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Abstract

Fun with Fields

by

William Andrew Johnson

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Thomas Scanlon, Chair

This dissertation is a collection of results in model theory, related in one way or another
to fields, NIP theories, and elimination of imaginaries. The most important result is a clas-
sification of dp-minimal fields, presented in Chapter 9. We construct in a canonical fashion
a non-trivial Hausdorff definable field topology on any unstable dp-minimal field. Using
this we classify the dp-minimal pure fields and valued fields up to elementary equivalence.
Furthermore we prove that every VC-minimal field is real closed or algebraically closed.

In Chapter 11, we analyze the theories of existentially closed fields with several valuations
and orderings, as studied by van den Dries [16]. We show that these model complete theories
are NTP2, and analyze forking, dividing, and burden in these theories. The theory of
algebraically closed fields with n independent valuation rings turns out to be an example of
such a theory. This provides a new and natural example of an NTP2 theory which is neither
simple nor NIP, nor even a conceptual hybrid of something simple and something NIP.

In Chapter 8, we exhibit a bad failure of elimination of imaginaries in a dense o-minimal
structure. We produce an exotic interpretable set which cannot be put in definable bijection
with a definable set, after naming any amount of parameters. However, we show that these
exotic interpretable sets are still amenable to some of the tools of tame topology: they must
admit nice definable topologies locally homeomorphic to definable sets.

Chapter 12 proves the existence of Z/nZ-valued definable strong Euler characteristics on
pseudofinite fields, which measure the non-standard “size” of definable sets, mod n. The
non-trivial result is that these “sizes” are definable in families of definable sets. This could
probably be proven using etale cohomology, but we give a more elementary proof relying
heavily on the theory of abelian varieties.

We also present simplified and new proofs of several model-theoretic facts, including
the definability of irreducibility and Zariski closure in ACF (Chapter 10), and elimination
of imaginaries in ACVF (Chapter 6). This latter fact was originally proven by Haskell,
Hrushovski, and Macpherson [26]. We give a proof that is drastically simpler, inspired by
Poizat’s proofs of elimination of imaginaries in ACF and DCF [60].
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To my parents
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Introduction

This dissertation is a collection of results in model theory, loosely united around three
recurring themes:

• Fields, and valued fields in particular

• Theories without the independence property (NIP theories)

• Elimination of imaginaries

The most important result is a classification of dp-minimal fields, presented in Chapter 9.
Recall that dp-rank is a notion of “rank” or “dimension” that is particularly well-suited
for NIP theories. Structures of dp-rank 1 are dp-minimal, and dp-minimality is known to
generalize many of the prior notions of “minimality” such as strong minimality, o-minimality,
C-minimality, VC-minimality, and p-minimality.

A number of theories of fields are known to be dp-minimal, including algebraically closed
fields, real closed fields, and several theories of valued fields. Our classification result shows
that every field of dp-rank 1 is algebraically closed, real closed, or a henselian valued field
with a non-trivial definable valuation. Even better, we can essentially classify the dp-minimal
pure fields up to elementary equivalence. Every dp-minimal field is elementarily equivalent
to the underlying field of a henselian valued field whose residue field is algebraically closed,
real closed, or finite. Specializing to the case of VC-minimal fields, we also prove the remark-
able fact that every VC-minimal field is real closed or algebraically closed. We also obtain
characterizations of which valued fields are dp-minimal.

The classification is carried out in Chapter 9. Some preliminary facts about strongly
dependent valued fields are proven in Chapter 4, building off work of Kaplan, Scanlon,
and Wagner [42]. The positive side of the classification—the proof that certain fields are
dp-minimal—is carried out in Chapter 3.

The classification of dp-minimal fields is proved through a surprising method: on any
unstable dp-minimal field, we produce a completely canonical field topology from scratch.
This is a rare instance in model theory where a topology can be created out of purely
combinatorial assumptions. More typically, a topology is exactly what’s missing, when we
try to classify things in model theory. (Hrushovski and Zilber’s work on Zariski geometries
[37] is a good example of this phenomenon.)

The second substantial result of this dissertation is in Chapter 11, which focuses on
theories of fields with several independent valuations and orderings, in the spirit of Lou van
den Dries’s thesis [16]. For fixed n, m, one can look at the theory of fields with n orderings
and m valuations. By [16], this theory has a model companion. We prove that these model
companions are NTP2—that is, they do not have the second tree property. NTP2 is a
common generalization of “NIP” and “simple”, that has been studied extensively in recent
years by Chernikov, Kaplan, and others ([9], [10], [11], [12], [71]). We also analyze forking
and dividing in these theories.
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In certain cases, the model companions admit very simple axioms. For example, we
show that the model companion of the theory of fields with n valuations is the theory of
algebraically closed fields with n pairwise independent valuations. (Interestingly, the proof
uses the Riemann-Roch theorem.) The fact that this is NTP2 implies the surprising result
that Qalg is NTP2 after being expanded with a separate unary predicate for every valuation
ring.

Chapter 11 thus provides a new, natural example of an NTP2 theory which is neither
simple nor NIP. Nor is it a conceptual hybrid of something simple and something NIP, unlike
many of the prior examples (e.g. ACVF with non-standard Frobenius, bounded pseudo real-
closed fields [54], and ultraproducts of Qp [12]). There is, however, some overlap with the
bounded PRC case: existentially closed fields with several orderings turn out to be bounded
PRC fields, which were shown to be NTP2 by Samaria Montenegro [54].

Another key part of this dissertation is Chapter 6, which presents a new and improved
proof of elimination of imaginaries in ACVF, the theory of algebraically closed valued fields.
Haskell, Hrushovski, and Macpherson showed in their foundational paper [26] that ACVF
eliminates imaginaries after expansion by certain “geometric sorts.” This result underlies
much of the later work on ACVF, including the sequel paper [27] on stable domination, and
the work of Hrushovski and Loeser [34] on Berkovich spaces. Chapter 6 presents a new proof
of elimination of imaginaries in ACVF, that is drastically shorter than the original proof in
[26]. The proof is also conceptually simpler, and more aligned with Poizat’s original proofs
of elimination of imaginaries in ACF and DCF [60].

Continuing in the spirit of simplification,

• Chapter 2 presents a proof of quantifier elimination and C-minimality in ACVF that
attempts to minimize the amount of syntax and algebraic casework. Quantifier elimi-
nation is essentially reduced to proving two facts: (1) C-minimality for quantifier-free
definable sets (which is straightforward, if tedious), and (2) an amalgamation theorem
for valued fields (which admits a direct algebraic proof).

• Chapter 7 recovers some of the basic facts about generically stable types and stable
domination proven in [27] and [34]. Interestingly, the proofs use very little from ACVF,
and generalize to C-minimal expansions of ACVF.

• Chapter 10 gives a fast new proof that irreducibility of varieties is definable in ACF.
This proof avoids the use of computational algebraic geometry, flatness, and ultra-
products, relying instead on the definability of types in stable theories, and simple
dimension counting arguments.

None of these results are new, but we hope there is something novel in the proofs.
In Chapter 8, we turn away from valued fields, and focus on elimination of imaginaries

in dense o-minimal structures. We give a bizarre example of a (dense) o-minimal structure
containing an interpretable set which cannot be put in definable bijection with a definable set,
even after naming parameters. This phenomenon came as a surprise to many, including the
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author. For reference, most o-minimal structures one encounters in the wild have elimination
of imaginaries and definable skolem functions. The remainder of Chapter 8 is an attempt to
salvage some of the topological tools of o-minimality for interpretable sets. We show that
every interpretable set admits a definable topology with finitely many connected components,
that looks everywhere locally like an open definable set. This could potentially lead to an
interesting theory of “interpretable manifolds.”

In the final chapter, we turn away from the world of NIP structures, and focus on pseud-
ofinite fields—the infinite fields which have all the first-order properties of finite fields. Pseud-
ofinite fields have been extensively studied by model theorists, due to their connections with
diophantine geometry and ACFA. Chapter 12 considers nonstandard “sizes” of sets, mod
N . The main result of the chapter is that these non-standard sizes are acl(∅)-definable in
families. These sizes could probably be computed by examining the traces of the action of
non-standard Frobenius on `-adic cohomology. We will give a more elementary proof, how-
ever. It is the hope of the author that combinatorial arguments using these non-standard
“sizes” could be used to prove something non-trivial in number theory.
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Chapter 1

Notation and Conventions

We will write A := B to define A as B. All rings will be commutative. A ring is a domain
if it is an integral domain. If R is a domain, Frac(R) denotes the field of fractions. All
diagrams will commute, unless explicitly stated otherwise. A map X → Y will be written as
X � Y if it is surjective, X ↪→ Y if it is injective, and X ∼→ Y if it is an isomorphism. If K
is a field, then Kalg and Ksep denote the algebraic closure and separable closure of K. If R is
a ring, R× denotes the group of units in R. If X is a subset of a topological space, X denotes
the closure of X, X int denotes the interior of X, and ∂X denotes X \X int. If X and Y are
sets, X4Y denotes the symmetric difference of X and Y , and Xc denotes the complement
of X, in a universe that will be clear from context. We will write X ⊆ Y to indicate that
X is a subset of Y , and X ( Y to indicate that X is a proper subset of Y (when this needs
to be emphasized). A chain is a totally ordered subset of a poset. A collection of sets is a
chain if it is totally ordered by inclusion.

The abbreviation “resp.” stands for beziehungsweise.

1.1 Valuation theory
Valuations are allowed to be trivial. If (K, v) is a valued field, we will typically use the
following notation for the various components of the valuation data:

• The value group will be denoted Γ, or Γ(K) or vK to make the dependence on K and
v clear. (Note we require the valuation map to be surjective onto Γ.)

• The valuation K× → Γ or K → Γ ∪ {∞} will be denoted v(−), except in Chapter 6
where it will be denoted val(−).

• The residue field will be denoted k or Kv.

• The valuation ring will typically be denoted O or OK

• The maximal ideal of the valuation ring will be denoted m or mK
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• The residue field O/m will be denoted k or Kv

• The residue map O → k will be denoted res(−).

• The RV sort K×/(1+m) will be denoted rvK, and the map K → rvK will be denoted
rv(−).

Valuations will be written additively, so that

v(xy) = v(x) + v(y)

v(x+ y) ≥ min(v(x), v(y))
If K and k are fields, a place K → k will mean a map

ν : K ∪ {∞}� k ∪ {∞}

of the form

ν(x) =


res(x) v(x) ≥ 0
∞ v(x) < 0
∞ x =∞

for some valuation on K and some identification of k with the residue field of K.
If v1 and v2 are two valuations on a field K, we will say that v1 is coarser than v2, or v1

is a coarsening of v2, or v2 is finer than v1, if the following equivalent conditions hold.

• There is some convex subgroup ∆ ⊆ v2K such that v1 is isomorphic to the composition

K×
v2→ v2K → v2K/∆

• The place K → k2 is a composition of K → k1 and another place k1 → k2

• The valuation ring O1 contains the valuation ring O2

• The valuation ideal m1 is contained in the valuation ideal m2

If K is a valued field, Khens will denote the henselization of K. An extension L/K of valued
fields is immediate if vL = vK and Lv = Kv. A valued field ismaximally complete if it admits
no proper immediate extensions (algebraic or transcendental). A ball in a valued field is a
non-empty open or closed ball, possibly of radius ±∞. A valued field is spherically complete
if every chain of balls has non-empty intersection. Spherical completeness is (non-trivially)
equivalent to maximal completeness. Spherically complete fields are henselian. A valued
field is algebraically maximal if it admits no algebraic immediate extensions. Algebraically
maximal fields are henselian.

The residue characteristic of a valued field K means the characteristic of the residue
field. We say that K has mixed characteristic (0, p) if K has characteristic 0 and k has
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characteristic p. We say that K has pure characteristic 0 or pure characteristic p if both
K and k have characteristic 0 or p, respectively. If Γ is an ordered abelian group and p is
a prime, Intp Γ will denote the maximal convex p-divisible subgroup of Γ. If K is a field
of mixed characteristic, we will say that K is finitely ramified if Γ has a minimum positive
element τ and v(p) is a finite multiple of τ . Equivalently, the interval [−v(p), v(p)] in the
value group is finite.

1.2 Model theory
If φ(x) or φ(x; y) is a formula, then x or y may be tuples of variables. Sometimes we will
still use the tuple notation ~x or ~y for emphasis, especially when contrasting singletons with
tuples (or tuples with tuples of tuples). We will say that φ(x) is a C-formula to indicate
that there are (suppressed) constants from C. We will say that a is “in” or “from” a model
M if a is a tuple of elements in M , or a ∈ dcleq(M). We will use notation like φ(M ; b) to
denote the set of tuples a from M such that φ(a; b) holds. We will write > and ⊥ for true
and false.

Types will be complete types unless stated otherwise. We will write M |= T to indicate
that M is a model of the theory T , and a |= p to indicate that the tuple or imaginary a
realizes the type p. We will write p|C to indicate the restriction of the type p to the set C.
We will write

A ≡B C

to indicate that the tuples A and C have the same (*-)type over B, unless A and C are
structures containing B, in which case A ≡B C will mean that A and C are elementarily
equivalent over B. (This will be clear from context.) If B = ∅ in either of these settings, we
will write ≡ for ≡B.

We will write M ≤ N to indicate that M is a substructure of N , and M � N to indicate
that M is an elementary substructure of N .

We will usually write union and concatenation of sets, elements, and tuples multiplica-
tively, writing Sa and aS and ST in place of S ∪ {a} or a ∪ {S} or S ∪ T . If we want to
write the concatenation ab of two tuples a and b explicitly, we write a_b. When we need to
write field-theoretic multiplication explicitly, we will usually write a · b.

“Definable” means definable with parameters, and 0-definable means definable without
parameters. Definable sets will mean interpretable sets, unless stated explicitly otherwise.
If X is a definable set, pXq will denote a code for X. A unary definable set is a definable
subset of the home sort (in a 1-sorted structure). A set is type-definable if it is a small
intersection of definable sets, ∨-definable if it is a small union of definable sets, pro-definable
if it is a small inverse limit of definable sets, and ind-definable if it is a small direct limit of
definable sets. A definable family is a collection of the form

{{x ∈ X : (x, y) ∈ R} : y ∈ Y }
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for some definable sets X, Y,R with R ⊆ X × Y . An ind-definable family is defined simi-
larly, with X, Y,R being ind-definable. A collection of sets is uniformly definable if it is a
subcollection of a definable family.

When working in a monster, the monster model will be denoted M. A “model” will mean
a small elementary substructure of M. A global type will mean a type over the monster. A
C-invariant type will mean a global type which is Aut(M/C)-invariant. A C-definable type
will mean a global definable type that is C-invariant. If p is a global definable type, and
φ(x; y) is a formula, then (dpx)φ(x; y) is a formula ψ(y) such that

(M |= ψ(b)) ⇐⇒ φ(x; b) ∈ p(x) for all b in M

If p is an invariant type and f is a definable function, the pushforward f∗p is the global type
such that

a |= p|C =⇒ f(a) |= f∗p|C

for sufficiently large sets C. If p and q are C-invariant types, then p ⊗ q is the C-invariant
type whose realizations over a set B ⊇ C are exactly the pairs (a, b) such that

a |= p|Bb and b |= q|B

Abusing terminology slightly, we will let p⊗n be the type whose realizations are sequences
a1, . . . , an such that ai |= p|Ba<i, where a<i denotes the set of elements a1, . . . , ai−1.1 We will
also write p⊗α for ordinals α, defined analogously. We will use the term “Morley sequence”
to refer to sequences of this sort, rather than in the sense used in simple and rosy theories
(independent indiscernible sequences).

If a is a tuple and B is a set,

• tp(a/B) denotes the type of a over B

• stp(a/B) denotes the strong type of a over B, i.e., the type of a over acleq(B)

• SU(a/B) denotes the SU-rank of tp(a/B) in a simple theory

• RM(a/B) denotes the Morley rank of tp(a/B)

• dp-rk(a/B) denotes the dp-rank of a over B

• dim(a/B) denotes the rank of a over B in an o-minimal setting

• bdn(a/B) denotes the burden of tp(a/B)

Also, if X is a (type-)definable set, then dim(X), RM(X), dp-rk(X), SU(X), and bdn(X)
will denote the o-minimal rank, the Morley rank, the dp-rank, the SU-rank, or the burden
of X.

1So (p⊗ p)(x2, x1) = p⊗2(x1, x2).
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C-minimal and o-minimal will mean dense C-minimal and dense o-minimal. Finite struc-
tures will be considered dp-minimal. We will refer to ict-patterns as randomness patterns.
If A,B,C are small sets, then A |̂

C
B will indicate that tp(A/BC) does not fork over C,

and A |̂ þ
C
B will indicate that tp(A/BC) does not thorn-fork over C.



6

Chapter 2

A direct proof of quantifier
elimination and C-minimality in
ACVF

ACVF is the theory of non-trivially valued algebraically closed valued f ields.

Theorem 2.0.1.

1. ACVF eliminates quantifiers in the 1-sorted language consisting of the field language
expanded by a binary predicate for the relation v(x) ≤ v(y).

2. ACVF is the model completion of the theory of valued fields. In particular, every valued
field embeds into a model of ACVF.

3. ACVF is C-minimal. In other words, if K |= ACV F , every unary definable set D ⊆ K
is a boolean combination of open and closed balls (including singletons).

These results are well-known, but we include a short proof here because they are essential
for most of what follows. The history of quantifier elimination is confusing, because it was
almost (but not quite) proven by Abraham Robinson in [63]. For a discussion of the history,
see the proof of Theorem 2.1.1 in [26]. The C-minimality of ACVF was proven by Holly
([30], Theorem 3.26) before C-minimality was first isolated in [51]. The proofs given here
are influenced by some course notes of Hrushovski that seem to have disappeared.

2.1 An abstract criterion for quantifier elimination
Definition 2.1.1. A theory T has prime models over substructures if for every M |= T∀
there is some M ′ |= T and an embedding M ↪→ M ′ such that for every M ′′ |= T and
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embedding M ↪→M ′′, there is an embedding M ′ ↪→M ′′ making the diagram commute

M� _

��

� q

""
M ′ � � //M ′′

For example, the theory of fields has prime models over substructures (in the language
of rings): the prime model over a domain R is the field of fractions Frac(R). We are abusing
terminology massively, as these are not “prime models” in the standard sense.

Recall the well-known amalgamation property:

Definition 2.1.2. A theory T has the amalgamation property if for any diagram of embed-
dings of models of T

M0
� � //
� _

��

M1

M2

there is a model M3 and embeddings Mi ↪→M3 for i = 1, 2 such that the diagram commutes:

M0
� � //
� _

��

M1� _

��
M2
� � //M3

Definition 2.1.3. Let M ≤ N be structures. Say that M is 1-ec in N if for every quantifier-
free formula φ(x; ~y) with |x| = 1, and every ~m in M ,

M |= ∃xφ(x; ~m) ⇐⇒ N |= ∃xφ(x; ~m)

Equivalently, every non-empty quantifier-free M-definable subset of N intersects M .
If T is a theory, say that a model M |= T is 1-ec (as a model of T ) if M is 1-ec in every

model N |= T extending M .

Then, we have the following criterion for quantifier elimination:

Lemma 2.1.4. Let T0 be a theory with prime models over substructures and the amalgama-
tion property. Suppose the 1-ec models of T0 are an elementary class, axiomatized by a theory
T . Then T has quantifier elimination. If T0 is inductive, then T is the model completion of
T .

Proof. For quantifier elimination, it suffices to show that for every quantifier free formula
φ(x; ~y), there is a quantifier-free formula ψ(~y) such that

T ` ψ(~y)↔ ∃xφ(x; ~y).
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By compactness, this amounts to the claim that the quantifier free type of a tuple ~b deter-
mines whether ∃xφ(x;~b) holds.

Let M and N be two models of T and ~bM and ~bN be tuples having the same type. Let
SM and SN be the structures generated by ~bM and ~bN . Then SM ∼= SN . Identify them as
a common structure S with embeddings into both M and N . Because T0 has prime models
over substructures and the amalgamation property, the configuration

S � u

''

j


��

M

N

can be completed to a commutative diagram

S � u

''

j


��

S ′ �
� //� _

��

M� _

��
N �
� // S ′′

where S ′, S ′′ |= T0. Then

M |= ∃xφ(x;~b) =⇒ S ′′ |= ∃xφ(x;~b) =⇒ N |= ∃xφ(x;~b)

where the second =⇒ holds because N is 1-ec in S ′′. By symmetry, the converses hold.
Thus

M |= ∃xφ(x;~bM) ⇐⇒ N |= ∃xφ(x;~bN)

completing the proof of quantifier elimination.
Now suppose T0 is inductive. Then every model of T0 embeds into an existentially closed

model. Existentially closed models of T0 are 1-ec, hence models of T . Thus every model of
T0 embeds into a model of T . Conversely, every model of T already is a model of T0. The
theory T is model complete and substructure complete by quantifier elimination.

As an example, let us use Lemma 2.1.4 to prove quantifier elimination in ACF, the theory
of algebraically closed fields. Let T0 be the theory of fields and T be ACF.

We noted above that the theory T0 has prime models over substructures, because of
fraction fields. The amalgamation property can be seen as follows. Given embeddings
K0 ↪→ K1 and K0 ↪→ K2, form the tensor product K1 ⊗K0 K2. A tensor product of two
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nontrivial K0-vector spaces is nontrivial, so K1 ⊗K0 K2 is not the zero ring. It therefore
admits a homomorphism to a field K3, which in turn yields a diagram

K0 //

��

K1

��

��

K2 //

**

K1 ⊗K0 K2

%%
K3

completing the amalgamation.
It remains to check the following

Claim 2.1.5. A field K is 1-ec if and only if it is algebraically closed.

Proof. First suppose K is algebraically closed and L is an extension field. The quantifier-free
K-definable subsets of L are boolean combinations of sets

{x ∈ L : P (x) = 0} for some nonzero P (X) ∈ K[X]

Factoring P (x), this set is a finite subset of K. Consequently, every quantifier-free K-
definable subset of L is either a finite subset of K or the complement of such a set. As K is
infinite, any such set which is non-empty must intersect K.

Conversely, suppose K is not algebraically closed. Let P (X) ∈ K[X] be an irreducible
polynomial which lacks a root. Then K[X]/(Q(X)) is a field extending K, in which P has
a root (namely X). So K is not 1-ec in the extension field K[X]/Q(X).

Consequently, all the conditions of Lemma 2.1.4 hold, so ACF has quantifier elimination.
In the process of proving quantifier elimination, we also proved strong minimality. Some-

thing similar will happen with ACVF. In fact, we have pedantically gone through the proof
of quantifier elimination in ACF because the proof for ACVF will be analogous in many
ways.

We would like to apply Lemma 2.1.4 where T is ACVF and T0 is the theory of valued
fields. Recall that we are working in the language of rings expanded by a binary predicate
for the relation v(x) ≤ v(y). If R is a substructure of a valued field K, the binary predicate
uniquely determines the valuation structure on Frac(R). Consequently, the theory of valued
fields has prime models over substructures. The theory of valued fields is also inductive.

The other two conditions will require some work

1. The theory of valued fields has the amalgamation property. We will prove this in §2.2

2. The 1-ec valued fields are precisely the models of ACVF. We will prove this in §2.3.
Along the way, we will prove C-minimality.
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2.2 Part 1: Amalgamation
The following lemma is Theorem 3.1.1 in [19].

Lemma 2.2.1 (Chevalley).

1. Let K be a field, R be a subring, and p be a prime ideal. Then there is a valuation ring
(O,m) in K, such that

R ⊆ O
R \ p = O× ∩R

p = m ∩R

2. Let R be a ring, and q ⊆ p be two primes. Then there is a valuation ring (O,m) and
a ring homomorphism f : R→ O with

ker f = f−1(0) = q

f−1(m) = p

Remark 2.2.2. If (Oi,mi) is a valuation ring for i = 1, 2, and f : O1 → O2 is a ring
homomorphism, then f arises from an embedding of valued fields if and only if f−1(0) = 0
and f−1(m2) = m1.

Corollary 2.2.3. Let L/K be an extension of valued fields. Any valuation on K extends to
one on L.

Proof. Given a valuation ring (OK ,mK) onK, apply Chevalley’s Lemma to the pair (OK ,mk)
to get a valuation ring (OL,mL) on L.

Lemma 2.2.4. Let R be a valuation ring.

1. Any finitely generated torsion-free R-module M is free.

2. Any torsion-free R-module M is flat.

Proof. 1. Let g1, . . . , gn be a minimal set of generators. Then g1, . . . , gn freely generate
M . If not, then there are some ri ∈ R, not all zero, such that

n∑
i=1

rigi = 0.

Let j be such that v(rj) is minimal. Then ri/rj ∈ R for each i, and

rj ·
n∑
i=1

ri
rj
gi =

n∑
i=1

rigi = 0.
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As M is torsion-free,
n∑
i=1

ri
rj
gi = 0, so that gj = −

∑
i 6=j

ri
rj
gi,

contradicting minimality.

2. M can be written as a direct limit of its finitely-generated submodules, which are
torsion-free, hence flat. A direct limit of flat modules is flat.

Lemma 2.2.5. Let f : A → R be an injective ring homomorphism. Then every minimal
prime p of A is a pullback f−1(q) of some prime q in R.

Proof. The set S := f(A \ p) is a submonoid of R, and 0 /∈ S by injectivity. The localization
S−1R is nonzero, and any prime in S−1R pulls back to a prime q C R not intersecting S.
The prime ideal f−1(q) is contained in, hence equal to p.

Lemma 2.2.6. Given a diagram of valuation rings

O0
� � //
_�

��

O1

O2

if q is a minimal prime in O1 ⊗O0 O2, then q pulls back to the zero ideal in Oi for each i.

Proof. LetKi be Frac(Oi). By Lemma 2.2.4.2, O1 andK2 are flatO0-modules, so the natural
map

O1 ⊗O0 O2 ↪→ O1 ⊗O0 K2 ↪→ K1 ⊗O0 K2

is an injection. By Lemma 2.2.5, there is some prime q0 in K1 ⊗O0 K2 which pulls back to
q. Now for i = 1, 2, we have a commuting square of sets

SpecOi SpecKi
f∗oo

SpecO1 ⊗O0 O2

g∗

OO

SpecK1 ⊗O0 K2

h∗

OO

i∗
oo

Then
g∗q = g∗i∗q0 = f ∗h∗q0 = f ∗(0) = (0)

because h∗q0 ∈ SpecKi can only be the zero ideal. Pulling g∗q from Oi to O0 also handles
the case i = 0.

Lemma 2.2.7. The theory of valued fields has the amalgamation property.
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Proof. Suppose we are given a diagram

K0
� � //
_�

��

K1

K2

of valued fields. Let Oi, mi, and ki be the associated data. The ring k1 ⊗k0 k2 is nonzero, so
it has a prime ideal p0. Let p ∈ SpecO1 ⊗O0 O2 be the pullback of p0 along the map

O1 ⊗O0 O2 → k1 ⊗k0 k2.

For i = 1, 2, we have a commuting square of sets

SpecOi Spec ki
f∗oo

SpecO1 ⊗O0 O2

g∗

OO

Spec k1 ⊗k0 k2

h∗

OO

i∗
oo

Thus
g∗p = g∗i∗p0 = f ∗h∗p0 = f ∗(0) = mi

as h∗p0 can only be the zero ideal in ki.
Let q ∈ SpecO1 ⊗O0 O2 be any minimal prime below p. The pullback g∗q is 0, by

Lemma 2.2.6. Apply Lemma 2.2.1.2 to get a homomorphism

m : O1 ⊗O0 O2 → O3

such that m−1(0) = q and m−1(m3) = p. This in turn induces a square of valuation rings

O0 //

��

O1

��
O2 // O3

(2.1)

Pulling back 0 and m3 along the maps Oi → O1 ⊗O0 O2, we get

O3 ← O1 ⊗O0 O2 ← Oi
m3 7→ p 7→ mi

(0) 7→ q 7→ (0)

So by Remark 2.2.2, the maps Oi → O3 induce maps of valuation rings on the fraction fields.
Consequently, (2.1) solves the amalgamation problem.



CHAPTER 2. QUANTIFIER ELIMINATION IN ACVF 13

2.3 Part 2: C-minimality
It remains to characterize the 1-ec valued fields. In the process, we will prove C-minimality.
By a ball in a valued field K, we will mean a set of one of the following forms

{x : v(x− c) ≥ γ} for some γ ∈ vK
{x : v(x− c) > γ} for some γ ∈ vK
{c}
K

We call c a center and γ the radius. We think of {c} as a ball of radius +∞, and K as a
ball of radius −∞.

Lemma 2.3.1. Let L/K be an extension of valued fields, with K = Kalg. Every quantifier-
free K-definable subset of L is a boolean combination of balls with center and radii in K and
vK.

Proof. We will use the term “K-ball” to mean a ball with center and radius in K. It suffices
to consider sets cut out by P (x) = 0 and v(P (x)) ≤ v(Q(x)). The set

{x ∈ L : P (x) = 0}

is easily dealt with: it is a finite union of singletons in K.
Now consider the condition v(P (x)) ≤ v(Q(x)). Factoring P and Q, we can write the

condition as ∑
i

ni · v(x− αi) ≥ γ (2.2)

for some distinct αi ∈ K and γ ∈ vK.
Each condition

v(x− αi) < v(x− αj)

is an open K-ball with center αj and radius v(αj − αi).
So for each i the set

Si = {x ∈ L : i = arg max
j
v(x− αj)}

is a combination of K-balls. On Si, v(x−αj) = v(αi−αj) for j 6= i, so (2.2) is equivalent to

ni · v(x− αi) ≥ γ′

for some γ′ ∈ vK. As vK is divisible (because K× is), this is equivalent to a closed K-ball
or complement of an open K-ball.
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Note that Lemma 2.3.1 will give C-minimality once quantifier elimination is established.
In the case of ACF, once we knew “quantifier-free strong minimality,” 1-existential closedness
was an easy consequence. For ACVF, we must do some annoying casework.1

Lemma 2.3.2. Let K be a valued field. Any boolean combination D of balls in K can be
written as a disjunction of swiss cheeses, i.e., sets of the form C = B0 \

⋃n
i=1Bi where

B1, . . . , Bn are subballs of B0.

Proof. First we recall that in valued fields,

Any two balls which intersect are comparable (one contains the other). (2.3)

The set D can be written as a union of intersections of balls and complements of balls. So
we may assume that D is an intersection of balls and complements of balls. Write

D = (B1 ∩ · · · ∩Bm) \ (C1 ∪ · · · ∪ C`)

where each Bi or Ci is a ball. We may take m > 0 by throwing in L as one of the B’s. By
(2.3), ⋂iBi is either empty or one of the Bi’s. If it is empty, then D is an empty union.
Otherwise, we may write

D = B \ (C1 ∪ · · · ∪ C`)
We may discard any Ci which is disjoint from B, so by (2.3), we may assume each Ci ⊆ B.

We omit the proofs of the next three lemmas, which are straightforward but tedious.

Lemma 2.3.3. Let L/K be an extension of valued fields. Suppose Bi is a ball in L with
center and radius in K. If the value group of K is a dense linear order without endpoints
(i.e., a model of DLO), then

B1 ( B2 =⇒ B1 ∩K ( B2 ∩K

Lemma 2.3.4. Let K be a valued field with vK |= DLO. Then every subball of m is
contained in a closed ball of radius γ > 0 centered at 0. Every subball of K is contained in
a closed ball of radius γ > −∞ centered at 0.

Lemma 2.3.5. Let K be any valued field. Every proper subball of O is contained in a residue
class.

1None of what follows is particularly ACVF-specific, with the exception of Lemma 2.3.6 below. In fact,
the theory of C-structures has a model completion: a C-structure is existentially closed if an only if the
following two conditions hold

• Every open ball (including the entire structure) has no maximal proper subball

• Every closed ball has infinitely many maximal proper subballs

Lemma 2.3.6 ensures that if K |= ACV F , then the underlying C-structure is existentially closed. Combined
with Lemma 2.3.1, this immediately yields that models of ACVF are 1-ec valued fields.
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Lemma 2.3.6. Let K be a model of ACVF. Then the value group vK is a dense linear
order, and the residue field Kv is infinite.

Proof. The group K× is divisible, as K is algebraically closed. By the short exact sequence

1→ O× → K× → vK → 1

the group vK is divisible. As vK is torsion-free (being ordered), O× is divisible. The
surjection O× → k× then implies that k× is divisible.

The group vK is divisible, and non-trivial (by definition of ACVF). Therefore it is a
dense linear order. If k is finite, then k× is a finite divisible group, hence trivial. Thus
k = F2.

As K = Kalg, there is some x ∈K such that x(x− 1) = 1. If v(x) < 0, then v(x− 1) < 0
by the ultrametric inequality, and so

0 = v(1) = v(x(x− 1)) = v(x) + v(x− 1) < 0

which is absurd. Thus v(x) ≥ 0 and x ∈ O. If α is the residue of x, then α(α − 1) = 1,
contradicting the fact that k = F2.

Lemma 2.3.7. Let K be a model of ACVF. Then no ball can be written as a finite union
of proper subballs.

Proof. Suppose B can be written as a finite union of proper subballs. After applying an
affine linear transformation, we may assume that B has center 0, and radius 0 or ±∞. Thus
B is one of 0,m,O, or K.

The case B = {0} is trivial. If B = O, every proper subball is contained in a residue
class by Lemma 2.3.5. By Lemma 2.3.6, a finite union of residue classes cannot exhaust O.

Finally, suppose B = m or B = K, and B = B1 ∪ · · ·Bn. By Lemma 2.3.4, we may
assume each Bi is a closed ball of radius strictly less than the radius of B, and center 0. As
all the balls have center 0, they are pairwise comparable, so ⋃iBi = Bj for some j. Then
Bj is strictly smaller than Bi, a contradiction.

Putting everything together, we see

Lemma 2.3.8. Let L be a valued field extending K |= ACV F . Let B0, · · · , Bn be balls in L
with radii and centers in K. Suppose Bi ⊆ B0 for each i. Let

C = B0 \
n⋃
i=1

Bi

If C is non-empty, then C intersects K.
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Proof. For each i, let B′i = Bi ∩K denote the corresponding ball in K. As C is non-empty,
Bi ( B0 for each i. By Lemma 2.3.3, B′i ( B′0 for each i. By Lemma 2.3.7,

∅ 6= B′0 \
⋃
i

B′i = C ′ := C ∩K

To finish the proof of Theorem 2.0.1, it remains to show:

Lemma 2.3.9. A valued field K is 1-ec if and only if K is algebraically closed and non-
trivially valued.

Proof. First suppose that K 6= Kalg. By Corollary 2.2.3, we can extend the valuation to
Kalg. Because K is not 1-ec as a field in Kalg, it is not 1-ec as a valued field.

Next suppose that K is trivially valued. The field K((t)) of formal Laurent series is a
non-trivial valued field extending K. The formula

¬(v(x) ≤ v(1))

has a solution in K((t)) but not K, so K is not 1-ec.
Finally, suppose K is algebraically closed and non-trivially valued. Let L/K be a field

extension, and D ⊆ L1 be non-empty and quantifier-free K-definable. We must show that
D intersects K.

By Lemma 2.3.1, D is a finite boolean combination of balls with centers and radii in K.
By Lemma 2.3.2, D is a disjunction of K-swiss cheeses, so we may assume D = B0 \

⋂n
i=1Bi

for some K-balls B0, . . . , Bn. Then D intersects K by Lemma 2.3.8.

Also, the theory of valued fields is inductive, so ACVF really is the model completion of
the theory of valued fields.
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Chapter 3

Quantifier elimination and
dp-minimality for certain valued fields

Several theories of fields and valued fields are known to be dp-minimal, including the follow-
ing:

• Algebraically closed valued fields, because they are C-minimal.

• Real closed fields, because they are o-minimal.

• Characteristic 0 nonarchimedean local fields. This is proven in Corollary 7.8 of [3],
among other places.1

Several other dp-minimal fields can be generated from these examples—for instance in [12],
the following fact is proven:

A henselian valued field (K, v) with residue characteristic 0 is dp-minimal if and
only if vK and Kv are dp-minimal.

This shows that, for example, Qp((t)) is a dp-minimal field.
In this chapter, we will exhibit another source of dp-minimal valued fields. Let p be

a prime and Γ be an ordered abelian p-divisible group such that Γ/nΓ is finite for all n.
We will show that the Hahn series field Falgp ((tΓ)) is dp-minimal. There is also a mixed
characteristic analogue, in which the p-divisibility condition on Γ is weakened slightly. Both
of these results are in Theorem 3.3.7 below.

Along the way, we will manually prove quantifier elimination results for fields like Falgp ((tΓ))
in §3.2. The field Falgp ((tΓ)) is tame, hence amenable to the analysis in [47] and [48]. We will
not use this, however, for the following reasons:

• The mixed characteristic fields we consider will not necessarily be tame
1The proof in [3] is stated for the p-adics, but as noted at the beginning of §7.2 of that paper, the proof

generalizes to finite extensions of the p-adics.
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• The analysis of tame fields uses more advanced techniques than are necessary in our
case

• We would like quantifier elimination relative to the value group, rather than the RV
sort.

Here is an example of a non-tame field for which we will prove dp-minimality and quan-
tifier elimination relative to the value group. Let M be a mixed characteristic (0, p) monster
model of ACVF. Choose t ∈M such that

v(t) > v(q) ∀q ∈ Q

Let K be a spherical completion of the field generated by t, p1/pn for all n, and the mth
roots of unity for all m prime to p. Then Theorem 3.2.16 and Theorem 3.3.7 will show that
(K, v) has quantifier elimination relative to the value group and is dp-minimal.

These fields are hardly natural. Their significance lies in the fact that, in a certain sense,
they are the last remaining source of dp-minimal fields. In Chapter 9, we will see that,
together with the previously known dp-minimal fields, they generate all dp-minimal fields
and valued fields.

3.1 Some valuation theory
The characteristic exponent of a valued field K is p if K has residue characteristic p, and 1
if K has residue characteristic 0.

Fact 3.1.1. If K is henselian and L/K is a finite extension, then

[L : K] = |vL/vK| · [Lv : Kv] · pd

where p is the characteristic exponent, and d ∈ N.

We will call this equation the defect equation. One says that the extension L/K is
defectless if pd = 1. A henselian field K is defectless if every finite extension is defectless.

