore provide a normative

approach to how many data samples to draw in 2AFC tasks.

Given the success of DDMs in characterizing both empirical and optimal data

sampling behavior, these models provide a template for studying finite sampling across

domains, but also highlight important directions for future development within data

sampling. DDMs have been best characterized in 2AFC tasks, but many important human
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behaviors deviate from this simple case, for instance by facing choices with more than two

alternatives, or data samples that are actively selected rather than passively received. In

these scenarios, we must turn to more elaborate sampling algorithms that can grapple with

these complications. However, even in these richer settings, the same core considerations

clearly identified by the DDM paradigm will apply: what are the costs and benefits of

samples, and how can a stopping rule be chosen to optimize an objective function for a

given problem? In short, the formalization of number of samples offered by DDMs can

guide efforts at similar precision in other related tasks.

The sample distribution in data sampling

In data sampling models, samples are stochastic observations of the world which

people use to reduce uncertainty and inform action choices according to Equation 3.

Notably, the drift diffusion paradigm typically places people in the role of passive observer,

presented with natural samples (Gigerenzer & Hoffrage, 1995) that correspond to the

likelihood function observers use (Ratcliff & Smith, 2004). In this canonical formulation,

departures from rational behavior cannot be explained by the sample distribution as it is

reflected in the likelihood function P (x | s), since the sample-generating process and the

observer’s model thereof, are presumed to match.

However, a large body of research has examined what happens when samples from

the decision maker’s environment do not represent IID samples from the data distribution

presumed by observers. Research examining decisions based on biased samples has mostly

done so in the context of social inferences about the people around us. While this

represents a far more abstract domain than, say, assessing the prevailing direction of dot

kinematograms, the paradigm of sampled data from one’s environment supporting

downstream approximation is largely the same. For example, when people were asked to

provide estimates for a range of health and well-being measures in the general population

(e.g., income and education levels, work stress and health problems), their responses
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showed systematic biases relative to their own self-appraisal on these metrics; the biases

are well predicted by a model in which people’s inferences were based on samples from

their immediate environment, which may have differed from the population distribution

substantially (Galesic et al., 2012, 2018). Similar accounts based on biased samples from

one’s surroundings have been proposed in other domains of social reasoning, such as the

role of peers in determining social attitudes and the robust tendency to judge one’s

in-group as more heterogeneous than one’s out-group (Konovalova & Le Mens, 2020).

These findings fall under the broad umbrella of wicked learning environments (Hogarth

et al., 2015), in which the sampled data from which people learn and generalize deviates

systematically from the population or “test” data (this is contrasted with kind learning

environments in which there is a closer relation and any divergence is primarily a result of

noise). Hogarth et al. (2015) show that a broad range of robust biases such as survivorship

bias and the “hot stove” effect can be accounted for by small samples drawn in various

kinds of wicked environments.

The previous examples suggest that biases in our social judgments and attitudes

may be explained by external processes that systematically distort the distribution of data

we sample in the course of everyday experience. However, there are a number of ways in

which our own behavior can further bias the sample distribution of data on which we base

decisions and actions. Learning and decision making scenarios in which people actively

query the environment may require them to make critical decisions about what kind of

data to sample and when to stop sampling. These active learning paradigms are often

designed to reflect more naturalistic scenarios; in the example in Figure 1, deciding what to

wear to a party has this character, since a person can exercise some control over how many

friends to ask about party attendance, and how long to persist. Work on data sampling in

more active settings has shown that decisions about when to stop sampling and what to

sample can lead to biased sample distributions which account for further idiosyncrasies in

decision making based on these samples.
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First, consider the decision about when to stop sampling. In the multi-armed bandit

paradigm (N. D. Daw et al., 2006; Gittins, 1979) participants sample outcomes from two

“bandits” or levers, each of which has a unique underlying reward probability (or a

distribution, e.g., 90% chance of one dollar and a 10% chance of five dollars). At the end of

the trial period, participants make a (usually binary) decision about which bandit they will

select for their final reward (Hertwig & Erev, 2009). A large body of work exploring binary

choices in these settings finds that people tend to take very few samples, even when the

cost of samples is negligible (Hau et al., 2010; Hertwig et al., 2004; Hertwig & Erev, 2009;

Hertwig & Pleskac, 2010). Such sparse sampling tends to under-represent low-probability

outcomes, and this bias in sample distributions can impact downstream behavior. While

the biased distribution may make certain actions more efficient (e.g., choosing from among

two gambles), people are unlikely to correct for this bias when their goals change or they

are confronted with a new task, e.g., estimating the underlying distributional

characteristics (Coenen & Gureckis, 2021; Jazayeri & Movshon, 2007).3

In addition to decisions about when to stop sampling, decision makers in active

learning contexts can make goal-directed decisions about what data to sample. For

example, when deciding where to go for dinner, we might sample reviews for a particular

cuisine and look for positive ones or seek out positive samples and then choose a cuisine

from among them. Such selective sampling can greatly increase the efficiency of decision

making relative to natural sampling (Fiedler, 2008),4 but selective sampling of a particular

variable will necessarily produce biased samples with respect to that variable’s base rate or

to other correlated variables (Dawes, 1993). In problems of information search, people

show little ability to correct for these biases in subsequent judgments; broadly, where data

sampling reflects distortions from the underlying distribution brought about by people’s

3 In active learning settings where samples are generated through behavior, the line between data sampling

and action sampling may seem somewhat blurred. For our purposes, we aim to distinguish between

sampling actions for consideration, and trying actions to learn from the data they generate.
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sampling choices, their downstream judgments will be similarly biased (Fiedler, 2000,

2008).