Fact 3.1.2. The henselian field K is defectless if any of the following three conditions hold:

• K has residue characteristic 0

• K has residue characteristic p, and p does not divide the degree of any finite extension
of K

• K is spherically complete

Definition 3.1.3. If Γ is an ordered abelian group and p is prime, let Intp Γ denote the
maximal convex p-divisible subgroup of Γ.
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Definition 3.1.4. A valuation v : K → Γ is roughly p-divisible if [−v(p), v(p)] ⊆ p · Γ,
where [−v(p), v(p)] denotes {0} in pure characteristic 0, denotes Γ in pure characteristic p,
and denotes the usual interval [−v(p), v(p)] in mixed characteristic.

In mixed characteristic, (K, v) is roughly p-divisible if and only if v(p) ∈ Intp. In pure
characteristic p, (K, v) is roughly p-divisible if and only if the value group is p-divisible.

Remark 3.1.5. Let P be one of the following properties of valuation data:

• Roughly p-divisible

• Henselian

• Henselian and defectless

• Every countable chain of balls has non-empty intersection

If K1 → K2 and K2 → K3 are places, the composition K1 → K3 has property P if and only
if each of K1 → K2 and K2 → K3 has property P . (In each case, this is straightforward to
check.)

3.2 A quantifier elimination result
Let T0 be the theory of henselian defectless fields (K, v) with Kv |= ACFp and with p-
divisible value group. Let T be the theory of henselian defectless roughly p-divisible fields
(K, v) with Kv |= ACFp.

Every model of T0 is a model of T , and the converse holds in characteristic p.
Models of T0 are tame (in the sense of [48]), though models of T need not be. Nevertheless,

we will see that many of the good properties of T0 extend to T .

Remark 3.2.1. If M |= T0, then any finite field extension of M has degree prime to p.
Indeed, if L/M is finite, then henselianity and defectlessness imply

[L : M ] = |vL/vM | · [Lv : Mv].

But Mv is algebraically closed, so [Lv : Mv] = 1. And vM is p-divisible, so |vL/vM | is
prime to p.

Remark 3.2.2. Let (L, v)/(K, v) be an extension of valued fields. Suppose (L, v) is henselian
and K is relatively separably closed in L. Then Kv is relatively separably closed in Lv.

Proof. Otherwise, take α ∈ (Lv∩Kvsep)\Kv. Let f(X) be the monic irreducible polynomial
of α over Kv. Let f(X) be a lift of f(X) to K[X]. By henselianity of L, there is a unique
root a of f(X) lying over α. Moreover, a is a simple root, so a ∈ Ksep. Therefore a and α
are in K and Kv, respectively.
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Proposition 3.2.3. Let (M, v) be a model of T .

1. M is perfect

2. If a ∈M and n ∈ N, then a is an nth power if and only if v(a) is divisible by n.

3. If K is relatively algebraically closed in M , then K |= T .

Proof. First suppose that (M, v) |= T0.

1. If M has characteristic p, then M is perfect by Remark 3.2.1

2. One easily reduces to showing that if v(a) = 0, then a is an `th power for all primes
`. For ` 6= p, this follows by henselianity and the fact that res(a) is an nth power. For
` = p, this follows by Remark 3.2.1.

3. We will show K |= T0. Note that K is henselian and perfect because it is relatively
algebraically closed in M , which is henselian and perfect. Then M/K is regular, so
Gal(M) surjects onto Gal(K). Since p is prime to Gal(M) (by Remark 3.2.1), p is also
prime to Gal(K). In other words, p does not divide the degree of any finite extension of
K. It follows immediately that (K, v) is defectless, Kv is perfect, and vK is p-divisible.
Also, Kv is separably closed in Lv by Remark 3.2.2.

Next suppose (M, v) |= T but (M, v) 6|= T0. Then M has characteristic 0. Let v′ be the
coarsening of v with respect to the maximal convex subgroup of vM containing v(p). Let v′′
be the induced valuation on Mv′. Then (Mv′, v′′) is a model of T , and (M, v′) is a henselian
field of residue characteristic 0.

1. M is perfect because it has characteristic 0.

2. As before, one reduces to showing that if v(a) = 0, then a is an `th power. Because
(M, v′) is a henselian field of residue characteristic 0, and v′(a) = 0, the element
a is an nth power if and only if its residue res′(a) ∈ Mv′ is an nth power. But
v′′(res′(a)) = v(a) = 0, so by the case of T0 considered above, res′(a) is an nth power.

3. Applying Remark 3.2.2 to (M, v′)/(K, v′), we see that Kv′ is relatively algebraically
closed in Mv′. As Mv′ is a model of T0, so is Kv′. That is, the place Kv → Kv′ is
henselian and defectless, with p-divisible value group and algebraically closed residue
field Kv. The place K → Kv′ is henselian of residue characteristic 0 (hence defectless
and roughly p-divisible). The composition K → Kv′ → Kv is therefore henselian,
defectless, and roughly p-divisible. And Kv is algebraically closed.

Lemma 3.2.4. Let K be a valued field. Suppose L and F are two immediate algebraic
extensions of K which are models of T . Then L and F are isomorphic over K.
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Proof. We may replace K with the perfection of its henselization. We then only need to
show that L and F are conjugate over K (isomorphic as fields over K).

First suppose that vK is p-divisible. Then K is Kaplansky, and the desired result follows
by the uniqueness of maximal algebraic immediate extensions over Kaplansky fields (L and
F are algebraically maximally complete because they are defectless).

Otherwise, K, L, and F have characteristic 0. Let v′ be the coarsening with respect to
the convex subgroup generated by v(p). As L and F are immediate, v′L = v′K = v′F . As
(K, v′) is a henselian field with residue characteristic 0, the extensions L and F of (K, v′) are
unramified. By the structure theory of valued fields (Theorem 5.2.7 and Theorem 5.2.9 in
[19]), L and F are isomorphic (as fields) as long as Lv′ and Fv′ are isomorphic extensions of
Kv′. Note that Lv′ and Fv′ are immediate extensions of Kv′. Also, Lv′ and Fv′ are models
of T0. By the T0 case considered above, Lv′ and Fv′ are isomorphic, and we are done.

Definition 3.2.5. Let M and N be valued fields. A partial v-elementary map from M to
N is a valued field embedding f : K → N for some subfield K ⊆ M , such that the induced
map vf : vK → vN is a partial elementary map from vM to vN . If dom f = M , we call
f : M → N a v-elementary map, or say that f is total.

Lemma 3.2.6. If M,N |= T and N is |M |+-saturated, and f is a maximal partial v-
elementary map from M to N , then f is total.

Proof. Let K be the domain of f .
Claim 3.2.7. K is henselian.

Proof. Suppose not. AsM and N are henselian, both contain the henselization ofK. We can
extend f to an isomorphism f ′ between the henselizations of K and f(K). The henselization
of K has the same value group as K, so vf ′ = vf is still partial elementary. Then f ′ is a
strictly larger v-elementary map, a contradiction.

Claim 3.2.8. Let P (X) be an irreducible polynomial over K of degree greater than 1. If
P (X) has a root in M , then it does not have a root in N .

Proof. Otherwise, let α be a root of P (X) in M and β be a root in N . By basic field theory,
there is an embedding of fields f ′ : K(α) → f(K)(β) extending f , sending α 7→ β. This
map f ′ must also be a map of valued fields, because there is a unique valuation on K(α)
extending the valuation on K, by Claim 3.2.7.

We claim that f ′ is v-elementary. By saturation of vN , there is some elementary embed-
ding g : vM → vN extending vf . The group homomorphism g − vf ′ from vK(α) → vN
vanishes on vK, so it factors through the finite group vK(α)/vK. As vN is torsion-free,
g− vf ′ vanishes on vK(α). Thus vf ′ is the restriction g|vK(α), so vf ′ is partial elementary,
and f ′ is partial v-elementary. This contradicts the maximality of f .

Claim 3.2.9. Every element of O×K is a pth power (in K). Consequently Kv is perfect
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Proof. Take a ∈ O×K . Then Xp − a has a root in both M and N , so it has one in K.

Claim 3.2.10. Kv is separably closed.

Proof. If not, let f(X) ∈ OK [X] be a monic polynomial lifting a monic separable polynomial
f(X) ∈ Kv[X] that has no root in K. The fields Mv and Nv are algebraically closed, so
f(X) has roots in both Mv and Nv. Henselianity lifts these roots to roots of f(X) in M
and N . This contradicts Claim 3.2.8.

Say that an embedding of groups A ↪→ B is pure if B/A is torsionless. Equivalently, for
every prime ` and every a ∈ A, if a is a multiple of ` in B, then a is a multiple of ` in A.
Claim 3.2.11. vK is pure in vM and vN

Proof. Suppose γ is divisible by ` in one of vM or vN . As vf is partial elementary, γ is
divisible by ` in both vM and vN . Take a ∈ K with v(a) = γ. By Proposition 3.2.3.2, the
polynomial X` − a has a root in both M and N . By Claim 3.2.8, X` − a is not irreducible
over K. Then a has an `th root in K, so v(a) = γ is divisible by ` in vK.

Claim 3.2.12. K is relatively algebraically closed in M and N .

Proof. Let KM and KN be the relative algebraic closures of K in both fields. By Proposi-
tion 3.2.3.3, KM and KN are models of T . The value group extension |vKM/vK| is torsion,
but vK is pure in vM , so the value group extension must be trivial. Similarly, KMv = Kv
because KMv is algebraic over Kv, but Kv is algebraically closed.

Therefore KM is an immediate extension of K. Similarly, KN is an immediate extension
of K. By Lemma 3.2.4, KM and KN are isomorphic over K. This contradicts Claim 3.2.8
unless KM = K = KN .

Claim 3.2.13. Kv = Mv

Proof. Otherwise, let tM be an element of M whose residue is not in Kv. By saturation of
N , we can find tN ∈ N with residue not in Kv.

Let f ′ be the map K(tM)→ f(K)(tN) sending tM 7→ tN and extending f . This is a map
of valued fields, because there is a unique valuation on K(t) making t have transcendental
residue. (Modulo quantifier elimination in ACVF, this is the statement that there is a unique
type p(x) that lives in the closed unit ball, but not in any smaller subballs. The uniqueness
of this type follows by C-minimality.) The map f ′ is v-elementary, because vf ′ = vf as
vK(tM) = vK. Then f ′ contradicts maximality.

Claim 3.2.14. vK = vM .

Proof. Otherwise, take γM ∈ vK \ vM . Let g be an elementary embedding vN → vM
extending vf . Let γN = g(γM).

Let tM (resp. tN) be an element of M (resp. N) having valuation γM (resp. γN). The
elements tM and tN are transcendental over K, so there is a map of fields f ′ : K(tM) →
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f(K)(tN) extending f and sending tM 7→ tN . This is a map of valued fields, because γM and
γN define the same cut in vK, and there is a unique valuation on K(t) making v(t) land in
this cut (again, this follows by C-minimality and quantifier elimination in ACVF).

We claim that f ′ is v-elementary, and that in fact vf ′ is g|vK(tM). By Abhyankar’s
inequality,

vK(tM)
vK + Z · v(tM)

is torsion. So it suffices to show that vf ′ and g agree on vK and v(tM). The former holds
because f ′ extends f and g extends vf , and the latter holds by choice of tN and γN .

In summary, K is relatively algebraically closed in M and N , and M/K is an immediate
extension. By Proposition 3.2.3.3, K is itself a model of T . In particular, K is defectless.

Now take a ∈ M \ K. In Malg |= ACV F , let B be the chain of K-definable balls
containing a.
Claim 3.2.15. No element of Kalg is in the intersection ⋂B.
Proof. By the proof that spherical completeness implies maximal completeness, no element
of K is in the intersection. Suppose some element of Kalg were in the intersection. Let a′
be such an element, of minimal degree over K. By the proof that maximal completeness
implies spherical completeness, the extension K(a′)/K is immediate. But K is defectless, so
it is algebraically maximal.

By saturation of N , we can find some a′ ∈ N living in this intersection. Let f ′ be the
map K(a) → f(K)(a′) extending f and sending a 7→ a′. By C-minimality and quantifier
elimination in ACVF, there is a unique valuation on K(t) making t live in each of the balls
in B. Consequently, f ′ preserves the valuation structure. Also, vf ′ = vf because vM =
vK(a) = vK. So f ′ is a strictly bigger v-elementary map, contradicting maximality.

Theorem 3.2.16. Let M and N be models of T . Let f be a partial v-elementary map from
M to N . Then f is a partial elementary map. In other words, if K is a common subfield
of M and N , and if vM and vN are elementarily equivalent over vK, then M and N are
elementarily equivalent over K. Consequently, T has quantifier elimination relative to the
value group.

Proof. If M and N are models of T , Zorn’s lemma applies to partial v-elementary maps
between M and N . So the previous lemma yields
Claim 3.2.17. Let M and N be models of T , and N be |M |+-saturated. Then every partial
v-elementary map from M to N can be extended to a total v-elementary map from M to N .

Now suppose M , N , and K are as in the statement of the Theorem. Build a sequence
N1,M2, N3,M4, . . . where

M �M2 �M4 � · · ·

N � N1 � N3 � · · ·
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and Mi+1 is |Ni|+-saturated and Ni+1 is |Mi|+-saturated.
By repeatedly applpying the lemma, we can find partial v-elementary maps

M → N1 →M2 → N3 →M4 → · · ·

extending the given embedding ofK intoN . These combine to yield an isomorphism between⋃
iMi and

⋃
iNi over K. Then by Tarski-Vaught,

M ≡K
⋃
i

Mi
∼=K

⋃
i

Ni ≡K N

Corollary 3.2.18. Let Γ be an ordered abelian group. If Γ = p · Γ, the theory of henselian
defectless valued fields (K, v) of characteristic p with Kv |= ACFp and vK ≡ Γ is complete.
If a ∈ Intp Γ, the theory of henselian defectless mixed characteristic fields with (vK, v(p)) ≡
(Γ, a) and Kv |= ACFp is complete.

Proof. For pure characteristic p, let M1 and M2 be two models. Let K be Fp. Then vM1
and vM2 are elementarily equivalent over vK, so M1 and M2 are elementarily equivalent.

For mixed characteristic, take K to be Q instead. If (vM1, v(p)) ≡ (vM2, v(p)), then vM1
and vM2 are elementarily equivalent over Q.

3.3 Dp-minimality
Lemma 3.3.1. Let Γ be an ordered abelian group such that Γ/nΓ is finite for all n > 0.
Then every unary definable subset of Γ is a boolean combination of cosets γ+nΓ and definable
cuts (upward closed sets).

Proof sketch. Consider the expansion of this structure by all constants, and unary predicates
for all cuts and all cosets of the forma a+nΓ. We claim that this expansion has elimination
of quantifiers. By the usual methods, one reduces to eliminating quantifiers in a formula of
the form

∃x
n∧
i=1

(cix+ yi ∈ ai + diΓ) ∧
m∧
i=1

(eix+ zi < Ξi)

where the Ξi are cuts in Γ. Let d be the least common multiple of the nonzero di’s. Breaking
into cases, we may assume that one of the conjuncts explicitly specifies which coset of dΓ
contains x. Modulo this, the first type of conjunct (cix + yi ∈ ai + diΓ) is equivalent to
something not involving x. So we are left with something like

∃x(x ∈ a+ dΓ) ∧
m∧
i=1

(eix+ zi < Ξi)
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After the change of variables x = a+ dx′, we reduce to an expression of the form

∃x
m∧
i=1

(eix+ zi < Ξi)

Each conjunct cuts out a downward closed set or an upwards closed set, so the intersection
is non-empty if each downward set intersects each upward set. That is, the statement is
equivalent to a conjunction of statements of the form

∃x(a1x+ y < Ξ1) ∧ (−a2x+ z < Ξ2) (3.1)

where a1, a2 > 0. Let a be the least common multiple of a1 and a2. Break into cases by
which coset of aΓ contains y and which contains z. Within each case, the truth of (3.1)
depends only on how a2y + a1z compares to some cut in Γ.

Therefore, quantifier elimination holds in the expanded structure. Any definable set D
in one variable is therefore a boolean combination of cuts and cosets of nΓ, where n depends
only on D. Then, for any a ∈ Γ, the definable set

{x ∈ Γ : a+ nx ∈ D}

is a boolean combination of cuts. These cuts can be taken to be definable (as the non-
definable ones must ultimately be irrelevant).

Let (K, v) be a valued field. We will call sets of the following forms round sets with
center c:

c+ a · (K×)n for some a ∈ K×

v−1(Ξ) for some definable upward-closed subset Ξ ⊆ vK ∪ {+∞}

We will call sets of the first kind angular sets and set of the second kind ball-like sets. The
class of round sets is closed under affine transformations.

Proposition 3.3.2. Let K be a henselian defectless roughly p-divisible field, such that Kv |=
ACFp and vK/n · vK is finite for all n ∈ N. Then every unary definable set in K is a finite
boolean combination of round sets.

Proof. We may replace K with an elementary extension. First pass to an extension in which
every coset of ⋂n n · vK is represented. Then pass to a spherical completion (which is an
elementary extension by quantifier elimination).

Now look at 1-types. It suffices to show that a 1-type is determined by which round
sets contain it. Let a be a singleton from an elementary extension of K. By spherical
completeness, some element of K is maximally close to a. Translating a, we may assume
that element is 0. If a = 0, then the 1-type is determined by the assertion that v(x) = ∞.
Otherwise, a /∈ K, and rv(a) is new (not in rv(K)). If v(a) is new, then tp(v(a)/vK)
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implies tp(a/K). Indeed, if v(a) ≡vK v(a′), then a and a′ have the same type by quantifier
elimination.

But by Lemma 3.3.1, tp(v(a)/vK) is implied by a collection of statements of the following
forms:

• v(a) + γ is divisible by n

• v(a) is greater than some cut

• v(a) is less than some cut

Each of these is a round set or the complement of a round set.
Otherwise, rescale a so that v(a) = 0. Then res(a) is new (not in res(K) = Kv), and

tp(a/K) is the generic type of the closed unit ball, which is unique by quantifier elimination.

Definition 3.3.3. Fix a complete theory T . Let B be an ind-definable family of unary
definable sets. In other words, there is a collection of formulas Φ and for any model K,

B(K) = {φ(K;~a) : φ(x; ~y) ∈ Φ, ~a ∈ K |~y|}

Say that B is a unary basis if it generates the family of all unary definable sets through
boolean combinations. More precisely, if K |= T and D ⊆ K is K-definable, then D is in
the boolean algebra generated by B(K).

Say that B is a weak unary basis if every unary definable set is a boolean combination of
traces of externally definable sets in B. In other words, if K |= T , then

{K ∩D′ : D′ ∈ B(K ′), K ′ � K}

generates a boolean algebra containing all definable subsets of K.

In the setting of Proposition 3.3.2, round sets form a unary basis. Moreover, balls and
angular sets form a weak unary basis, because every ball-like round set is the trace of an
externally definable ball.

Lemma 3.3.4. Let T be a complete theory with infinite models. Let B be a weak unary
basis for T . Then T is not dp-minimal if and only if in some model of T , there are mutually
indiscernible sequences

. . . , X−1,X0, X1, . . .

. . . , Y−1,Y0, Y1, . . .

of sets from B, and an element a such that

a ∈ X0 6⇐⇒ a ∈ X1

a ∈ Y0 6⇐⇒ a ∈ Y1
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Proof. If the given configuration occurs, it directly contradicts the characterization of dp-
minimality in terms of mutually indiscernible sequences (one of the two sequences of sets
must be a-indiscernible).

Conversely, suppose dp-minimality fails. Let B+ be the closure of B under boolean
combinations.
Claim 3.3.5. There is randomness pattern of depth 2 made of sets from B+.

Proof. Take a mutually indiscernible randomness pattern of depth 2 and stretch the two
sequences of sets to have length κ := |T |+. So we have sets Xα and Yβ and elements aα,β for
α, β < κ, such that

aα,β ∈ Xα′ ⇐⇒ α = α′

aα,β ∈ Yβ′ ⇐⇒ β = β′

Let M be a small model defining the X’s and Y ’s and containing the a’s. In some |M |+-
saturated elementary extension M∗ � M , we can find sets X ′α and Y ′α from B+(M∗) such
that Xα ∩M = X ′α ∩M and Yα ∩M = Y ′α ∩M . As the aα,β are in M ,

aα,β ∈ X ′α′ ⇐⇒ α = α′

aα,β ∈ Y ′β′ ⇐⇒ β = β′

Because κ > |T |, some subsequence of 〈X ′α〉α<κ is uniformly definable. Passing to this
subsequence, and doing the same with 〈Y ′β〉β<κ, we get a randomness pattern of depth 2 in
M∗.

Take the randomness pattern from the claim and derive a mutually indiscernible array
from it, with each row indexed by Z. This gives mutually indiscernible sequences

. . . , U−1, U0, . . .

. . . , V−1, V0, . . .

of sets from B+, and an element a = a00 such that for all i,

a ∈ Ui ⇐⇒ a ∈ Vi ⇐⇒ i = 0

Recall the general
Fact 3.3.6. Let 〈xi〉i∈I and 〈yj〉j∈J be mutually indiscernible sequences. Given a and b, we
can find ai and bj such that

• 〈aixi〉i∈I and 〈bjyj〉j∈J are mutually indiscernible.

• For each i, aixi ≡ ax0

• For each j, bjyj ≡ by0.
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(To see this, choose a0
i and b0

j arbitrarily so that a0
ixi ≡ ax0 and b0

i yj ≡ by0. Then derive
mutually indiscernible sequences from the two sequences 〈a0

ixi〉i∈I and 〈b0
jyj〉j∈J . Finally

move the new x’s and y’s back to the old ones via an automorphism.)
As U0 ∈ B+, we can write

U0 = f(B1, B2, . . . , Bm)
where the Bi are in B and f is some boolean operation. Similarly, we can write V0 =
g(C1, C2, . . . , C`) for some Ci in B.

By the Fact, we can find Bj
i and Cj

i such that

• Ui = f(B1
i , . . . , B

m
i ) for each i

• Vj = g(C1
i , . . . , C

`
i ) for each i

• The two sequences

〈pUiqpB1
i q · · · pBm

i q〉i∈Z
〈pViqpC1

i q · · · pC`
i q〉i∈Z

are mutually indiscernible.

As a ∈ U0 and a /∈ U1, there must be some j such that a ∈ Bj
0 6⇐⇒ a ∈ Bj

1. Likewise, there
must be some k such that a ∈ Ck

0 6⇐⇒ a ∈ Ck
1 . Take Xi = Bj

i and Yi = Bk
i . Then the Xi’s

and Yi’s are mutually indiscernible, are sets in B, and satisfy

a ∈ X0 6⇐⇒ a ∈ X1

a ∈ Y0 6⇐⇒ a ∈ Y1

completing the proof of the lemma.

Theorem 3.3.7. Let (K, v) be a henselian defectless roughly p-divisible valued field, with
vK/n · vK finite for all n ∈ N, and Kv |= ACFp. Then (K, v) is dp-minimal as a valued
field.

Proof. We may take (K, v) to be a monster model.
If dp-minimality failed, then by Lemma 3.3.4 there would exist an element a and two

mutually indiscernible sequences of sets

. . . , X−1, X0, X1, . . .

. . . , Y−1, Y0, Y1, . . .

such that

a ∈ X0 6⇐⇒ a ∈ X1

a ∈ Y0 6⇐⇒ a ∈ Y1
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and each Xi is a ball or an angular set. (Here we are using the fact that balls and angular
sets form a weak unary basis, by Proposition 3.3.2.)

As v is henselian, there is a unique extension of v to Kalg. Consider the map χ from balls
and angular sets in K to subsets of Kalg defined as follows:

• χ(B) is the ball in Kalg with the same center and radius as B if B is a ball in K

• χ(B) = {c} if B is an angular set centered on c

ACF and ACVF are dp-minimal, so (Kalg, v) is dp-minimal and one of the two sequences

. . . , χ(X−1), χ(X0), χ(X1), . . .
. . . , χ(Y−1), χ(Y0), χ(Y1), . . .

is a-indiscernible within (Kalg, v). Without loss of generality, 〈χ(Xi)〉i∈Z is a-indiscernible in
Kalg.

If the Xi’s are balls, then

a ∈ X0 ⇐⇒ a ∈ χ(X0) ⇐⇒ a ∈ χ(X1) ⇐⇒ a ∈ X1,

a contradiction. So the Xi’s are angular sets.
Write ξi for the center of Xi. Then Xi− ξi is a coset of (K×)n. As there are only finitely

many of these cosets, the indiscernible sequence 〈Xi− ξi〉i∈Z must be constant. So Xi− ξi is
some fixed coset of (K×)n. By Proposition 3.2.3.2, Xi − ξi = v−1(S) for some set S ⊆ vK.
Therefore, whether a ∈ Xi depends solely on v(a− ξi). Consequently,

v(a− ξ0) 6= v(a− ξ1)

Now in Kalg, the sequence . . . , ξ−1, ξ0, ξ1, . . . is a-indiscernible. So, perhaps after reversing
the sequence, we have

· · · < v(a− ξ−1) < v(a− ξ0) < v(a− ξ1) < · · ·

This in turn implies that

v(a− ξ1) = v(ξ2 − ξ1) and v(a− ξ0) = v(ξ2 − ξ0)

Whether an element x is in Xi depend only on v(x− ξi), so

ξ2 ∈ X1 ⇐⇒ a ∈ X1 6⇐⇒ a ∈ X0 ⇐⇒ ξ2 ∈ X0

But X0 and X1 have the same type over ξ2 (the unique center of X2), because the sequence
〈Xi〉i∈Z is indiscernible in K itself. So we have a contradiction.
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Chapter 4

Some remarks on strongly dependent
valued fields

In [42], it is shown that all NIP fields are Artin-Schreier closed. We will use this fact to
prove several nice properties of strongly dependent valued fields. Recall that

• A type-definable (or pro-definable) set X has rudimentarily finite weight if there is no
randomness pattern of depth ℵ0 in X (see §9.2.2 below)

• A theory is strongly dependent if every definable set has rudimentarily finite weight.

Superstable implies strongly dependent implies NIP.
The main results on strongly dependent valued fields are Theorem 4.3.1, which estab-

lishes some divisibility conditions on the value group, and Theorem 4.3.2, which establishes
defectlessness of the valuation.

In what follows, we will repeatedly use the Shelah expansion. If M is an NIP struc-
ture, M sh denotes the expansion of M by all externally definable sets. By [67] Proposition
3.23, M sh eliminates quantifiers. Using this, one sees that if M is dp-minimal or strongly
dependent, then so is M sh. Of course, properties like saturation will probably be lost.

4.1 Perfection
Lemma 4.1.1. Let K be a strongly dependent field. Then K is perfect.

Proof. If K is imperfect, then there is a definable injection f : K × K ↪→ K, namely
f(x, y) = xp + b · yp for any b /∈ Kp.

Let X0 = K and let Xi+1 = f(X0, Xi). Let X∞ be the type definable set ⋂iXi. In the
category of ∗-definable sets, there is a surjection X∞ →

∏∞
i=0K, roughly sending

f(x0, f(x1, f(x2, . . .))) 7→ (x0, x1, x2, . . .)
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More precisely, note that X∞ = f(K,X∞), and

f : K ×X∞ ∼← X∞

is a bijection. Let π1 and π2 be the two projections

X∞
∼→ K ×X∞ � K

X∞
∼→ K ×X∞ � X∞

Then the surjection X∞ →
∏∞
i=0K is the map

x 7→ (π1(x), π1(π2(x)), π1(π2(π2(x))), . . .)

Since ∏∞i=0K does not have rudimentarily finite weight, neither does X∞, nor its superset
K.

Remark 4.1.2. Let K be a strongly dependent field of characteristic p, and L/K be a finite
extension. Then p does not divide [L : K].

Proof. By perfection, L/K is a separable extension, so this follows by Corollary 4.5 in
[42].

Lemma 4.1.3. Let K be an infinite strongly dependent field of positive characteristic p.
Then any valuation on K has p-divisible value group, and any henselian valuation on K is
defectless.

Proof. The first claim follows because K is Artin-Schreier closed, or because it is perfect.
For the second claim, it is a general fact that if v is a henselian valuation, if L/K is a finite
extension, and if w is a prolongation of v to L, then

[L : K] = [Lw : Kv] · |wL/vK| · pd

for some d ∈ N. By Remark 4.1.2, p does not divide [L : K], so d = 0, i.e., the valuation is
defectless.

4.2 Finite ramification
Lemma 4.2.1. Let (K, v) be a strongly dependent mixed characteristic valued field. Suppose
the interval [−v(p), v(p)] in the value group is finite. Then the residue field Kv is finite.

Proof. We may replace K with a sufficiently saturated elementary extension. Note that Kv
is itself strongly dependent, hence perfect.

Let O be the valuation ring and π generate its maximal ideal. Let Ô denote the ∗-
definable set

Ô = lim
←
O/(πn)
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Then O surjects onto Ô via the obvious map.
Suppose the map Ô → Kv had a ∗-definable section

s : Kv → Ô

We would then obtain a ∗-definable bijection

Kv × Ô ∼→ Ô

(α, x) 7→ s(α) + π · x,
This would then yield definable surjections

O → Ô → Kv × Ô → Kv ×Kv × Ô → · · · → Kv ×Kv × · · ·

showing that O is not strongly dependent unless Kv is finite.
So it suffices to produce a ∗-definable section of the projection Ô → Kv. We will use the

Teichmüller character.
Claim 4.2.2. For each n, if m > n and res y1 = res y2 6= 0, then yp

m

1 − y
pm

2 ∈ (πn).

Proof. Note first that if I is any principal proper ideal of O, then (1 + I)p ⊆ 1 + J for a
strictly smaller principal ideal, namely J = I2 + p · I. It follows that

(1 + (π))pm ⊆ 1 + (πm)

Then for y1, y2 ∈ O×,

y1 − y2 ∈ (π) =⇒ y1

y2
∈ 1 + (π) =⇒ yp

m

1

yp
m

2
∈ 1 + (πm) =⇒ yp

m

1 − y
pm

2 ∈ (πm) ⊆ (πn)

Now define a section
s : (Kv)× → Ô×

as follows: given nonzero α ∈ Kv, choose a sequence y1, y2, . . . in O such that (res yn)pn = α,
using perfection of Kv. Then let

s(α) = lim
n→∞

yp
n

n

To see that this is well-defined and ∗-definable, note that for m > n, the class of ypmm modulo
(πn) does not depend on ym, by the claim, nor on m, because for m′ > m,

yp
m′−m

m′ − ym ∈ (π) and so yp
m′

m′ − yp
m

m ∈ (πn)

And res(s(α)) = α, by choice of the yi’s.
Therefore there is a ∗-definable section of Ô× → (Kv)×. We can extend this to a section

of Ô → Kv by sending 0 to 0.
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4.3 The general statements
Recall Definition 3.1.4 (rough p-divisibility) and Remark 3.1.5 from Chapter 3.

Theorem 4.3.1. Let (K, v) be a strongly dependent valued field. If Kv is infinite, then
v is roughly p-divisible. If Kv is finite, then K has characteristic zero and the interval
[−v(p), v(p)] is finite. If v is henselian, then v is defectless.

Proof. All the properties described here are elementary properties, so we may replace K
with a sufficiently saturated elementary extension. We break into cases by the characteristic
and residue characteristic of v.

In equicharacteristic 0,Kv is infinite, rough p-divisibility is vacuous, and henselian implies
defectless.

In equicharacteristic p, Kv is infinite by Proposition 5.3 in [42]. The value group is
p-divisible and the valuation is defectless if henselian, by Lemma 4.1.3.

This leaves the case of mixed characteristic. Let ∆0 be the biggest convex subgroup
not containing v(p), and ∆ be the smallest convex subgroup containing v(p). These convex
subgroups decompose the place K → Kv as a composition of three places:

K
vK/∆→ K1

∆/∆0→ K2
∆0→ Kv (4.1)

where each arrow is labeled by its value group. The fields K and K1 have characteristic zero,
while K2 and Kv have characteristic p.

Note that ∆/∆0 embeds into R, so is small. Because K is sufficiently saturated, we get
the following chain of implications

∆0 = 0 =⇒ ∆ small =⇒ [−v(p), v(p)] small =⇒ [−v(p), v(p)] finite
=⇒ ∆0 finite =⇒ ∆0 = 0

so ∆0 vanishes if and only if [−v(p), v(p)] is finite.
Both ∆0 and ∆ are externally definable, hence definable in Ksh. So the sequence of

places in (4.1) is interpretable in the strongly dependent structure Ksh.
In particular, ∆0 is p-divisible, by Proposition 5.4 of [42]. So Intp vK is non-trivial or

[−v(p), v(p)] is finite.
Note that we have just proven the following general fact:

If (K, v) is a strongly dependent mixed characteristic valued field, then Intp vK
is non-trivial or [−v(p), v(p)] is finite

because this depends only on the elementary equivalence class of (K, v).
Combining with Lemma 4.2.1, we have actually shown

If (K, v) is a strongly dependent mixed characteristic valued field, then Intp vK
is non-trivial or Kv is finite
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In particular, we can apply this fact to the strongly dependent place K1 → K2 in (4.1).
We see that

Intp(∆/∆0) is non-trivial, or K2 is finite (4.2)

Now we prove the three claims of the theorem.
First suppose thatKv is infinite. ThenK2 is infinite, so ∆/∆0 has a non-trivial p-divisible

convex subgroup by (4.2). Being archimedean, ∆/∆0 has very few convex subgroups and
must be p-divisible itself. As ∆0 is p-divisible, it follows that ∆ is p-divisible, so v is roughly
p-divisible.

Next suppose that Kv is finite. If [−v(p), v(p)] is infinite, then ∆0 is non-trivial, so
K2 → Kv is an infinite strongly dependent valued field of characteristic p with a finite
residue field. This contradicts Proposition 5.3 of [42].

Next suppose that v is henselian. Then all three of the places in (4.1) are henselian. By
the equicharacteristic cases, K → K1 andK2 → Kv are defectless, so it remains to show that
K1 → K2 is defectless. Because (K, v) is saturated, any countable chain of balls in (K, v) has
non-empty intersection. So the place K → Kv satisfies the countable intersection property
of Remark 3.1.5. Therefore, so does K1 → K2. However, the value group of K1 → K2
is ∆/∆0. This group has countable cofinality, because it embeds into R. Consequently,
K1 → K2 is spherically complete, hence defectless.

A valued field (K, v), not necessarily henselian, is said to be defectless if for every finite
extension L/K,

[L : K] =
∑
w

|wL/vK| · [Lw : Kv]

where the sum ranges over the distinct extensions of v to L. This is a first order condition,
because the extensions of v to L are definable, by Beth implicit definability.

It can be shown that (K, v) is defectless if and only if its henselization is defectless.
Using these facts, we can drop the henselianity assumption from the previous result:

Theorem 4.3.2. Let (K, v) be a strongly dependent valued field. Then (K, v) is defectless.

Proof. First suppose K has characteristic p. Then p does not divide the degree of any
extension of K, nor of its henselization Khens. Therefore Khens is automatically defectless.
Otherwise, K has characteristic 0. If K has residue characteristic 0, so does its henselization,
so Khens and K are automatically defectless.

Assume therefore that K has mixed characteristic (0, p). We may assume (K, v) is rea-
sonably saturated, because defectlessness is a first-order condition. By Theorem 4.3.1, we
are in one of two cases:

Case 1: finite ramification Then Kv is finite by Theorem 4.3.1. Coarsening by the con-
vex subgroup generated by v(p) yields a decomposition

K → K1 → Kv
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where K1 has characteristic 0, and K1 → Kv has value group isomorphic to Z, and is
spherically complete. Note that K1 is a local field of characteristic 0.
Let L → Lv be the henselization of K. Decomposing according to the same convex
groups yields L → L1 → Lv. As (L → Lv) is an immediate extension of (K → Kv),
it follows that

• Lv = Kv

• The value group of L1 → Lv equals the value group of K1 → Kv.
• The value group of L→ L1 equals the value group of K → K1

By the first two points, (L1 → Lv) is an immediate extension of (K1 → Kv). But
K1 → Kv is spherically complete, so L1 = K1. Consequently L1 → Lv is spherically
complete, hence defectless and henselian. Meanwhile, L→ Lv is henselian, so L→ L1
is henselian by Remark 3.1.5. As L1 has residue characteristic 0, L→ L1 is henselian
and defectless. Finally L → L1 → Lv is defectless by Remark 3.1.5 because it is a
composition of henselian defectless places.

Case 2: infinite ramification In this case, decompose K → Kv according to the smallest
(resp. largest) convex subgroup containing (resp. not containing) v(p), to obtain a
decomposition

K → K1 → K2 → Kv

where each field is strongly dependent, whereK andK1 have characteristic 0, whereK2
and Kv are characteristic p, and K1 → K2 is a spherically complete rank 1 valuation.

Claim 4.3.3. The prime p does not divide the degree of any finite extension of K1

Proof. As K1 → K2 is spherically complete (hence henselian and defectless), it suffices
to show that p does not divide the degree of any extension of K2 or of the value group
of K1 → K2. The former is clear by Remark 4.1.2. The latter follows because the
value group of K1 → K2 is a quotient of the value group of K1 → Kv, which is
the convex subgroup generated by v(p), and Theorem 4.3.1 ensures that this group is
p-divisible.

Now let L→ Lv be the henselization of K → Kv, and let L→ L1 → L2 → Lv be the
decomposition obtained by the two aforementioned convex subgroups. Then p does
not divide the degree of any finite extension of L1, because L1 is algebraic over K1.
Hence L1 → Lv is automatically defectless. Also, L→ L1 has residue characteristic 0
and is defectless. By Remark 3.1.5, the composition L→ Lv is also defectless.
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Chapter 5

Unary criteria

This chapter contains three unrelated results. In some sense, each involves generalizing a
condition from the home sort to the entire theory. (Also, each tells us something about
ACVF.)

Definition 5.0.1. In a one-sorted structure M , a unary definable set is a definable subset
of M1.

In §5.1 we give a criterion for the elimination of ∃∞ in T eq. As far as I know, this result
is new.

In §5.2 we prove that, in dense C-minimal structures, no infinite definable set admits a
definable total order. We will use this fact later in Chapter 9. This fact is probably known
to experts, but does not appear in the literature.

Finally, in §5.3 we give a “unary” criterion for a type in an NIP theory to be generically
stable. Later, in Chapter 7, we will use this generalize the characterization of generically
stable types in ACVF to its C-minimal expansions.

5.1 Elimination of ∃∞ in T eq

Definition 5.1.1. Let X be a definable or interpretable set. Then ∃∞ is eliminated on X if
for every definable family

{Da ⊆ X : a ∈ Y }
of subsets of X, the set of a such that |Da| <∞ is definable. Equivalently (by compactness),
there is an integer n such that for every a ∈ Y ,

|Da| < n ⇐⇒ |Da| <∞

Definition 5.1.2. A theory eliminates ∃∞ if it eliminates ∃∞ on the home sort, or equiva-
lently, on powers of the home sort.

The equivalence follows by
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Observation 5.1.3. If ∃∞ is eliminated on X and Y , it is eliminated on X × Y . In fact,
S ⊆ X × Y is finite if and only if both of the projections S → X and S → Y have finite
image.

This property does not pass from T to T eq. For example, Qp eliminates ∃∞. But the
value group, which is interpretable, is a Z-group, hence fails to eliminate T eq.

In some theories, it is difficult to precisely pin down the imaginary sorts. Even when we
have an explicit description, the imaginary sorts might be unwieldy. We would like to give
a criterion for determining whether T eq eliminates imaginaries, that can be checked without
determining T eq explicitly.

Definition 5.1.4. An interpretable set X is a set of unary imaginaries if there is a definable
relation R ⊆ X ×M such that the map

x 7→ Rx = {m ∈M : (x,m) ∈ R}

is an injection.

In other words, X is a set of unary imaginaries if the elements of X are codes for unary
definable sets, in some uniform way.

Our main result is the following:

Theorem 5.1.5. Suppose that ∃∞ is eliminated on every set of unary imaginaries. Then
T eq eliminates ∃∞.

Proof. Suppose not. Let M be a small submodel of the monster, containing the parameters
needed to witness some failure to eliminate ∃∞. Let N be the expansion of M obtained
by adding N ∪ {∞} as a new sort, and adding non-standard counting functions on all in-
terpretable families. By resplendence we can expand the monster model to a sufficiently
saturated elementary extension of N .

So, we may assume that we have a set of nonstandard natural numbers, and a nonstandard
“size” associated to any set interpretable in the original language. To avoid confusion, we
will let L denote the original language.

Say that an L-interpretable set is pseudofinite if its non-standard size is less than the
symbol ∞. Say that an L-interpretable set X is wild if it admits an infinite pseudofinite
definable family of subsets.

The assumption of the theorem says that the home sort is tame. Because every inter-
pretable set codes subsets of some power of the home sort, it suffices to show that every
power of the home sort is tame. We do this in a few steps.
Claim 5.1.6. If X is tame, so is any definable subset of X. If X and Y are tame, then so
is X ∪ Y .

Proof. The first statement is clear, a fortiori. For the second, let D be a definable family of
subsets of X ∪ Y which is pseudofinite. Note that {D ∩X : D ∈ D} is
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• pseudofinite, because D is pseudofinite, and

• finite, because X is tame

Similarly, {D ∩ Y : D ∈ D} is finite. Finally, the map

D 7→ (D ∩X,D ∩ Y )

yields an injection from D into a product of two finite sets.

Claim 5.1.7. Let π : X → Y be a definable map with finite fibers. If Y is tame, then so is
X.

Proof. By saturation, there is a uniform upper bound k on the size of the fibers. We proceed
by induction on k. The base case k = 1 is trivial. Suppose k > 1. Let D be a pseudofinite
definable family of subsets of X. Let

E = {π(D) : D ∈ D}

and
F = {π(X \D) : D ∈ D}

Then E and F are both pseudofinite definable families of subsets of Y . By tameness of Y ,
they are both finite.

Now, it suffices to show that the fibers of D → E × F are finite. Replacing D with
such a fiber, we may assume that π(D) and π(X \ D) are independent of D, as D ranges
over D. Let U = π(D) and V = π(X \ D) for any/every D ∈ D. Let Y ′ = U ∩ V and
X ′ = π−1(Y ′). Then the map D 7→ D ∩X ′ is injective on D, because every element D of D
contains π−1(U \ V ) and is disjoint from π−1(V \U). So it suffices to show that X ′ is tame.
Let D be some arbitrary element of D. Then X ′ ∩D and X ′ \D each intersect every fiber
of X ′ → Y ′, by choice of X ′. In particular, the two maps

X ′ ∩D → Y ′

X ′ \D → Y ′

have finite fibers of size less than k. By Claim 5.1.6, Y ′ is tame, and by induction, X ′ ∩D
and X ′ \D are tame. By Claim 5.1.6, X ′ is tame.

Claim 5.1.8. Suppose that π : X → Y is a definable surjection with finite fibers. Suppose
that Y is tame. Then any pseudofinite definable set of sections of the surjection π is finite.

Proof. A section is determined by its image.

Claim 5.1.9. Suppose X and Y are tame. Then so is X × Y .
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Proof. Let D be a pseudofinite definable family of subsets of X × Y . For each x ∈ X, the
set Yx := {x} × Y ⊆ X × Y is tame, so the collection

Ex := {D ∩ Yx : D ∈ D}

is finite. So π : ⋃x∈X Ex → X is a definable map of definable sets, with finite fibers. Each
element D ∈ D induces a section of π, namely, the map σD sending a point x ∈ X to (the
code for) D ∩ Yx. This gives a definable injection from D to sections of π. By Claim 5.1.8
and the fact that X is tame, it follows that D is finite.

This completes the proof of the Theorem.

As an example, we apply this to C-minimal expansions of ACVF. Let T be a C-minimal
expansion of ACVF, and K be a sufficiently saturated model of T . Again, it is handy to
work in a setting with nonstandard counting functions.

Observation 5.1.10. Let B1, . . . , Bn be pairwise disjoint balls in K. Then the union ⋃ni=1Bi

cannot be written as a boolean combination of fewer than n balls.

This requires a little thought, but boils down to the fact that the residue field is infinite.

Lemma 5.1.11. There is no pseudofinite infinite set of pairwise disjoint balls.

Proof. Let S be such a set. By compactness, there must be some sequence S1,S2, . . . such
that each Si is a finite set of pairwise disjoint balls, the Si are uniformly definable, and
limi→∞ |Si| =∞.

The unions Ui = ⋃Si ⊆ K are uniformly definable (bounded in complexity), so there is
some absolute bound on the number of balls needed to express Ui. But Observation 5.1.10
says that this number is at least |Si|, a contradiction.

Because the value group Γ of K is dense o-minimal, it eliminates ∃∞. Therefore, there
are no pseudofinite infinite subsets of Γ.

Lemma 5.1.12. There is no pseudofinite infinite set of balls.

Proof. Let S be such a set. Let S0 be the set of minimal elements of S. For each B ∈ S0,
let SB denote the elements of S containing B. In a (pseudo)finite poset, every element is
greater than or equal to a minimal elements, so

S =
⋃
B∈S0

SB

The set S0 is pseudofinite, hence finite by Lemma 5.1.11. Therefore, SB is infinite for some
B.

Now SB is a chain of balls. Therefore the map sending a ball B′ to its radius is a 2-to-1
map from SB into Γ. The range of this map is pseudofinite, hence finite. Therefore, so is
the domain SB, a contradiction.
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Finally, suppose that ∃∞ is not eliminated on some set X0 of unary codes. Then there
is a pseudofinite infinite set A ⊆ X0. Let Da be the unary set associated to a ∈ A. For
each a, there is a unique minimal set of balls Ba such that Da can be written as a boolean
combination of Ba. The correspondence a 7→ Ba is a definable finite-to-finite correspondence
from A to B. Its “image”

I :=
⋃
a∈A
Ba

is pseudofinite, hence finite. The boolean algebra generated by I is finite, and contains every
Da, so A is finite, a contradiction.

Consequently, we see that T eq eliminates ∃∞ for any C-minimal expansion of ACVF. This
is useful, because the expansions of ACVF by analytic functions are known to have exotic
imaginaries.

5.2 Definable orders in C-minimal structures
Definition 5.2.1. A structure M defines no total orders if there are no infinite definable
sets admitting definable total orders.

This condition can be checked on unary sets:

Lemma 5.2.2. Suppose no infinite unary definable set admits a definable total ordering.
Then M defines no total orders.

Proof. Let C be the class of definable sets X such that there is an infinite definable set
D ⊆ X admitting a definable total order.
Claim 5.2.3. If X × Y ∈ C, at least one of X and Y is in C.

Proof. Given D ⊆ X × Y infinite with a definable total ordering, consider the projection
π : D → X. Each fiber of π embeds definably into Y , so if some fiber of π is infinite, then
Y ∈ C. Otherwise, the fibers are all finite. Let g : π(D) → D pick out the least element of
each fiber. We can pull the ordering on D back to π(D) along g. Then the infinite subset
π(D) of X admits a definable total ordering, so X ∈ C.

Consequently, if M1 /∈ C, then Mn /∈ C.

In the rest of this section, we will show that dense C-minimal structures define no total
orders. For the sake of contradiction, suppose that there is an infinite unary definable set X
admitting a total ordering.

Definition 5.2.4. A tree-like set is a non-empty finite set S such that for every ball B,
|S ∩B| is 0 or a power of 2.

Note that |S| = 2n for some n, because the entirety of M is a ball. We call n the depth
of S.
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Lemma 5.2.5. Let B1 and B2 be disjoint balls. Let Si ⊆ Bi be a tree-like set of depth n.
Then S1 ∪ S2 is a tree-like set of depth n+ 1.

Proof. Let B be any ball. If B intersects only Bi for i = 1 or 2, then |B ∩ S| = |B ∩ Si| has
the desired form. Otherwise, B intersects both of Bi, hence contains both. So B ∩ S = S
and |B ∩ S| = |S1|+ |S2| = 2n+1.

Lemma 5.2.6. An infinite definable set X contains arbitrarily big tree-like sets.

Proof. The density assumption ensures that every infinite ball contains two disjoint infinite
subballs. By induction on n, we see that

If B is an infinite ball, then B contains a tree-like set of depth n

The density assumption also ensures that X contains an infinite ball.

For any definable set D, the characteristic function χD of D can be written as

χD =
m∑
i=1

ai · χBi

where the Bi’s are balls and ai ∈ {−1, 0, 1}. This is an easy consequence of the swiss cheese
decomposition. Call the least such m the “complexity” of D. By compactness, complexity
is bounded in definable families.

If S is a tree-like set of depth n, then

|S ∩D| =
∑
s∈S

χD(s) =
∑
s∈S

m∑
i=1

ai · χBi(s) =
m∑
i=1

ai · |S ∩Bi| =
m∑
i=1

a′i · 2ki

for some a′i ∈ {−1, 0, 1} and some ki ∈ {1, . . . , n}.
In particular, as D ranges through sets of complexitym, there are only (3n)m possibilities

for |S ∩D|.
On the other hand, as D ranges through the half-infinite intervals (−∞, a) ⊆ X, there

are at least 2n possibilities for |S ∩D|.
Letting m bound the complexity of the half-infinite intervals, and n be large enough that

2n > (3n)m, and S ⊆ X be a tree-like set of depth n, we get a contradiction.
We have shown

Proposition 5.2.7. Dense C-minimal structures never define total orders.

Corollary 5.2.8. Dense C-minimal structures never eliminate imaginaries.

Proof. Any C-minimal structure interprets the set of balls. Within this, the set of balls
around a given point is totally ordered, and infinite under the density assumption. So any
dense C-minimal structure interprets an infinite total order, but defines no infinite total
order.



CHAPTER 5. UNARY CRITERIA 42

5.3 Generic stability and chain aversion
Let M be a monster model of an NIP complete theory T .

Definition 5.3.1. A global invariant type p(x) is generically stable if p(x)⊗ p(y) = p(y)⊗
p(x).

For other equivalent definitions of generic stability, see Section 3 of [36].

Definition 5.3.2. A global invariant type p(x) is chain averse if for every small set C, there
is a cardinal κ(C) such that for any ordinal λ and any ~a |= p⊗λ|C, there is no chain of size
κ(C) of unary C~a-definable sets.

Theorem 5.3.3. Let p(x) be a global invariant type. Then p(x) is chain averse if and only
if p(x) is generically stable.

We will prove this in several steps.

Observation 5.3.4. If p(x) is chain averse, so is p⊗n(x1, . . . , xn) for all n < ω.

Lemma 5.3.5. Let p(x) be a generically stable type. Then p(x) is chain averse.

Proof. Let C be a small subset. We may assume that p is C-invariant, by enlarging C. Let
κ = κ(C) be (ℵ0 + |T |+ |C|)+. Suppose for the sake of contradiction that there is a Morley
sequence ~a in the type p, over C, and a chain U of size κ of C~a-definable unary sets. Let λ
be the length of ~a. Note that λ ≥ κ.

Each set U ∈ U can be written as f(aα1 , . . . , aαn) for some n, some C-definable function
f , and some α1 < · · · < αn < λ. There are at most ℵ0 + |T | + |C| possibilities for f and
n. By the pigeonhole principle, we may assume that n and f are constant across all U , by
passing to a subchain of U if necessary.

As U is a chain containing more than one element, we can find

α1 < · · · < αn < λ

β1 < · · · < βn < λ

such that
A = f(aα1 , . . . , aαn) ( f(aβ1 , . . . , aβn) = B

Because p is generically stable and C-invariant, the sequence ~a is totally C-indiscernible;
therefore so is the set

S = {aα1 , . . . , aαn} ∪ {aβ1 , . . . , aβn}.

Therefore, there is an automorphism σ ∈ Aut(M/C) permuting S and sending aαi 7→ aβi
for each i. In particular σ(A) = B. As S is finite, there is some k such that σk|S = id. In
particular, σk(A) = A. Then

A ( B = σ(A),
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so
A ( σ(A) ( σ(σ(A)) ( · · · ( σk−1(A) ( σk(A) = A

which is absurd.

Lemma 5.3.6. Let C be a small set and 〈aα〉α<κ be a C-indiscernible sequence. Let φ(x; y)
be a C-formula with |y| = 1. Suppose there are no C~a-definable chains of unary sets of length
κ. Then

φ(a0, y) ∧ ¬φ(a1, y) is consistent (5.1)

if and only if
φ(a1, y) ∧ ¬φ(a0, y) is consistent (5.2)

Proof. Note that (5.1) is inconsistent if and only if φ(a0,M) ⊆ φ(a1,M), and (5.2) is incon-
sistent if and only if φ(a1,M) ⊆ φ(a0,M). If exactly one of (5.1) and (5.2) is inconsistent,
then

φ(a0,M) ( φ(a1,M) or φ(a1,M) ( φ(a0,M)

Either way, by indiscernibility, the sets φ(aα,M) form a chain of length κ.

Lemma 5.3.7. Let p(X) be a chain averse C-invariant type. Let a1, . . . , an realize p⊗n. Let
φ(x; y) be a C-formula with |y| = 1. Let ψ(y) be a formula over Ca1, . . . , ai−1, ai+2, . . . , an.
Then

ψ(y) ∧ φ(ai, y) ∧ ¬φ(ai+1, y)

is consistent if and only if
ψ(y) ∧ ¬φ(ai, y) ∧ φ(ai+1, y)

is consistent.

Proof. Let κ = κ(C)+. For any total order (I,<) extending {1, . . . , n}, we can find a Morley
sequence 〈ai〉i∈I in the type p over C, extending the ai’s.

Consequently, we can find 〈bα〉α<κ such that b0 = ai, b1 = ai+1, and

a1, . . . , ai−1, ai = b0, ai+1 = b1, b2, . . . , bω, bω+1, . . . , . . . , ai+1, . . . , an

is a Morley sequence over C.
In particular, it is C-indiscernible, and C~a~b defines no long chains of unary sets.
Now, the sequence 〈bα〉α<κ is C ′-indiscernible for

C ′ = Ca1, . . . , ai−1ai+2, . . . , an

and there are no long C ′~b-definable chains. The formula ψ(y) is over C ′. Let φ′(x; y) be
φ(x; y) ∧ ψ(y). Then, applying Lemma 5.3.6 to C ′, φ′, and ~b, we see that

∃y(φ′(b0, y) ∧ ¬φ′(b1, y)) ⇐⇒ ∃y(φ′(b1, y) ∧ ¬φ′(b0, y))
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But
φ′(b0, y) ∧ ¬φ′(b1, y) = ψ(y) ∧ φ(ai, y) ∧ ¬φ(ai+1, y)

and
φ′(b1, y) ∧ ¬φ′(b0, y) = ψ(y) ∧ ¬φ(ai, y) ∧ φ(ai+1, y)

completing the proof of the Lemma.

Lemma 5.3.8. Let p(x) be a chain averse C-invariant type. Let a1, . . . , an realize p⊗n|C.
Let φ(x; y) be a C-formula with |y| = 1. Let φ0 = φ and φ1 = ¬φ. For each word w ∈ {0, 1}n,
let

Σw(y) =
n∧
i=1

φwi(ai; y)

If w and w′ are permutations of each other, then Σw(y) is consistent if and only if Σw′(y) is
consistent.

Proof. We reduce to the case where w and w′ are related by a transposition, so

w = a01b and w′ = a10b

for some words a and b. Let i = |a|+ 1 and

ψ(y) =
∧

1≤j≤n,j /∈{i,i+1}
φwj(aj; y)

Then
Σw(y) = ψ(y) ∧ φ(ai; y) ∧ ¬φ(ai+1; y)

and
Σw′(y) = ψ(y) ∧ ¬φ(ai; y) ∧ φ(ai+1; y)

so the result follows by Lemma 5.3.7.

Lemma 5.3.9. Let p(x) be a chain averse C-invariant type. Let ~a |= p⊗ω|C. Let b be a
singleton and φ(x; y) be a C-formula with |y| = 1. If φ(x; b) ∈ p(x)|Cb, then |= φ(ai; b) for
all but finitely many i.

Proof. Let α1, α2, . . . realize p⊗ω|Cb~a. Then ~a~α |= p⊗2ω|C. Also, |= φ(αi; b) for all i.
Suppose φ(ai; b) fails for infinitely many i. Then there are infinitely many terms a in

the sequence ~a~α such that φ(a; b) holds, and infinitely for which it fails. Let n bound the
alternation number of φ(x; y). Let

c1, . . . , c2n

be a subsequence of ~a~α containing n elements which satisfy φ(x; b), and n elements which
satisfy ¬φ(x; b).

For some word w ∈ {0, 1}2n containing n 1’s and n 0’s, the type Σw(y) of Lemma 5.3.8
is realized by b. Let w′ be (01)n. Then w′ is a permutation of w, so Σw′(y) is consistent,
contradicting the choice of n.
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Lemma 5.3.10. Let p(x) be a chain averse C-invariant type. Let κ be a cardinal of cofinality
greater than |C| + |T |. Let 〈aα〉α<κ be a Morley sequence in p over C of length κ. For any
singleton b, some tail

〈aα〉β<α<κ
is a Morley sequence in p over Cb.

Proof. By Observation 5.3.4, each finite power p⊗n is chain averse (and C-invariant, of
course).
Claim 5.3.11. For each C-formula φ(x1, . . . , xn, y) with |y| = 1, there is βφ < κ such that

|= φ(aα1 , . . . , aαn , b) ⇐⇒ φ(x1, . . . , xn, b) ∈ p⊗n|Cb

for all βφ < α1 < · · · < αn.

Proof. If no such βφ exists, we can find an increasing sequence

α0,1 < · · · < α0,n < α1,1 < · · ·α1,n < α2,1 < · · · < α2,n < · · ·

such that for each i,

|= φ(aαi,1 , . . . , aαi,n , b) 6⇐⇒ φ(x1, . . . , xn, b) ∈ p⊗n|Cb

Let ci = aαi,1aαi,2 · · · aαi,n . Then
c0, c1, c2, . . .

is a Morley sequence in p⊗n over C. Replacing φ with ¬φ, we may assume that φ(~x, b) ∈
p⊗n|Cb. Then ¬φ(~ci, b) holds for infinitely many i, contradicting Lemma 5.3.9 applied to the
chain-averse type p⊗n.

By choice of κ, there is some β < κ greater than all the βφ. We claim that 〈aα〉β<α<κ
realizes p⊗κ|Cb. If not, there exists n ∈ N and

β < α1 < · · · < αn < κ

such that aα1 · · · aαn 6|= p⊗n|Cb. In particular, there is some C-formula φ(x1, . . . , xn, y) such
that

φ(x1, . . . , xn, b) ∈ p⊗n|Cb 6⇐⇒ |= φ(aα1 , . . . , aαn , b).

This contradicts the claim, as βφ < α1 < · · · < αn.

Lemma 5.3.12. Let p(x) be a C-invariant chain averse type. Let b be any finite tuple or
imaginary. Let κ be a cardinal with cofinality greater than |C| + |T |. Let 〈aα〉α<κ realize
p⊗κ|C. Then some tail of ~a realizes p⊗κ|Cb.
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Proof. If suffices to replace b with some b′ such that b ∈ dcleq(b′), so we may assume that
b is a tuple (not an imaginary). Let b = b1b2 · · · bn. By Lemma 5.3.10, there is some tail
~a′ realizing p⊗κ|Cb1. As p(x) is Cb1-invariant, by Lemma 5.3.10 there is some tail ~a′′ of ~a
realizing p⊗κ|Cb1b2. Continuing on in this fashion completes the proof.

Finally, we complete the proof of Theorem 5.3.3, saying that chain aversion and generic
stability are the same thing.

Proof. If p(x) is generically stable, it is chain averse by Lemma 5.3.5. Conversely, suppose
p(x) is a C-invariant chain averse type. Let κ be a cardinality with cofinality greater than
|C| + |T |, and let 〈aα〉α<κ+κ be a Morley sequence in p over C. Applying Lemma 5.3.12 to
the first half 〈aα〉α<κ of the sequence, and the imaginary aκ, we find some β < κ such that

〈aα〉β<α<κ |= p⊗κ|Caκ

In particular, aβ+1 |= p|Caκ. Thus

(aκ, aβ+1) |= p⊗2|C

But by choice of the a’s, we also have

(aβ+1, aκ) |= p⊗2|C

Consequently, p(x1) ⊗ p(x2)|C = p(x2) ⊗ p(x1)|C. We can replace C with any superset in
the above argument, and so p(x1) ⊗ p(x2) = p(x2) ⊗ p(x1). Therefore p(x) is generically
stable.

In §7.2 we will apply this to ACVF and its C-minimal expansions, characterizing the
generically stable types as the types orthogonal to the value group.
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Chapter 6

On the proof of elimination of
imaginaries in algebraically closed
valued fields

ACVF is the theory of non-trivially valued algebraically closed valued f ields. This theory
is the model companion of the theory of valued fields. ACVF does not have elimination of
imaginaries in the home sort (the valued field sort). Nevertheless, Haskell, Hrushovski, and
Macpherson in [26] were able to find a collection of “geometric sorts” in which elimination
of imaginaries holds.

Let K be a model of ACVF, with valuation ring O and residue field k. A lattice in Kn

is an O-submodule Λ ⊆ Kn isomorphic to On. Let Sn denote the set of lattices in Kn. This
is an interpretable set; it can be identified with GLn(K)/GLn(O). For each lattice Λ ⊆ Kn,
let res Λ denote Λ⊗O k, a k-vector space of dimension n. Let Tn be

Tn =
⋃

Λ∈Sn
res Λ = {(Λ, x) : Λ ∈ Sn, x ∈ res Λ}.

This set is again interpretable.
The main result of [26] is the following:

Theorem 6.0.1 (Haskell, Hrushovski, Macpherson). ACVF eliminates imaginaries relative
to the sorts K, {Sn : n ≥ 1} and {Tn : n ≥ 1}.

The proof in [26] is long and technical, and we aim to give a more straightforward proof.
Our proof is a variant of Hrushovski’s shorter proof in [32], except that our strategy for
coding definable types is different—see 6.4.2. We also give a slightly simpler proof that finite
sets of modules can be coded in the geometric sorts—see 6.4.3.

Obviously, we prove no new results. We include many details that are well-known at this
point, for the sake of being self-contained. The proof of elimination of imaginaries given here
is hopefully more conceptual than previous proofs. At any rate, it manages to do without
internality, germs, unary codes, type-definable torsors, and upper triangular matrices.
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6.1 Review of ACVF

6.1.1 Notation
In a model of ACVF, K is the home sort (the valued field), O ⊆ K is the valuation ring,
M is the maximal ideal in O, k = O/M is the residue field, Γ = K×/O× is the valuation
group, res : O → k is the residue map, and val : K → Γ∪{+∞} is the valuation. The value
group is written additively, and ordered so that

O = {x ∈ K : val(x) ≥ 0}.

A lattice in Kn is an O-submodule Λ of Kn which is free of rank n, i.e., isomorphic to
On. If Λ is a lattice, res Λ will denote Λ/MΛ = Λ ⊗O k. This is always an n-dimensional
k-vector space. We will use the following interpretable sets:

• Sn, the set of lattices in Kn.

• Tn, the set of pairs (Λ, ξ), where Λ ∈ Sn and ξ ∈ res Λ

• Rn,`, the set of pairs (Λ, V ), where Λ ∈ Sn and V is an `-dimensional subspace of res Λ.

Each of these sets is easily interpretable in ACVF. Our main goal will be to prove that
ACVF has elimination of imaginaries in the sorts K and Rn,`. In §6.5, we will note how this
implies elimination of imaginaries in K,Sn, and Tn, the standard “geometric sorts” of [26].
But until then, the term “geometric sorts” will mean the sorts K and Rn,`.

When working in an abstract model-theoretic context, the monster model will be denoted
M. If a definable set or other entity X has a code in Meq, the code will be denoted pXq.
Unless stated otherwise, “definable” will mean “interpretable.”

6.1.2 Basic facts
We assume without proof the following well-known facts about ACVF. Many of these are
discussed in [49].

• Models of ACVF are determined up to elementary equivalence by characteristic and
residue characteristic, which must be (0, 0), (p, p), or (0, p) for some prime p.

• ACVF has quantifier elimination in the language with one sort K, with the ring struc-
ture on K, and with a binary predicate for the relation val(x) ≥ val(y).

• C-minimality: Every definable subset D ⊆ K1 is a boolean combination of open and
closed balls (including points). More precisely, D can be written as a disjoint union
of “swiss cheeses,” where a swiss cheese is a ball with finitely many proper subballs
removed. There is a canonical minimal way of decomposing D as a disjoint union of
swiss cheeses. All the balls involved in this decomposition are algebraic over the code
for D.
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• The theory ACVF does not have the independence property. That is, ACVF is NIP.

• The value group Γ is o-minimal, in the sense that every definable subset of Γ1 is a
finite union of points and intervals with endpoints in Γ∪{±∞}. (In fact, Γ is a stably
embedded pure divisible ordered abelian group.)

• The residue field k is strongly minimal, hence stable and stably embedded. Moreover,
every definable subset of kn is coded by a tuple from k. (In fact, k is a stably embedded
pure algebraically closed field.)

The first two points are due to Robinson [63], and the third is due to Holly [30]. The last
three points are easy consequences of C-minimality1, and the last two can also be seen from
the quantifier elimination result in the three-sorted language discussed in [49] and [26].

6.1.3 Valued K-vector spaces
Let K be an arbitrary valued field. Following Section 2.5 of [32],

Definition 6.1.1. A valued K-vector space is a K-vector space V and a set Γ(V ) together
with the following structure:

• A total ordering on Γ(V )

• An action
+ : Γ(K)× Γ(V )→ Γ(V )

of Γ(K) = Γ on Γ(V ), strictly order-preserving in each variable (hence free)

• A surjective map val : V \ {0} → Γ(V ), such that

val(w + v) ≥ min(val(w), val(v))

val(α · v) = val(α) + val(v)

for w, v ∈ V and α ∈ K, with the usual convention that val(0) = +∞ > Γ(V ).

This is merely a variation on the notion of a normed vector space over a field with an
absolute value.

Remark 6.1.2. If dimK V is finite, then the action of Γ(K) on Γ(V ) has finitely many
orbits. In fact,

|Γ(V )/Γ(K)| ≤ dimK V.

1Modulo the fact that if T is a strongly minimal theory, in which acl(∅) is infinite and finite sets of tuples
are coded by tuples, then T eliminates imaginaries. This is Lemma 1.6 in [58].
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Proof. Let v1, . . . , vn be non-zero vectors with val(vn) in different orbits of Γ(K). We will
show that the vi are linearly independent. If not, let w1, . . . , wm be a minimal subset which
is linearly dependent. Then ∑i xiwi = 0 for some xi ∈ K×. But by assumption,

val(xiwi) = val(xi) + val(wi) 6= val(xj) + val(wj) = val(xjwj)

for any i 6= j. By the ultrametric inequality in V ,∑i xiwi cannot be zero, a contradiction.

For the rest of this section, we will assume that all valued K-vector spaces V have value
group Γ(V ) = Γ(K) = Γ, since the goal is Theorem 6.1.5.

If V and W are two such valued K vector spaces, we can form a “direct sum” V ⊕W by
setting

val(v, w) = min(val(v), val(w)).

For example, K⊕n is a valued K-vector space with underlying vector space Kn, with value
group Γ(K), and with valuation map given by

val(x1, . . . , xn) = min(val(x1), . . . , val(xn)).

If V andW are two subspaces of a valuedK-vector space, say that V andW are perpendicular
if V ∩W = ∅ and V +W is isomorphic to V ⊕W . In other words, V andW are perpendicular
if val(v + w) = min(val(v), val(w)) for every v ∈ V and w ∈ W .

Recall that a valued field K is spherically complete if every descending sequence of balls
in K has non-empty intersection. If V is a valued K-vector space, a ball in V is a set of the
form

{val(x− a) ≥ γ} or {val(x− a) > γ}

for a ∈ V and γ ∈ Γ(V ). We say that V is spherically complete if every descending sequence
of balls in V has a non-empty intersection.

Remark 6.1.3.

1. If V and W are spherically complete, so is V ⊕W , because the balls in V ⊕W are of
the form B1 ×B2, with B1 a ball in V and B2 a ball in W .

2. If V is a subspace of a valued K-vector space W , and a ∈ W , then the intersection of
any ball in W with a+ V is either empty or a ball.

3. If V is a spherically complete subspace of W and a ∈ W , and F is the family of closed
balls in W centered at the origin which intersect a + V , then F ∩ V is a nested chain
of balls in a + V , so it has a non-empty intersection. Equivalently, the following set
has a maximum:

{val(a+ v) : v ∈ V }.

That is, some element of a+ V is maximally close to 0.
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Lemma 6.1.4. Let W be a valued K-vector space. Let V be a subspace. Suppose that
a ∈ W \ V is maximally close to 0 among elements of a+ V . Then K · a is perpendicular to
V .

Proof. We need to show that

val(v + αa) = min(val(v), val(αa)) (6.1)

for v ∈ V and α ∈ K. Replacing v and α with α−1v and α−1α changes both sides of (6.1)
by the same amount, so we may assume that α = 0 or α = 1.

The α = 0 case is trivial. Suppose that α = 1; we want to show val(v + a) =
min(val(v), val(a)). If val(v) 6= val(a), then val(v + a) = min(val(v), val(a)) by the ul-
trametric inequality. In the case where val(v) = val(a), the ultrametric inequality only
implies

val(v + a) ≥ min(val(v), val(a)) = val(a). (6.2)

But val(v + a) ≤ val(a), by the assumption on a. So equality holds in (6.2).

Theorem 6.1.5. Suppose K is spherically complete, V is an n-dimensional K-vector space,
and Γ(K) = Γ(V ). Then V is isomorphic to K⊕n. In other words, there is a basis
{v1, . . . , vn} ⊆ V such that

val(x1v1 + · · ·+ xnvn) = min
1≤i≤n

val(xi) for every ~x ∈ Kn.

In [32], Hrushovski calls {v1, . . . , vn} a “separating basis.”

Proof. Proceed by induction on dimK V . The one-dimensional case is easy. Let V ′ be a
codimension 1 subspace. By induction, V ′ is isomorphic to K⊕(n−1), so V ′ is spherically
complete. Choose some a0 ∈ V \V ′ and let a be an element of a0 +V ′ maximally close to 0.
By Lemma 6.1.4, K ·a is perpendicular to V ′. Thus V ∼= V ′⊕K ∼= K⊕(n−1)⊕K = K⊕n.

6.1.4 Definable submodules of Kn

We now return to the setting of ACVF.
Recall that every model of ACVF is elementarily equivalent to a spherical complete one.2

Theorem 6.1.6. Let K be a model of ACVF. Let V be a definable K-vector space, with
dimK V < ∞. Let N ⊆ V be a definable O-submodule. Then N is isomorphic to Kn1 ×
On2 ×Mn3 for some n1, n2, n3 < n.

2This is well-known, and discussed in [49]. In the pure characteristic case, one can use fields of Hahn
series. In the mixed characteristic case, one can use metric ultrapowers of Cp.
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Proof. We are trying to prove a conjunction of first-order sentences, so we may replace K
with an elementarily equivalent model. Therefore, we may assume K is spherically complete.

Replacing V with the K-span of N , we may assume that V is the K-span of N . Similarly,
if W denotes the largest K-vector space contained in N , then by quotienting out W , we
may assume that N contains no nontrivial K-vector spaces. Now ⋃

α∈K× αN = V and⋂
α∈K× αN = 0.
For any nonzero v ∈ V , let

val(v) = sup{val(α) : v ∈ αN} = inf{val(α) : v /∈ αN}.

This is well-defined by o-minimality of Γ, and one easily checks that

val(βv) = val(β) + val(v). (6.3)

val(v) > 0 =⇒ v ∈ N (6.4)
val(v) < 0 =⇒ v /∈ N (6.5)

for all β ∈ K, v ∈ V . We claim that val : V → Γ makes V into a valued K-vector space.
Given (6.3), we merely need to check the ultrametric inequality

val(v + w) ≥ min(val(v), val(w)).

If this failed, then multiplying everything by an appropriate scalar, we would get

val(v + w) < 0 < min(val(v), val(w)).

But then v, w ∈ N and v + w /∈ N , contradicting the fact that N is a module.
So val : V → Γ makes V into a valued K-vector space. By Theorem 6.1.5, we can assume

that V is K⊕n. Then (6.4-6.5) mean the following for ~x ∈ Kn:

• If val(xi) > 0 for every i, then ~x ∈ N . In other words, Mn ⊆ N .

• If val(xi) < 0 for some i, then ~x /∈ N . In other words, N ⊆ On.

So N is sandwiched between On and Mn. But the possibilities for N then correspond to the
submodules of On/Mn, i.e., the k-subspaces of kn. These are easy to deal with.

Specifically, note that N/Mn is a k-subspace of On/Mn = kn. Let γ be an element
of GLn(k) sending N/Mn ⊆ kn to k` × 0n−` ⊆ kn for ` = dimkN/M

n. Then γ can be
lifted to some γ′ ∈ GLn(O), because O is a local ring. If N ′ = γ′(N), then N ′/Mn is
k`×0n−` = (O`×Mn−`)/Mn. So N ′ = O`×Mn−` ⊆ Kn. But N ′ and N are isomorphic.

Let Modn denote the set of definable submodules of Kn. The theorem implies that
the elements of Modn fall into finitely many definable families. Consequently, we get the
following

Corollary 6.1.7. The set Modn is interpretable.
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6.2 Generalities on Definable Types
Work in an arbitrary theory T , with monster model M. By “C-definable type,” we will
mean C-definable type over the monster, as opposed to some smaller model, unless stated
otherwise. By “definable type,” we mean a C-definable type for some C ⊆M.

In this section we review some well-known facts about definable types. We omit many
of the proofs, which are usually straightforward.

6.2.1 Operations on definable types
If p is a C-definable type and f is a C-definable function, there is a unique C-definable type
f∗p which is characterized by the following property:

a |= p|B =⇒ f(a) |= f∗p|B, for all small B ⊇ C and all a.

The choice of C does not matter—if p and f are C ′-definable for some other set C ′, then the
resulting f∗p is the same. The type f∗p is called the pushforward of p along f .

If p and q are two C-definable types, there is a unique C-definable type p ⊗ q which is
characterized by the following property:

(a, b) |= p⊗ q|B ⇐⇒ (a |= p|Bb) ∧ (b |= q|B), for all small B ⊇ C and all a, b.

Again, p(x)⊗q(y) does not depend on the choice of C. The product operation is associative:

(p(x)⊗ q(y))⊗ r(z) = p(x)⊗ (q(y)⊗ r(z)),

but commutativity
p(x)⊗ q(y) ?= q(y)⊗ p(x)

can fail.

Remark 6.2.1. If f, g are definable functions and p, q are definable types, then f∗p⊗ g∗q =
(f × g)∗(p⊗ q), where f × g sends (x, y) to (f(x), g(y)).

6.2.2 Generically stable types
Now assume that T is NIP. (This includes the case of ACVF.)

Definition 6.2.2. A definable type p(x) is generically stable if p(x)⊗ q(y) = q(y)⊗p(x) for
every definable type q(y).

For other equivalent definitions of generic stability, see Section 3 of [36].

Definition 6.2.3. Let f be a C-definable function and p be a C-definable type. Abusing
terminology significantly, say that p is dominated along f if

f(a) |= f∗p|B =⇒ a |= p|B for all small B ⊇ C and all a.
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Note that the converse implication holds by definition of f∗p. Unlike the previous defini-
tions, this does depend on the choice of C. In the cases we care about, C will be ∅.

Remark 6.2.4. Suppose p is dominated along f , and q is some other definable type. If B
is a set over which everything is defined and over which the domination works, then

(f(a), b) |= f∗p⊗ q|B =⇒ (a, b) |= p⊗ q|B (6.6)

We will use the following basic facts about generically stable types:

Theorem 6.2.5.

(a) Products of generically stable types are generically stable.

(b) Pushforwards of generically stable types are generically stable.

(c) If p is dominated along f and f∗p is generically stable, then p is generically stable.

(d) If p and q are generically stable, dominated along f and g, respectively, then p ⊗ q is
dominated along f × g.

(e) To check generic stability, it suffices to show that p commutes with itself, i.e., p(x1) ⊗
p(x2) = p(x2)⊗ p(x1).

Proof.

(a) If p and q are generically stable, and r is arbitrary, then p⊗q⊗r = p⊗r⊗q = r⊗p⊗q.

(b) Suppose p is generically stable, f is a definable function, and q is arbitrary. Then
p(x) ⊗ q(y) = q(y) ⊗ p(x). Pushing both sides forwards along (f × id) and applying
Remark 6.2.1, we get that f∗p(x′)⊗ q(y) = q(y)⊗ f∗p(x′).

(c) Let q be another invariant type; we will show that p(x) ⊗ q(y) = q(y) ⊗ p(x). Let B
be a set over which p, q, f are defined. Let (b, a) realize q ⊗ p|B. By Remark 6.2.1,
(b, f(a)) |= q ⊗ f∗p|B. Since f∗p is generically stable, (f(a), b) |= f∗p⊗ q|B. By (6.6),
(a, b) |= p⊗ q|B. So p⊗ q and q ⊗ p agree when restricted to the arbitrary set B.