In some cases, decisions about what kind of data to sample can reflect broad biases

in information search, as in the case of positive test strategies and confirmation bias

(Klayman & Ha, 1987). Recent work has attempted to characterize the rational principles

and goals that might guide such biased sampling decisions, for example maximizing

expected information gain (Rothe et al., 2018) or testing sparse hypotheses (Navarro &

Perfors, 2011; Oaksford & Chater, 1994). However, identifying such guiding principles in

data sampling can be challenging (Rothe et al., 2018) and, more importantly, it remains

the case that when such principles lead to biased samples, people typically fail to correct

for these distortions in the sample distribution, leading to a range of familiar behavioral

biases (Coenen & Gureckis, 2021; Fiedler, 2000).

Belief sampling

In the last few decades, prominent models of higher-level cognition, reasoning, and

decision making have relied on probabilistic inference over rich internal knowledge

structures (Chater et al., 2006; Knill & Richards, 1996; Oaksford, Chater, et al., 2007;

Tenenbaum et al., 2011). These probabilistic reasoning accounts postulate that human

beliefs can be characterized as probability distributions like the ones supporting expected

utility maximization in Equation 3: the posterior distribution over states conditioned on

observations, P (s | x). In the example discussed at the beginning, the sampled set of

beliefs follow this pattern; what kind of party we are attending and whether there will be

dancing allow us to approximate a more complicated distribution over states given the

available data (see Figure 1). This illustrates one of the central challenges of belief

4 It is worth noting that samples from memory may also be considered along these lines; decision making

can be aided by reaching back in memory for relevant experiences that will inform the current decision.

However, due to the breadth and complexity of such models, we save this for the discussion.
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sampling models, namely that estimating the underlying probability distributions may be

arbitrarily difficult depending on what constitutes a “state,” as well as the complexity of

the models postulated for the prior (P (s)) and likelihood (P (x | s)) distributions.

The sophistication of these models has raised concerns about the plausibility of the

human brain carrying out such fundamentally intractable inference (Gigerenzer &

Goldstein, 1996; Jones & Love, 2011; Kwisthout et al., 2011). This tension has created an

active area of research on biologically and psychologically plausible inference algorithms

that might approximate probabilistic inference over large knowledge structures

(Tenenbaum et al., 2011), with the most attention paid to variations of sampling

algorithms (E. Bonawitz, Denison, Gopnik, et al., 2014; Sanborn et al., 2010; Shi et al.,

2010). These belief sampling accounts propose that the probability distributions over

knowledge structures—i.e., beliefs, under the probabilistic reasoning framework—are

approximated by sets of samples (Lieder, Griffiths, & Hsu, 2018; Sanborn et al., 2010; Vul

et al., 2014). Such belief sampling accounts arise in models of physical reasoning (Battaglia

et al., 2013; Ullman et al., 2017), category learning (E. B. Bonawitz & Griffiths, 2010;

Goodman et al., 2008; Shi et al., 2010), sentence parsing (Levy et al., 2009), theory of

mind (Baker et al., 2009), creative thinking (Smith et al., 2013), multiple object-tracking

(Vul et al., 2009), and many more. In all these domains, inference is supported by a

sampled set of beliefs about what sort of world we might be in given the available data:

what rule governs category membership, what a particular sentence’s meaning evaluates to,

or what sort of physical outcome is likely to occur from a particular starting state.

The number of samples in belief sampling

Belief sampling accounts start with the assumption that sampling is done by an

algorithm that approximates the relevant probability distribution without bias, at least in

the limit of infinitely many samples (S. Gershman et al., 2015). This assumption is

important for addressing the motivating challenge of biological and psychological
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plausibility of probabilistic inference noted previously. However, while the sampling

algorithms underlying belief sampling models may make certain guarantees in the limit,

when these algorithms are used to model human behavior, they often rely on only a few

samples. After all, considering infinitely many samples seems just as implausible as

working with the complex probability distribution directly. Further, relying on few samples

ensures that a sample-based approximation to a probabilistic model generates novel

predictions (otherwise, it perfectly mimics the probabilistic model with no sampling). The

net result is that belief sampling accounts start with the assumption that few samples are

used and aim to characterize just how small that number is.

One approach to characterizing the number of samples relies on the role of sampling

variability in explaining differences between individual and group-level behavior (Dasgupta

et al., 2017; Vul et al., 2014). In a range of settings, decision making across a group of

participants or aggregated over many trials closely resembles complete probabilistic

reasoning (i.e., based on infinite samples), yet individual or trial-by-trial results are often

idiosyncratically variable (Goodman et al., 2008; Griffiths & Tenenbaum, 2006;

Lewandowsky et al., 2009; Mozer et al., 2008). The tension between aggregate population

behavior consistent with probabilistic inference and seemingly irrational individual

behavior can be resolved by positing that individuals use very few samples to guide

decisions. This produces high variance individual trial behavior that approximates full

probabilistic inference over many trials. By modeling variation in individual behavior,

researchers estimate how many samples people might be using and often find low numbers

(Mozer et al., 2008). Although such reliance on few samples may seem surprising, in a

broad set of decision tasks, under reasonable assumptions about the cost of samples,

making quick decisions based on only one or a few samples is optimal (Vul et al., 2014).

As in data sampling models, considerations of sampling cost are critical for belief

sampling. In some cases, generating belief samples can be highly burdensome, relying on

the simulation of complex physical world models or generative processes. This, in
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combination with the effort to underscore the cognitive plausibility of belief sampling

models, places the cost of samples front and center. The concept of sample re-use across

inferences has therefore emerged as a relevant factor effecting the number of (novel)

samples. When the cognitive costs of sampling are assumed to be large, the ability to

remember previous samples offers a powerful opportunity to save time and computation

across suitably similar decision contexts (Dasgupta & Gershman, 2021; Logan, 1988a).

First, sample reuse is obviously helpful when we might need to answer a more or

less identical question again. For example, when asked to give an estimate for simple

questions like, “What percent of the world’s airports are in the United States?”, people

provided less correlated responses when they were asked the question again three weeks

later than when they were asked immediately after the first response (Vul & Pashler,

2008), and the correlation between immediate repeated guesses was lower for people with

lower memory capacity (Hourihan & Benjamin, 2010). Here, memory for the previous

answer is assumed to bias the second response when people are prompted at close intervals,

suggesting that people will re-use their initial sample in subsequent judgments. The

broader question of how samples from memory align with the expected utility framework is

something we address at greater length in the discussion.

A related body of work addresses the conditions under which people re-sample or

continue to rely on a previous sample even as they receive new data. For example, across a

number of category learning tasks, individual behavior can be fit by a particle filter

algorithm with a single particle, a finding consistent with continuing to use a sampled

hypothesis as long as it continues to fit the data (Sanborn et al., 2010). Similar work

showed that a “win-stay, lose-sample” algorithm which retains an existing hypothesis and

only re-samples when it fails to describe the data captures adult and toddler behavior in a

causal learning task (E. Bonawitz, Denison, Gopnik, et al., 2014). Even more dramatically,

Goodman et al. (2008) provide evidence that participants in sequential concept learning

settings will continue to use a sampled rule even when other rules are more likely (or even



MAXIMUM UTILITY SAMPLES 23

fit the data perfectly). Together, these results suggest that people exhibit a strong

tendency to re-use samples across repeated decisions, limiting the number of samples they

need to draw when doing so is costly.

But how far does this tendency go? A growing body of work suggests that people

will re-use costly samples to support multiple related decisions (Dasgupta & Gershman,

2021; Dasgupta et al., 2018; Dasgupta et al., 2020; S. Gershman & Goodman, 2014). For

example, when people are asked to make judgments that can be supported by a previous

inference due to conditional dependence, their responses can be strongly predicted by the

previous response relative to people who did not make the previous inference first, and

their response times are consistent with sample re-use (S. Gershman & Goodman, 2014).

Though these results suggest that people make dynamic inferences about sample re-use in

belief sampling, many questions remain about how people make such decisions and what

kinds of limits or biases are introduced in the process.

The sample distribution in belief sampling

When sampling beliefs, the sample distribution reflects the challenges of generating

representative samples from P (s | x) in Equation 3 through purely cognitive processes.

While sampling data is often a matter of exploring or receiving information from the world,

sampling beliefs requires deploying machinery capable of imagining different possible

worlds. In some cases, this may be as simple as imagining what kind of outcome we might

receive from a particular gamble (Lieder, Griffiths, & Hsu, 2018) or what values a simple

random variable in the environment might take (Vul et al., 2014). However, in many cases,

this requires more sophisticated mental models or generative processes to produce the

samples. To illustrate, consider “noisy physics engine” models of intuitive physics, in which

inferences about whether a tower of blocks will fall or a ball will hit a target are based on

forward simulation of a dynamic physics engine to produce samples of how different

configurations of blocks might behave (Battaglia et al., 2013). Or, in category learning
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paradigms, generating a hypothesis about the rule that determines category membership

(i.e., the belief that best describes the available data) may involve a rich generative process

to produce sample rules (E. B. Bonawitz & Griffiths, 2010; Goodman et al., 2008) or draw

on prior knowledge (Williams & Lombrozo, 2013).