(d) Let B be a sufficiently big set. Suppose that (f(a), g(b)) |= f∗p ⊗ g∗q|B. We need to
show that (a, b) |= p ⊗ q|B. By (6.6), (a, g(b)) |= p ⊗ g∗q|B. By generic stability of
p, (g(b), a) |= g∗q ⊗ p|B. By (6.6) again, (b, a) |= q ⊗ p|B. By generic stability again,
(a, b) |= p⊗ q|B.

(e) Suppose p(x) commutes with itself, but p(x)⊗ q(y) 6= q(y)⊗p(x). Choose some formula
φ(x; y; c) which is in p(x)⊗q(y) and not in q(y)⊗p(x). We will prove that φ(x; y, z) has
the independence property. Let n be arbitrary. Let a1, . . . , an, b, an+1, . . . , a2n realize
p⊗n ⊗ q ⊗ p⊗n restricted to c. Then |= φ(ai; b; c) ⇐⇒ i ≤ n, by choice of φ(x; y; c).
The fact that p commutes with itself implies that all permutations of (a1, . . . , a2n) have
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the same type over c. Therefore, for each permutation π of {1, . . . , 2n}, we can find a
bπ such that φ(ai; bπ; c) holds iff π(i) ≤ n. It follows that for any S ⊆ {1, . . . , n}, we
can find a bS such that φ(ai; bS; c) holds if and only if i ∈ S. As n was arbitrary, T has
the independence property, a contradiction.

6.2.3 Definable types in ACVF
Now work in ACVF. Recall that ACVF is NIP. We will make use of several definable types:

• If B is an open or closed ball in the home sort, then there is a complete type pB(x)
over M which says that x ∈ B and x is not in any strictly smaller balls. This type
is called the generic type of B. Completeness follows from C-minimality. This type
is definable, essentially because if B′ is any other ball, then the formula x ∈ B′ is in
pB(x) if and only if B′ ⊇ B. If C is any set of parameters over which B is defined,
then pB|C says precisely that x is in B, and x is not in any acleq(C)-definable proper
subball of B.

• There is also a type pk(x) which says that x is in the residue field, and is not algebraic
over M. This is called the generic type of the residue field, and is definable because k
is strongly minimal. If C is any set of parameters, pk|C says precisely that x ∈ k and
x /∈ acleq(C).

• The valuation ring O is a closed ball, so it has a generic type pO. Over any set of
parameters C, pO(x) says that x ∈ O, and that x is not in any acleq(C)-definable
proper subballs of O. Every proper subball of O is contained in a unique one of the
form res−1(α), for α ∈ k. Consequently, pO|C equivalently says that x ∈ O and that
x /∈ res−1(α) for any α ∈ acleq(C). Equivalently,

x |= pO|C ⇐⇒ res(x) |= pk|C

Therefore, pO is dominated along res, and res∗ pO = pk.

The type pk is generically stable. To see this, use (e) of Theorem 6.2.5 and stability of k.
Since pk is generically stable, so is pO, by Theorem 6.2.5(c). If B is any closed ball,

then there is an affine transformation f(x) = ax + b sending O to B, and pB = f∗pO. By
Theorem 6.2.5(b), each pB is generically stable.

Let pOn be p⊗nO . We think of pOn as the generic type of the lattice On. By The-
orem 6.2.5, pOn is generically stable, and is dominated along the map (x1, . . . , xn) 7→
(res(x1), . . . , res(xn)). Also, the pushforward along this map is p⊗nk , the generic type of
kn.

The generic type of kn is stabilized by the action of GLn(k), so by domination, the generic
type of On is stabilized by GLn(O). In light of this, the following definition does not depend
on the choice of g:
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Definition 6.2.6. Let Λ be a lattice in Kn. The generic type pΛ of Λ is g∗pOn, where
g : Kn → Kn is a linear map sending On to Λ.

Moreover, pΛ is pΛq-definable. Note that pΛ is a generically stable type, because it is a
pushforward of a generically stable type.

6.2.4 Left transitivity
Now return to an arbitrary theory T . Work in T eq, so that acl and dcl mean acleq and dcleq.

Lemma 6.2.7. Suppose C ⊆ B are small sets and a1, a2 are tuples (possibly infinite, but
small). If tp(a1/B) is C-definable and tp(a2/Ba1) is Ca1-definable, then tp(a2a1/B) is
C-definable.

Proof. Naming the parameters from C, we may assume C = ∅. Let φ(x2, x1; y) be a formula;
we must produce a φ-definition (over ∅) for tp(a2a1/B). Since tp(a2/Ba1) is a1-definable,
the φ(x2;x1, y)-type of a2 over Ba1 has a definition ψ(x1, y, a1). In particular, for every tuple
b from B,

|= φ(a2, a1, b)↔ ψ(a1, b, a1).
Meanwhile, since tp(a1/B) is 0-definable, there is a formula χ(y) such that for every b in B,

|= ψ(a1, b, a1)↔ χ(b).

Thus, for every b in B,
|= φ(a2, a1, b)↔ χ(b),

so χ(y) is the φ(x2, x1; y)-definition of tp(a2a1/B).

Lemma-Definition 6.2.8. The following are equivalent for A,B,C small sets of parame-
ters.

1. The ∗-type tp(A/BC) has a global C-definable extension.

2. For every small set of parameters D, there is a C-definable extension of tp(A/BC) to
a ∗-type over BCD.

3. For every small set of parameters D, there is D′ ≡BC D such that tp(A/BCD′) is
C-definable.

4. For some small model M ⊇ BC, tp(A/M) is C-definable.

We denote these equivalent conditions by A |̂ def
C
B.

Proof. (1 =⇒ 2) The restriction of a global C-definable type to BCD is C-definable.

(2 =⇒ 3) GivenD, (2) implies that there is A′ ≡BC A such that tp(A′/BCD) is C-definable.
Choose D′ such that A′D ≡BC AD′. Then tp(A/BCD′) is C-definable and D′ ≡BC D.
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(3 =⇒ 4) Applying (3) to D a small model containing BC, we get a small model D′ con-
taining BC such that tp(A/BCD′) = tp(A/D′) is C-definable.

(4 =⇒ 1) C-definable types over models have unique C-definable extensions to elementary
extensions. This is true even for ∗-types.

Lemma 6.2.9. If a1 |̂
def
C
B and a2 |̂

def
Ca1

B then a2a1 |̂
def
C
B, so |̂ def satisfies left-transitivity.

Proof. We use condition (3) of Lemma-Definition 6.2.8. Let D be a small set of parameters.
Since a1 |̂

def
C
B, there is D′ ≡BC D such that tp(a1/BCD

′) is C-definable. As a2 |̂
def
Ca1

B
there is D′′ ≡Ca1B D

′ such that tp(a2/BCa1D
′′) is Ca1-definable. Note that tp(a1/BCD

′′) is
C-definable. By Lemma 6.2.7, it follows that tp(a2a1/BCD

′′) is C-definable. Since D′′ ≡BC
D′ ≡BC D, we have verified a2a1 |̂

def
C
B using condition (3).

Definition 6.2.10. If A,B,C are small sets of parameters, we will write A |̂ adef
C

B to mean
A |̂ def

acl(C) B. (Recall that acl(C) means acleq(C).)

In other words, a |̂ adef
C

B if tp(a/BC) can be extended to a type which is almost C-
definable, that is, acl(C)-definable. In a stable theory, |̂ adef is exactly nonforking indepen-
dence.

Lemma 6.2.11. If A |̂ adef
C

B, then acl(AC) |̂ adef
C

B.

Proof. Replacing C with acl(C), we may assume that C = acl(C). By condition (4) of
Lemma-Definition 6.2.8, there is a small model M containing BC such that tp(A/M) is
C-definable. We need to show that tp(acl(AC)/M) is C-definable. This is equivalent to
showing that for each acl(AC)-definable set X, there is some C-definable set X ′ such that
X ∩M = X ′ ∩M .

Given such an X, let X1, . . . , Xn be the conjugates of X over AC. Let E be the equiva-
lence relation

xEy ↔
n∧
i=1

(x ∈ Xi ↔ y ∈ Xi)

Then E is AC-definable. Since tp(AC/M) is C-definable, the restriction E ′ = E ∩M of E
to M is C-definable. Since E has finitely many equivalence classes, so does E ′, and hence
each equivalence class of E ′ is C-definable, as acl(C) = C. But X ∩M is a union of finitely
many E ′-equivalence classes, so X ∩M is C-definable.

Lemma 6.2.12. If a1 |̂
adef
C

B and a2 |̂
adef
Ca1

B, then a2a1 |̂
adef
C

B, so |̂ adef satisfies left-
transitivity.

Proof. By Lemma 6.2.11, we know that acl(a1C) |̂ defacl(C) B. We are given a2 |̂
def
acl(Ca1) B.

Combining these using Lemma 6.2.9, we conclude that a2 acl(Ca1) |̂ defacl(C) B. This easily
implies a2a1 |̂

def
acl(C) B, as desired.
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6.3 An Abstract Criterion for Elimination of
Imaginaries

We state a sufficient condition for a theory T to have elimination of imaginaries, extracted
from [32].

Theorem 6.3.1. Let T be a theory, with home sort K (meaning Meq = dcleq(K)). Let G
be some collection of sorts. If the following conditions all hold, then T has elimination of
imaginaries in the sorts G.

• For every non-empty definable set X ⊆ K1, there is an acleq(pXq)-definable type in
X.

• Every definable type in Kn has a code in G (possibly infinite). That is, if p is any
(global) definable type in Kn, then the set ppq of codes of the definitions of p is inter-
definable with some (possibly infinite) tuple from G.

• Every finite set of finite tuples from G has a code in G. That is, if S is a finite set of
finite tuples from G, then pSq is interdefinable with a tuple from G.

Proof. Assume the three conditions.
Claim 6.3.2. For every non-empty definable set X ⊆ Kn, there is an acleq(pXq)-definable
type in X.

Proof. We proceed by induction on n, the base case n = 1 being given. Suppose n > 1.
Take X ⊆ Kn. Let C = pXq. Let π : Kn � Kn−1 be the projection onto the first n − 1
coordinates. Then π(X) is C-definable, so by induction, there is an acleq(C)-definable type
in π(X). Let a1 realize this type. Then a1 |̂

adef
C

C.
Let Y = {y ∈ K1|(a1, y) ∈ X}, so Y is essentially X ∩ π−1(a1). Then Y is Ca1-definable

and non-empty. By assumption, there is an acleq(Ca1)-definable type in Y . Let a2 realize
this type; then a2 ∈ Y and a2 |̂

adef
Ca1

C. Since a1 |̂
adef
C

C, it follows that a1a2 |̂
adef
C

C by
Lemma 6.2.12. By definition of |̂ adef, there is an acleq(C)-definable type p(x1, x2) such that
a1a2 |= p| acleq(C). As a2 ∈ Y , the tuple a1a2 is in X, so p is an acleq(C)-definable type in
X.

Let e be any imaginary. Then there is some n and some 0-definable equivalence relation
E on Kn such that e is a code for some E-equivalence class X. By the claim, there is an
acleq(e)-definable type p in X. Then e ∈ dcleq(ppq), because X is the unique E-equivalence
class in which the type ppq lives. By the second assumption, there is some small tuple t0 ⊆ G
such that ppq is interdefinable with t0. Thus e ∈ dcleq(t0) and t0 ∈ acleq(e). By compactness,
we can find some finite tuple t from G such that e ∈ dcleq(t) and t ∈ acleq(e). Write e as f(t)
for some 0-definable function f . Let S be the (finite) set of conjugates of t over e. Then S
is e-definable. Moreover, f(t′) = e for any t′ ∈ S, so e is pSq-definable. Hence e and pSq
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are interdefinable. By the third hypothesis, pSq has a code in G. So e has a code in G. As
e was arbitrary, T has elimination of imaginaries down to the sorts in G.

The conditions in the theorem are sufficient but not necessary for elimination of imagi-
naries to hold. Namely, the first condition has nothing to do with G, and happens to fail in
Qp, even if G is chosen to be all of Qeq

p .

6.3.1 Examples
We sketch how to use Theorem 6.3.1 to verify elimination of imaginaries in ACF and DCF0 in
the home sort K (so G is merely {K}). The first condition follows from stability: if X is any
non-empty definable set, then the formula x ∈ X does not fork over pXq. If p is a global type
which does not fork over pXq and contains this formula, then p is an acleq(pXq)-definable
type in X.

For the second condition, one must check that every type has a code (possibly infinite)
in the home sort. If p is a type in Kn, then there is a minimal Zariski-closed or Kolchin-
closed set V containing p, and p and V have the same code. The second condition thus
reduces to coding Zariski-closed sets or Kolchin-closed sets, respectively. So does the third
condition, since any finite subset of Kn is Zariski-closed and Kolchin-closed. Now, to code
a Zariski-closed or Kolchin-closed set V , we merely need to code the ideal I of polynomials
or differential polynomials which vanish on V . In the ACF case, this reduces to coding, for
each d < ω, the intersection of I with the space of degree ≤ d polynomials in K[X1, . . . , Xn].
Something similar happens in DCF. So the problem reduces to coding linear subspaces of
Km for various m.

But this is doable, by the following basic and general fact:

Lemma 6.3.3. Let K be any field. Let V be a subspace of Kn. Then V can be coded by a
tuple in K, and V and Kn/V have pV q-definable bases.

Proof. Let m = dimV . By linear algebra, there is some coordinate projection π : Kn → Km

such that the restriction of π to V is an isomorphism V → Km. Then the preimage of the
standard basis under this isomorphism is an pV q-definable basis for V . This basis is a code
for V . Meanwhile, if we push the standard basis of Kn forward to Kn/V , then some subset
of this will be a basis for Kn/V , and will be definable over the parameters (such as pV q)
that were used to define the set Kn/V .

For the case of ACVF, the coding of definable types will be done similarly. But in
addition to coding subspaces of Kn, we will also need to code definable ways of turning Kn

into a valued K-vector space. The third condition of Theorem 6.3.1 will be verified using
the coding of definable types.
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6.4 Elimination of imaginaries in ACVF
In this section, we prove that ACVF has elimination of imaginaries in the sorts K, Rn,`, by
applying Theorem 6.3.1. Recall that we are referring to these as the geometric sorts. We
say that an object has a geometric code if it has a code in these sorts.

6.4.1 Coding modules
Recall that Rn,` is the set of pairs (Λ, V ) where Λ is a lattice in Kn and V is an `-dimensional
subspace of res Λ := Λ⊗O k = Λ/MΛ.

For fixed Λ, the poset of k-subspaces of res Λ is isomorphic to the poset of O-submodules
betweenMΛ and Λ. Moreover, `-dimensional subspaces correspond exactly toO-submodules
isomorphic to O` ×Mn−`. So we could equivalently define Rn,` to be the set of all O-
submodules of Kn isomorphic to O` ×Mn−`. Under this identification,

n⋃
`=0

Rn,`

is the space of all open bounded definable O-submodules of Kn, by Theorem 6.1.6.
In section 6.1.4, we saw that Modn, the set of all definable submodules of Kn, is inter-

pretable. We now show that Modn can be embedded into the geometric sorts.

Lemma 6.4.1. If M ≤ Kn is a definable submodule of Kn, then M has a geometric code.

Proof. Let V + be the K-span of N , and let V − be the maximal K-subspace of Kn contained
in N . By Lemma 6.3.3, the subspaces V + and V − can be coded by a tuple c from K,
and the quotient V +/V − has a c-definable identification with Km, for some m. Then N
is interdefinable over c with the image of N/V − in Km. But this image will be an open
bounded definable submodule, so it is an element of Rm,` for some `.

6.4.2 Coding definable types
A definable type in Kn induces an ideal I in K[X1, . . . , Xn] together with the structure of a
valued K-vector space on the quotient K[ ~X]/I. By quantifier elimination in the one-sorted
language, these data completely determine the type. So the problem of finding codes for
definable types reduces to the (easy) problem of coding subspaces, and the problem of coding
valued vector space structures on K-vector spaces.3

At the risk of being abstruse. . .

Definition 6.4.2. Let V be a K-vector space. A vvs structure on V is a binary relation
R on V such that there is a valued K-vector space structure (V,Γ(V ), . . .) on V for which
xRy ⇐⇒ val(x) ≤ val(y).

3We will be more explicit in the proof of Theorem 6.4.5 below.
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The vvs structures on V are essentially the distinct ways of turning V into a valued
K-vector space. Two valued K-vector spaces W and W ′ with the same underlying vector
space V yield the same vvs structure on V iff they are isomorphic over V .

If V is a definableK-vector space, it makes sense to say that a vvs structure R is definable,
meaning that R is a definable subset of V × V . If R is definable, then Γ(V ) is interpretable
and the map val : V → Γ(V ) and the action of Γ(K) on Γ(V ) are all definable.

Theorem 6.4.3. Let τ be (the code for) a definable vvs structure on Km. Then τ is inter-
definable with an element of the geometric sorts.

Proof. Let V be the associated valued K-vector space. So Km is the underlying vector space
of V and τ is a code for the relation val(x) ≤ val(y). The set Γ(V ) is τ -interpretable, as
Km \ 0 modulo the equivalence relation val(x) ≤ val(y) ∧ val(y) ≤ val(x).

By Remark 6.1.2, Γ(V ) consists of finitely many orbits under Γ(K).
If there was only one orbit, and if there was a canonical identification of Γ(V ) with

Γ(K), we could proceed as follows: let B be the closed ball around 0 with valuative radius
0. The other closed balls around 0 are all of the form αB, for α ∈ K. The set B is a
definable O-submodule of Km, so it has a geometric code. It determines τ , however, because
val(x) ≤ val(y) if and only if every closed ball containing 0 and x contains y. So τ and pBq
would be interdefinable.

In general we have several orbits. The first order of business is finding a τ -definable
element in each one:
Claim 6.4.4. Each orbit of Γ(K) on Γ(V ) contains a τ -definable element.

Proof. For x, y ∈ Γ(V ), let x� y indicate that Γ+x > Γ+y. Let x ∼ y indicate that x 6� y
and y 6� x. This is an equivalence relation. Each orbit of Γ(K) is in one ∼-equivalence class,
so there are finitely many ∼-equivalence classes. Each ∼-equivalence class is convex. Let
C1 > C2 > . . . > C` be the distinct ∼-equivalence classes sorted in order from most positive
to most negative.

For 0 ≤ i ≤ `, let Vi be the set of v ∈ V such that val(v) ∈ Cj for some j ≤ i. Each Vi is
a K-vector space, yielding an ascending filtration

0 = V0 ⊆ V1 ⊆ · · · ⊆ V` = V.

On Vi \ Vi−1, the function val lands in Ci and factors through the quotient Vi/Vi−1, by the
ultrametric inequality.

The equivalence relation∼ is τ -definable. Since there are finitely many equivalence classes
and they are totally ordered, each Ci is τ -definable. Consequently, each Vi is τ -definable.
By Lemma 6.3.3, each quotient space Vi/Vi−1 has a τ -definable basis. In particular, there is
a τ -definable non-zero vector in Vi/Vi−1. Taking its valuation, we get a τ -definable element
of Ci. We have shown:

Each Ci contains a τ -definable element. (6.7)
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Next, for x, y ∈ Γ(V ) let x ≈ y indicate that x+ γ > y > x− γ for all positive γ ∈ Γ(K).
This is again a τ -definable equivalence relation. If x and y are in the same orbit, but are not
equal, then x 6≈ y. Consequently, each ≈-equivalence class contains at most one point from
each orbit, so each ≈-equivalence class is finite. This implies that if x ≈ y, then x and y are
interalgebraic over τ . In light of the total ordering, they are actually interdefinable over τ .

Let x be an arbitrary element of Γ(V ). We will show that the orbit Γ(K) + x contains a
τ -definable element. By (6.7), x ∼ y for some τ -definable element y. The set

{γ ∈ Γ : γ + x ≤ y}

is non-empty, because x 6� y, and it is bounded above, because y 6� x. It is also definable,
so it has a supremum γ0, by o-minimality of Γ(K). Then γ0 + x ≈ y. The element γ0 + x is
interdefinable over τ with the τ -definable element y, so it is itself τ -definable.

Given the claim, let γ1, . . . , γn be a set of τ -definable orbit representatives. Let Bi = {v ∈
Km : val(v) ≥ γi}. Each Bi is a τ -definable O-submodule of Km, i.e., an element of Modm.
The closed balls of V containing 0 are exactly the sets of the form αBi for 1 ≤ i ≤ n and
α ∈ K. The family of closed balls containing 0 is enough to determine the vvs structure, so τ
is interdefinable with the tuple (B1, . . . , Bn). But by Lemma 6.4.1, each Bi has a geometric
code.

Theorem 6.4.5. Let p(x) be a definable type in Kn. Then p(x) has a code in the geometric
sorts.

Proof. For each d, let Vd be the space of polynomials in K[X1, . . . , Xn] of degree ≤ d. This
is a finite dimensional definable K-vector space with a 0-definable basis. Let Id be the
set of Q(X) ∈ Vd such that the formula Q(x) = 0 is in p(x). Let Rd be the set of pairs
(Q1(X), Q2(X)) in Vd × Vd such that the formula val(Q1(x)) ≤ val(Q2(x)) is in p(x). Then
Id is a subspace of Vd, and Rd induces a definable vvs structure on the quotient space Vd/Id.
Quantifier elimination in the one-sorted language implies that p is completely determined by
the collection of all Id’s and Rd’s for d < ω. By Lemma 6.3.3, we can find codes pIdq in the
home sort for the Id’s. After naming these codes, each quotient space Vd/Id has a definable
basis, and can be definably identified with some power of K. Then each Rd is interdefinable
with a definable vvs structure on a power of K. By Theorem 6.4.3, these vvs structures have
codes cd in the geometric sorts. Now the union of all the pIdq’s and cd’s is a code for p.

6.4.3 Coding finite sets
In this section, we show that finite sets of tuples from the geometric sorts can be coded in
the geometric sorts. We make use of the existence of geometric codes for definable types.
For a more elementary but more complicated approach, see Proposition 3.4.1 in [26].

Definition 6.4.6. If X is some set, SymnX will denote the n-fold symmetric product of X,
that is, Xn modulo the action of the nth symmetric group. The natural map Xn → SymnX
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will be denoted σ, so that
σ(x1, . . . , xn) = σ(y1, . . . , yn)

if and only if there is a permutation π of n such that xi = yπ(i) for i = 1, . . . , n.

Definition 6.4.7. A 0-definable map π : X → Y has definable lifting if for every b ∈ Y
there is a b-definable type pb in π−1(b). (In particular, π must be surjective.) Say that π has
generically stable lifting if it has definable lifting and pb can be taken to be generically stable.

In both cases, we can easily modify the map b 7→ pb to be automorphism equivariant, so
that if σ ∈ Aut(M/∅), then pσ(b) = σ(pb) for every b. Conversely, if there is an automorphism
equivariant map b 7→ pb from elements of Y to definable (resp. generically stable) types in
X, such that pb is in π−1(b), then π has definable (resp. generically stable) lifting—the
automorphism invariance ensures that pb is b-definable.

If π : X → Y has definable lifting, and q is a C-definable type in Y for some parameters
C, then q = π∗p for some C-definable type p in X. Indeed, if M is a model containing C,
and b realizes q|M , and a ∈ π−1(b) realizes pb|Mb, then a |̂ def

Cb
M and b |̂ def

C
M , so a |̂ def

C
M

by left-transitivity of |̂ def. Thus a |= p|M for some C-definable type p. By definition of
pushforward, π(a) = b realizes π∗p|M . Then the C-definable types π∗p and q have the same
restriction to a model containing C, so they are equal.

From this, we draw the following conclusion:

Observation 6.4.8. If π : X → Y has definable lifting, and definable types in X have codes
in the geometric sorts, then so do definable types in Y .

Indeed, let q be a definable type in Y . Then q is pqq-definable, so q = π∗p for some
pqq-definable type p. But then p and q are interdefinable, and p has a geometric code.

For example, the residue map res : O → k has definable lifting: to each residue α ∈ k
we associate the generic type of the open ball res−1(α). Since O ⊆ K, definable types in
O have geometric codes, so the same goes for definable types in k. This is not particularly
interesting, since we already could easily see this from the fact that k is a stable stably
embedded pure algebraically closed field.

But note the following

Observation 6.4.9. If π : X → Y and π′ : X ′ → Y ′ both have definable lifting, then so
does the product map π× π′ : X ×X ′ → Y × Y ′. Indeed, if f and f ′ are the automorphism-
equivariant maps witnessing definable lifting, then (b, b′) 7→ f(b)⊗ f ′(b′) witnesses definable
lifting for the product map π × π′.

Applying this to the map O → k, we see that On → kn has definable lifting. Meanwhile,
the identity map K → K has definable lifting (send each element to the associated constant
type). So ultimately, we get a map Kn × Om → Kn × km with definable lifting, for every
m,n. Since definable types in Kn ×Om have geometric codes,

Definable types in Kn × km have geometric codes (6.8)
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For generically stable lifting, the analogue of Observation 6.4.9 still holds, as does the
following variant:

Observation 6.4.10. If π : X → Y has generically stable lifting, then so does Symn π :
SymnX → Symn Y .

Indeed, suppose that b 7→ pb is the automorphism equivariant map from elements of Y
to generically stable types in X. Then

σ(b1, . . . , bn) 7→ σ∗(pb1 ⊗ · · · ⊗ pbn)

is a well-defined automorphism-equivariant map from elements of Symn Y to generically
stable types in SymnX, witnessing generically stable lifting for Symn π. This is all an easy
exercise; generic stability ensures that

σ∗(pb1 ⊗ · · · ⊗ pbn) = σ∗(pbπ(1) ⊗ · · · ⊗ pbπ(n))

for any b1, . . . , bn and any permutation π of {1, . . . , n}.
The residue map O → k does not have generically stable lifting. We will use the following

two maps which do have generically stable lifting:

• Let B denote the set of non-trivial closed balls. Let B̃ denote the set of (x, y) ∈ K2

such that x 6= y. Consider the map

β : B̃ → B

sending (x, y) to the smallest ball containing x and y. Then this map has generically
stable lifting. Indeed, if B is a closed ball, with generic type pB, then β(x, y) = B for
any (x, y) |= p⊗2

B , where pB is the generic type of B.

• Let R̃n,` be the set of triples (~b,Λ, V ), where Λ is a lattice in Kn, ~b is a lattice basis,
and V is an `-dimensional k-subspace of res Λ := Λ/MΛ. Then the canonical map

R̃n,` → Rn,`

(~b,Λ, V ) 7→ (Λ, V )

has generically stable lifting. Indeed, given Λ, any realization of p⊗nΛ will be a basis of
Λ, where pΛ is the generic type of Λ.

Lemma 6.4.11. Let S be a finite C-definable subset of K. Then there is a tuple α from a
power of K, such that α |̂ def

C
C and there is an αpSq-definable injection from S to a power

of k.
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Proof. Let T ⊆ B be the set of all β(x, y) for x, y ∈ S, and n = |T |. Then

pTq ∈ Symn B

is C-definable. We can therefore find a C-definable type lying above this in Symn B̃. Let

α ∈ Symn B̃ ⊆ Symn(K2)

realize this type. Then α is a code for a subset T ′ of K2. By elimination of imaginaries in
ACF, we can identify α with a tuple from K. Since α was a realization of a C-definable
type, α |̂ def

C
C.

It remains to produce an αpSq-definable injection from S to a power of k. It suffices to
show that distinct elements of S have distinct types over {α, pSq} ∪ k, because definable
subsets of powers of k all have codes in k.4 Since k is stably embedded5, it suffices to consider
an automorphism σ of the monster, fixing α and k pointwise and S setwise, and show that
σ fixes S pointwise.

First note that if B ∈ T is not fixed by σ, then B and σ(B) are disjoint. The alternative
is that B ( σ(B) or B ) σ(B), but neither of these is possible since some power of σ acts
trivially on T , as T is finite. Now suppose that z ∈ S is not fixed by σ. Let B = β(z, σ(z)).
Then σ(B) and B both contain σ(z), so B = σ(B). Let (x, y) be the unique element of T ′
such that B = β(x, y). As σ fixes α = pT ′q and B, it fixes x and y. The set resB of open
subballs of B of the same radius as B has the structure of an affine line over k. After naming
the two elements resx and res y, it is in definable bijection with k. Therefore σ fixes resB
pointwise. In particular, res z = resσ(z). But this means that β(z, σ(z)) is strictly smaller
than B, a contradiction.

Lemma 6.4.12. Definable types in Symn(Km × k`) have geometric codes.

Proof. Let p be a definable type in Symn(Km × k`). Let M be a model over which p is
defined, and let β |= p|M . Then β = σ(a1b1, . . . , anbn) for some ai ∈ Km and bi ∈ k`. Let
S ⊆ K be the finite set of all elements of K occurring among the coordinates of the ai.
Thus S is β-definable, hence βM -definable. By the previous lemma, there is some tuple α
of elements of K such that

α
def
|̂

βppq
M

and an αpSq-definable injection f from S to a power k`′ of k. For each i, let f(ai) ∈ k`
′m

be the result of applying f coordinatewise to ai. Now β is interdefinable over α with

(σ(a1, . . . , an), σ(f(a1)b1, . . . , f(an)bn)) ∈ Symn(Km)× Symn(k`′m+`).
4This is because k is a stably embedded pure algebraically closed field.
5See the Appendix to [7].
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Indeed, this element is certainly definable from α and β. Conversely, the first coordinate
determines S, and S and α determine f−1, which we can apply to the second coordinate to
recover β.

By elimination of imaginaries in ACF, Symn(Km) and Symn(k`′m+`) can be 0-definably
embedded in powers of K and k, respectively. Putting everything together, we see that αβ
is interdefinable over ∅ with αγδ, where αγ is a tuple from K and δ is a tuple from k.

Now β |̂ defppqM and α |̂ def
βppqM , so by left-transitivity of |̂ def, αβ |̂ defppqM . It follows that

tp(αβ/M) is a definable type having the same code as tp(β/M) = p. Then, since αβ is
interdefinable with αγδ, it follows that tp(αγδ/M) is a definable type having the same code
as p. But as we noted above (6.8), definable types in products of K and k have geometric
codes.

Theorem 6.4.13. Let G be any geometric sort. Then elements of SymnG have geometric
codes.

Proof. We claim that there is some map G′ → G with generically stable lifting, such that
G′ embeds (0-definably) into a product Km × k`. Assuming this is true, we get a map

Symn(G′)→ Symn(G)

with generically stable (hence definable) lifting, and Symn(G′) embeds into Symn(Km× k`).
The previous Lemma ensures that definable types in Symn(G′) have geometric codes, so by
definable lifting, definable types in Symn(G) have geometric codes. In particular, looking at
constant types in Symn(G), we see that elements of Symn(G) have geometric codes.

It remains to find G′ → G. The property of generically stable lifting is closed under
taking products, and G is a product of K’s and Rn,`’s, so it suffices to consider the case
G = K or G = Rn,`. For G = K, we take the identity map G′ = K → K = G. For Rn,`, we
take the map

R̃n,` → Rn,`

discussed above. It remains to embed R̃n,` into a product of K’s and k’s. Let Grn,` denote
the set of `-dimensional k-subspaces of kn. Then there is a 0-definable map

R̃n,` → Kn2 ×Grn,`

(~b,Λ, V ) 7→ (~b,W ),

where W is the image of V under the identification of res Λ with kn induced by the basis ~b.
This map is an injection, and Grn,` can be embedded in a power of k by algebraic geometry,
or elimination of imaginaries in ACF.

6.4.4 Putting everything together
Theorem 6.4.14. ACVF has elimination of imaginaries in the geometric sorts, i.e., in K
and the Rn,`.
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Proof. This follows by Theorem 6.3.1. The second condition is Theorem 6.4.5. The third
condition is Theorem 6.4.13. The first condition of Theorem 6.3.1 can be verified as follows:
Let D be a one-dimensional definable set. Then D can be written as a disjoint union of
acleq(pDq)-definable “swiss cheeses.” If B \ (B1∪ · · · ∪Bn) is one of these swiss cheeses, then
the generic type pB of B is in B\(B1∪· · ·∪Bn), hence in D. Since B is acleq(pDq)-definable,
so is pB.

6.5 Reduction to the standard geometric sorts
Haskell, Hrushovski, and Macpherson showed that ACVF has elimination of imaginaries in
the sorts K,Sn, Tn. To deduce this result from Theorem 6.4.14, we need to code the Rm,`

sorts into the Sn and Tn. This is done in 2.6.4 of [26], but for the sake of completeness, we
quickly recall the arguments here. Recall that Sn is the set of lattices in Kn, and Tn is the
union of res Λ as Λ ranges over Sn.

First of all, we can easily code the Rm,` in terms of Rn,0(= Sn) and Rn,1 (which is roughly
a projectivized version of Tn). Indeed, if Λ is a lattice in Kn, and V is an `-dimensional
subspace in res(V ), then V can be coded by a one-dimensional subspace (namely ∧` V ) in

∧̀
res(Λ) = res(

∧̀
Λ),

and ∧` Λ is a lattice in ∧`Kn. So to code an element of Rn,`, we can use the underlying
lattice in Rn,0, and then an element in RN,1, where N = dim∧`Kn.

Now to code an element of Rn,1 in terms of the Sn and Tn, we proceed by induction. Let
Λ be a lattice in Kn. Let π be the projection onto the first coordinate. Then π(Λ) is free6,
so we have a split exact sequence

0→ Λ′ → Λ→ π(Λ)→ 0

where Λ′ is a lattice in Kn−1. Since this sequence is split exact, it remains split exact after
tensoring with k. So

0→ res(Λ′)→ res(Λ)→ res(π(Λ))→ 0
is exact. Let V be a one dimensional subspace of res(Λ). If V sits inside res(Λ′), then V
is interdefinable with a one-dimensional subspace of res(Λ′), so can be coded in the true
geometric sorts by induction.

Otherwise, V maps isomorphically onto the one-dimensional k-space res(π(Λ)). Then to
code V , it suffices to code the inverse map res(π(Λ)) → V ↪→ res(Λ). But because all the
O-modules in sight are free,

Homk(res(π(Λ)), res(Λ)) = Homk(π(Λ)⊗ k,Λ⊗ k) = HomO(π(Λ),Λ)⊗ k.

And HomO(π(Λ),Λ) is a lattice in HomK(K,Kn) ∼= Kn. So a map from res(π(Λ)) to res(Λ)
can be coded by an element of Tn.

6Finitely generated torsion free O-modules are always free.
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Chapter 7

Generically stable types in C-minimal
expansions of ACVF

Hrushovski and Loeser’s work on Berkovich spaces [34] builds off of two substantial prior
papers on the model theory of ACVF by Haskell, Hrushovski, and Macpherson. The first was
[26] which established elimination of imaginaries, and the second was [27] which developed
the theory of stable domination. In the previous chapter, we shortened the proof of the
main result of [26]. In this chapter, we focus on two important facts from [27] and [34]:
the characterization of generically stable types (Proposition 2.8.1 in [34]), and the strict
prodefinability of the space of generically stable types (Theorem 3.1.1 of [34]). We prove
these in Theorem 7.1.2 below, while simultaneously generalizing to the setting of C-minimal
expansions of ACVF.

These results were also proven by Hrushovski in some unpublished notes. The only new
result here is the strict prodefinability of the space of generically stable types in C-minimal
expansions of ACVF.

7.1 Definitions
Let T be some C-minimal expansion of ACVF. Let M be the monster model of T . Let K be
the home sort, k be the residue field, and Γ be the value group. The value group Γ of M is
an o-minimal expansion of a divisible ordered abelian group. Let Γ(A) denote dcleq(A) ∩ Γ
for any subset A ⊆Meq.

Remark 7.1.1. Let p be a global C-invariant type. The following are equivalent:

• For every function f into Γ (defined with parameters from M), the pushforward f∗p is
a constant type.

• For every B ⊇ C, we have Γ(Ba) = Γ(B) for a realizing p|B.
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We say that p is orthogonal to Γ if these conditions hold. In particular, from the first bullet
point, this is a property of p, rather than the pair (p, C).

Proof. Suppose the first condition holds. Let B ⊇ C and let a be any realization of p|B. For
γ ∈ Γ(Ba), we can write γ as f(a) for some B-definable function. Then γ |= f∗p|B. Also,
p is B-invariant and f is B-definable, so the type f∗p is B-invariant. Since it is constant, it
must contain the formula x = γ0 for some γ0, and γ0 must be B-definable. Therefore the
formula x = γ0 is in f∗p|B, and so γ = γ0 ∈ Γ(B). As γ was an arbitrary element of Γ(Ba),
we conclude that Γ(Ba) = Γ(B).

Conversely, suppose that the second condition holds. Let f be an M-definable function
into Γ. Let B be a set containing C, over which f is defined. Let a realize p|B. Then
f(a) ∈ Γ(Ba) = Γ(B). Since f(a) |= f∗p|B, and f(a) is B-definable, the formula x = f(a)
must be in f∗p|B, so f∗p is a constant type.

Recall the definition of domination from Definition 6.2.3. Say that a type is stably
dominated if it is dominated by a stable type.

A pro-definable set is an inverse limit of definable sets. A strict pro-definable set is an
inverse limit of definable sets along surjections. An inverse limit D = lim←−αDα is strictly pro-
definable if and only if all the images D → Dα have definable (rather than type-definable)
image.

Theorem 7.1.2. Let M be a model of a C-minimal expansion of ACVF.

1. Let p(x) be a global invariant type in Meq. Then the following are equivalent:

a) p(x) is generically stable
b) p(x) is orthogonal to the value group
c) p(x) is stably dominated

2. Let V be an interpretable set. There is a strictly prodefinable set V̂ parametrizing the
generically stable types in V .

Compare with Proposition 2.8.1 and Theorem 3.1.1 in [34]. Part 1 appears (in more
generality) in some unpublished notes of Hrushovski, though we will give a simpler and
more complete proof in our setting. Part 2 is apparently new (in the generality of C-minimal
expansions).

7.2 Generic stability and orthogonality to Γ
In this section, we show

Proposition 7.2.1. Let p(x) be a global invariant type. Then p(x) is generically stable if
and only if p(x) is orthogonal to Γ.
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Proof. One direction is easy: if p is generically stable, and f is a definable function into
Γ, then f∗p is a generically stable type in Γ. The Morley sequence of this type is totally
indiscernible. But a totally indiscernible sequence in a totally ordered set must be constant.
This ensures that f∗p is constant. The other direction will use Theorem 5.3.3 from §5.3. In
fact, the result will follow almost immediately from the following
Lemma 7.2.2. Let A ⊆ Meq be small. If C is a chain of unary definable sets, then |C| ≤
|Γ(A)|+ ℵ0.

Proof. For γ ∈ Γ, let Bγ and Bγ be the open and closed balls of radius γ. Let M0 be the
reduct of M to the group language expanded by unary predicates for Bγ and Bγ, for each
γ ∈ Γ(A). Then every A-definable unary set is M0-definable in M0, by C-minimality. In
fact, if D is an A-definable unary set, then D is a boolean combination of balls with radii in
Γ(A), and each ball is a translate of some Bγ or Bγ.

The structure M0 is stable, and its language has size at most |Γ(A)|+ ℵ0, so it contains
no chains of definable sets of length greater than |Γ(A)|+ℵ0. (Otherwise, by the pigeonhole
principle we could find a chain of uniformly definable sets, on which an indiscernible chain
could be modeled, contradicting stability).

Now suppose p(x) is orthogonal to Γ. We will show that p is chain averse in the sense
of §5.3. Let C be a small set. Enlarging C, we may assume p is C-invariant. Let κ(C) =
(|Γ(C)| + ℵ0)+. Let ~a be an arbitrarily long Morley sequence in C. By Remark 7.1.1 and
induction, Γ(C~a) = Γ(C). By the Lemma, there is no chain of unary C~a-definable sets of size
greater than κ. Therefore p(x) is chain averse, hence generically stable by Theorem 5.3.3.

7.3 Stable domination
Next, we turn to proving that stable domination is equivalent to the other two conditions of
Theorem 7.1.2.1.

If A ⊆Meq, write k(A) for k ∩ dcl(A).

Remark 7.3.1. k ∩ acl(A) = k ∩ acl(k(A)).

Proof. Suppose α ∈ k is algebraic over A. Let S be the finite set of conjugates of α over A.
Then S has a code in a power of k, so S has a code in k(A). Therefore α is algebraic over
k(A).

Let p(x) be a generically stable type over C0, thought of as a C0-definable type over M.
The type p(x) might live in an imaginary sort.

We will prove that there is a small set C ⊇ C0 and a C-definable map f into a power of
k such that p is “dominated” over C by its pushforward along f . That is, for every D ⊇ C
and every a, the following will be equivalent:

• a |= p|D
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• a |= p|C and f(a) |= f∗p|D.

Lemma 7.3.2. Let C = acl(C) be a set of parameters. Suppose tp(a/C) is generically
stable, for some a ∈Meq, and suppose b ∈ acl(Ca). Then tp(b/C) is generically stable.

Proof. Let p be the canonical global extension of tp(a/C), and let M ⊇ C be a small model
in which p is finitely satisfiable. On general grounds, tp(ab/C) is definable; let q be its
canonical global extension. It suffices to show that q(x, y) is finitely satisfiable in M , since
this ensures that q is generically stable, hence so is its pushforward along the projection to
the second coordinate.

Let d be an element of M, and suppose φ(x, y, d) ∈ q(x, y). Let ψ(x; y) be a C-formula
such that ψ(a; b) holds and ψ(a′;M) is finite for every a′. Such a formula exists because
b ∈ acl(Ca). Let a′b′ |= q|Md. Then a′b′ ≡M ab, so ψ(a′; b′) holds. Also, φ(a′, b′, d) holds.
The formula

∃y(φ(x, y, d) ∧ ψ(x; y))

is in p(x), because a′ satisfies it and a′ |= p|Cd. Because p is finitely satisfiable in M , there
is some a′′ ∈M such that

∃y(φ(a′′, y, d) ∧ ψ(a′′; y))

Choose b′′ such that φ(a′′, b′′, d) ∧ ψ(a′′; b′′) holds. Then b′′ ∈ acl(Ca′′) ⊆ M . So the pair
(a′′, b′′) is in M , and satisfies φ(x, y, d).

Lemma 7.3.3. Suppose C is a small set of parameters, and B is a ball in K1, (possibly a
singleton). Suppose tp(pBq/C) is generically stable. Then either B is C-definable, or there
exists A ⊇ A′ ⊇ B, where A is a C-definable closed ball of some radius, A′ is an open ball
of the same radius, and A′ is not defined over acl(C).

Proof. Let B = B1, B2, . . . be a Morley sequence for the type of pBq over C. Assume B
is not C-definable. Then the type is not constant, so the Bi’s are distinct. Since the type
is generically stable, this sequence is totally indiscernible. Consequently, Bi ∩ Bj = ∅ for
i 6= j. Let Aij be the smallest ball containing both Bi and Bj, for i 6= j. Then Aij is a
closed ball. The total indiscernibility of the sequence implies that A := Aij does not depend
on i, j. As A1,2, A3,4, A4,5, . . . is a Morley sequence of a C-definable type (a pushforward of
tp(pBq/C)⊗2), it follows that A is C-definable.

Let A′i be the open subball of A of the same radius, containing Bi. Then the sequence
A′1, A

′
2, . . . is a Morley sequence over C. As A is the smallest ball containing Bi and Bj, we

must have A′i ∩ A′j = ∅ for i 6= j. So the elements of the sequence A′1, A′2, . . . are pairwise
distinct. As the sequence is C-indiscernible, it follows that the elements are not algebraic
over C. In particular, A′ := A′1 ⊇ B is not algebraic over C.

Lemma 7.3.4. Suppose C is a small set of parameters, and a and b are from Meq such that
stp(a/C) is generically stable. Then a |̂

C
b ⇐⇒ b |̂

C
a.
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Proof. On general grounds, we may replace C with acl(C), so we may assume C = acl(C).
Let p(x) be the unique global non-forking extension of tp(a/C) = stp(a/C). By Corollary
2.14 in [36], there is some C-invariant type q(y) extending tp(b/C).

Suppose that a |̂
C
b. Then tp(a/Cb) does not fork over tp(a/C), so it must be p|Cb.

Then a |= p|Cb and b |= q|C, or equivalently, (a, b) |= p⊗q|C. By one of the characterizations
of generic stability, (b, a) |= q ⊗ p|C. So tp(b/Ca) = q|Ca. Since q does not fork over C,
b |̂

C
a.

Conversely, suppose that b |̂
C
a. Then by the characterization of forking in NIP theories

(Proposition 2.1(i) in [36]), tp(b/Ca) has some global extension r(y) which is Lascar C-
invariant. By Corollary 2.14 in [36], r(y) is C-invariant. Then b |= r|Ca and a |= p|C,
so (b, a) |= r ⊗ p|C. As before, this implies that (a, b) |= p ⊗ r|C, so a |= p|Cb. As p is
C-invariant, a |̂

C
b.

Now fix a generically stable type p(x), defined over some base set of parameters C0. The
variable x might live in an imaginary sort.

Lemma 7.3.5. For C ⊇ C0, let r(C) denote the supremum of RM(α/C), where α is a tuple
in k(Ca) and a realizes p|C. (By Remark 7.3.1, we could even let α range over k ∩ acl(Ca),
and r(C) would not change.)

(a) There is an integer n such that r(C) ≤ n for every C ⊇ C0.

(b) If C ′ ⊇ C ⊇ C0, then r(C ′) ≥ r(C).

Consequently, there is some C ⊇ C0 such that r(C ′) = r(C) for every C ′ ⊇ C.

Proof. (a) C-minimal theories are dp-minimal, so the home sort has dp-rank 1. By additiv-
ity of dp-rank in NIP theories, every interpretable set in T has finite dp-rank. Let n be
the dp-rank of the sort where the variable x lives. Suppose C ⊇ C0, a realizes p|C, and
α is a tuple in k(Ca). Suppose for the sake of contradiction that RM(α/C) ≥ n + 1.
As k is a strongly minimal set, we can replace α with some subtuple, and assume that
α has length n + 1, and that it realizes the generic type of kn+1, over C. Write α as
f(a) for some C-definable function f . Then the range of f has dp-rank at most n. But
the generic type of kn+1 over C has dp-rank (at least) n, a contradiction.

(b) Suppose a realizes p|C and α ∈ k(Ca) has RM(α/C) = m. Moving C ′ over C, we
may assume that a realizes p|C ′. As p is C0-definable, hence C-invariant, a |̂

C
C ′. So

α |̂
C
C ′. Consequently, RM(α/C) = RM(α/C ′). And α ∈ k(C ′a).

Fix some C as in the conclusion of the lemma. Let m = r(C). Fix some C-definable
function f into km such that f∗p is the generic type of km.

For B a non-degenerate (infinite) closed ball, let resB denote the interpretable set of
open subballs of the same radius.
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Lemma 7.3.6. Suppose C ′ ⊇ C. Suppose B is a C ′-definable closed ball. Suppose a |= p|C ′
and that α ∈ resB is algebraic over C ′a. Then α is algebraic over C ′f(a).

Proof. Let e and d realize (independently) the generic type of B over C ′a. Then ed |̂
C′
a,

hence ed |̂
C′
αf(a). By base monotonicity on the right (which holds for forking in arbitrary

theories), ed |̂
C′f(a) α.

Over C ′ed, resB is in definable bijection with k, via the map sending the class of x ∈ B
to res((x − e)/(d − e)), for example. So α is interdefinable over C ′ed with some α′ ∈ k. If
α′ /∈ acl(f(a)C ′ed), then α′f(a) realizes the generic type of km+1 over C ′ed, so r(C ′ed) =
m + 1 > m = r(C), contradicting Remark 7.3.1. Therefore α′ ∈ acl(f(a)C ′ed), and hence
α ∈ acl(f(a)C ′ed). Since ed |̂

C′f(a) α, it follows that α |̂
C′f(a) α. This can only happen if

α ∈ acl(C ′f(a)).

Lemma 7.3.7. Suppose C ′ ⊇ C. Suppose a |= p|C ′. Suppose that b is a singleton in the
home sort. Suppose that the type of f(a) over C ′b is the generic type of km. Then a |= p|C ′b.

Proof. As tp(a/C ′) is stationary, it implies stp(a/C ′). So a |= p| acl(C ′). Similarly, the type
of f(a) over acl(C ′b) is still generic in km. Replacing C ′ with acl(C ′), we may assume that
C ′ = acl(C ′).

Let φ(x; y) be a C ′-formula, and suppose φ(x; b) ∈ p(x). We will show that φ(a; b)
holds. Let D be the definable set φ(a;M). This can be written as a boolean combination of
acl(aC ′)-definable balls B1, . . . , Bn. By Lemma 7.3.2, tp(pBiq/C ′) is generically stable for
each i.
Claim 7.3.8. For each i, either Bi is C ′-definable or b /∈ Bi.

Proof. Suppose Bi is not C ′-definable. By Lemma 7.3.3, we have the following setup: there
is some C ′-definable closed ball A containing Bi, and some open ball A′ of the same radius,
with A ⊇ A′ ⊇ Bi, and (the code for) A′ is not algebraic over C ′. Now pA′q is an element
α ∈ resA′, and α is definable from pAq and pBiq. As pAq is C ′-definable and pBiq is
algebraic over a and C ′, it follows that α ∈ acl(C ′a). By Lemma 7.3.6, α ∈ acl(C ′f(a)).

Since f(a) realizes the generic type of km over C ′b, we have f(a) |̂
C′
b. Consequently

α |̂
C′
b. If b ∈ Bi, then the code α for A′ is algebraic over C ′b, so we would have α |̂

C′
α.

This contradicts the fact that A′ is not algebraic over C ′.

Let a1 = a and B1
i = Bi. Choose a2, a3, . . . and Bj

i such that

〈ajpBj
1qpB

j
2q · · · 〉j=2,3,...

is a Morley sequence over bapB1q · · · for the type

tp(apB1qpB2q · · · /C ′)

which is generically stable by Lemma 7.3.2. Then

〈ajpBj
1qpB

j
2q · · · 〉j=1,2,...
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is a Morley sequence for this type, over C ′. Also, a2 |= p|C ′b, so φ(a2; b) holds if and only if
φ(x; b) ∈ p(x). Therefore, it suffices to show for each i that

b ∈ B2
i ⇐⇒ b ∈ B1

i .

Note that B1
i , B

2
i , . . . is a Morley sequence over C ′, and B2

i , B
3
i , . . . is a Morley sequence

over C ′b. If Bi = B1
i is C ′-definable, this sequence is constant, so b ∈ B1

i ⇐⇒ b ∈ B2
i .

Otherwise, by total indiscernibility, the Bj
i are pairwise disjoint (for fixed i). So b /∈ Bj

i for
all j > 1. But by the claim, b /∈ B1

i either. So we are done.

Theorem 7.3.9. Suppose that C ′ ⊇ C and a |= p|C and f(a) realizes the generic type of
km over C ′. Then a |= p|C ′. So the (arbitrary generically stable type p) is stably dominated.

Proof. Take some set C ′′ of real elements such that C ′ ⊆ dcl(C ′′). Moving C ′′ over C ′, we
may assume that f(a) realizes the generic type of km over C ′′. Replacing C ′ with C ′′, we
may assume that C ′ is made of real elements.

Let b1, . . . , bn be a tuple from C ′, and suppose φ(x; b) is in p(x). It suffices to show that
φ(a; b) holds. It suffices to show that a |= p|Cb1b2 · · · bn.

We prove by induction on i that a |= p|Cb1 · · · bi. The base case where i = 0 is given.
Suppose that a |= p|Cb1 · · · bi−1. By Lemma 7.3.7, we need only show that tp(f(a)/Cb1 · · · bi)
is the generic type of km. This is clear, though, since tp(f(a)/C ′) was generic in km, and
Cb1 · · · bi ⊆ C ′.

7.4 Strict prodefinability
For any set X, the stable completion of X is the set X̂ of generically stable types in X. This
can be seen as a pro-definable set, in such a way that X̂(C) is canonically identified with
the set of C-definable generically stable types in X.

Let X → Y be a definable surjection of interpretable sets. We will show that the induced
map X̂ → Ŷ on the stable completions is surjective. Using this, we can mimic the proof
from Hrushovski and Loeser that X̂ is not only pro-definable (as it would be in any NIP
theory), but also strictly pro-definable.

7.4.1 Lifting stably dominated types
First we recall some assorted facts about chaining together definable, generically stable, and
algebraic types.

Remark 7.4.1. Recall that if M is a model and tp(a/M) is definable (resp. generically
stable), then tp(a′/M) is definable (resp. generically stable), for any a′ ∈ acl(aM). If
tp(a/M) is definable (resp. generically stable) and tp(b/aM) has an aM-definable extension
(resp. is generically stable), then tp(ab/M) is definable (resp. is generically stable).
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Lemma 7.4.2. Let M be a model (an elementary substructure of M) and suppose tp(a/M)
is generically stable. Let D ⊆ K1 be aM-definable and non-empty. Then there is some b ∈ D
such that tp(ab/M) is generically stable.

Proof. Let c be a code for one of the swiss cheeses in the canonical decomposition of D
into swiss cheeses. Then c ∈ acl(aM), so by Remark 7.4.1, tp(ac/M) is generically stable.
Replacing a with ac and D with the swiss cheese coded by c, we may assume that D is a
swiss cheese.

Suppose that there is a closed ball B′ which is acl(aM)-definable, such that the generic
type of B′ is in D. Then tp(pB′qa/M) is generically stable (by Remark 7.4.1) and if b realizes
the generic type of B′, then tp(bpB′qa/M) is generically stable, by Remark 7.4.1 again, so
we are done.

So assume that there is no closed ball B′ which is acl(aM)-definable, such that the generic
type of B′ is in D.

As a swiss cheese, we can write D as B0 \ (B1 ∪ · · · ∪Bn), where each Bi is a ball (open
or closed, possibly K or a singleton), where n ≥ 0, and where Bi ( B0 for i > 0. If B0 is
a closed ball (or a singleton), then the generic type of B0 is in D, and B0 is aM -definable,
contradicting our assumption.

Next suppose that B0 is all of K. If n = 0, then D = K, and we can take some
b ∈ D∩dcl(M) becauseM is a model. Otherwise, let B be the smallest closed ball containing
B1, . . . , Bn. Since M is a model, there is some δ < 0 in Γ(M). Let B′ be the closed ball
around B of radius δ plus the radius of B. Then the generic type of B′ is in D, and B′ is
algebraic (in fact, definable) over aM , a contradiction.

We are left with the case that B0 is an open ball. If n = 1, then we can take a closed ball
between B0 and B1 whose (valuative) radius is halfway between the radii of B0 and B1 (or
δ plus the radius of B0, in the case where B1 is a singleton). If n > 1, let B be the smallest
closed ball containing B1, . . . , Bn. Then B is strictly smaller than B0, and strictly bigger
than each of the Bi’s, so its generic type is in D, a contradiction.

So we are left with the case that D = B0 is an open ball. Suppose that there is some
acl(aM)-definable subball B ( B0 (open or closed or singleton) of D. Then as above, we
can take a closed ball halfway between B and B0 (or use δ), and find an acl(aM)-definable
closed subball of D, a contradiction.

So we may assume that not only is D an open ball, but that no proper subball of D is
acl(aM)-definable. From the swiss cheese decomposition, it follows that the only acl(aM)-
definable subsets of D are D and ∅.

Let b realize the generic type of D. This type is aM -definable, so tp(ab/M) is definable.
It remains to show that tp(ab/M) is orthogonal to Γ. Suppose not. Then there is some
aM -definable function f : K1 → Γ1 such that f(b) /∈ Γ(M).

The set f(D) is a definable subset of Γ. By o-minimality of Γ, it is a finite union of
intervals. The endpoints of these intervals are in Γ(Ma) = Γ(M). If f(D) is finite, then
f(b) ∈ f(D) ⊆ Γ(M), a contradiction. So f(D) contains an infinite interval. As M is a
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model, this infinite interval contains at least threeM -definable points γ1, γ2, γ3. Then f−1(γ1)
and f−1(γ2) and f−1(γ3) are three distinct aM -definable subsets of D, a contradiction.

Lemma 7.4.3. Let M be a model (an elementary substructure of M) and suppose tp(a/M)
is generically stable. Let D ⊆ Kn be aM-definable and non-empty. Then there is some
b ∈ D such that tp(ab/M) is generically stable.

Proof. By induction on n. The n = 1 case was Lemma 7.4.2. Suppose n > 1. Let π
be the projection Kn → Kn−1 coordinates. By induction there is some b0 ∈ π(D) such
that tp(ab0/M) is generically stable. Then π−1(b0) ∩ D = {b0} × D′ for some non-empty
ab0M -definable D′ ⊆ K1. By Lemma 7.4.2, there is some c ∈ D′ such that tp(ab0c/M) is
generically stable. Take b = (b0, c).

Theorem 7.4.4. Let f : X → Y be a definable surjection. Let p be a generically stable type
in Y . Then there is a generically stable type q in X such that f∗q = p. In fact, if p, f , X,
and Y are defined over a model M , we can take q to be defined over the same model.

Proof. Let X ′ be some (M -)definable subset of Kn such that there is an (M -)definable
surjection from X ′ onto X. If we can lift p to X ′ (along the composition X ′ → X → Y ),
then we can certainly lift it to X. Replacing X with X ′, we may assume that X is a definable
subset of Kn for some n.

Let a realize p|M . Let D be f−1(a), a non-empty aM -definable set. By Lemma 7.4.3,
there is some b ∈ D such that tp(b/M) is generically stable. Take q to be the canonical
global extension of tp(b/M).

7.4.2 Proving strictness
In any NIP theory, one has uniform definability of generically stable types. That is, for every
formula φ(x; y) there is some formula ψ(y; z) such that for every generically stable type p,
(dpx)φ(x; y) is of the form ψ(y; c) for some c ∈M . This follows from the fact that generically
stable types are definable by voting in Morley sequences. So in fact we can take ψ(y; z) to
be of the form

ψ(y; z1, . . . , zN) :=
∨

S⊆{1,...,2N−1}
|S|≥N

∧
i∈S

φ(zi; y)

where N is one or two times the alternation number of φ(x; y).
From this it follows that

Lemma 7.4.5. If X is a definable set in any NIP theory, the space X̂ of generically stable
types in X is pro-definable (in T eq).

Proof. For each formula φ(x; y), choose some formula ψφ(y; z) which gives uniform defini-
tions. Since we are working in T eq, we may arrange that ψφ(M; z) 6= ψφ(M; z′) for z 6= z′.
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Let Vφ be the sort where z lives. So if p is a generically stable type, then the code for the
φ-definition of p is an element of Vφ.

So we have a map from generically stable types to ∏φ∈L Vφ. It remains to show that the
range of this map is ∗-definable.

A tuple 〈cφ〉φ∈L will define a consistent global type if and only if it defines a type which
is finitely satisfiable. This can be expressed as follows: for every φ1(x; y1), . . . , φn(x; yn) in
the language, the following must hold:

M |= ∀y1, . . . , yn∃x
n∧
i=1

(φi(x; yi)↔ ψφi(yi; cφi))

So the set of tuples 〈cφ〉φ for which we get a consistent type is ∗-definable.
Now a definable type p is generically stable iff p(x1)⊗p(x2) = p(x2)⊗p(x1). Equivalently,

for every formula φ(x1;x2; y),

(dpx1)(dpx2)φ(x1, x2; y) = (dpx2)(dpx1)φ(x1;x2; y). (7.1)

We can express this as a condition in terms of the cφ’s. Let φ1(x2;x1, y) be φ(x1;x2; y). Let
φ2(x1; y, z) be ψφ1(x1, y; z). Let φ3(y, z, w) be ψφ2(y, z, w). If p is the definable type defined
by the cφ’s, then

(dpx1)(dpx2)φ(x1, x2; y) = (dpx1)(dpx2)φ1(x2;x1, y) = (dpx1)φ2(x1; y, cφ1) = φ3(y, cφ1 , cφ2).

Similarly, we can find some formulas φ4, φ5, φ6 such that

(dpx2)(dpx1)φ(x1, x2; y) = φ4(y, cφ5 , cφ6).

Then (7.1) is essentially the assertion that

∀y φ3(y, cφ1 , cφ2)↔ φ4(y, cφ5 , cφ6)

Doing this for each φ(x1, x2, y) in the language, we get a small family of first order statements
about the cφ whose conjunction is equivalent to the condition that the resulting type is
generically stable.

The place where we must use C-minimality is to show strict pro-definability. It suffices
to show that the image of the map

X̂ →
n∏
i=1

Vφi

is definable for all finite sets of formulas φ1, . . . , φn. But this map factors through X̂ → Vψ
for some ψ, so we can reduce to the case of showing that X̂ → Vφ has definable image.

So we are reduced to proving the following:
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Theorem 7.4.6. (Assuming we are in a C-minimal expansion of ACVF.) Let X be a de-
finable set. Let φ(x; y) be a formula. The set of φ-definitions of generically stable types in
X is a small union of definable sets. (Since it is also type-definable, this implies that it is
definable.)

Proof. We will use the same argument as Hrushovski and Loeser, except using the previous
section instead of metastability (which may or may not work in this setting).

Let ψ(y; z) be the formula that uniformly φ-defines generically stable types. Let g be the
generic type of k, so that g⊗n is the generic type of kn.

For each definable map f : X × Km → kn, and w ∈ Km, let fw denote the map
f(−, w) : X → kn. Let Wf be the (definable) set of w ∈ Km such that (dg⊗ns)(s ∈ fw(X)),
i.e., such that fw(X) hits the generic type of kn. For w ∈ Wf , let Zf,w be the set of z such
that

∀y dg⊗ns ∀x ∈ f−1
w (s) (φ(x; y)↔ ψ(y; z))

Note that Zf,w is definable uniformly in w. So the union of all the Zf,w’s is a small union of
definable sets.

We claim that this union is exactly the set of c such that ψ(y; c) is the φ-definition of a
generically stable type.

Suppose first that ψ(y; c) is the φ-definition of some generically stable type p(x). Since
p is generically stable, there is some set of parameters C over which p is defined, and some
C-definable map f0 : X → kn such that f0,∗p is g⊗n and p is “dominated” along f0.

That is, (p|C)(x) ∪ g⊗n(f0(x)) ` p(x).
Claim 7.4.7. There is some finite subtype Σ(x) of (p|C)(x) such that Σ(x) ∪ g⊗n(f0(x))
implies the restriction of p to a φ-type.

Proof. For each subtype Σ(x) of p|C, let SΣ denote the set of b such that

Σ(x) ∪ g⊗n(f0(x)) ` φ(x; b)

and let S ′Σ denote the set of b such that

Σ(x) ∪ g⊗n(f0(x)) ` ¬φ(x; b).

The set of formulas in g⊗n(f0(x)) is ind-definable because g⊗n is a definable type. So each of
SΣ and S ′Σ is small union of definable sets. Note that Sp|C = ψ(M; c) and S ′p|C = ¬ψ(M; c).
In particular, Sp|C and S ′p|C are definable. By the most basic form of compactness,

Sp|C =
⋃

Σ⊆p|C
Σ finite

SΣ

S ′p|C =
⋃

Σ⊆p|C
Σ finite

S ′Σ
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By saturation of the monster model, it follows that Sp|C = SΣ and Sp|C = S ′Σ for some finite
Σ ⊆ p|C. Then for every b, if φ(x; b) ∈ p(x), then b ∈ Sp|C = SΣ, so Σ(x) ∪ g⊗n(f0(x)) `
φ(x; b). And similarly, if ¬φ(x; b) ∈ p(x), then Σ(x) ∪ g⊗n(f0(x)) ` ¬φ(x; b). So Σ(x) ∪
g⊗n(f0(x)) implies the restriction of p to a φ-type.

Let f be f0 on Σ(M), and 0 ∈ kn off of Σ(M). Since Σ is a finite type, f is still a
(C-)definable function. If a |= p|C, then f(a) = f0(a) |= g⊗n|C. So f(X) still hits the
generic type of kn.

Write f as fw. We claim that c ∈ Zf,w. Let s realize g⊗n|M, outside the monster.
Suppose a ∈ f−1(s). Then Σ(a) holds, by definition of f . Also, f(a) = f0(a) realizes g⊗n.
By the claim, the φ-type of a over M is the restriction of p to a φ-type. That is, for every
b ∈M, φ(a; b) holds if and only if ψ(b; c) holds.

So we have shown that

∀y ∈M∀x ∈ f−1(s) (φ(x; y)↔ ψ(y; c))

Since tp(s/M) = g⊗n, this is equivalent to saying

∀y ∈M dg⊗ns ∀x ∈ f−1(s) (φ(x; y)↔ ψ(y; c))

This means that c ∈ Zf,w, by definition of Zf,w.
Conversely, suppose that c ∈ Zf,w for some f and w ∈ Wf . Then g⊗n is in f(X), hence is

an element of the stable completion of f(X). By the previous section, there is a generically
stable type p in X such that f∗p = g⊗n. Let C be a set over which everything so far is
defined.

We claim that ψ(y; c) is the φ-definition of p. Let b be arbitrary, and let a realize p|bC.
Then f(a) realizes g⊗n|bC. As c ∈ Zf,w, we know that

|= dg⊗ns ∀x ∈ f−1(s) φ(x, b)↔ ψ(b; c).

Everything inside the dg⊗ns is bC-definable, and f(a) realizes g⊗n|bC, so we can take s =
f(a), yielding

∀x ∈ f−1(f(a)) φ(x, b)↔ ψ(b; c)

In particular, taking x = a, we see that φ(a, b) ⇐⇒ ψ(b; c). As b was arbitrary, ψ(−; c) is
the φ-definition of p.
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Chapter 8

On o-minimal imaginaries

In this chapter, we will change notation slightly, using ∂X to denote the frontier X \X of a
set, and bd(X) to denote the boundary X \X int.

8.1 Elimination of imaginaries and o-minimality
In o-minimal expansions of real closed fields, as well as many other o-minimal theories,
elimination of imaginaries holds as a corollary of definable choice. As noted in [59], some
o-minimal theories fail to eliminate imaginaries. For example, elimination of imaginaries fails
in the theory of Q with the ordering and with a 4-ary predicate for the relation x−y = z−w.
In [62], Eleftheriou, Peterzil, and Ramakrishnan observe that in this example, elimination
of imaginaries holds after naming two parameters. This leads them to pose the following
question:

Question 8.1.1. Given an o-minimal structure M and a definable equivalence relation E
on a definable set X, both definable over a parameter set A, is there a definable map which
eliminates X/E, possibly over B ⊇ A?

They answer this question in the affirmative when X/E has a definable group structure,
as well as when dim(X/E) = 1. However, we will answer Question 8.1.1 negatively by giving
a counterexample in §8.2. That is, we will give an o-minimal structure M and a set X/E
interpretable in M , which cannot be put in definable bijection with a definable subset of
Mk.

Question 8.1.1 can be reformulated in several ways, by the following observation.

Lemma 8.1.2. Let M be a structure, and let M �M be any elementary extension, such as
a monster model. The following are equivalent:

(a) Every M-definable quotient can be eliminated over M .

(b) Every M-definable quotient can be eliminated over M.
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(c) Every M-definable quotient can be eliminated over M.

(d) The elementary diagram of M eliminates imaginaries.

Proof. The implications (a) ⇒ (d) ⇒ (c) ⇒ (b) are more or less clear. For (b) ⇒ (a),
suppose (b) holds and X/E is an M -definable quotient. By (b), X/E can be eliminated by
an M-definable function f . Since M is an elementary substructure of M, the parameters
used to define f can be moved into M , so (a) holds.

Question 8.1.1 asks whether the equivalent conditions of Remark 8.1.2 hold in every
o-minimal structure M . We will give an example in which they fail.

In a talk at the 2012 Banff meeting on Neo-Stability, Peterzil asked the following variant
of Question 8.1.1:

Question 8.1.3. Given an o-minimal structure M and an imaginary e ∈ M eq, is there a
set A ⊆M and a real tuple c ∈Mk such that A |̂ þ

e and dcleq(Ae) = dcleq(Ac)?

Here |̂ þ denotes thorn-non-forking, or equivalently, independence with respect to o-
minimal dimension.

In contrast to the negative answer to Question 8.1.1, we anser Question 8.1.3 positively
in §8.3. In some sense, this suggests that interpretable sets, while not being “globally”
definable, look “locally” like definable sets. We prove this in §8.5.

8.2 The failure
Let RP1 = R ∪ {∞} be the real projective line. The group PSL2(R) acts on RP1 by
fractional linear transformations, x 7→ ax+b

cx+d , and the stabilizer of ∞ is exactly the group of
affine transformations x 7→ ax+ b.

For x, y1, y2, y3, y4 ∈ RP1, let P0(x, y1, y2, y3, y4) indicate that x /∈ {y1, y2, y3, y4} and that

f(y1)− f(y2) = f(y3)− f(y4)

for any/every fractional linear transformation f sending x to ∞. The choice of f does not
matter, because if f and f ′ both send x to∞, then f ′ = h◦f for some affine transformation
h. But in general,

h(z1)− h(z2) = h(z3)− h(z4) ⇐⇒ z1 − z2 = z3 − z4

for h affine.

Remark 8.2.1. If g is some fractional linear transformation, then g induces an automor-
phism on the structure (RP1, P0). In particular, if a > 0 and b ∈ R, then the map x 7→ ax+b
(fixing ∞) is an automorphism.
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Remark 8.2.2. Write cot(x) for 1/ tan(x). If α ∈ R, then − cot(x) and cot(x−α) are related
by a fractional linear transformation not depending on x, sending − cot(α) to cot(0) = ∞.
Consequently, if α, x1, . . . , x4 ∈ R, then

P0(− cot(α),− cot(x1), . . . ,− cot(x4))
⇐⇒ cot(x1 − α)− cot(x2 − α) = cot(x3 − α)− cot(x4 − α).

Let M be the structure (Z× RP1, <, σ, P ), where

• < is the lexicographic order on Z × RP1, where we order RP1 by identifying it with
[−∞,+∞).

• σ is the map (n, x) 7→ (n+ 1, x).

• P (x, y1, . . . , y4) holds if and only if

P0(π2(x), π2(y1), . . . , π2(y4)) ∧
4∧
i=1

x < yi < σ(x)

where π2 : Z× RP1 → RP1 is the second coordinate projection.

Remark 8.2.3. If a > 0 and b ∈ R, then the map (n, x) 7→ (n, ax+ b), fixing (n,∞), is an
automorphism of M . This uses Remark 8.2.1

Let N be the structure (R, <, σ′, P ′), where < is the usual order on R, σ′(x) = x + π,
and P ′(x, y1, . . . , y4) holds if and only if x < yi < x+ π for each i and

cot(y1 − x)− cot(y2 − x) = cot(y3 − x)− cot(y4 − x).

Remark 8.2.4. The structure N is isomorphic to the structure M via the map sending x
to (bx/πc,− cot(x)), using Remark 8.2.2.

Remark 8.2.5. For every α ∈ R, the map x 7→ x + α is an automorphism of N . Con-
sequently, the automorphism group of N acts transitively on N and the same is true for
M .

One thinks of the structure M as being the “universal cover” of (RP1, P0). We will show
that M is o-minimal and fails condition (d) of Lemma 8.1.2.

8.2.1 O-minimality
Consider the two-sorted structure (R,Z, . . .) with the ring structure on R and the order on
Z. The inclusion Z ↪→ R is not definable in this structure; the two sorts R and Z have
nothing to do with each other.
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Remark 8.2.6. The structure M can be interpreted in (R,Z, . . .), by mapping (n, x) ∈ Z×R
to (n, x) and (n,∞) to n ∈ Z.

We draw two consequences from this:

Lemma 8.2.7. Let D be a definable subset of M1, and suppose a, b ∈M . Then D ∩ [a, b] is
a finite union of points and intervals.

Proof. In the structure (R,Z, . . .), the set R is o-minimal. Under the interpretation of M in
(R,Z, . . .), each open interval of the form {n} × R ⊆ Z× RP1 = M is in definable bijection
with R. Consequently, D∩({n}×R) is a finite union of points and intervals. More generally,
each interval [a, b] ⊆ M is contained in a finite union of points and open intervals of the
form {n} × R, so the conclusion holds.

Corollary 8.2.8. LetM+M be the structure obtained by laying two copies ofM end-to-end.
More precisely, M +M is the structure (2×M,<, σ, P ), where

• (2×M,<) is {1, 2} ×M with the lexicographic ordering.

• σ(i, x) = (i, σ(x)) for i = 1, 2.

• P ((i1, x1), . . . , (i5, x5)) agrees with P (x1, . . . , x5) when i1 = i2 = · · · = i5, and is false
otherwise.

Then the two inclusion maps ι1, ι2 : M →M +M are elementary embeddings.

Proof. The two canonical inclusion maps of the ordered set Z into the ordered set Z + Z :=
2×Z are both elementary embeddings. This is an easy exercise using quantifier elimination
in (Z, <, σ), where σ(n) = n+ 1. From this, it follows that the two canonical inclusions

(R,Z, . . .) ↪→ (R,Z + Z, . . .)

are elementary embeddings. Applying the interpretation of M in (R,Z, . . .) to both sides
yields the desired result.

Remark 8.2.9. If τ1, τ2 are two automorpisms of M , then the map on M + M which acts
as τ1 on the first copy and τ2 on the second copy is an automorphism.

Remark 8.2.10. The group of automorphisms of M +M which fix the first copy pointwise
acts transitively on the second copy. This follows from Remarks 8.2.5 and 8.2.9. As a
consequence, if D is a one-dimensional definable subset, defined over the first copy, then D
or its complement contains the second copy.

Theorem 8.2.11. The structure M is o-minimal.
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Proof. The structure N is interpretable in R with the ring structure and with the trigonomet-
ric functions restricted to the interval [0, π]. This is known to be o-minimal as a consequence
of Gabrielov’s theorem (or the associated quantifier elimination result; see Theorem 4.6 in
[14]).

Alternatively, here is a more elementary argument:

• M ∼= N has the order type of R, so it suffices to show that if D ⊆ M is definable,
then the boundary bd(D) does not accumulate at any points in the extended line
{−∞} ∪M ∪ {+∞}.

• Lemma 8.2.7 shows that bd(D) cannot accumulate at any points in M .

• Suppose bd(D) had an accumulation point at +∞. Then bd(D) is not bounded above.
This remains true in the elementary extension M +M , where we identify the original
M with the first copy inM +M . But by Remark 8.2.10, D or its complement contains
the second copy, making bd(D) disjoint from the second copy. Then bd(D) is bounded
above by any element from the second copy, a contradiction.

• A similar argument shows that bd(D) has no accumulation point at −∞.

8.2.2 Failure of elimination of imaginaries
Consider the structure M +M from Corollary 8.2.8. Call the two copies M1 and M2. Each
is isomorphic to M , and each is an elementary substructure of M1 +M2. We will show that
condition (d) of Lemma 8.1.2 fails in M2. Suppose for the sake of contradiction that the
elementary diagram of M2 eliminates imaginaries.

Let α = (0,∞) ∈M1. Let X be the α-definable set

X = {(x, y) : α < x < y < σ(α)}

We can identify the open interval (α, σ(α)) = {0} × R with R. Then X is identified with
{(x, y) ∈ R2 : x < y}. Let ∼ be the relation on X

(x, y) ∼ (x′, y′) ⇐⇒ P (α, x, y, x′, y′).

Under the identification of the open interval (α, σ(α)) with R, we have

(x, y) ∼ (x′, y′) ⇐⇒ P0(∞, x, y, x′, y′) ⇐⇒ x− y = x′ − y′. (8.1)

Thus ∼ is an equivalence relation on X.
By Remarks 8.2.3 and 8.2.9, for each a > 0 and b ∈ R, there is an automorphism τa,b of

the structureM1 +M2 which sends (n, x) to (n, ax+b) onM1, and which fixesM2 pointwise.
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Note that τa,b fixes α, and therefore acts on the α-definable quotient X/ ∼. Identifying X
with {(x, y) ∈ R2 : x < y}, we see that

τa,b(x, y) ∼ (x, y) ⇐⇒ τa,b(x)− τa,b(y) = x− y ⇐⇒ ax− ay = x− y ⇐⇒ a = 1.

So if a = 1, then τa,b acts trivially on X/ ∼, and otherwise, τa,b has no fixed points.
Let c be any element of X/ ∼. Under the assumption that the elementary diagram ofM2

eliminates imaginaries, c is interdefinable overM2α with some subset S ⊆M1. Note that τa,b
fixes M2α pointwise, so τa,b fixes c if and only if it fixes S pointwise. In particular τ1,1 fixes
c and τ2,0 does not, so S must be fixed pointwise by τ1,1, but not by τ2,0. This is impossible,
however, since the action of τ1,1 on M1 is (n, x) 7→ (n, x + 1). The only fixed points are of
the form (n,∞), and these are also fixed by τ2,0, the map sending (n, x) 7→ (n, 2x). So if S
is fixed pointwise by τ1,1, it is also fixed pointwise by τ2,0, a contradiction.

So the equivalent conditions of Lemma 8.1.2 fail in the o-minimal structure M .