In light of these challenges, bias in the sample distribution arises first from the

difficulty of obtaining a sample at all. In such settings, sampling requires creative

algorithmic solutions which simplify the process of generating a sample. However, as a

result of these simplifications, such processes may not faithfully represent the underlying

distribution with only a limited number of samples. One common approach relies on

Markov Chain Monte Carlo (MCMC), in which each sample is generated through easily

computable modifications to the previous sample. A sequence or “chain” of samples

generated in this way has the property that in the limit, it approximates the underlying

distribution with high fidelity (Gilks et al., 1995). MCMC is commonly used in machine

learning applications to approximate complex distributions that cannot be analytically

specified. However, because of the iterative sampling algorithm, MCMC samples have an

autocorrelation that is more pronounced in small-sample regimes. The sample distribution

may in turn be more homogeneous than would be expected, since each sample is correlated

with the one that preceded it. If people implement a form of MCMC sampling in belief

sampling, we might expect the autocorrelation of samples to have behavioral consequences;

MCMC-like processes have been proposed as an account of perceptual switching in

binocular rivalry (S. J. Gershman et al., 2012), sequential dependence in semantic memory

search (Bourgin et al., 2014), and anchoring biases (Lieder, Griffiths, Huys, et al., 2018).

In a similar vein to MCMC, sequential Monte Carlo algorithms, or particle filters,

provide a natural way of capturing online belief updating as new information comes in

(Levy et al., 2009; Sanborn et al., 2010; Vul et al., 2009) rather than static inferences.

These models maintain a set of sampled hypotheses that can change over time and be

re-evaluated as new data is observed. For instance, the first few words of a sentence are
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consistent with many candidate parses, but subsequent words narrow the set of

possibilities. A particle filter may sample such sentence parses and re-weight and re-sample

plausible parses as new words are read, allowing for efficient, psychologically plausible

approximation of the posterior distribution over parses (Levy et al., 2009). Similar

dynamics have motivated the use of particle filters in other sequential tasks in humans

(Sanborn et al., 2010; Vul et al., 2009), and animals (N. Daw & Courville, 2008). Notably,

psychologically plausible particle filters only entertain a limited number of samples at any

one time; as time goes on, these samples are “pruned” when they are inconsistent with the

observed data. This may lead to scenarios where new data is entirely inconsistent with

existing samples. In sentence parsing, such particle filter “collapse” has been proposed as

an account of the experience of being stymied when parsing a garden path sentence such

as, “the horse raced past the barn fell” (Levy et al., 2009).

The previous examples illustrate the potential for biases in the sample distribution

driven by various algorithmic attempts to make sampling tractable in the first place.

However, a second source of bias in the distribution of belief samples arises from attempts

to generate the right samples. Just as data sampling may under-represent rare but high

utility outcomes (Hertwig et al., 2004), belief sampling algorithms must account for states

that have low probabilities but high-magnitude utilities, like winning the lottery or

contracting a fatal illness. Such “black swan” states are unlikely to be sampled from the

underlying distribution, but due to their high (positive or negative) utility, failure to

consider them could lead to missed opportunities or highly undesirable outcomes.

Empirically, these events are often given disproportionate attention and rated as more

probable than they truly are (Kahneman & Tversky, 1979), suggesting that natural state

sampling offers a poor psychological account of the ways in which people treat such events.

How can a sample-based account of decision making—which would require taking

potentially thousands of samples to assess particularly rare outcomes (Lieder, Griffiths, &

Hsu, 2018)—address the readiness with which people consider possible black swan states
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when making decisions? As with the challenge of generating complex belief samples,

answers to this question largely appeal to the sampling algorithm itself. Lieder, Griffiths,

and Hsu (2018) propose that people use a form of importance sampling in which samples

are drawn from a biased distribution that over-weights high-utility-variance states, and

then corrects for this bias by weighting by the inverse of the utility variance. This

algorithm ensures that extreme, albeit low probability, events are considered when making

a decision. Further, the strategy avoids black swans in the ultimate decision, but causes

people to overestimate the likelihood of these extreme, low probability events, thus offering

an account of the availability bias (Kahneman & Tversky, 1979). Lieder, Griffiths, and Hsu

(2018) show that this same strategy also accounts for other peculiarities of human decision

making, including inconsistent risk preferences and certain memory biases. Broadly, these

results illustrate that when using few samples and faced with the challenge of generating

relevant samples at all, algorithms that solve this problem may introduce biases and

distortions in the sample distribution which have downstream behavioral consequences.

Though research on the behavioral consequences of biased sample distributions has

largely focused on adults, recent developmental work has highlighted the value of exploring

similar questions in children. After all, young children, perhaps more than adults, are faced

with a daunting task of assembling coherent representations of the state of the world given

noisy and sparse data. A number of results suggest that children may indeed rely on

sampling mechanisms similar to adults to update their beliefs about their environment

(E. Bonawitz, Denison, Gopnik, et al., 2014; E. Bonawitz, Denison, Griffiths, et al., 2014;

Denison et al., 2013). And just as biased sample distributions may lead to distinct biases

in adult decision making, recent work has investigated whether patterns of sampling

behavior might help explain key changes in cognitive development. For example, evidence

that children are often more exploratory than adults and can sometimes learn novel

relationships better than adults is consistent with children sampling a wider range of

hypotheses and generalizing less (Gopnik et al., 2015; Gopnik et al., 2017; Lucas et al.,
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2014; Schulz et al., 2019). In this vein, developmental research offers a unique opportunity

for further testing predictions of belief sampling models.