Remark 8.2.12. The quotient X/ ∼ described above can be eliminated by naming parameters
from M1. This quotient is a counterexample to (d) of Lemma 8.1.2, rather than to (a).
Tracing through Lemma 8.1.2, the actual quotient in M which cannot be eliminated is Y/ ≈,
where Y ⊆M3 is the set of (a, b, c) such that a < b < c < σ(a), and where

(a, b, c) ≈ (a′, b′, c′) ⇐⇒ a = a′ ∧ P (a, b, c, b′, c′).

8.3 The local question
Unlike Question 8.1.1, Question 8.1.3 has an easy affirmative answer.

Lemma 8.3.1. Given an o-minimal structure M and an imaginary e ∈ M eq, there is a set
A ⊆M and a real tuple c ∈Mk such that A |̂ þ

e and dcleq(Ae) = dcleq(Ac).

Proof. Suppose e is a class of the definable equivalence relation E. Let x be some represen-
tative of this class. So x is a (real) tuple, and e ∈ dcleq(x). Consider the pregeometry on
M coming from definability over e, i.e., the pregeometry where the closure of a set S ⊆ M
is M ∩ dcleq(Se). Let A ⊆ x be a basis for x, and let c be the remaining coordinates of x.
Then x = Ac, and so

e ∈ dcleq(x) = dcleq(Ac).

Also, since A is a basis for x, c ⊆ x is in the closure of A:

c ∈ dcleq(Ae).

Finally, note that dim(x/e) = dim(A/e) = |A| because A is a basis over e. Since A has size
|A| and is made of singletons,

dim(A/∅) ≤ |A|.
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On the other hand
dim(A/∅) ≥ dim(A/e) = |A|

on general grounds. So dim(A/∅) = dim(A/e), which implies A |̂ þ e.

The affirmative answer to Question 8.1.3 does not imply an affirmative answer to Ques-
tion 8.1.1. The implication fails because the auxiliary parameters A in Lemma 8.3.1 depend
too strongly on e. Lemma 8.3.1 can be vaguely interpreted as saying that interpretable sets
look “locally” like definable sets.

We explicate this idea in the next two sections.

8.4 Remarks on definable topologies
If X is a subset of a topological space, X will mean the closure of X, and ∂X will mean the
frontier of X, X \X. The interior of X will be denoted X int. The boundary X \X int will
be denoted bd(X).

8.4.1 Definable Topologies
Let M be a structure in some language. Assume M has elimination of imaginaries. Let X
be a definable set. Definable will mean “definable with parameters.” By a definable topology,
we mean a definable family of subsets {By ⊆ X}y∈Y which form the basis for some topology
on X. The fact that these form a basis for a topology amounts to the claim that if y1, y2 have
By1 ∩By2 6= ∅, then for every x ∈ By1 ∩By2 there is a y3 ∈ Y such that x ∈ By3 ⊆ By1 ∩By2 .
This is a first-order condition, so a definable topology on X remains a definable topology
in elementary extensions of M . But note that if M � M ′, the topology on X(M) need not
agree with the subspace topology on X(M) as a subset of X(M ′).

If D is a definable subset of X, and X has a definable topology, then the subspace
topology on D is also definable. If X and Y are two sets with definable topologies, then the
product topology on X × Y is definable.

If X and Y are two sets with definable topologies, and f : X → Y is a definable function,
then we can express whether or not f is continuous using some first-order statement. So the
continuity of f is invariant under elementary extensions, and definable in families.

We say that X is definably connected if there is no definable clopen set D with ∅ ( D (
X. The definable connectedness of X is invariant under elementary extensions, and type-
definable in families. If f : X → Y is a continuous definable function, and X is definably
connected, then so is Y .

A continuous map f : X → Y between abstract topological spaces is an open map if
f(U) is open for every open subset U ⊆ X. If B is a basis of opens on X, it suffices to
check U ∈ B. If f : X → Y is a continuous definable map between two definable topological
spaces, then we can express that f is an open map via a first-order statement. So elementary
extensions preserve whether or not f is open, and this is definable in families.
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8.4.2 The Quotient Topology
If X is an abstract topological space, and E is an equivalence relation on X, then there is
a natural quotient topology on X/E. Letting π : X → X/E be the natural projection, a
subset U ⊆ X/E is open in this quotient topology if and only if π−1(U) is open. Note that
π is then continuous.

A continuous surjection f : X → Y of abstract topological spaces is identifying if Y has
the quotient topology of X/ ker f , where ker f is the equivalence relation {(x, y) : f(x) =
f(y)}. In other words, a subset U ⊆ Y is open if and only if f−1(U) is open.

IfX is a definable topological space and E is a definable equivalence relation, the quotient
topology on X/E need not be definable, as far as I know. If X and Y have definable
topologies, and f : X → Y is a definable continuous function, there is not any general way
of expressing that f is identifying.

Remark 8.4.1. If f : X → Y is a continuous open surjection of abstract topological spaces,
then f is identifying. Indeed, if f−1(U) is open for some subset U ⊆ Y , then f(f−1(U)) = U
is also open. Moreover, if X0 is an open subset of X, then the restriction of f to X0
is a continuous open surjection to f(X0), where f(X0) has the subspace topology from Y .
In particular, the quotient topology on f(X0) as a quotient of X0 agrees with the subspace
topology on f(X), as a subspace of f(X).

In a definable setting, we can express that f is a continuous open surjection.

Definition 8.4.2. An equivalence relation E on a set X is an open equivalence relation if
the natural quotient map π : X → X/E (with the quotient topology on X/E) is an open
map. Equivalently, for every open set U ⊆ X, the set

π−1(π(U)) = {x ∈ X : xEu for some u ∈ U}

is open. If B is a basis of open sets on X, it suffices to check the U ∈ B.

Remark 8.4.3.

(a) If E is an open equivalence relation on X, and U ⊆ X is open, then E � U = E∩(U×U)
is an open equivalence relation on U , by Remark 8.4.1.

(b) If X is a definable topological space and E is a definable equivalence relation, then we
can write a first-order sentence that expresses that E is an open equivalence relation
on X. (We only need to check that π−1(π(U)) is open for U in a basis of opens on
X.) In particular, this property is definable in families and invariant under elementary
extensions.

(c) If X is a definable topological space and E is an open definable equivalence relation on
X, then the quotient topology on X/E is definable. In fact, if π : X → X/E denotes
the natural surjection, and B is a definable basis of opens for X, then {π(U) : U ∈ B}
is a definable basis of opens for X/E.
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8.4.3 Separation Axioms
Recall that a topological space X is Hausdorff if for every two distinct points x, x′ ∈ X, we
can find two disjoint open sets U,U ′ with x ∈ U , x′ ∈ U ′. Given a basis, we can require that
U and U ′ be basic opens. Recall that X is T0 if for every two distinct points x, x′ ∈ X, we
can find an open set U which contains exactly one of {x, x′}. Again, we can require that U
be a basic open.

Recall that X is regular if for every x ∈ X and every closed set C ⊆ X with x /∈ C,
we can find disjoint open sets U and V with x ∈ U and C ⊆ V . Equivalently, whenever D
is open and x ∈ D, we can find a smaller open neighborhood U 3 x with U ⊆ D. In this
second definition, we may assume that D and U are basic opens.

Because it suffices to check basic opens, if X is a definable topological space, then we can
therefore express by a first-order statement that the topology is Hausdorff, T0, or regular.
Such properties are therefore preserved in elementary extensions and definable in families.

Note that Hausdorff implies T0. Also, regular plus T0 implies Hausdorff. Indeed, suppose
X is regular and T0. If x and x′ are two distinct points in X, then by T0 we can find a closed
set C containing exactly one of x and x′. Now use regularity to separate C from the unique
point of {x, x′} \ C.

If X is Hausdorff or T0 or regular, and Y is a subset of X, then the subspace topology
on Y has the same property.

8.4.4 Definable Compactness
If X is a set, a filtered collection of subsets of X is a collection F of subsets of X with the
property that for every D1, D2 ∈ F , there is some D3 ∈ F with D3 ⊆ D1∩D2. For example,
if X is a topological space, B is a basis, and x ∈ X, then the set of basic opens neighborhoods
of x is a filtered collection of non-empty subsets of X.

If X is a definable set and F is a definable family of subsets of X, we can express by a
first-order statement that F is a filtered collection.

If X is a definable topological space, we shall say that X is definably compact if every
definable filtered collection of closed non-empty subsets of X has non-empty intersection.1
This property is preserved in elementary extensions, and type-definable in families. If D is a
closed subset of a definably compact topological space, then D with the subspace topology
is definably compact as well.

Lemma 8.4.4. Let X and Y be definable topologies, and suppose X is definably compact. If
D ⊆ X×Y is definable and closed, then π(D) is closed as a subset of Y , where π : X×Y → Y
is the projection.

Proof. Suppose that y ∈ π(D). Let B be the (definable) collection of basic open sets contain-
ing y. For each V ∈ B, let CV be the set of x ∈ X for which there is some open neighborhood

1This notion has been independently studied by Fornasiero in unpublished work [21].
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U 3 x with (U × V ) ∩D = ∅. The family of the CV ’s is definable. Let XV = X \ CV . Each
CV is open, so each XV is closed. If some XV is empty, then CV = X. In particular, for
every x ∈ X we have ({x} × V ) ∩D = ∅, so (X × V ) ∩D = ∅ and V is disjoint from π(D).
But then y ∈ V so y /∈ π(D), a contradiction. Therefore each XV is non-empty.

Note that if V ′ ⊆ V , then CV ⊆ CV ′ , so XV ′ ⊆ XV . Therefore, {XV }V ∈B is a filtered
collection of non-empty closed subsets of X. So there is some x ∈ ⋂V ∈BXV . Now for every
basic open neighborhood U × V 3 (x, y), if (U × V ) ∩D = ∅, then x ∈ CV , a contradiction.
So every basic open neighborhood of (x, y) intersects D. As D is closed, (x, y) ∈ D. Thus
x ∈ π(D).

Lemma 8.4.5. If X and Y are definably compact, then so is X × Y .

Proof. Let F be a definable filtered collection of non-empty closed subsets of X × Y . Let
π : X × Y → Y be the projection. By Lemma 8.4.4, π(F ) is closed for every F ∈ F . In
particular, {π(F )|F ∈ F} is a definable filtered collection of non-empty closed subsets of
Y . So there is some point y with y ∈ π(F ) for every F ∈ F . Now for each F ∈ F , let
GF = {x ∈ X : (x, y) ∈ F}. Then GF is non-empty and closed for every F ∈ F , and the
collection G := {GF}F∈F is a definable filtered collection of non-empty closed subsets. So
there is some x in ⋂F∈F GF . Then (x, y) ∈ ⋂F .
Lemma 8.4.6. If f : X → Y is a continuous definable surjection of definable topological
spaces, and X is definably compact, then so is Y .

Proof. Let F be a definable filtered collection of closed non-empty subsets of Y . Let f ∗F
be the collection

{f−1(F ) : F ∈ F}.
Then f ∗F is a definable filtered collection of closed non-empty subsets of X. So there is
some x ∈ ⋂F∈F f−1(F ). Equivalently, f(x) ∈ ⋂F .
Lemma 8.4.7. Let X be a Hausdorff definable topological space, and let D be a definable
subset of X. Suppose that D with the subspace topology is definably compact. If x /∈ D, then
there is an open neighborhood U of x with U disjoint from D.

Proof. Let B be a definable basis for the topology on X. Let F be the collection of sets
{U ∩D : x ∈ U ∈ B}. This is a filtered definable collection of closed subsets of D.

Note that if y ∈ D, then y 6= x and so by Hausdorffness we can find x ∈ U and y ∈ V
with U and V basic opens, and U ∩ V = ∅. This means that y /∈ U . So every point y ∈ D
is not in some U , meaning that ⋂F = ∅. By definable compactness of D, some element of
F must be empty. Therefore there is some open U 3 x with U ∩D = ∅.

Corollary 8.4.8. If X is a Hausdorff definable topological space, and D is a subset of X
which is definably compact (with the subspace topology), then D is closed.

Corollary 8.4.9. If X is a Hausdorff definable topological space, and X is definably compact,
then X is regular.
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Proof. If C is a closed subset of X and x ∈ X \ C, then C is compact (as we noted above),
so by Lemma 8.4.7, there is an open neighborhood U 3 x with U disjoint from C.

8.4.5 The o-minimal Setting
Now restrict to the setting of M eq, where M = (M,<, . . .) is an o-minimal structure. All
o-minimal structures will be dense, i.e., expand DLO. A definable topological space X in
M eq will be said to be locally Euclidean if every x ∈ X has a definable neighborhood U
which is definably homeomorphic to an open subset of Mn. The dimension n might vary
with x. The property of being locally Euclidean is preserved downwards but perhaps not
upwards in elementary extensions.

Lemma 8.4.10. Any closed interval [a, b] ⊆ M is definably compact (in the sense defined
above).

Proof. Let F be a definable filtered collection of non-empty closed subsets of [a, b]. For
F ∈ F , let xF be inf F . Note xF ∈ F , by closedness of F . The set D = {xF : F ∈ F} is
a definable subset of [a, b]; let y be supD. I claim that y ∈ ⋂F . If not, then y /∈ F0 for
some F0 ∈ F . As F0 is closed, there is some z < y such that [z, y] ∩ F0 is empty. Now as
y = supD, there must be some xF1 ∈ [z, y]. Take F2 ⊆ F1 ∩ F0. Because F2 ⊆ F1, we have
xF2 = inf F2 ≥ inf F1 = xF1 ≥ z. So z ≤ xF2 ≤ y, and xF2 ∈ F2 ⊆ F0. Therefore, F0 does
intersect [z, y], at at least the point xF2 . So we have a contradiction.

Corollary 8.4.11. Closed and bounded subsets of Mn are definably compact (in the sense
defined above).

Proof. Use Lemma 8.4.5

The converse is also true: if a subset X is definably compact, then it is closed and
bounded. It is closed by Corollary 8.4.8. If it is unbounded, then π(X) ⊆M1 is unbounded,
for some coordinate projection π : Mn → M1. But then π(X) is definably compact by
Lemma 8.4.6. However, an unbounded subset of M1 is not definably compact because of
the filtered collection of closed non-empty subsets obtained by intersecting with [a,∞) or
(−∞, a] for a ∈ M1. So the notion of definably compact that we are using agrees with the
usual notion in o-minimal structures.

Remark 8.4.12. If X ⊆ Mn is definable, then the frontier ∂X := X \X always has lower
dimension than X. Also, if X ⊆ Y ⊆ Mn, then the relative boundary bdY (X) of X as a
subset of the topological space Y , always has dim bdY (X) < dim Y .

Lemma 8.4.13. Let X be a definable topological space in M eq. Suppose that X is Hausdorff
and locally Euclidean. Then M is regular.
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Proof. Let C be a closed subset of X and x ∈ X \ C. Take some open neighborhood U
of x which is homeomorphic to an open subset of Mn. Shrinking U , we may assume that
U ∩ C = ∅. Suppose that U is homeomorphic to an open subset V ⊆ Mn via a definable
homeomorphism f . As f(x) is in the interior of V , we can find a closed box B with x ∈ Bint

and B ⊆ V . Now f−1(B) is definably compact, so it is closed as a subset of X, by Corollary
8.4.8. Also, f−1(Bint) is an open neighborhood of x. Its closure is contained in f−1(B)
which is contained in U . In particular, f−1(B) is an open neighborhood of x whose closure
is disjoint from C.

Definition 8.4.14. A definable manifold is a Hausdorff definable topological space X which
is locally Euclidean in all elementary extensions of the model.

This definition forces some uniformity in the manifold charts. It suffices to check the
local Euclideanity in some saturated elementary extension of the original model. Moreover,
because the property of being locally Euclidean uniformly must be witnessed by a definable
family of charts, the property of being locally Euclidean is expressible as a small disjunction
of first-order statements, and is consequently ind-definable in families.

Note by Lemma 8.4.13 that definable manifolds are always regular.

8.5 Quotients in o-minimal structures
Recall that if M is o-minimal, then M eq is a supperrosy structure of finite definable rank.
We will use dimX to refer to the rank of a definable set. We will use dim(a/b) to denote
the rank of a over b.

8.5.1 Statement of the Theorem
Fix some o-minimal structure M .

Theorem 8.5.1. Let Y ⊆ Mn be a definable set. Let E be a definable equivalence relation
on Y . Then there is some definable open subset Y ′ of Y such that dim(Y \Y ′) < dim Y , and
such that the natural quotient topology on Y ′/E is definable, Hausdorff, regular, and locally
Euclidean, and the map Y ′ → Y ′/E is an open map. Moreover, we may arrange that these
topological properties remain true in all elementary extensions.

Corollary 8.5.2. Let X be a definable set in M eq. Then X can be put in definable bijection
with a finite disjoint union of definably connected interpretable manifolds.

Proof. Write X as Y/E, with Y ⊆ Mn for some n. Proceed by induction on dim Y . The
base case where Y = ∅, is trivial. Assume Y is non-empty. By the Theorem, we can find
Y ′ such that Y ′/E is a definable manifold. The map Y ′ → Y ′/E is continuous, and Y ′

has finitely many definably connected components (by cell-decomposition), so Y ′/E also
has finitely many definably connected components. Each of these is a definably connected
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definable manifold. Letting π : Y → X be the natural quotient map, let X ′ = π(Y ′).
Then we have just put X ′ in definable bijection with a disjoint union of definably connected
definable manifolds. Also, X \X ′ can be written as a quotient of π−1(X \X ′). But

π−1(X \X ′) ⊆ Y \ Y ′

so dim(π−1(X \ X ′)) < dim Y . By induction, X \ X ′ can be put in definable bijection
with a finite disjoint union of definably connected interpretable manifolds. Writing X as
X ′
∐(X \X ′), we are done.

In proving Theorem 8.5.1, we may replace M with a saturated elementary extension—a
monster model. The topological properties other than local Euclideanity are all expressible
by first-order statements (because of the assumption that Y ′ → Y ′/E is open), and uni-
form local Euclideanity is a small disjunction of first-order statements, so if we can find a
satisfactory Y ′ in the monster, we can also find one in the original model M .

Henceforth, assume that M is a monster model. Work in M eq. Hold Y fixed. Let
π : Y → X be the projection. So the equivalence class of y is π−1(π(y)), for y ∈ Y . Denote
this by E(y), for simplicity.

If D is a definablet set in M eq, pDq will denote the code of D (as an element of M eq).
We will frequently use the following fact:

Remark 8.5.3. If U is an open subset of Mn, and p is a point in U , and S is some small
subset of M eq, then we can find an open neighborhood V with p ∈ V ⊆ U and with

SppUq
þ
|̂ pV q.

Indeed, we can take V to be an open box with generically chosen corners.
More generally, if Y is a definable set defined over some set T , and p ∈ Y is a point,

and U is an open subset of Y containing p, and S is a small subset of M eq, then we can find
a neighborhood V of p in Y with p ∈ V ⊆ U and with pV q |̂ þ

T
SppUq. Specifically, we can

take a random box, sufficiently small, and intersect it with Y .

The proof of Theorem 8.5.1 will proceed in several steps. At each step, we will replace Y
with an open subset Y ′ such that dim Y \ Y ′ < dim Y , in such a way that certain properties
will be true of Y ′. These properties will be preserved in each subsequent step.

8.5.2 Step 1: Pure-dimensional Equivalence Classes
Recall that if Z ⊆Mn is a definable set, then for z ∈ Z, we can discuss the local dimension
dimz Z of Z at z. This is dimU ∩ Z for U a sufficiently small open around z. The value
dimz Z is definable in families (as Z and z vary in a family).

Moreover, if z is a generic point in Z, then dimz Z = dimZ. Indeed, suppose Z is defined
over S, and dim(z/S) = dimZ. Take some U containing z such that dimU ∩ Z = dimz Z.
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By Remark 8.5.3 we can find V independent from z over S, with z ∈ V ⊆ U . Then
dim V ∩ Z = dimz Z. By the independence, dim(z/S) = dim(z/pV qS). But z is in the
pV qS-definable set V ∩ Z, so dim(z/pV qS) ≤ dim V ∩ Z = dimz Z. In particular,

dimz Z ≤ dimZ = dim(z/S) = dim(z/pV qS) ≤ dim V ∩ Z = dimz Z,

so dimz Z = dimZ.
Say that a set Z is pure-dimensional if dimz Z = dimZ for every z ∈ Z, or equivalently,

z 7→ dimz Z is a constant function on Z. Equivalently, every non-empty open subset of
Z has the same dimension as Z. Note that any open subset of a pure-dimensional set is
pure-dimensional.

Lemma 8.5.4. In the context of Theorem 8.5.1, there is an open subset Y ′ of Y with
dim Y \ Y ′ < dim Y , such that every equivalence class of E � Y ′ is pure-dimensional.

Proof. Let Z be the set of y ∈ Y such that dimy E(y) = dimE(y). Then Z is a definable
subset of Y . Any generic point y in Y is in Z. Indeed, let S be the set over which everything
is defined, and suppose y ∈ Y with dim(y/S) = dim Y . Let x = π(y), so π−1(x) is E(y),
the equivalence class of y. Then dim(y/Sx) = dimE(y); if not then taking y′ ∈ E(y) with
dim(y′/Sx) = dimE(y), we have dim(y′/Sx) > dim(y/Sx), and then

dim(y′/S) = dim(y′x/S) = dim(y′/xS) + dim(x/S)
> dim(y/xS) + dim(x/S) = dim(y/S) = dim Y,

which is absurd. Now since y is a generic point of E(y), we have dimy E(y) = dimE(y). So
y ∈ Z.

Since every generic point of Y is in Z, it follows that dim Y \ Z < dim Y . Let Y ′ be
Y \

(
Y \ Z

)
. Then

dim Y \ Y ′ ≤ dim Y \ Z ≤ dim Y \ Z < dim Y.

And Y ′ is an open subset of Y . Let E ′ be the restriction of E to Y ′. So if y ∈ Y ′, then
E ′(y) = E(y) ∩ Y ′. Since Y ′ is open,

dimE ′(y) ≥ dimy E
′(y) = dimy E(y) = dimE(y) ≥ dimE ′(y)

where the second equality holds because y ∈ Z. Thus dimy E
′(y) = dimE ′(y) for every point

y ∈ Y ′. So the equivalence classes of E ′ are pure-dimensional.

Consequently, replacing Y with Y ′ and X with π(Y ′), we may assume that every equiv-
alence class of E is pure-dimensional. In subsequent reductions, we will replace Y with
smaller open sets. Because open subsets of pure-dimensional sets are still pure-dimensional,
we will not lose the pure-dimensionality property.
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8.5.3 Step 2: Open quotients
Assume that every equivalence class of E is pure-dimensional.

Let S be a set over which Y and E are defined.

Lemma 8.5.5. Suppose y ∈ Y is generic, i.e., dim(y/S) = dim Y . Let B be an open subset
of Y , and suppose π(y) ∈ π(B). Then there is an open neighborhood U of y in B with
π(U) ⊆ π(B). We can take U to be a basic open neighborhood (i.e., an intersection of an
open box with Y ).

Proof. Since π(y) ∈ π(B), there is some y′ ∈ B with π(y) = π(y′). By Remark 8.5.3, take
some open neighborhood V of y′ such that V ⊆ B and

pV q
þ
|̂
S

pBqy.

Now π(y) = π(y′) ∈ π(V ) ⊆ π(B). Also, π−1(π(V )) is pV qS-definable. If Q is π−1(π(V )) ⊆
Y , then the boundary bdY (Q) of Q as a subset of Y has dimension less than dim Y , by
Remark 8.4.12. In particular, dim(y/pV qS) = dim(y/S) > dim bdY (Q), so y /∈ bdY (Q). As
y ∈ Q, we see that some open neighborhood U of y in Y is contained in Q. Thus y ∈ U and
π(U) ⊆ π(V ) ⊆ π(B). We can take U to be basic by shrinking it.

Let Z be the set of all y ∈ Y with the following property: if B is a basic open set in
Y and π(y) ∈ π(B), then there is a basic open U containing y, with π(U) ⊆ π(B). By the
Lemma, every generic point of Y is in Z, so dim Y \ Z < dim Y . Let W = Y \ Z. Let
R ⊆ X be those x for which dim π−1(x) ∩W = dim π−1(x). Let W ′ be W ∪ π−1(R). Let
Z ′ = Y \W ′.

Now for each x ∈ X, one of the following holds:

• x ∈ R. Then π−1(x) ⊆ W ′, and x /∈ π(Z ′). Also, π−1(x) ∩W ′ = π−1(x) has the same
dimension as π−1(x) ∩W , by definition of R. In this case, x /∈ π(Z ′).

• x /∈ R. Then π−1(x) is disjoint from π−1(R), so π−1(x) ∩W ′ equals π−1(x) ∩W and
has lower dimension than π−1(x).

Either way, π−1(x)∩W ′ and π−1(x)∩W have the same dimension. Since this holds for every
x, dimW ′ = dimW . Also, we see from this dichotomy that

If x ∈ π(Z ′), then dim π−1(x) ∩W ′ < dim π−1(x). (8.2)

Claim 8.5.6. The restriction of E to Z ′ is an open equivalence relation.

Proof. Let X ′ be π(Z ′) and let τ : Z ′ → X ′ be the restriction of π to Z ′. We need to
show that for B a basic open subset of Y , τ−1(τ(B ∩ Z ′)) is an open subset of Z ′. Suppose
y ∈ τ−1(τ(B ∩ Z ′)). Because y ∈ Z ′ ⊆ Z, there is some open neighborhood U 3 y of y in
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Y such that π(U) ⊆ π(B). It suffices to show that U ∩ Z ′ is in τ−1(τ(B ∩ Z ′)), i.e., that
τ(U ∩ Z ′) = π(U ∩ Z ′) is a subset of τ(B ∩ Z ′) = π(B ∩ Z ′).

π(U ∩ Z ′)
?
⊆ π(B ∩ Z ′).

Clearly
π(U ∩ Z ′) ⊆ π(B) ∩ π(Z ′),

so it suffices to show that π(B) ∩ π(Z ′) ⊆ π(B ∩ Z ′). Suppose x ∈ π(B) ∩ π(Z ′). Because
B is open, B ∩ π−1(x) is an open subset of π−1(x). By the previous section, π−1(x) is
pure-dimensional. So dimB ∩ π−1(x) = dim π−1(x). Since x ∈ π(Z ′), by (8.2), we have that

dim π−1(x) ∩W ′ < dim π−1(x) = dimB ∩ π−1(x).

So some point z ∈ B ∩ π−1(x) is not in W ′, i.e., it is in Z ′. Then z ∈ B ∩ Z ′ and π(z) = x,
so x ∈ π(B ∩ Z ′). As x was arbitrary, π(B) ∩ π(Z ′) ⊆ π(B ∩ Z ′).

Now let Y ′ be Y \W ′. So

dim Y \ Y ′ ≤ dimW ′ ≤ dimW ′ ≤ dimW < dim Y.

Also, Y ′ is an open subset of Y , and Y ′ ∩ Z ′ = Y ′ is an open subset of Z ′. By Remark
8.4.3(a) applied to E � Z ′ and E � Y ′, the restriction of E to Y ′ is an open equivalence
relation on Y ′.

Therefore, replacing Y with Y ′ and X with π(Y ′), we may assume that E is an open
equivalence relation. Note that the equivalence classes of E on Y ′ are open subsets of the
equivalence classes on Y , so they remain pure-dimensional.

So we may assume that the equivalence classes of E are pure-dimensional, and that E
is an open equivalence relation. By Remark 8.4.3(b), the topology on Y/E = X is now
definable. Moreover, if we subsequently replace Y with an open subset Y ′, then π(Y ′) will
have the subspace topology from X, by Remark 8.4.3(c).

8.5.4 Step 3: Separation axioms
Let F = ⋃

x∈X ∂π
−1(x).

Claim 8.5.7. dimF < dim Y .

Proof. Let S be a set over which Y , E, F are defined. Take z ∈ F with dim(z/S) = dimF .
Then z ∈ ∂π−1(x) for some x ∈ X. Let y ∈ π−1(x) have dim(y/xS) = dim π−1(x). Now

dimF = dim(z/S) ≤ dim(zx/S) = dim(z/xS) + dim(x/S) ≤ dim ∂π−1(x) + dim(x/S)
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Because the frontier of a set always has lower dimension than the set itself,

dim ∂π−1(x) + dim(x/S) < dim π−1(x) + dim(x/S)
= dim(y/xS) + dim(x/S)
= dim(xy/S).

But x = π(y) ∈ dcl(Sy), so

dim(xy/S) = dim(y/S) ≤ dim Y.

Putting everything together, dimF < dim Y .

Consequently, dimF < dim Y . Let Y ′ be Y \ F . For any y ∈ Y ′, E(y) ∩ Y ′ is a closed
subset of Y ′: if not, then there is z ∈ Y ′∩E(y)\E(y) = Y ′∩∂E(y) ⊆ Y ′∩F = ∅. Replacing
Y by Y ′ and X by π(Y ′), we may therefore assume that the equivalence classes are closed.
This preserves the properties obtained above, that the equivalence relation is open and that
the equivalence classes are pure-dimensional.

Therefore, we may assume that the equivalence classes are closed (as subsets of Y ), on
top of the assumptions that the equivalence relation is open and the equivalence classes are
pure dimensional. In terms of the quotient topology on X, we have arranged that singletons
in X are closed.2

The next step is to make the topology on X be Hausdorff. Say that x, x′ in X can
be separated by neighborhoods if there exist open neighborhoods V 3 x, V ′ 3 x′ with
V ∩ V ′ = ∅. Let H ⊆ X consist of those x which can be separated by neighborhoods from
every x′ 6= x. Then H is a definable set.

Claim 8.5.8. Let S be a set over which Y,E,H are defined. If y ∈ Y has dim(y/S) = dim Y ,
then π(y) ∈ H.

Proof. Let x = π(y). Suppose x′ ∈ X is not equal to x. Write x′ as π(y′) for some y′ ∈ Y .
Then y′ /∈ E(y). We arranged that E(y) is closed (as a subset of Y ). Therefore there is a
basic open neighborhood U ′ 3 y′ such that U ′ ∩ E(y) = ∅. By Remark 8.5.3, we can shrink
U ′ a bit, and arrange that

pU ′q
þ
|̂
S

yy′.

Then dim(y/pU ′qS) = dim(y/S) = dim Y . Let Q = π−1(π(U ′)); this is pU ′qS-definable.
As U ′ ∩ E(y) = ∅, y /∈ Q. By Remark 8.4.12, dim bdY (Q) < dim Y = dim(y/pU ′qS), so
y /∈ bdY (Q). Therefore some neighborhood of y is not in Q. Let U be this neighborhood.
Then U ∩ π−1(π(U ′)) = ∅, so π(U) ∩ π(U ′) = ∅. But π(U) is an open neighborhood of
π(y) = x, and π(U ′) is an open neighborhood of π(y′) = x′. So we have separated x and x′.
As x′ was arbitrary, x ∈ H.

2In other words, the topology on X is now T1.
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It follows that dim Y \ π−1(H) < dim Y . Let Y ′ be Y \ (Y \ π−1(H)). Then Y ′ is an
open subset of Y , and dim Y \ Y ′ < dim Y . Also, X ′ := π(Y ′) is a subset of H, and the
quotient topology on X ′ as a quotient of Y ′ is the subspace topology from X. Since each
point of X ′ can be separated by neighborhoods from any other point in X, it follows that
X ′ is Hausdorff.

Replacing Y with Y ′ and X with X ′, we may therefore assume that the quotient topology
is Hausdorff, on top of the assumptions that the equivalence classes are pure-dimensional
and the equivalence relation is open. If we subsequently replace Y with a smaller open set,
all these properties will be preserved.

8.5.5 Step 4: Local Euclideanity
Lemma 8.5.9. If g is a definable function X → Mm, and g ◦ π : Y → X → Mm is
continuous at some y ∈ Y , then g is continuous at π(y).

Proof. Given an open neighborhood U around g(π(y)), there is an open neighborhood V
around y such that g(π(V )) ⊆ U , by definition of continuity. Then V ′ = π(V ) is an open
neighborhood of π(y), because π is open. So V ′ is an open neighborhood of π(y) and
g(V ′) ⊆ U . As U was arbitrary, g is continuous at π(y).

Lemma 8.5.10. If Y,E are definable over some set T and if f : X →Mm is a T -definable
function and if x ∈ X is the image under π of a generic point y ∈ Y (over T ), then f is
continuous at x. In fact, it is continuous on a neighborhood of x.

Proof. By cell decomposition, f◦π is continuous at y. By the previous lemma, f is continuous
at x. Now let f ′ : X →M1 be the characteristic function of where f is continuous. Applying
this argument to f ′ in place of f , we see that f ′ is locally constant around x, and so f is
continuous on a neighborhood of x.

If A is a definable (i.e., interpretable) topological space, definable over a set T , say that
a point α ∈ A is nice if every T -definable function f : A → Mn is continuous at α. By
the argument in the proof of the previous lemma, this also implies that every T -definable
function f : A→Mn is continuous on a neighborhood of α, and that any T -definable subset
D of A has x /∈ bd(D).

• If Y and E are T -definable, and y ∈ Y has dim(y/T ) = dim Y , then π(y) ∈ X is a
nice point of X, by Lemma 8.5.10.

• If Z is some T -definable subset of Mn, and z ∈ Z has dimZ = dim(z/T ), then z is a
nice point of Z. This follows by cell decomposition (z cannot be in the closure of any
cell other than the top-dimensional cell which it belongs to).

Lemma 8.5.11. Let A and B be two definable topological spaces, definable over a set T .
Suppose that f : A → B is a continuous T -definable function. Suppose that A ⊆ Mm for
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some m. Suppose that α is a nice point of A and f(α) is a nice point of B. Suppose that α
and f(α) are inter-definable over T . Then some definable neighborhood of α in A is definably
homeomorphic via f to some definable neighborhood of f(α) in B.

Proof. Let β be f(α), and write α = g(β) for some T -definable function g. Let Γ be the set
of pairs (a, b) ∈ A × B such that b = f(a), a = g(b), and g is continuous at b. Note that
(α, β) ∈ Γ. Indeed, since A ⊆ Mm, the T -definable function g : B → A ⊆ Mm must be
continuous at β, because β is nice. Now let A′ be the projection of Γ to A, and B′ be the
projection of Γ to B. So f � A′ is a continuous bijection from A′ to B′, and the inverse is the
continuous bijection g � B′. In particular, f induces a homeomorphism from A′ to B′. As α
is nice and A′ is T -definable, α is not in the boundary of A′. So we can find some definable
open neighborhood U of α such that α ∈ U ⊆ A′. Similarly, we can find some definable
open neighborhood V of β such that β ∈ V ⊆ B′. Then f induces a homeomorphism from
U ∩ g(V ) to f(U)∩V . But g(V ) is a relatively open subset of A′, so U ∩ g(V ) is a relatively
open subset of U ∩ A′ = U , hence open as a subset of A. Similarly, f(U) ∩ V is an open
neighborhood of β in B. Therefore α and β have definably homeomorphic definable open
neighborhoods, with the homeomorphism induced by f .

Lemma 8.5.12. If y ∈ Y is generic (i.e., dim(y/S) = dim Y ), then X is locally Euclidean
around π(y).

Proof. Let x = π(y). Let k = dim(y/Sx). Some k of the coordinates of y form a basis for
the tuple ~y in the dclSx(−) pregeometry. Permuting the coordinates, we may assume that
y1, . . . , yk form a basis for ~y. Then y ∈ dcl(Sxy1, . . . , yk). As

k ≥ dim(y1, . . . , yk/S) ≥ dim(y1, . . . , yk/Sx) = k,

we have y1 . . . yk |̂
þ
S
x. Let T be S ∪ {y1, . . . , yk}. Then y and x are interdefinable over T .

Let Y ′ be the set of y′ ∈ Y whose first k coordinates agree with those of y. Note that
Y ′ is T -definable. Note that π � Y ′ is a T -definable continuous functoin from Y ′ to X, and
that y and π(y) = x are interdefinable over T . We can apply Lemma 8.5.11 with A = Y ′,
B = X, f = π, and α = y assuming we prove the following:

• x is a nice point of X (with respect to T ).

• y is a nice point of Y ′ (with respect to T ).

Take y′ ∈ π−1(x) = E(y) with dim(y′/y) = dimE(y). As E(y) is Sx-definable,

dim(y′/Sx) = dimE(y)

and y′ |̂ þ
Sx
y. By monotonicity, y′ |̂ þ

Sx
T . As x |̂ þ

S
T , transitivity yields xy′ |̂ þ

S
T . In

particular, dim(y′/T ) = dim(y′/S). Now

dim(y′/S) = dim(y′/Sx) + dim(x/S) = dimE(y) + dim(x/S)
≥ dim(y/Sx) + dim(x/S) = dim(y/S) = dim Y,
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so dim(y′/T ) ≥ dim Y . Therefore, y′ is a generic point in Y as far as T is concerned. It
follows by Lemma 8.5.10 that π(y′) = x is nice, with respect to T .

Meanwhile, y is a nice point of Y ′ because dim(y/T ) = dim Y ′. Indeed, take y′′ ∈ Y ′

with dim(y′′/T ) = dim Y ′. Then the first k coordinates of y′′ are y1, . . . , yk, so T ∈ dcl(Sy′′).
Thus

dim(y′′/S) = dim(y′′/T ) + dim(T/S) = dim Y ′ + dim(T/S)
≥ dim(y/T ) + dim(T/S) = dim(y/S) = dim Y.

Since y′′ ∈ Y and Y is S-definable, equality must hold. Then dim(y/T ) = dim Y ′. It follows
that y is a nice point of Y ′.

So Lemma 8.5.11 applies. In particular, π induces a homeomorphism from some open
neighborhood of y in Y ′ to some open neighborhood of y in X. It remains to show that some
open neighborhood of y in Y ′ is Euclidean. But this is clear, using the cell-decomposition
of the T -definable set Y ′, and the fact that dim(y/T ) = dim Y ′. (This ensures that y is in a
top-dimensional cell, and is not in the closure of any lower-dimensional cell. Consequently,
Y ′ looks like the interior of a cell, around the point y.)

Now let Q be the set of points y ∈ Y such that X is locally Euclidean around π(y).
Then Q is ind-definable (the complement of a type-definable set). We have just seen that Q
contains the type-definable set {y ∈ Y : dim(y/S) = dim Y }. By compactness, there must
be some definable set D ⊆ Y such that

{y ∈ Y : dim(y/S) = dim Y } ⊆ D ⊆ Q

The first inclusion implies that dim Y \D < dim Y . Letting Y ′ = Y \ Y \D, we get that Y ′
is an open subset of Y , Y \ Y ′ has lower dimension than dim Y , and Y ′ ⊆ Q, so that the
topology on π(Y ′) is locally Euclidean. As usual, we replace Y with Y ′ and X with π(Y ′).