Action sampling

The decision making framework presented here posits that given a choice of possible

actions, people will choose the one that maximizes expected utility. In the expected utility

calculation in Equation 3, the process of choosing the best action is glossed over in a simple

arg max operator, but implementing it is a challenging optimization problem (Nocedal &

Wright, 2006). In the controlled settings that dominate empirical work in psychology and

decision making, people select among a pre-defined set of options (Kalis et al., 2013;

Smaldino & Richerson, 2012), so the optimization problem is well-constrained; we can

evaluate each of the few explicitly stated alternatives to find the best one. However,

real-world situations present us with innumerably many possible actions to choose from.

Our options about what to do for dinner include not only obvious choices like raiding the

fridge or ordering take-out, but also novelties such as snaring a neighborhood squirrel, and

non-sequiturs such as opening a pedicure salon. Intuitively, our deliberation process cannot

evaluate all possible options, so the choice of best action necessarily involves choosing from

a limited sample of alternatives, often called the consideration set (Hauser & Wernerfelt,

1990). This is illustrated by the example in Figure 1, where deciding what to wear to a

party will in practice only involve explicitly sampling a handful of possible items. However,

even remaining open to everything in our closet already represents a narrowing of the

consideration set if we do not also consider buying a whole new outfit on the way to the

party or fashioning new coverings from the contents of our kitchen pantry. In general, since

we cannot consider all available actions when making decisions, sampling offers a potential

solution.

Because our aim in considering actions is finding the best one, there are substantial

differences in constraints on, and properties of, action sampling compared to belief or data
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sampling. On the one hand, optimization simplifies what we do with a sampled action:

simply evaluate how good it is, and ultimately choose the best one. There is no need to

re-sample an action multiple times to estimate frequency, or to weight it in some manner to

correct for a biased sampling distribution. On the other hand, optimization underscores

the need to sample actions that are likely to be valuable. With a potentially infinite,

discontinuous set of possible actions, the number of terrible actions is vast, and if we

sample a subset of actions from an irrelevant distribution, the best action in our

consideration set might be quite bad indeed. In light of this, investigations into the number

of samples and the sampling distribution for actions focuses on understanding how we

manage to consider the right kinds of actions most of the time.

This description of decision making as choosing from among candidate (sampled)

actions the one with the highest expected utility has been challenged by a diverse set of

accounts. In particular, many alternatives emphasize the role of exogenous factors like

potential regret (Loomes & Sugden, 1982) or disappointment (Loomes & Sugden, 1986), or

affective responses more generally (Mellers et al., 1997) in decision making. Since these

variables can be considered somewhat independent of an action’s underlying utility, the

extent to which they impact downstream decision making is important. Critically, the role

that the number of action samples and the sample distribution play in decision making

remains consistent with these theories. While our discussion focuses on choosing the action

which maximizes approximate expected utility, we might just as easily replace this with the

action that minimizes expected regret, or maximizes a more complex joint distribution of

affect and utility. In either case, the motivating question remains how people sample the

right actions from a practically infinite space of options.

The number of samples in action sampling

With belief and data sampling, the number of samples places an obvious constraint

on our ability to make downstream inferences because the samples represent our estimated
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probability distributions P (s | x). However, as Equation 3 illustrates, sampled actions do

not play the same role; we simply choose the best from among them. Therefore, it could be

the case that despite limiting the number of actions in the consideration set, this choice has

no noteworthy consequences for behavior. Since we just pick the best action from the

consideration set, so long as the best action is contained within, it doesn’t matter how

small that set is. In some cases, the first action that comes to mind is indeed likely to be

the best. Johnson and Raab (2003) found that the first action considered by handball

players faced with a possible game scenario was ultimately chosen 60% of the time and

that in general, subsequently generated alternatives decreased in quality.

However, perfect calibration between the actions we consider and the utility

function we aim to maximize not only seems implausible in theory, but is also not borne

out in practice. First, ensuring that the best action is somewhere in the consideration set

seems to require an omniscient procedure that already knows the outcome of the decision

process; if we could choose a consideration set based on which actions are the best, we

could just use that process to make our choice. Second, ensuring that the best answers are

in the consideration set is not just a priori implausible. In many domains, people can

identify the best action from among a set of alternatives, but fail to generate that action

themselves (Adams et al., 2021). For instance, when proposing good questions in a

modified battleship game, subjects could reliably identify the most informative questions

when presented with a list, but rarely generated the optimal questions on their own (Rothe

et al., 2018). This ability to recognize useful actions, despite failing to generate them,

suggests a sub-optimality that arises not from action evaluation itself, but instead from

relying on a subset of actions that may not always be calibrated to the problem at hand.

Given that the limited consideration set of actions may not always include the best

one, the number of samples drawn plays a role in determining how likely the consideration

set is to contain promising choices. As with data and belief sampling, additional samples

will incur time costs (and thus a reduction in the rate of decisions) and are likely to also
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impose cognitive effort. In some cases, the effort required to evaluate sampled actions can

be quite large. The familiar experience of choice overload, in which having more options

can paradoxically lead to higher levels of regret, choice deferral, or dissatisfaction, makes

these costs clear (Chernev et al., 2015).5 The benefits of sampling more actions depend in

part on the variation in payoffs across sampled alternatives; if all actions are equally

beneficial, nothing is lost from poor optimization by considering too few samples. In

addition, the value of additional sampled actions depends on the alignment between the

sampling distribution and the true context-relevant payoffs. For sampled actions to be

useful, they must be sampled according to a plausible approximation of their present

expected utility, such as prior success in similar settings. However, the actual utility or

reward obtained from a given action in the present context may not match the expectation.

If the sample distribution is less likely to provide the best action for the given decision, then

having more samples to choose from gives one better odds of choosing a high value action.

These considerations suggest that the expected utility calculation based on sampled

actions will be sensitive to how many samples are taken and whether these samples are well

calibrated to the environment. Indeed, in simulations testing these predictions, Morris

et al. (2021) show that the expected reward rate varies as a function of the number of

actions considered, as well as the correlation between action utilities and the probability

that actions are sampled into the consideration set. But how many action samples should

we take? With a perfect correlation, the first action considered will most often be the

optimal action, so one sample yields the highest possible reward. However, as this

correlation decreases, the consideration set will need to be larger to maintain a high

probability of containing a good action; consequently, the optimal number of samples is

5 While these results might seem counter to the claim that decision makers simply choose the best action

from the consideration set, they primarily suggest that evaluating actions is indeed difficult and costly, so

evaluating more choices can increase error or uncertainty in our choice. Factors that often lead to greater

choice overload are exactly those we intuitively associate with making errors more likely, e.g., choice set

complexity and preference uncertainty (Chernev et al., 2015).
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larger. Morris et al. (2021) find that so long as the correlation between the distribution

over actions and the true utilities is larger than 0.25, the optimal number of actions

considered out of a possible 1000 is less than 10. These simulation results therefore suggest

that in scenarios where our expectations map reasonably well onto the present decision, as

with data and belief sampling, there may be little value in taking more than a few samples.

The sample distribution in action sampling

The expected utility maximization goal given by Equation 3 is to select the best

action from the set of possible actions, but given that the space of actions is immense, the

arg max must be evaluated over a subset of actions. This subset represents the sample

distribution over actions. In the previous sections on data and belief sampling, we

discussed the ways in which biased sample distributions predict systematic deviations from

optimal behavior. However, the potential for such deviations in action sampling is

complicated by the fact that given a consideration set of actions, the decision maker need

only pick the best one. If the globally best action is in the consideration set, any other bias

in the sample distribution is essentially irrelevant. Thus, just as the number of samples in

the consideration set only effects behavior if the best action is not guaranteed to be in the

sample, the sample distribution will only bias behavior if the optimal choice is not present.

This poses a challenge for researchers testing the role of samples in action selection: how to

identify scenarios where people’s consideration set will reliably fail to include the optimal

choice? Intuitively, this depends on how the candidate actions are sampled.

Morris et al. (2021) propose that we consider actions based primarily on global

average utilities that are not dependent on the local decision context. These actions are

then sampled into the consideration set, and each one is evaluated more systematically

given all that is known about the current context. On this account, a consideration set is

constructed where the probability of including an option is proportional to its “cached”

historical value, perhaps pulled from long-term memory (Kaiser et al., 2013), or obtained
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via model free reinforcement learning (Pezzulo et al., 2013). Critically, such a process

might introduce a bias toward actions that have previously been selected or rewarded but

which may be incongruous in novel circumstances. In new situations, if no prior

circumstances are particularly relevant, we are left to consider only actions that have been

previously successful on average. This predicts that people tend to disproportionately favor

globally useful actions in novel circumstances. In support of this account, Morris et al.

(2021) found that when asked to list all meal ideas following dental surgery, subjects

tended to generate options that were high in general value (i.e., their favorite dishes), but

were less likely to generate options of high utility in the specific context (i.e., suitable given

dental restrictions). This finding is attributed to a process which samples broadly “useful”

actions but, faced with the challenge of evaluating them in a relatively unfamiliar context

(after dental surgery), does little additional filtering or optimization.