At this point we ensured that the topology is definable, Hausdorff, and locally Euclidean.
By Lemma 8.4.13, we regularity also holds. This completes the proof of Theorem 8.5.1.
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Chapter 9

VC-minimal and dp-minimal fields

9.1 Introduction
A common goal in model theory is the classification of algebraic structures that satisfy
some combinatorial condition. For example, there are various conjectures and programs to
classify groups of finite Morley rank, strongly minimal sets, or stable fields. In some cases,
unqualified classifications are known, like Cherlin and Shelah’s theorem that superstable
fields are algebraically closed [8].

However, many classifications seem to require additional topological assumptions. For
example, Zilber’s conjecture—that sufficiently rich strongly minimal sets interpret fields—is
true if the strongly minimal set is endowed with a Zariski-like topology, but false in general
[37], [31].

In fact, many of model theory’s greatest successes have been in settings like o-minimality
and valuation theory, where there are “built-in” topologies. There are few instances where
a useful topology can be produced from scratch, using nothing more than combinatorial
assumptions on an algebraic structure.

This chapter is about an instance where a topology does appear out of thin air.

9.1.1 VC-minimality and dp-minimality
Several “minimality” properties have been defined by restricting the behavior of unary de-
finable sets. For example, a theory is strongly minimal if every unary definable set is finite
or cofinite, and o-minimal if every unary definable set is a finite union of intervals and
points. These minimality notions play basic roles in classification theory, groups of finite
Morley rank, the model theory of real exponentiation, and the model theoretic treatment of
Berkovich spaces [34] among other things.

Adler’s [2] notion of VC-minimality is a common weakening of many of these properties.

Definition 9.1.1. A complete theory T is VC-minimal if there is a family B of unary
definable sets such that
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• B is a union of 0-definable families.

• Every unary definable set is a finite boolean combination of sets in B.

• Whenever two members of B intersect, one contains the other.

This can be seen as a generalization of C-minimality, thinking of B as the class of balls.
In fact, all o-minimal, strongly minimal, weakly o-minimal, and C-minimal theories are
VC-minimal [2].

An even weaker condition is dp-minimality, defined by Shelah but isolated as an inter-
esting notion by Onshuus and Usvyatsov [66], [56].

Definition 9.1.2. A complete theory T is not dp-minimal if there is a model M |= T ,
elements aij ∈M and uniformly definable unary definable sets Xi, Yj ⊆M for i, j < ω such
that

aij ∈ Xi′ ⇐⇒ i = i′

aij ∈ Yj′ ⇐⇒ j = j′

for all i, j, i′, j′.

There is a more general notion of dp-rank that is somewhat well-behaved in NIP theories
[41] (see 9.2.2 below). A theory is dp-minimal if the home sort has dp-rank 1 (or less).

If we change the definition of dp-minimal by requiring only the Yj’s (but not the Xi’s)
to be uniformly definable, then we get Guingona’s notion of dp-smallness, which is weaker
than VC-minimality and stronger than dp-minimality.

We summarize the implications between some of these “minimality” properties below:

weakly o-minimal +3 VC-minimal +3 dp-small +3 dp-minimal +3 NIP

o-minimal

KS

strongly minimal

KS

C-minimal

em

p-minimal

KS

9.1.2 Main results
Our first main result puts a canonical definable topology on almost all dp-minimal fields.

Theorem 9.1.3. Let (K,+, ·, . . .) be an infinite field, possibly with extra structure. Suppose
K is dp-minimal but not strongly minimal. Then

{X −X : X ⊆ Kdefinable and infinite}

is a neighborhood basis of 0 for a Hausdorff non-discrete field topology on K. This topology
has the following properties:
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1. If 0 /∈ X, then 0 /∈ X ·X for X ⊆ K.

2. There is a definable basis of open sets.

3. Any definable set has finite boundary.

We call this topology the canonical topology on K.
Condition 1 says that the field topology is a V-topology. By a theorem of Kowalsky and

Dürbaum [43], this means that the topology arises from a non-trivial valuation or absolute
value on K.

Condition 2 means that the topology is definable.1 The valuation or absolute value
defining the topology need not be definable (or even unique), but the following is true:

Theorem 9.1.4. Let (K,+, ·, . . .) be a field, perhaps with additional structure. Suppose K
is dp-minimal. Let O be the intersection of all 0-definable valuation rings on K. Then

1. O is itself a valuation ring, possibly trivial (i.e., O might equal K).

2. Either O = K, or K is unstable and O induces the canonical topology on K.

3. O is henselian and defectless.

4. The residue field of O is finite, algebraically closed, or real closed.

Part (4) relies crucially on Jahnke and Koenigsmann’s work on defining canonical p-
henselian valuations [38].

With a little more work, we obtain a classification of dp-minimal pure fields up to ele-
mentary equivalence. Before stating it, we fix some notation. If (K, v) is a valued field, let
Kv denote the residue field and vK denote the value group. If Γ is an ordered abelian group
and p is prime, let Intp Γ denote the maximal convex p-divisible subgroup of Γ.

Theorem 9.1.5 (Classification of dp-minimal fields).

1. Let Γ be an ordered abelian group such that Γ/nΓ is finite for all n > 1.

a) Let k be a local field of characteristic 0. The theory of henselian valued fields
(K, v) with vK ≡ Γ and Kv ≡ k is complete and dp-minimal.

b) If p is a prime and Γ = Intp Γ, then the theory of henselian defectless characteristic
p valued fields (K, v) with vK ≡ Γ and Kv |= ACFp is complete and dp-minimal.

c) If p is a prime and 0 < a ∈ Intp Γ, then the theory of characteristic 0 henselian de-
fectless valued fields (K, v) with Kv |= ACFp and (vK, v(p)) ≡ (Γ, a) is complete
and dp-minimal.

1We will use “definable topology” to mean a topology in which there is a definable basis of opens. In
§3.2 of [34], a more general notion is defined (having an ind-definable basis), and the notion we have just
given is called “definable in the sense of Ziegler,” after [72]. The only definable topologies we consider will
be those in the sense of Ziegler.



CHAPTER 9. VC-MINIMAL AND DP-MINIMAL FIELDS 103

2. If F is a pure field which is infinite and dp-minimal, then Th(F ) is the reduct to the
language of rings of one of the above theories, for some Γ, k, p, a.

Corollary 9.1.6. An infinite field K of characteristic p > 0 is dp-minimal if and only if it
is elementarily equivalent to a Hahn series field Falgp ((tΓ)) where Γ is a p-divisible ordered
abelian group with Γ/nΓ finite for all n > 0.

In characteristic 0, case 1a consists of exactly the fields elementarily equivalent to K((tΓ))
where K is a characteristic 0 local field and Γ/nΓ is finite for all n. However, there seems to
be no clean way to describe case 1c, which includes annoyances like the spherical completions
of

Qun
p (p1/p, p1/p2

, p1/p3
, . . .),

where Qun
p is the maximal unramified extension of Qp.

Specializing to the case of dp-small fields, the results are much better:

Theorem 9.1.7. Let K be an infinite field, possibly with extra structure.

1. If K is VC-minimal (or dp-small), then K is real closed or algebraically closed.

2. If K is C-minimal, then K is algebraically closed.

3. If K is weakly o-minimal, then K is real closed.

In Case 2, we mean C-minimal in the sense of [28], rather than Delon’s more general
definition in [13] which inclues theories like RCF . Note that Cases 2 and 3 are exactly the
main results of [28] and [50], except that we have generalized slightly: we do not assume any
compatibility between the field operations and the C-predicate or ordering.

9.1.3 Previous work on dp-minimal fields
Dolich, Goodrick, and Lippel showed that Qp is dp-minimal [15]. Goodrick [23] and Simon
[68] proved some results concerning divisible ordered dp-minimal groups: Goodrick proved
an analogue of the monotonicity theorem for o-minimal structures, and Simon proved that
infinite sets have non-empty interior. Building off their work, as well as [50], Guingona
proved that VC-minimal ordered fields are real closed [24].

Very recently, Walsberg, Jahnke, and Simon have classified dp-minimal ordered fields
[39], among other things. In the process they obtained some of the results described below—
they proved most of the classification result (Theorem 9.1.5) modulo Theorem 9.1.3 (see
Propositions 7.4 and 8.1 in [39]).

Theorem 9.1.3 implies that stable dp-minimal infinite fields are strongly minimal. This
strengthens an earlier result of Krupiński and Pillay, who proved that certain stable fields,
including infinite dp-minimal stable fields, are algebraically closed (Corollary 2.4 in [46]).



CHAPTER 9. VC-MINIMAL AND DP-MINIMAL FIELDS 104

9.1.4 Outline
In §9.2.1 we review some basic facts about the model theory of topological fields. In §9.2.2
we review the basics of dp-rank. With these preliminaries out of the way, we show that
dp-minimal fields admit definable topologies in §9.3. Sections 9.3.1-9.3.2 show that there
is a topology on the additive group, and sections 9.3.3-9.3.4 show that the topology is a
definable V-topology. For some reason, the main technical step is a proof that there are a
bounded number of infinitesimal types, which is done in §9.3.3.

With the topology obtained, we show in §9.4 that the valuation ring associated to the
infinitesimals is henselian (equivalently, the topology is “t-henselian”). Along the way, we
see that dp-rank of definable sets is definable in families, in §9.4.1.

In §9.5, we combine our results with the canonical p-henselian valuation machinery of
[38], completing most of the proof of the classification theorem for dp-minimal fields. At
this point, we have proven enough to classify VC-minimal, densely C-minimal, and weakly
o-minimal fields. We do so in §9.6.

Finally, in §9.7, we quickly finish the proof of the classification theorem. Section 9.8 uses
this to characterize the pure dp-minimal valued fields. In §9.9, we discuss open questions
and potential future research directions.

9.1.5 Notations and conventions
In a topological space, closure and interior will be denoted X and X int. If K is a field, Kalg

and Ksep will denote the algebraic closure and separable closure, and K× will denote the
multiplicative group of K. If (K, v) is a valued field, vK will denote the value group, Kv will
denote the residue field, O will denote the valuation ring, and m will denote the maximal
ideal of O. If α ∈ K, then res(α) will denote the residue of α, v(α) will denote the valuation
of α, and rv(α) will denote the image of α in K×/(1 + m).

We will use M to denote monster models. The symmetric difference of two sets S and
T will be written S4T . We will write expressions like aS, ST , or Ta rather than {a} ∪ S,
S ∪ T , and T ∪ {a}. Multiplication will always be written explicitly, like a · S, S · T , and so
on. A code for a definable set D will be written pDq. A collection of sequences is mutually
indiscernible if each is indiscernible over the union of the others. We will say “a is from M”
to mean that a is a tuple from M ; variables will not be singletons unless stated explicitly. If
ϕ and ψ are statements, ϕ 6⇐⇒ ψ will mean that exactly one of ϕ and ψ is true.

Valuations on fields can be trivial. Topologies need not be Hausdorff, but group topolo-
gies, ring topologies, field topologies, and V-topologies will always be Hausdorff, though
possibly discrete.

9.2 Background material
We first review some background material on field topologies §9.2.1 and dp-rank §9.2.2.
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9.2.1 Topologies and type-definable sets
For us, group topologies and field topologies are Hausdorff topologies such that the group
and field operations (including inversion) are continuous on their domains. Unlike [61] we
consider the discrete topology as a valid group topology or field topology. We will use X
and X int to denote the closure and interior of a set X in a topological space.

In a topological field K, say that a subset X ⊆ K is bounded away from 0 if 0 /∈ X. A
field topology is of type V, or a V-topology, if X · Y is bounded away from 0 whenever X
and Y are bounded away from 0.

The topologies arising from valuations, orderings, and absolute values are all V-topologies.
In fact, a theorem of Kowalsky and Dürbaum [43] says that all V-topologies arise from
absolute values and valuations. A simple example of a field topology which is not a V-
topology is the subspace topology on Q induced by the diagonal embedding Q → R × Q2.
In this topology the sets 3Z and 2Z are bounded away from 0, but their product is not.

Fix a field K and let N be a family of subsets of K. Consider the following axioms on
N , adapted from [61]:

(A0) ∀U, V ∃W W ⊆ U ∩ V

(A1) ∀U 0 ∈ U

(A2) ∀U∃V V − V ⊆ U

(A3) ∀x 6= 0∃U x /∈ U

(A4) ∀U∃x 6= 0 x ∈ U

(A5) ∀U, x∃V x · V ⊆ U

(A6) ∀U∃V V · V ⊆ U

(A7) ∀U∃V (1 + V )−1 ⊆ 1 + U

(A8) ∀U∃V ∀x, y x · y ∈ V =⇒ (x ∈ U ∨ y ∈ U)

Here, uppercase variables range over N and lowercase variables range over K.
Then N is a neighborhood basis of 0 for a group topology on (K,+) if and only if axioms

(A0-A3) hold. If so, then. . .

• The topology is non-discrete if and only if axiom (A4) holds.

• The topology is a ring topology if and only if axioms (A5-A6) hold

• The topology is a field topology if and only if axioms (A5-A7) hold

• The topology is a V-topology if and only if axioms (A5-A8) hold.
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Say that a family N of sets is (downward) directed2 if it satisfies axiom (A0). Assuming
directedness, the other axioms have a non-standard interpretation.

To wit, suppose that K = (K, ·,+, . . .) is an expansion of a field, the elements of N are
definable subsets of K, and M � K is a |K|+-saturated elementary extension. Let I be the
type-definable set of “infinitesimals”

I =
⋂
U∈N

U(M)

If N is directed, then axioms (A1-A8) are equivalent to the following statements about
I, respectively:

(A1) 0 ∈ I

(A2) I − I ⊆ I

(A3) I ∩K× = ∅

(A4) I ∩M× 6= ∅

(A5) K · I ⊆ I

(A6) I · I ⊆ I

(A7) (1 + I)−1 ⊆ 1 + I

(A8) (M \ I) · (M \ I) ⊆M \ I

Many of these statements are algebraic statements about I: for instance axioms (A1) and
(A2) say that I is a subgroup of M. Taken together, the axioms say that I is the maximal
ideal of a non-trivial valuation ring containing K.

We will build our topologies on dp-minimal fields by finding a directed family N , con-
sidering the set of “infinitesimals,” and showing that it has enough nice algebraic properties.
Theorem 9.2.4 below is the black box we will use.

Lemma 9.2.1. Suppose K expands a field, M is a |K|+-saturated elementary extension, and
J1, J2 ⊆M are type-definable over K. Suppose J1 and J2 are closed under multiplication by
K. If a · J1 ⊆ J2 for some a ∈M×, then J1 ⊆ J2.

Proof. Let U be any K-definable set containing J2. We will show J1 ⊆ U .
As a · J1 ⊆ J2 ⊆ U , we have an implication

x ∈ J1 =⇒ a · x ∈ U
2This is not related to the notion of “directed” used to define VC-minimality in [2].
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Compactness yields a K-definable neighborhood V ⊇ J1 such that

x ∈ V =⇒ a · x ∈ U

As K �M, we can find a′ ∈ K having the same property as a:

x ∈ V =⇒ a′ · x ∈ U

Then
J1 = a′ · J1 ⊆ a′ · V ⊆ U

As U was an arbitrary neighborhood of J2, we conclude J1 ⊆ J2.

Recall that a topology is definable if there is a (uniformly) definable basis of opens.

Lemma 9.2.2. Suppose K is an expansion of a field and N is a collection of unary definable
sets which determines a non-trivial V-topology. Then there is at least one set B such that
0 ∈ Bint and 0 /∈ B−1. If B is any such set, then

{a ·B : a ∈ K×}

is a neighborhood basis of 0.

Proof. Let M be a |K|+-saturated elementary extension, and let I be the infinitesimals.
Then I satisfies axioms (A1-A8) above. Because 1 /∈ I, by axiom (A3), and M \ I is closed
under multiplication, by axiom (A8), we have the implication

x ∈ I =⇒ x−1 /∈ I

For a K-definable set B, the condition that 0 ∈ Bint and 0 /∈ B−1 is equivalent to the
implication

x ∈ I =⇒ x ∈ B =⇒ x−1 /∈ I
for x ∈M. We can find a B with this property by compactness (as I is type-definable). Now
suppose we have such a B.

Now I ⊆ B, so B is a neighborhood of 0. As I is closed under multiplication by K, by
axiom (A5), I ⊆ a ·B for any a ∈ K×. So each set a ·B is a neighborhood of 0.

We claim that {a · B : a ∈ K×} is a neighborhood basis of 0. Let U ∈ N be any
neighborhood in the given basis N . Let ε be a non-zero element of I, which exists by
non-discreteness axiom (A4). Then for x ∈M, we have the following implications

x ∈ B =⇒ x−1 /∈ I ∗=⇒ ε · x ∈ I =⇒ ε · x ∈ U

where the starred implication holds because M \ I is closed under multiplication, by axiom
(A8).

So ε · B ⊆ U . As tp(ε/K) is finitely satisfiable in K, there is some a ∈ K× such that
a ·B ⊆ U . This shows that the rescalings of B form a neighborhood basis of 0.
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Lemma 9.2.3. Suppose K is an expansion of a field and N is a collection of unary definable
sets which determines a V-topology. Then this topology is definable.

Proof. If the topology is non-discrete, then Lemma 9.2.2 yields a definable basis of neighbor-
hoods around 0. Translating, there is a definable basis of neighborhoods around each x ∈ K,
uniformly definable across x. This implies that the interior of any definable set is definable.
We can thus convert the given neighborhoods into open neighborhoods. Now the union of
all the definable bases of open neighborhoods is a basis of open sets for the topology.

If the topology is discrete, then the singletons are a definable basis of opens.

Theorem 9.2.4. Let K be an expansion of a field, and let N be a directed family of definable
subsets of K. Let M � K be a |K|+-saturated elementary extension, and let

I =
⋂
U∈N

U(M)

1. Suppose the following hold:

a) I is a subgroup of (M,+)
b) Every member of N is infinite
c) I is closed under multiplication by K
d) Some member of N has non-empty complement.

Then N determines a non-discrete group topology on (K,+).

2. Suppose the following additional conditions hold:

a) 1 + I is a subgroup of M×.
b) For every a ∈M, either a · I contains I or vice versa.

Then N determines a definable non-discrete V-topology, and I is the maximal ideal of
a non-trivial valuation ring O on M, with O ⊇ K.

Proof.

1. For N to determine a non-discrete group topology, it must be directed (which is given),
and I must satisfy axioms (A1-A4) above:

• 0 ∈ I holds because I is a subgroup
• I − I ⊆ I holds because I is a subgroup
• As I is closed under multiplication by K, the intersection I ∩ K is an ideal in
K, so it is either 0 or K. By assumption, there is some U ∈ N with non-empty
complement. Then U(K) 6= K, so I∩K ( K. Thus I∩K = {0}, and I∩K× = ∅.
• I ) {0} because N is directed and every member of N is infinite.
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2. Assume that all conditions from 1. and 2. hold.

Claim 9.2.5. I is closed under multiplication.

Proof. By assumption, 1 + I is closed under multiplication and I is closed under sub-
traction. So

x, y ∈ I =⇒ (1 + x)(1 + y) ∈ 1 + I =⇒ x+ y + xy ∈ I =⇒ xy ∈ I.

Therefore I is closed under multiplication.

Set
O = {x ∈M : x · I ⊆ I}

Then

• O is trivially closed under multiplication, and contains 1.
• O is closed under addition and subtraction because I is. Therefore O is a subring

of M.
• I ⊆ O because I is closed under multiplication. So I is an ideal in O.
• Because I satisfies axiom (A3), 1 /∈ I. So I is a proper ideal of O.
• For every a ∈M×, either a or a−1 is in O by assumption 2b. So O is a valuation

ring.
• The valuation ring O is non-trivial (not equal to M), because I is a non-trivial

proper ideal.
• By assumption 1c, K · I ⊆ I, so K ⊆ O.

Let v : M→ Γ be the valuation associated to O. Because I is an ideal

v(x) ≤ v(y) =⇒ (x ∈ I =⇒ y ∈ I)

Claim 9.2.6. M \ I is closed under multiplication

Proof. Let J = {x ∈ M : x2 ∈ I}. This is type-definable over K because I is. Also, J
is closed under multiplication by K because I is. Note that

x ∈ J =⇒ x2 ∈ I =⇒ v(x2) ≥ 0 =⇒ v(x) ≥ 0 =⇒ x ∈ O

so J ⊆ O. Choosing nonzero a ∈ I, we have

a · J ⊆ a · O ⊆ I

By Lemma 9.2.1, J ⊆ I.
Now suppose x, y ∈ M \ I but xy ∈ I. Without loss of generality, v(x) ≤ v(y). Then
v(xy) ≤ v(y2) so y2 ∈ I, so y ∈ J , so y ∈ I, a contradiction.
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Claim 9.2.7. I is the maximal ideal m of O

Proof. The inclusion I ⊆ m holds because m is the unique maximal ideal.
Conversely, suppose x /∈ I. By Claim 9.2.6, multiplication by x preserves M \ I.
Equivalently, division by x preserves I. Thus x−1 ∈ O, or equivalently, x /∈ m.

So I is the maximal ideal of a non-trivial valuation ring on M containing K.
Now, as I is the maximal ideal of the valuation ring O, it clearly satisfies axioms
(A6-A8) above. Axioms (A1-A4) were checked in the previous point, and axiom (A5)
was assumed. Therefore all the axioms on I hold, and N determines a non-discrete
V-topology on K. The topology is definable by Lemma 9.2.3.

9.2.2 Dp-rank
If X is a type-definable set and κ is a cardinal, a randomness pattern of depth κ in X is a
collection of formulas {φα(x; yα) : α < κ} and elements {bi,j : i < κ, j < ω} such that for
every function η : κ→ ω there is some element aη in X such that for all i, j

φi(aη, bij) ⇐⇒ j = η(i)

The dp-rank of X is defined to be the supremum of the cardinals κ such that there is a
randomness pattern of depth κ in X. This definition first appears in [70].

The following fundamental facts about dp-rank are in [70] or [41], or are easily verified:

Fact 9.2.8.

1. The formula x = x has dp-rank less than ∞ if and only if the theory is NIP.

2. The formula x = x has dp-rank at most 1 if and only if the theory is dp-minimal.

3. If X is type-definable over A, then dp-rk(X) is the supremum of dp-rk(x/A) for x ∈ X.

4. dp-rk(X) > 0 if and only if X is infinite.

5. For n < ω, dp-rk(a/A) ≥ n if and only if there are sequences I1, . . . , In, which are mu-
tually indiscernible over A, such that each sequence is not individually Aa-indiscernible.

6. Dp-rank is subadditive: dp-rk(ab/A) ≤ dp-rk(a/bA) + dp-rk(b/A).

7. If X and Y are non-empty type-definable sets, then dp-rk(X × Y ) = dp-rk(X) +
dp-rk(Y ).

8. If dp-rk(a/A) = n and X is an A-definable set of dp-rank 1, then there is b ∈ X such
that dp-rk(ab/A) = n+ 1.
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9. If X � Y is a definable surjection, then dp-rk(Y ) ≤ dp-rk(X).

Here are some basic uses of dp-rank:

Observation 9.2.9. Let K be a field of finite dp-rank. Then K is perfect.

Proof. The field Kp of pth powers is in definable bijection with K, so it has the same rank
as K. If K is imperfect, then K is a definable Kp vector space of dimension greater than 1.
It contains a two-dimensional subspace, so Kp ×Kp injects definably into K. This shows

dp-rk(K) ≥ 2 · dp-rk(Kp) = 2 · dp-rk(K)

So dp-rk(K) = 0, and K is finite. Finite fields are perfect.

Observation 9.2.10. Let K be dp-minimal field. Then K eliminates ∃∞ (in powers of the
home sort).

Proof. Wemay assume thatK is infinite, so dp-rk(K) = 1. It suffices to show that a definable
set X ⊆ K is finite if and only if there is some a ∈ K such that the map (x, y) 7→ x + a · y
is injective on X ×X. If X is finite, any a outside the finite set{

x1 − x2

x3 − x4
: ~x ∈ X4

}
will work. If X is infinite, then dp-rk(X) ≥ 1, so dp-rk(X × X) = 2 and X × X cannot
definably inject into K.

This has the following useful corollary:

Corollary 9.2.11. Suppose K is dp-minimal. Then any infinite externally definable subset
of K contains an infinite internally definable set.

In fact, this property holds in any NIP theory which eliminates ∃∞. For lack of a reference,
we recall the well-known

Proof. Suppose S ⊆ K is externally definable. By honest definitions ([67] Remark 3.14),
there is some formula φ(x; y) such that for every finite S0 ⊆ S, there is b ∈ K such that
S0 ⊆ φ(K; b) ⊆ S. By elimination of ∃∞, there is some number n such that φ(K; b) is infinite
or has size less than n, for all b. If we choose S0 to have size greater than n, then φ(K; b)
will be our desired infinite internally-definable set.
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9.3 The definable V-topology

9.3.1 Infinitesimals
Until §9.5, let M be a fairly saturated infinite dp-minimal field that is not strongly
minimal.

If X, Y ⊆M, let X −∞ Y denote

{c ∈M : ∃∞y ∈ Y : c+ y ∈ X}

This is a subset of X − Y . It is definable if X and Y are, by Observation 9.2.10.

Lemma 9.3.1. If X and Y are infinite, so is X −∞ Y .

Proof. Suppose X and Y are A-definable. Take (x, y) ∈ X × Y of dp-rank 2 over A, and let
c = x− y. By subadditivity of dp-rank, and dp-minimality,

2 = dp-rk(x, y/A) = dp-rk(y, c/A) ≤ dp-rk(y/c, A) + dp-rk(c/A) ≤ 1 + 1

Equality must hold, so y /∈ acl(Ac) and c /∈ acl(A). As y ∈ Y ∩ (X − c), the Ac-definable
set Y ∩ (X − c) is infinite. Then c ∈ X −∞ Y , so the A-definable set X −∞ Y is infinite.

One can give a more direct proof of this fact in theories like ACVF, RCF, and pCF. In each
of these theories, infinite definable sets have non-empty interior. If X and Y are infinite and
definable, thenX and Y contain balls Bε(x) and Bε(y). One checks that Bε(x−y) ⊆ X−∞Y .
Note that when X = Y , one can take x = y, and so X −∞ X contains a ball around 0.
Moreover, by taking X to be small enough, X −∞ X will be arbitrarily small. In other
words, as X ranges over infinite definable sets, {X −∞ X} is a neighborhood basis of 0.

This suggests looking at the same family in the more general setting.

Proposition 9.3.2. Let K �M be a small model. Let

N = {X −∞ X : X ⊆ K is infinite and K-definable}

This is a directed family of infinite sets. At least one member of N has non-empty comple-
ment.

Proof. The members of N are infinite by Lemma 9.3.1.
To see N is directed, suppose X and Y are infinite definable sets. We want to find an

infinite definable set Z such that

Z −∞ Z
?
⊆ (X −∞ X) ∩ (Y −∞ Y )

If X and Y have infinite intersection, we can simply take Z = X∩Y . In the general case, it is
safe to replace Y with a translate, as this does not change Y −∞ Y . We can always translate
Y to have infinite intersection with X, because X −∞ Y is non-empty by Lemma 9.3.1.
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By failure of strong minimality and Observation 9.2.10, there is a K-definable set D
which is infinite and co-infinite. Let D′ be the complement of D. By the Lemma, D −∞ D′
is non-empty, so there is some c such that X := D ∩ (D′ + c) is infinite. Then X − c ⊆ D′

so (X − c) ∩X = ∅, and c /∈ X −∞ X. So X −∞ X is a non-full member of N .

Let IK denote the corresponding type-definable set:

IK = {x ∈M : x ∈ X −∞ X for all K-definable infinite X}

We call the elements of IK the K-infinitesimals. Over the next few sections, we will show
that IK satisfies all the other conditions of Theorem 9.2.4.

9.3.2 Slight maps
Definition 9.3.3. Let K be a small model. An M-definable bijection f : M→M is K-slight
if X ∩ f−1(X) is infinite for every K-definable infinite set X.

For example, the translation map x 7→ x+ε isK-slight if and only if ε is aK-infinitesimal.
The main goal here is to show that K-slight maps form a group under composition.

Definition 9.3.4. Let K be a small model, X ⊆M be K-definable, and f be an M-definable
bijection. Say that X is K-displaced by f if X(K) ∩ f−1(X) is empty.

Lemma 9.3.5. Suppose K ′ � K and f ′ and f are M-definable bijections such that tp(f ′/K ′)
is an heir of tp(f/K). (Here, we are identifying a bijection with its code.)

• If f is K-slight, then f ′ is K ′-slight.

• If X is K-displaced by f , then X is K ′-displaced by f ′.

For instance, the first point shows that heirs of infinitesimal types are infinitesimal.

Proof. First suppose f if K-slight. As f ′ ≡K f , the map f ′ is also K-slight. If it is not K ′-
slight, there is a K ′-definable infinite set X such that X∩(f ′)−1(X) is finite. As tp(K ′/Kf ′)
is finitely satisfiable in K, and infinity is definable, we can pull the parameters of X into K,
finding a K-definable infinite set X0 such that X0 ∩ (f ′)−1(X0) is finite. This contradicts
K-slightness of f ′.

Next suppose X is K-displaced by f . Then X is K-displaced by f ′. If X is not K ′-
displaced by f ′, there is some a ∈ X(K ′) such that f ′(a) ∈ X. As tp(a/Kf ′) is finitely
satisfiable in K, there is some a0 ∈ X(K) such that f ′(a0) ∈ X, contradicting the fact that
X is K-displaced by f ′.

Lemma 9.3.6. No K-slight map K-displaces an infinite K-definable set.

Proof. Suppose f0 is a K-slight map which K-displaces an infinite K-definable set Y . In-
ductively build a sequence of models K0 = K � K1 � K2 � · · · and bijections f0, f1, f2, . . .
such that



CHAPTER 9. VC-MINIMAL AND DP-MINIMAL FIELDS 114

• tp(fi/Ki) is an heir of tp(f0/K).

• fi is Ki+1-definable.

By Lemma 9.3.5, fi is Ki-slight, and Ki-displaces Y .
For w ∈ {0, 1}<ω, consider the set

Yw =

y ∈ Y :
∧
i<|w|

fi(y) ∈w(i) Y


where ∈0 denotes /∈ and ∈1 denotes ∈.

We will prove by induction on |w| that Yw is infinite. If we write fi as fai , this shows
that the formula fx(y) ∈ Y has the independence property, a contradiction.

For the base case, Y∅ is Y which is infinite by assumption.
Now suppose that Yw is infinite; we will show Yw0 and Yw1 are infinite. Let n = |w|. Then

Yw is Kn-definable. If a ∈ Yw(Kn) ⊆ Y (Kn), then fn(a) /∈ Y because Y is Kn-displaced by
fn. This shows that the infinite set Yw(Kn) is contained in Yw0.

Also, as fn is Kn-slight and Yw is infinite and Kn-definable, Yw∩f−1
n (Yw) is infinite. This

set is contained in Yw ∩ f−1
n (Y ) = Yw1, so Yw1 is infinite.

So Yw being infinite implies Yw0 and Yw1 are infinite. This ensures that all Yw are infinite,
hence non-empty, contradicting NIP.

Proposition 9.3.7.

1. If f is a K-slight bijection and X is K-definable, then for all but finitely many x ∈ K,
we have x ∈ X ⇐⇒ f(x) ∈ X.

2. The K-slight bijections form a group under composition.

3. If f and g are bijections, f is K-slight, and g is K-definable, then g−1◦f ◦g is K-slight.

Proof. 1. Let S ⊆ K be the externally definable set of x such that x ∈ X and f(x) /∈ X.
We claim that S is finite. Otherwise, by Corollary 9.2.11, there is some infinite K-
definable set Y such that Y (K) ⊆ S. Then X ∩ Y is an infinite K-definable set which
is K-displaced by f , by choice of S. This contradicts Lemma 9.3.6.
So S is finite. This means that for almost all x ∈ K, we have x ∈ X =⇒ f(x) ∈ X.
Replacing X with its complement, we obtain the reverse implication (with at most
finitely many exceptions).

2. Suppose f and g ◦f are K-slight. We will show that g is K-slight. Let X be an infinite
K-definable set. Then for almost all x ∈ K, we have

f(x) ∈ X ⇐⇒ x ∈ X ⇐⇒ g(f(x)) ∈ X

So the infinite set f(X(K)) is almost entirely contained inX∩g−1(X). ThusX∩g−1(X)
is infinite, for arbitrary infinite K-definable sets X.
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3. Let X be K-definable. Then g(X) is infinite and K-definable, so g(X) ∩ f−1(g(X)) is
infinite. Applying g−1, we see that X ∩g−1(f−1(g(X))) is infinite. Therefore g−1 ◦f ◦g
is K-slight.

Corollary 9.3.8. The set IK of K-infinitesimals is a subgroup of (M,+), and is closed
under multiplication by K.

Proof. The first claim follows immediately. For the second, suppose ε ∈ IK and a ∈ K. If
a = 0, then a · ε = 0 ∈ IK because IK is a group. Otherwise, x 7→ x · a−1 is a K-definable
bijection, and x 7→ x+ ε is K-slight, so the conjugate

x 7→ x · a−1 7→ x · a−1 + ε 7→ (x · a−1 + ε) · a = x+ a · ε

is K-slight, meaning a · ε ∈ IK .

Theorem 9.3.9. The family

N = {X −∞ X : X ⊆ K is infinite and K-definable}

determines a non-discrete group topology on (K,+). The family

N ′ = {X −X : X ⊆ K is infinite and K-definable}

determines the same topology, and the same type definable set IK.

Proof. By Proposition 9.3.2, the family N is a directed family of infinite definable sets, at
least one of which is non-full. Because IK is a subgroup of M and is closed under multipli-
cation by K, Theorem 9.2.4 applies and N determines a non-discrete group topology.

We need to show that N ′ is also a neighborhood basis for this topology, i.e., that N and
N ′ are cofinal in each other. Every member X −X of N ′ contains a member of N , namely
X −∞ X.

Conversely, given U ∈ N , we need to produce an infinite definable Y such that Y −Y ⊆ U .
As IK is a group,

x, y ∈ IK =⇒ x− y ∈ IK =⇒ x− y ∈ U

By compactness, there is some neighborhood Y of IK such that

x, y ∈ Y =⇒ x− y ∈ U

so Y − Y ⊆ U . But Y is infinite (because IK is), so Y − Y ∈ N ′.
It follows that N and N ′ determine the same topology and the same type-definable set

IK .

We call this topology the canonical topology on K. One can also talk about the canonical
topology on M which is itself a dp-minimal field.
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9.3.3 Germs at 0
Say that two definable sets X, Y ⊆ M have the same germ at 0 if 0 /∈ X4Y . This is an
equivalence relation. The main goal of this section is Theorem 9.3.16, asserting that there
are only a small number of germs at 0—or equivalently, that there are only a small number
of infinitesimal types over M. Surprisingly, this technical fact easily yields the remainder of
Theorem 9.1.3.

To prove Theorem 9.3.16, we would like to mimic Simon’s argument in the case of ordered
dp-minimal structures (Lemma 2.10 in [68]). Matters are complicated by our lack of a
definable neighborhood basis.

In what follows, we will refer to sets of the form X −X with X infinite and definable, as
“basic neighborhoods (of 0)”.

Let U be a 0-definable family of basic neighborhoods (of 0).

Definition 9.3.10. Say that U is good if for every finite set S ⊆M×, there is some U ∈ U
such that U ∩ S = ∅.

Definition 9.3.11. Say that U is mediocre if for every finite tuple (a1, . . . , an) ⊆M× of full
dp-rank (of dp-rank n), there is some U ∈ U such that U ∩ {a1, . . . , an} = ∅.

To run Simon’s argument directly, one needs a good family. However, the argument can
be modified to use a mediocre family, as we will see in the proofs of Lemma 9.3.15 and
Theorem 9.3.16 below. Fortunately, the next proposition provides a mediocre family.

Proposition 9.3.12. There is a mediocre family of basic neighborhoods.

Proof. Let Σ(x) be the partial type over M saying that x 6= 0 and x is an M-infinitesimal.
First suppose that Σ(x) is not finitely satisfiable in some small model K. Then there is

some M-definable basic neighborhood U = Ub such that Ub ∩K = {0}. Then for all n, we
have the following chain of statements, each of which implies the next:

∀a1, . . . , an ∈ K× (Ub ∩ {a1, . . . , an} = ∅)
∀a1, . . . , an ∈ K×∃y ∈M (Uy ∩ {a1, . . . , an} = ∅)
∀a1, . . . , an ∈ K×∃y ∈ K (Uy ∩ {a1, . . . , an} = ∅)
∀a1, . . . , an ∈M×∃y ∈M (Uy ∩ {a1, . . . , an} = ∅)

By the final statement the family {Ub : b ∈ M} is a good family of basic neighborhoods,
hence a mediocre family.

Therefore, we may assume that Σ(x) is finitely satisfiable in any small model K. This
has the following counterintuitive corollary:
Claim 9.3.13. The canonical topology on K is the induced subspace topology from the canon-
ical topology on M.
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Proof. The induced subspace topology on K will have as neighborhood basis of 0, the sets
of the form N ∩K for N an M-definable basic neighborhood. This already includes the K-
definable basic neighborhoods on K, so it remains to show that if N is an M-definable basic
neighborhood, then there is a K-definable basic neighborhood N ′ such that N ′∩K ⊆ N∩K.

Because the canonical topology on M is a group topology, there is an M-definable basic
neighborhood U such that U−U ⊆ N . If U∩K is finite, then by Hausdorffness there is some
M-definable neighborhood V ⊆ U such that V ∩K = {0}, contradicting finite satisfiability
of Σ(x) in K.

Thus U ∩K is infinite, and so it contains Q(K) for some infinite K-definable set Q, by
Corollary 9.2.11. Then Q−Q is a K-definable basic neighborhood and

(Q−Q)(K) = Q(K)−Q(K) ⊆ U − U ⊆ N

so (Q−Q)∩K ⊆ N ∩K. Then N ′ := Q−Q is our desired K-definable basic neighborhood.
This proves the claim.

Claim 9.3.14. There is a 0-definable family of basic neighborhoods Ub such that if K � K ′

is any inclusion of models, and a ∈ K ′ \K, then (a+ Ub) ∩K = ∅ for some b ∈ K ′.

Proof. If not, then by compactness, we would obtain a pair of models K � K ′ and an
element a such that every K ′-definable neighborhood of a intersects K. In other words, a is
in the topological closure K of K. Embed K ′ into M. Then K ′ has the induced subspace
topology, so a ∈ K even within M. Because the topology on M is Aut(M/K)-invariant, all
the conjugates of a over K are in K, so K is big. But in a Hausdorff topology, the closure
of a set is bounded in terms of the size of the set (because every point in the closure can be
written as an ultralimit of an ultrafilter on the set, and there are only a bounded number of
ultrafilters).