In contrast, Phillips et al. (2019) propose that we use the current context to

determine which actions were frequently chosen, or had yielded high utility, in prior similar

circumstances. These actions then form the basis of our sampled consideration set. On this

account, the consideration set is more tailored to a given decision context, making it more

likely that the optimal action is in the sample. Though intuitive, it can be difficult to

extract behavioral predictions from this account. For one, the mechanism for identifying

similar past situations in a given decision context is highly unconstrained; any past

experience, behavioral tendency, observed contingency, or accrued reward could plausibly

be used as input into the system that learns reward estimates, and any representation of

the current context might be used to query this cache for good actions. Second, on this

account, it is unclear when biases in the consideration set will emerge since the sample is

predicted to be more context specific. Scenarios in which the context seems to invite a

particular sample of actions as a useful consideration set but in fact are best approached

with a different action require somewhat unique circumstances where previously learned

adaptations are no longer useful or are incidentally low utility despite similar
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circumstances. If we walk out to somebody else’s car with them and instinctively reach

into our pocket for our own keys, this sort of action has the character of being a utility

maximizing behavior under similar circumstances but one which, evaluated in the current

setting, is not nearly as useful. Such paradigms are often used to study the tension between

reflexive, model-free decisions and more deliberative, model-based action selection (Gläscher

et al., 2010). On this view, model-free choices reflect the sort of behaviors that past

experience alone predicts would be utility maximizing—actions selected from a potentially

biased sample distribution without further consideration—while model-based action

selection involves the more careful evaluation of all items in the consideration set and leads

to different choices in the context at hand. In this way, action sampling might predict

when the decision system as a whole will behave consistently with model-free habits or

model-based plans, according to the interplay of the cost of action sampling and the

correlation between the action sampling distribution and the underlying utility function.

Discussion

In this chapter, we have attempted to explicitly relate a broad array of sampling

models in the literature as facets of an over-arching computation: approximating expected

utility maximization. We argued that existing sample-based accounts in a diversity of

settings can be succinctly described as sampling the underlying data, belief, and action

distributions that are central to calculating expected utility. In this way, these models

come together to support a unified process of making good decisions.

Previously, data, belief, and action sampling have largely been considered in

isolation in tasks designed to make all but one of these components trivially simple. We

begin with the premise that in real-world settings, all three aspects are non-trivial, and

therefore an integrative account of decision making by sampling ought to consider them all.

By jointly evaluating how samples of each type are used together, we see that subsets of

data, belief, and actions play a fundamentally different role in the expected utility



MAXIMUM UTILITY SAMPLES 34

calculation: conditioning for data, marginalization for beliefs, and optimization for actions.

These differences highlight discrepancies in the solutions and broader research goals in each

domain. However, the present work suggests that there is room for optimism about a more

integrated view. In support of this, we discuss major trends in these distinct literatures

along two key lines of analysis which are critical to any mature sample-based theory: a

precise account of how decision making in each setting reflects the number of samples and

the sample distribution. We take as our starting point that in data, belief, and action

sampling, decision making relies on only a few samples and that in each domain, the

sample distribution that results from these limited samples must play a role in downstream

behavior. This perspective provides a number of broad insights across these domains. Data

sampling allows for a precise account of the number of samples, belief sampling models

show a critical relationship between the sampling algorithm and behavior, and action

sampling poses a challenge in specifying the relationship between the sample distribution

or consideration set and decision making.

The differences between data, belief, and action sampling algorithms highlighted by

our review offer a clear opportunity for synthesis. Because each field has emphasized

different aspects of sampling, they have made progress on issues that may have been

ignored by the other fields. In this vein, considering the different classes of sampling

together provides a basis for development in one field to be translated to others. The

formal tools for deriving optimal stopping rules in drift-diffusion models of data sampling

may be fruitfully brought to bear on the meta-cognitive choices pertaining to belief

sampling and might even inform the trade-off between implicit and deliberative action

selection. Likewise, correlated sampling algorithms from belief sampling highlight methods

for grappling with non-independent data sampling environments. Progress in both of these

domains may offer a number of future directions for relatively nascent models of action

selection. The synthesis offered in this chapter leaves open two large classes of questions

which we briefly consider. First, the expected utility maximization framework for sampling
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models should be taken to its logical conclusion: how do people integrate data, belief, and

action sampling when making complex decisions? Second, while this chapter attempts to

bring a breadth of sample-based models into the framework of expected utility

maximization, this is far from a complete survey. How might we consider still other

sampling accounts, such as sampling utilities or memories?

Unifying sample-based expectation maximization

The motivation for unifying all the facets of sampling under one account of

approximating expected utility maximization is that real-world tasks entail ambiguity,

uncertainty, and approximation of every aspect of the calculation. Throughout this

chapter, we have alluded to a simplistic example of deciding what to wear to a party which

illustrates this (Figure 1). However, everyday life presents us with an abundance of similar

scenarios. Critically, explicitly combining sampling of all of these variables creates at least

two major complications: (a) determining which variables are sampled in what order, and

(b) optimizing sample sizes given sample-based error along all variables.

First, the basic expression arg maxA
∑

s U(A; s)P (s) entails evaluating the utility of

every combination of sampled action and sampled state, meaning that the processing load

grows as a product of sample sizes. Alternatively, perhaps not all combinations of action

and state need to be evaluated; but then how can the system determine which

combinations to consider? Equivalently, if we consider jointly sampling (action, state)

tuples, we face the same problem: what dependence structure ought to exist in the joint

distribution? Another alternative is that we sample sequentially. Just as we condition on

data to sample states, perhaps we condition on states to sample actions. Indeed, this would

be one method to allow better generalization from past experience when determining the

action sampling distribution. However, this conditional action sampling procedure does not

find the action with the highest expected utility, but instead finds the action with the

highest optimistic utility: the action that has the highest utility in the state for which it is
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well suited. In short, because action and belief sampling accounts typically work in

isolation, little is known about how people ought to set the order and dependency structure

when sampling both, and nothing is known about how they actually do this.

Second, the number of samples we ought to take for data, beliefs, or actions are

inextricably linked. In the limit, where we sample only one action, it is irrelevant how

much data we have to inform our latent state estimates, or how precisely we approximate

our beliefs about states, since the solitary sampled action determines our choice. Likewise,

if we sample no data, nothing is to be gained from sampling more than one action. If we do

not inform our estimates about the current state, then our state-contingent utility

calculation will not differ from a global average utility from which we might sample

actions. However, not all samples are complements; additional data samples decrease the

entropy of our belief distribution, but it is advantageous to take more belief samples in

medium entropy scenarios (Vul et al., 2014). This means that the optimal number of belief

samples does not change monotonically with the number of data samples; it initially rises

when we obtain some data, then drops as data sufficiently constrains our beliefs. Given

these interdependencies between sample sizes, the joint optimization over the number of

data, belief, and action samples might yield several discrete classes of algorithms,

depending on the balance of data, belief, and action sample costs.

Other forms of sampling

The framework proposed in this chapter emphasized data, state, and action

sampling. However, two other interrelated forms of sampling have not been considered:

sampling utilities (Stewart et al., 2006) and memories (Nosofsky & Palmeri, 1997). First,

consider utility sampling. In the formalism in Equation 3, there is no uncertainty or error

in utility evaluations: U(a; s) is accessible directly and infallibly. However, some

relaxations of this assumption can be accommodated in our formulation. An uncertain or

stochastic utility function can be captured without explicitly sampling utilities by adding
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more state possibilities. For instance, instead of U(a; s) yielding $10 50% of the time, and

$0 the remainder of the time, we can posit a constant utility function defined over two new

states: U(a; u) = $10 and U(a; v) = $0, and we split the probability associated with state s

evenly across the two sub-states u and v. However, other challenges to the assumption of

an available value function cannot be so addressed, and would instead require a new

sampling term. For instance, if we do not have direct access to explicit value functions

(Hayden & Niv, 2020), but must instead reconstruct them from past experience (Stewart

et al., 2006), this reconstruction must have some sampling fidelity, and must be nested

within state-action sampling. Such an approach is most relevant when we consider that

value functions are likely to be learned over time, via reinforcement learning. Indeed, the

Thompson Sampling (Thompson, 1933) strategy for striking a balance between

exploitation and exploration in multi-armed bandit problems is to choose the action with

the highest sampled payoff, suggesting that there is an important algorithmic role for

sampling utility functions themselves.

Sampling from memory is a more complicated case, because memory sampling takes

on many different flavors. The most basic example of memory sampling is conjuring past

observations from memory—this is consistent with data sampling, but where the

information search process proceeds through one’s memory stores (Hills et al., 2012;

Ratcliff, 1978). This form of memory sampling, although conceptually quite different from

sampling information from the external world, is still consistent with sampling data; the

sampled memories are conditioned on and yield noteworthy predictions insofar as they

come from a biased distribution. Most memories however are not pure retrieval of facts but

are instead reconstructions of the past (Bartlett, 1932). In that sense, a sampled memory

lies somewhere between a sample of data, and a sample of the beliefs, i.e., the inferred

world state. Finally, memory also serves to cache previous actions and calculations, as in

the instance theory of automatization (Logan, 1988b), which seems most consistent with

sampling actions based on previously calculated optimal choices. These different modes of
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memory sampling are sometimes quite tangled. For instance, sampling exemplars from

memory is consistent with sampling beliefs in a categorization probability (Nosofsky &

Palmeri, 1997; Shi et al., 2010), and more generally, sampling previously considered beliefs

or interim calculations from memory (Dasgupta & Gershman, 2021; Dasgupta et al., 2018)

is consistent with reusing past samples of beliefs, actions, or data. Altogether, when

considered in our framework, sampling memory is a broad collection of strategies for

reusing prior samples of either data, beliefs, or actions. In short, although utility and

memory sampling may be accommodated within our framework, a serious treatment of

either of these domains requires considerable elaboration of our framework, and thus offers

a promising avenue for future work.

Conclusions

In summary, this chapter addresses the challenge of integrating the many

sample-based models across diverse areas of psychology. We begin with the observation

that in decision making contexts, a rational agent chooses the action that maximizes

expected utility. Yet doing so poses major computational hurdles even for simple, everyday

decisions. In light of this, we propose that several broad classes of sampling models in the

literature can be viewed as approximating different components of the expected utility

calculation: data, beliefs, and actions. Under this unifying framework, our review compares

models of data, belief, and action sampling along two distinct dimensions which are central

to any sampling account: the number of samples and the sample distribution. This

comparison offers novel insights into the strengths of different sampling accounts as well as

opportunities for future work. Finally, we advocate for further inquiry aimed at

understanding how data, belief, and action sampling processes come together to support

rich, grounded decision making.
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