Let Ub be the family from Claim 9.3.14. We claim that Ub is mediocre. To see this,
suppose a1, . . . , an are elements of M× with dp-rank n over the empty set. By Fact 9.2.8.8,
we can find an element t ∈M such that (~a, t) has dp-rank n+ 1.

By subadditivity of dp-rank,

n+ 1 = dp-rk(t, t+ a1, . . . , t+ an)
≤ dp-rk(t/t+ a1, . . . , t+ an) + dp-rk(t+ a1, . . . , t+ an)
≤ 1 + n

so equality holds, and t /∈ acl(t − a1, . . . , t − an). Therefore we can find a small model K
such that t /∈ K ⊇ {t+ a1, . . . , t+ an}. By the claim there is some b ∈M such that

(t+ Ub) ∩ {t+ a1, . . . , t+ an} ⊆ (t+ Ub) ∩K = ∅

so that Ub ∩ {a1, . . . , an} = ∅.



CHAPTER 9. VC-MINIMAL AND DP-MINIMAL FIELDS 118

Lemma 9.3.15. Let U be a mediocre family of basic neighborhoods. Then given any small
collection C of infinite definable sets, there is some U ∈ U such that C \ U is infinite for
every C ∈ C.

Proof. Because infinity is definable and U is a single definable family, it suffices by com-
pactness to consider the case when C if a finite collection {C1, . . . , Cn}. By definability of
infinity, there is some N (depending on C) such that Ci \ U will be infinite as long as it has
size at least N .

Let A be a set over which C1, . . . , Cn are all defined. The set ∏n
i=1 C

N
i has dp-rank N ·n,

so we can find some tuple in it, having dp-rank N · n over A, hence over ∅. By mediocrity,
we can find some U ∈ U that U avoids this entire tuple. By choice of N , now each Ci \U is
infinite.

Theorem 9.3.16. There are only a bounded number of germs at 0 among definable subsets
of M.

Proof. Suppose not.
Claim 9.3.17. There is some sequence X1, X2, . . . of definable subsets of M×, all belonging
to a single definable family, such that 0 ∈ Xi and 0 /∈ Xi ∩Xj for i 6= j.

Proof. By Morley-Erdős-Rado, we can produce an indiscernible sequence of sets

Y1, Y2, Y3, . . . ⊆M

having pairwise distinct germs at 0. Let Xi = Y2i4Y2i+1; then 0 ∈ Xi. By indiscernibility, 0
is in every Yi or in none; either way each Xi ⊆M×.

By NIP, the collection {Xi} is k-inconsistent for some k. Replace Xi with X2i ∩ X2i+1
until 0 /∈ X1 ∩X2. This process must terminate within log2 k steps or so.

FixX1, X2, . . . from the claim. LetK1 be a small model over which theXi are defined. Let
U be a mediocre famiy from Proposition 9.3.12. Inductively build a sequence K1 � K2 � · · ·
and U1, U2, . . . ∈ U as follows:

• Ui is chosen so that C \ Ui is infinite for every infinite Ki-definable set C ⊆ M. This
is possible by Lemma 9.3.15.

• Ki+1 is chosen so that Ui is Ki+1-definable.

Claim 9.3.18. For any i0, j0, there is some a such that a ∈ Xi ⇐⇒ i = i0, and a ∈
Uj ⇐⇒ j < j0.

Proof. By compactness, it suffices to only consider X1, . . . , Xn and U1, . . . , Un. Let

D = Xc
1 ∩Xc

2 ∩ · · · ∩Xc
i0−1 ∩Xi0 ∩Xc

i0+1 ∩ · · · ∩Xc
n

where Sc denotes the complement M \ S of a set S.
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The set D is K-definable, and 0 ∈ D \D, by choice of the Xi’s. So the set

S = D ∩ U1 ∩ · · · ∩ Uj0−1

is infinite, as U1 ∩ · · · ∩ Uj0−1 is a neighborhood of 0.
As S is Kj0 definable, it follows that S ∩ U c

j0 is infinite, by choice of Uj0 . As S ∩ U c
j0 is

Kj0+1-definable, it follows that S ∩ U c
j0 ∩ U

c
j0+1 is infinite. Continuing on in this fashion, we

ultimately see that
S ∩ U c

j0 ∩ · · · ∩ U
c
n

is infinite. If a is any element of this set, then a ∈ D, so a ∈ Xi ⇐⇒ i = i0 (for 1 ≤ i ≤ n),
and

a ∈ U1 ∩ · · · ∩ Uj0−1 ∩ U c
j0 ∩ · · · ∩ U

c
n,

so a ∈ Uj ⇐⇒ j < j0 (for 1 ≤ j ≤ n).
Finally, using compactness, we can send n to ∞.

Given the claim, the sets {Xi} and {Ui\Ui+1} now directly contradict dp-minimality.

Corollary 9.3.19. There are only a bounded number of infinitesimal types over M.

By Lemma 9.3.5, it follows that infinitesimal types have boundedly many heirs, and so. . .

Corollary 9.3.20. Infinitesimal types are definable.

9.3.4 Multiplying Infinitesimals
Using Theorem 9.3.16 and Corollary 9.3.19, we can complete the proof of Theorem 9.1.3.

We will repeatedly make use of the following basic observation:

Observation 9.3.21. Let X ⊆ M be K-definable, and a ∈ K. Then the following are
(clearly) equivalent:

1. There is a K-infinitesimal ε such that (a+ ε ∈ X < a ∈ X).

2. The type Σ(x) asserting that x ∈ IK and (a+ x ∈ X < a ∈ X) is consistent.

3. For every K-definable basic neighborhood U , the set a+U intersects both X and Xc :=
M \X.

4. a is in the topological boundary of X(K) within K.

Note that the third of these conditions does not depend on K, in the sense that its truth is
unchanged if we replace K with an elementary extension K ′ � K.

First we show that definable sets have finite boundaries.

Proposition 9.3.22. If X ⊆ K is definable, then ∂X is finite, and contained in acl(pXq).
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Proof. By Observation 9.3.21, we may replace K with M—this only enlarges ∂X.
The set ∂X is type-definable, essentially by (3) of Observation 9.3.21. It is also type-

definable over dcl(pXq), by automorphism invariance of the topology. The proposition will
therefore follow if ∂X is small.

Let M∗ be a sufficiently saturated elementary extension of M. By the equivalence of
conditions 1 and 4 of Observation 9.3.21,

∂X(M) =
⋃
ε∈IM
{x ∈M : x+ ε ∈ X < x ∈ X} (9.1)

Let Dε denote {x ∈ M : x + ε ∈ X < x ∈ X}. By the first part of Proposition 9.3.7, each
Dε is finite. Moreover, Dε depends only on tp(ε/M). By Corollary 9.3.19, it follows that the
right hand side of (9.1) is small.

Lemma 9.3.23. The map x 7→ a · x is K-slight if and only if a− 1 is a K-infinitesimal.

Proof. Recall from Proposition 9.3.7 that the K-slight maps are closed under inversion,
composition, and conjugation by K-definable maps.

First suppose f(x) = ax isK-slight. As g(x) = x+1 isK-definable, the map f◦g◦f−1◦g−1

is K-slight. But

(f ◦ g ◦ f−1 ◦ g−1)(x) =
(
x− 1
a

+ 1
)
· a = x+ (a− 1)

so a− 1 is a K-infinitesimal.
Conversely, suppose a− 1 is a K-infinitesimal; we will show that x 7→ ax is K-slight. Let

X be an infinite K-definable set; we will show that X ∩ a−1X is infinite. In fact, it contains
X(K) \ ∂X, which is infinite by Proposition 9.3.22. To see this, suppose x ∈ X(K) \ ∂X.
Then (a − 1)x is K-infinitesimal by Corollary 9.3.8. By the equivalence of 1 and 4 in
Observation 9.3.21 and the fact that a /∈ ∂X, it follows that

ax = x+ (a− 1)x ∈ X for any x ∈ X(K) \ ∂X

Thus X(K) \ ∂X ⊆ X ∩ a−1X.

Corollary 9.3.24. 1 + IK is a subgroup of M×.

If G is a type-definable group, G00 denotes the smallest type-definable group of bounded
index. These are known to exist in NIP theories, by Proposition 6.1 in [35].

Lemma 9.3.25. As a subgroup of the additive group, IK has no type-definable proper sub-
groups of bounded index. In other words, I00

K = IK.

Proof. Suppose for the sake of contradiction that there is ε ∈ IK\I00
K . LetK ′ be a model con-

taining ε, and let ε′ realize an heir of tp(ε/K) to K ′. By Lemma 9.3.5, ε′ is K ′-infinitesimal.
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As ε and ε′ have the same (Lascar strong) type over K, they are in the same coset of I00
K .

Then ε and ε−ε′ do not have the same type overK, because the latter is in I00
K but the former

is not. Choose a K-definable set X which contains ε but not ε − ε′. As X is K ′-definable
and ε ∈ K ′, it follows by Observation 9.3.21 that ε ∈ ∂X. Then by Proposition 9.3.22,
ε ∈ acl(pXq) ⊆ K, which is absurd, since ε is a non-zero K-infinitesimal.

Next we prove a general fact about dp-minimal groups.

Lemma 9.3.26. Suppose G and H are type-definable subgroups of (K,+), such that G = G00

and H = H00. Then G ⊆ H or H ⊆ G.

Proof. Otherwise, G∩H has unbounded index in both G and H. By Morley-Erdős-Rado we
can produce an indiscernible sequence 〈(ai, bi)〉i<ω+ω of elements of G×H such that the ai
are in pairwise distinct cosets of G ∩H, and the bi are in pairwise distinct cosets of G ∩H.
The sequences a0, a1, . . . and bω, bω+1, . . . are mutually indiscernible. However, after naming
c := a0 + bω, neither sequence is indiscernible. Indeed, c − ai ∈ H if and only if i = 0, and
bω+i− c ∈ G if and only if i = 0. This contradicts the characterization of dp-rank 1 in terms
of mutually indiscernible sequences.

Corollary 9.3.27. For any a ∈M, either a · IK ⊆ IK or IK ⊆ a · IK.

Combining Theorem 9.2.4, Proposition 9.3.2, Corollary 9.3.8, Corollary 9.3.24, and Corol-
lary 9.3.27, we see that

Theorem 9.3.28. The K-infinitesimals IK are the maximal ideal of a valuation ring OK.
The canonical topology on K is a non-discrete definable V-topology, and every definable set
has finite boundary.

As an exercise, one can check that the valuation topology on M induced by OK is the
canonical topology on M. We will prove the following consequence of that fact:

Lemma 9.3.29. IK is open in the canonical topology on M.

Proof. Because IK is a subgroup of (M,+), it suffices to show that IK is a neighborhood of
0. Note that IK is type-definable and OK is ∨-definable, both over K. Therefore we can
find a K-definable set B lying between them:

IK ⊆ B ⊆ OK
By directedness of the family of K-definable basic neighborhoods, there is a K-definable
basic neighborhood X −X such that

IK ⊆ X −X ⊆ B ⊆ OK
Now choose some non-zero ε ∈ IK . Then

(ε ·X)− (ε ·X) = ε · (X −X) ⊆ ε · OK ⊆ IK ,

so IK contains a neighborhood of 0 in the canonical topology on M.
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9.4 Definability of dp-rank and henselianity

9.4.1 Interior and Dp-rank
In this section, we show that a definable subset of Mn has dp-rank n if and only if it has
non-empty interior (in the product topology on Mn.

Lemma 9.4.1. Naming infinitesimals does not algebraize anything, in the following sense:

1. Let M∗ � M be an elementary extension, and ε ∈ M∗ be M-infinitesimal. For any
small S ⊆M, we have M ∩ acl(Sε) = acl(S).

2. Let p be an infinitesimal type over M. Suppose S ⊆M is small, a ∈M, and ε |= p|Sa.
Then a ∈ acl(S) ⇐⇒ a ∈ acl(Sε).

Proof. 1. Fix S. For ε ∈ IM, let Xε = acl(Sε) ∩ M. Then Xε is small and depends
only on tp(ε/M). By Corollary 9.3.19, it follows that ⋃ε∈IM Xε is small. It is also
Aut(M/S)-invariant, so it must be contained in acl(S). In particular, Xε ⊆ acl(S) for
any M-infinitesimal ε.

2. Let M∗ � M be an elementary extension in which p is realized by some ε′. Then
ε′ ≡aS ε, so

a ∈ acl(Sε) ⇐⇒ a ∈ acl(Sε′) ⇐⇒ a ∈ acl(S)

where the second equivalence follows by the previous point.

Say that a tuple (a1, . . . , an) is algebraically independent over a set S if

ai /∈ acl(a1, . . . , ai−1, ai+1, . . . , an, S)

for each i.

Corollary 9.4.2. Suppose a1, . . . , an are algebraically independent over S, and ε |= p|S~a for
some non-trivial global infinitesimal type p. Then a1, . . . , an, ε is algebraically independent
over S.

Note that ε /∈ acl(S~a) because all non-zero infinitesimal types are non-algebraic.

Proposition 9.4.3. For a K-definable set X ⊆Mn, the following are equivalent:

1. X has dp rank n

2. X contains a tuple which is algebraically independent over K

3. X has non-empty interior, in the product topology on Mn.
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Proof. The implication 3 =⇒ 1 is clear, because the product topology has a basis consisting
of n-fold products of sets of dp rank 1.

For 1 =⇒ 2, suppose X has dp rank n. Choose ~a = (a1, . . . , an) in X with dp rank n
over K. Then the ai’s are algebraically independent over K. Suppose otherwise. Then, say,
a1 ∈ acl(a2a3 . . . S). By subadditivity of dp-rank,

dp-rk(~a/S) ≤ dp-rk(a1/a2a3 . . . S) + dp-rk(a2a3 . . . /S) ≤ 0 + (n− 1)

contradicting the choice of ~a.
The hard part is 2 =⇒ 3. Suppose (a1, . . . , an) ∈ X is algebraically independent over

K. Let p be a nonzero global infinitesimal type. Let ε1, . . . , εn realize p⊗n over K~a. By
Corollary 9.4.2, the tuple (a1, . . . , an, ε1, . . . , εn) is algebraically independent over K.

The type-definable set I−1
K is the complement of OK , so OK is ∨-definable. By compact-

ness, we can find a K-definable set B between IK and OK :

IK ⊆ B ⊆ OK

Claim 9.4.4. Let S be a small set containing K, let U be an S-definable neighborhood of 0,
and let ε |= p|S. Then ε ·B ⊆ U .

Proof. Let M be a small model containing S. Moving M over S we may assume ε |= p|M .
There are more M -definable basic neighborhoobds than K-definable basic neighborhoods,
so IM ⊆ IK , which in turn implies OK ⊆ OM . Thus

IM ⊆ IK ⊆ B ⊆ OK ⊆ OM

Now ε |= p|M , so ε is an M -infinitesimal. Thus

ε ·B ⊆ ε · OM ⊆ IM ⊆ U.

Claim 9.4.5. For 0 ≤ k ≤ n, we have

(a1 + ε1 ·B)× · · · × (ak + εk ·B)× {(ak+1, . . . , an)} ⊆ X

Proof. We proceed by induction on k. The base case k = 0 simply says ~a ∈ X, which is
given.

Suppose
(a1 + ε1 ·B)× · · · × (ak + εk ·B)× {(ak+1, . . . , an)} ⊆ X

Let Y be the set of y such that

(a1 + ε1 ·B)× · · · × (ak + εk ·B)× {(y, . . . , an)} ⊆ X

Then ak+1 ∈ Y , of course. By independence of ~a~ε, the element ak+1 is not algebraic over the
parameters used to define Y . Therefore, by Proposition 9.3.22, ak+1 ∈ Y int. So Y − ak+1 is
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a neighborhood of 0. Since εk+1 is infinitesimal over the parameters used to define Y − ak+1,
we see

εk+1 ·B ⊆ Y − ak+1

by Claim 9.4.4. But this is equivalent to

(a1 + ε1 ·B)× · · · × (ak+1 + εk+1 ·B)× {(ak+2, . . . , an)} ⊆ X

completing the inductive step.

Taking k = n in the claim, we see that
n∏
i=1

(ai + ε ·B) ⊆ X

and so ~a ∈ X int, completing the proof.

Corollary 9.4.6. Let f : Mn → Mn be a finite-to-one definable map. If X ⊆ Mn is a set
with non-empty interior, then f(X) also has non-empty interior. (We are not assuming X
is definable.)

Proof. We may assume X is definable, by shrinking it (recall the basis of definable opens).
Take ~a in X of full dp-rank. Then f(~a) is interalgebraic with a, so also has dp-rank n.
Therefore f(X) has dp-rank n, so it has interior by the proposition.

In the next section, we will use this fact to show that OK is henselian.
For completeness, we prove the following fact, which will not be used in what follows,

but could be of independent interest:

Corollary 9.4.7. If X ⊆ Mn is definable and m ≤ n, then dp-rk(X) ≥ m if and only if
there is some coordinate projection π : Mn → Mm such that π(X) has non-empty interior.
Consequently, dp-rank of definable sets is definable in families.

Proof. We may assume X is K-definable. If π(X) has non-empty interior, then dp-rk(X) ≥
dp-rk(π(X)) = m. Conversely, suppose dp-rk(X) ≥ m. Let ~a ∈ X have dp-rank at least m
over X. If the n-tuple ~a is not algebraically independent over K, then some ai is algebraic
over K and the other coordinates of ~a. So there is some n − 1-tuple ~a′ which is a subtuple
of ~a, and which is interalgebraic with ~a over K. Iterating this process, we get a sequence

~a = ~a(0),~a(1), . . . ,~a(k)

for some k ≥ 0, such that

• ~a(i+1) is a subtuple of ~a(i)

• ~a(i+1) is interalgebraic with ~a(i) over k
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• |~a(i)| = n− i

• ~a(k) is algebraically independent over K.

Then ~a(k) is interalgebraic over K with ~a, so

dp-rk(~a(k)/K) = dp-rk(~a/K) ≥ m

Let ~b be a subtuple of ~a of length m. Then ~b is a subtuple of ~a, and ~b is algebraically
independent over K. Write ~b = π(~a) for some coordinate projection π : Mn →Mm. Then

~b ∈ π(X)

so the K-definable set π(X) contains an algebraically independent tuple, and therefore has
non-empty interior.

9.4.2 Henselianity
First we prove a general fact about ∨-definable valuation rings: their prolongations to finite
extension fields are still ∨-definable.

Lemma 9.4.8. Let F be a field with some structure, and L/F be a finite extension. Suppose
O is a ∨-definable valuation ring on F . Then each extension of O to L is ∨-definable (over
the same parameters used to define O and interpret L).

Proof. Replacing L with the normal closure of L over F , we may assume L/F is a normal
extension of some degree n.
Claim 9.4.9. There is some d = d(k, n) such that for {a1, . . . , ak} ⊆ L, the following are
equivalent:

• No extension of O to L contains {a1, . . . , ak}.

• 1 = P (a1, . . . , ak) for some polynomial P (X1, . . . , Xk) ∈ m[X1, . . . , Xk] of degree less
than d(k, n).

Proof. Consider the theory Tn whose models consist of degree n normal field extensions
L/F with a predicate picking out a valuation ring OL on L. On general valuation-theoretic
grounds, the following are equivalent for {a1, . . . , ak} ⊆ L

• {a1, . . . , ak} 6⊆ σ(OL) for any σ ∈ Aut(L/F ).

• No extension of OL ∩ F to L contains {a1, . . . , ak}.

• 1 = P (a1, . . . , ak) for some P (X1, . . . , Xk) ∈ m[X1, . . . , Xk].
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The first condition is a definable condition on the k-tuple (a1, . . . , ak), so by compactness
applied to Tn, there is a bound on the degree in the third condition.

Because O is ∨-definable, m is type-definable, so the second condition in the claim is
type-definable.

Let O′ be some extension of O to L. We can find some finite set S ⊆ O′ such that O′
is the unique extension of O containing S, because there are only finitely many extensions
and they are pairwise incomparable. The claim implies type-definability of the set

{x ∈ L : no extension of O to L contains S ∪ {x}}

which is the complement of O′ by choice of S.

Recall that OK denotes the valuation ring whose maximal ideal is IK .

Proposition 9.4.10. Let K be a small submodel of M. Let L/K be a finite algebraic
extension, and L = L ⊗K M. (So L is a saturated elementary extension of L.) Then OK
has a unique extension to L.

Proof. We give the proof in characteristic 6= 2.
Replacing L with its normal closure over K, we may assume L/K is normal.
Let O1, . . . ,Om denote the extensions of OK to L. By Lemma 9.4.8, these are all ∨-

definable over K. Let mi be the maximal ideal of Oi; this is type-definable over K. Let vi
be the valuation on Oi.

Write L = K(α) (possible because K is perfect by Observation 9.2.9). So L = M(α) and
{1, α, . . . , αn−1} is a basis for L over M.
Claim 9.4.11. ⋂imi = ∑n−1

i=0 IK · αi

Proof. Let (F,O) be some algebraically closed valued field extending (M,OK), and let m be
the maximal ideal of O. All the extensions of OK to L come from embeddings of L into F ,
so if ι1, . . . , ιn denote the embeddings of L into F , then

{m1, . . . ,mm} = {ι−1
i (m) : 1 ≤ i ≤ n}

Thus ⋂
i

mi =
n⋂
i=1

ι−1
i (m)

Because K ⊆ O, it follows that Kalg ⊆ O, where Kalg is the algebraic closure of K inside
F . Let α1, . . . , αn be the images of α under ι1, . . . , ιn. These are pairwise distinct because
L/M is separable (by Observation 9.2.9 again). Let M be the Vandermonde matrix whose
(i, j) entry is αj−1

i . Then M ∈ GLn(Kalg) ⊆ GLn(O).
It follows that multiplication by M and M−1 preserves mn ⊆ F n. Concretely, this means

that if (x0, x1, . . . , xn−1) ∈ F n, then the following are equivalent:
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• Each xi ∈ m

• ∑n−1
i=0 xiα

i
j ∈ m for each j.

Specializing to the case where x0, . . . , xn−1 ∈ M, and writing x = ∑n−1
i=0 xiα

i, the following
are equivalent:

• Each xi ∈ IK

• ιj(x) ∈ m for each j ≤ n, or equivalently, x ∈ mi for each i ≤ m.

Our goal is to show m = 1. Suppose for the sake of contradiction that m > 1. Because
Aut(L/K) acts transitively on the Oi’s, they are pairwise incomparable. By the approxima-
tion theorem for valuations ([6] VI.7.1 Corollaire 1), we can find an element x ∈ L such that
x ∈ 1 + m1 and x ∈ −1 + mi for i > 1.

Let I = ⋂
imi. Then

x /∈ 1 + I

−x /∈ 1 + I

x2 ∈ 1 + I

By basic valuation theory, each 1 + mi is a subgroup of M×. The intersection 1 + I is
therefore also a subgroup of M×. The intersection 1 + I is also topologically open: by the
Claim

1 + I = (1 + IK) + IK · α + IK · α2 + · · ·+ IK · αn−1,

and IK is open by Lemma 9.3.29.
The squaring map on L× is finite-to-one, so by Proposition 9.4.6, (1 + I)2 has interior.

Since (1 + I)2 is a group, it is actually open, hence contains a neighborhood of 1:

(1 + I)2 is a neighborhood of 1 (9.2)

Now x /∈ 1 + I and −x /∈ 1 + I, and I is type-definable over K. So there is some K-
definable set U containing I, such that x /∈ 1 + U and −x /∈ 1 + U . By (9.2), (1 + U)2 is a
neighborhood of 0. It is K-definable, so it contains 1 + I, hence x2. Then there is y ∈ 1 +U
such that y2 = x2. Either x ∈ 1 + U or −x ∈ 1 + U , contradicting the choice of U .

If K has characteristic 2, replace −1 and 1 with 0 and 1, replace the squaring map with
the Artin-Schreier map, and replace 1 + I < L× with I < L.

Lemma 9.4.12. If O is a non-trivial K-definable valuation ring on M, then OK is a coars-
ening of O. Moreover, the canonical topology on K is induced by the valuation ring O(K)
on K.
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Proof. The maximal ideal m of O is infinite by non-triviality of O, and so m has interior
by Proposition 9.3.22. As m is a subgroup of the additive group, m must be open, so 0 is
in the interior of the K-definable set m. Consequently IK ⊆ m, which directly implies that
O ⊆ OK .

Moreover, because
IK ⊆ O ⊆ OK ,

Lemma 9.2.2 applies and so
{a · O(K) : a ∈ K×}

is a neighborhood basis of 0 in the canonical topology on K.

Remark 9.4.13. Suppose F is a field with some structure, and O1 and O2 are incomparable
∨-definable valuation rings on F . Then the join O1O2 is definable.

Proof. The join can be written as either {x · y : x ∈ O1, y ∈ O2} (which is ∨-definable) or as
{x · y : x ∈ m1, y ∈ m2}, which is type-definable.3

Lemma 9.4.14. Let L/M be a finite algebraic extension. Any two non-trivial definable
valuation rings on L are not independent, i.e., they induce the same topology.

Proof. Let w1, w2 be two definable valuations on L, and let v1 and v2 be their restrictions to
M. Let Γi be the value group of wi. Let K be a small model over which everything is defined
(including the extension L/M). Let vK be the non-definable valuation onM coming from OK
and IK . By Lemma 9.4.12, vK is a coarsening of v1 and v2. So there are convex subgroups
∆i < Γi such that vK is equivalent to the coarsening of vi by ∆i. Let w′i be the coarsening of
wi by ∆i. Then w′1 and w′2 are valuations on L extending vK . By Proposition 9.4.10, w′1 and
w′2 are equivalent (because vK has an essentially unique extension). It follows that w1 and
w2 have a common coarsening—the unique extension of vK to L. This common coarsening is
non-trivial, because vK is non-trivial. Non-trivial coarsenings induce the same topology, so
w1, w

′
1, and w2 all induce the same topology. Therefore w1 and w2 are not independent.

Proposition 9.4.15. Let L be a finite extension of M. Any two definable valuation rings
on L are comparable.

Proof. Suppose O1 and O2 are incomparable. Let O = O1 · O2 be their join, which is
definable by Remark 9.4.13. Let w be the valuation corresponding to O, and let v be its
restriction to M.

The residue field L′ := Lw is a finite extension of M′ := Mv. Moreover, L′ has two
independent definable valuations, induced by O1 and O2. This ensures that L′ is infinite
and unstable, so M′ is also infinite and unstable. But M′ has dp-rank at most 1, so M′

3Here, we are using the fact that if O is a valuation ring with maximal ideal m, and S is any set, then
S · O and S ·m are closed under addition, and are equal to each other unless S has an element of minimum
valuation. Incomparability of O1 and O2 ensures that e.g. v1(O2) has no minimum.
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is a dp-minimal unstable field. It is also as saturated as M, so all our results so far apply
to M′. By Lemma 9.4.14, L′ cannot have two independent definable valuation rings, a
contradiction.

Corollary 9.4.16. Any definable valuation ring O on M is henselian.

Proof. Otherwise, O would have two incomparable extensions to some finite Galois extension
of M.

Corollary 9.4.16 was obtained independently by Jahnke, Simon, and Walsberg (Proposi-
tion 4.5 in [39]).

Theorem 9.4.17. The valuation ring OK (whose maximal ideal is the set of K-infinitesimals)
is henselian.

Proof. Suppose not. Then OK has multiple extensions to some finite algebraic extension
L/M. Let O1 and O2 be two such extensions. Let K ′ � K be a larger model over which the
field extension L/M is defined. As IK′ ⊆ IK , we see that OK′ is a coarsening of OK . Also,
OK′ has a unique extension to L by Proposition 9.4.10. As in the proof of Lemma 9.4.14, this
ensures that O1 and O2 are not independent. Their join O1 ·O2 is definable by Lemma 9.4.8
and Remark 9.4.13. It is also non-trivial because O1 and O2 are not independent.

So there is some definable non-trivial valuation ring on M. The property of being a
valuation ring is expressed by finitely many sentences, and K �M, so there is a K-definable
non-trivial valuation ring O. This ring is henselian by Corollary 9.4.16, and OK is a coars-
ening, by Lemma 9.4.12. Coarsenings of henselian valuations are henselian.

9.4.3 Summary of results so far
In what follows, we will need only the following facts from §9.3.1-§9.4.2:

Theorem 9.4.18. Let K be a dp-minimal field.

1. K is perfect.

2. If K is infinite, sufficiently saturated, and not algebraically closed, then K admits a
non-trivial Henselian valuation (not necessarily definable).

3. Any definable valuation on K is henselian. Any two definable valuations on K are
comparable.

4. For any n, the cokernel of the nth power map K× → K× is finite.

Proof.

1. Observation 9.2.9.
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2. If K is strongly minimal, then K is algebraically closed by a well-known theorem of
Macintyre. Otherwise, this is Theorem 9.4.17.

3. IfK is not strongly minimal, this is Proposition 9.4.15 and Corollary 9.4.16. Otherwise,
K is NSOP, so has only the trivial valuation.

4. If K is strongly minimal, then K is algebraically closed (Macintyre), so the cokernels
are always trivial. If K×/(K×)n is infinite, we can find some elementary extension
M � K such that M×/(M×)n is greater in cardinality than the total number of
infinitesimal types over M, by Corollary 9.3.19. By Lemma 9.3.5, heirs of infinitesimal
types are infinitesimal types, so M has at least as many infinitesimal types as M ,
and therefore the cardinality of M×/(M×)n exceeds the number of infinitesimal types
over M . Now for any a ∈ M×, and any M -infinitesimal ε, the element a · εn is an
M -infinitesimal in the same coset as a. So there are M -infinitesimals in every coset of
(M×)n, contradicting the choice of M .

9.5 The Canonical Valuation
We now turn to proving Theorem 9.1.4. This relies crucially on [38]’s work on defining
canonical valuations.

9.5.1 Review of Jahnke-Koenigsmann
Fix a prime p. Say that a profinite group is p-nilpotent if every finite quotient is a p-group.
Following [38], ifK is any field, letK(p) denote the compositum of all finite Galois extensions
L/K with Gal(L/K) a p-nilpotent group. The map K 7→ K(p) is a closure operation on
fields; abusing terminology we will call K(p) the “p-closure” of K.

A valuation v onK is p-henselian if it has a unique extension toK(p). This is a weakening
of henselianity. On any field K there is a canonical p-henselian valuation vpK , which might
be trivial. It has the following properties:

Fact 9.5.1.

1. If the residue field KvpK is not p-closed, then vpK is the finest p-henselian valuation on
K.

2. Every p-henselian valuation strictly finer than vpK has p-closed residue field.

3. If K admits no orderings and contains the pth roots of unity, then the valuation ring
of vpK is 0-definable in K from the field language.

Say that a field K is “p-corrupted” if no finite extension is p-closed.
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Lemma 9.5.2. Let K be a perfect field which is neither algebraically nor real closed. Then
some finite extension of K is p-corrupted.

Proof. Replace K with K(
√
−1) in characteristic 0. Take some non-trivial finite Galois

extension L/K. Take p dividing |Gal(L/K)|. By Sylow theory there is some intermediate
field K < F < L such that L/F is a p-nilpotent Galois extension. Then F (p) 6= F . A
theorem of Becker [5] says that if F is not p-closed and admits no orderings, then [F (p) : F ] =
∞. We forced F to contain

√
−1 in characteristic 0, and F is not p-closed, so [F (p) : F ] =∞.

Then no finite extension F ′ of F will contain F (p), so F is p-corrupted.4

9.5.2 Applying Jahnke-Koenigsmann
Say that a fairly saturated field L, perhaps with extra structure, is special if it is a finite
extension of an infinite dp-minimal field.5

Most of Theorem 9.4.18 applies to special fields:

Remark 9.5.3. Let L be a special field.

1. L is perfect

2. L admits a non-trivial Henselian valuation if L is not algebraically closed.

3. Any definable valuation on L is henselian. Any two definable valuations on L are
comparable.

All of these facts follow easily from the analogous facts for dp-minimal fields.
Also, special fields are closed under the following operations:

• Any finite extension of a special field is special.

• If L is special and w is a definable valuation on L, then Lw is finite or special.

To see the second point, let v = w|K, and note that Lw is a finite extension of Kw, which
is dp-minimal.

We get a handle on special fields via the following trick:

Proposition 9.5.4. Let L be a special field. Suppose L is not orderable, and contains all
the pth roots of unity. Then the canonical p-henselian valuation vpL on L is definable, and
its residue field is finite or p-closed.

4It is not hard to prove a slightly weaker version of Becker’s result, saying that if F is not p-closed, but
contains the pth roots of unity (and

√
−1 when p = 2), then [F (p) : F ] =∞. The proof we have just given

of Lemma 9.5.2 can be modified to use this weaker result. We leave this as an exercise to the reader.
5More precisely, L is special if there is an L-definable infinite subfield K with [L : K] finite, and the

induced structure on K is dp-minimal.
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Proof. Definability of vpL follows by the work of Jahnke-Koenigsmann. Suppose the residue
field LvpL is infinite and not p-closed. Then LvpL is special and not algebraically closed, so it
admits a non-trivial henselian place LvpL → L′. The place L → LvpL is henselian because it
is definable, so the composition

L→ LvpL → L′

is itself a henselian place, which corresponds to a finer p-henselian valuation than vpL. But
the canonical p-henselian valuation is the finest p-henselian valuation, unless its residue field
is p-closed, so we have a contradiction.

Mostly we will use the following consequence:

Corollary 9.5.5. Let L be a special field containing all the 4pth roots of unity, and let v be
a henselian valuation on L which is as fine as every definable valuation on L. Then Lv is
finite or p-closed.

Here we are using Fact 9.5.1.2.

9.5.3 The saturated case
Remark 9.5.6. Let K be a field, (I,<) a totally ordered set, and 〈Ox〉x∈I be a totally ordered
chain of valuation rings on K. Then the intersection

O =
⋂
x∈I
Ox

is itself a valuation ring on K. If the intersection has residue characteristic p, then some
Ox does: either K itself has characteristic p, or 1/p /∈ O, hence 1/p /∈ Ox for some x ∈ I.

Theorem 9.5.7. Let K be a sufficiently saturated dp-minimal field. Let O∞ be the inter-
section of all the definable valuation rings on K. (So O∞ = K if K admits no definable
non-trivial valuations.)

1. O∞ is a henselian valuation ring on K

2. O∞ is type-definable, without parameters. In fact, it is the intersection of all 0-definable
valuation rings on K.

3. The residue field of O∞ is finite, real-closed, or algebraically closed. If it is finite, then
O∞ is definable.

Proof. 1. By Theorem 9.4.18(3), the class of definable valuation rings on K is totally
ordered. An intersection of a chain of valuation rings is a valuation ring. An intersection
of a chain of henselian valuation rings is henselian.
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2. We need to show that O∞ is a small intersection. Suppose O is a definable valuation
ring onK, defined by a formula φ(K; b). Let ψ(x) be the formula asserting that φ(K;x)
is a valuation ring. Then ⋂b∈ψ(K) φ(K; b) is a 0-definable valuation ring contained in
O. Thus every definable valuation ring on K contains a 0-definable valuation ring.
Therefore O∞ is the intersection of the 0-definable valuation rings on K. It is therefore
type-definable over ∅.

3. First suppose that the residue field of O∞ is finite. Let m∞ denote the maximal ideal
of O∞. Then m∞ = K \O−1

∞ , so m∞ is ∨-definable. On the other hand, O∞ is a finite
union of translates of m∞, so O∞ is also ∨-definable, hence definable.
Now suppose that the residue field is infinite. Let v∞ denote the valuation associated
with O∞. Note that v∞ is as fine as any definable valuation on K, by choice of O∞.
In particular, for every definable valuation v on K, the place K → Kv∞ factors as a
composition of two places

K → Kv → Kv∞

We first show that Kv∞ is perfect. If Kv∞ has characteristic p, then Kv has char-
acteristic p for some definable valuation v, by Remark 9.5.6. The field Kv is perfect
by Observation 9.2.9, so the place Kv → Kv∞ ensures that Kv∞ is perfect as well
(perfect equicharacteristic valued fields have perfect residue fields).
Suppose for the sake of contradiction that Kv∞ is not algebraically closed or real
closed. As Kv∞ is perfect, Lemma 9.5.2 applies, and some finite extension F of Kv∞
is p-corrupted for some prime p (not necessarily the characteristic).
Choose a finite extension L of K such that

• L contains all the 4pth roots of unity
• If w∞ denotes the (unique) extension of v∞ to L, then Lw∞ contains F , hence is

not p-closed (nor finite).

By Corollary 9.5.5, some definable valuation w on L is not a coarsening of w∞. Let v
be w|K. Then v is a coarsening of v∞:

v(x) = v∞(x) + ∆

for some convex subgroup ∆ < v∞K. Coarsening w∞ with respect to the same convex
subgroup ∆, we get a coarsening w′ of w∞, whose restriction to K is v. But v is
henselian, so w = w′, and w is coarser than w∞, a contradiction.
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9.5.4 The general case
We now prove Theorem 9.1.4. Let K be an arbitrary dp-minimal field. The 0-definable
valuation rings on K are henselian and pairwise comparable (Theorem 9.4.18), so their
intersection O is a henselian valuation ring, as in the previous section.

If O is non-trivial, then there is at least one 0-definable non-trivial valuation ring O1 on
K. By Lemma 9.4.12, the valuation ring O1 induces the canonical topology on K. As O1 is
a coarsening of O, the valuation ring O also induces the canonical topology.

Let v be the valuation associated with O.

Lemma 9.5.8. The valuation v is defectless.

Proof. If Kv has characteristic 0, then henselian implies defectless. So suppose Kv has
characteristic p. By Remark 9.5.6, there is some 0-definable valuation w with residue char-
acteristic p. Then K → Kw is defectless by Theorem 4.3.1 (plus Theorem 9.4.18), and
Kw → Kv is defectless by Lemma 4.1.3. By Remark 3.1.5, K → Kv is defectless.

Finally, we need to show that the residue field Kv is finite, algebraically closed, or real
closed.

Let M � K be a sufficiently saturated elementary extension, and let O∞ be the type-
definable subring of M from the previous section—the intersection of the 0-definable valua-
tion rings on M. Then O = O∞ ∩K.

There are three cases:

1. If O∞ has finite residue field, then O∞ is definable, hence 0-definable. Then O � O∞
so O has finite residue field.

2. Next, suppose O∞ has algebraically closed residue field. Then for every n, we have

∀a1, . . . , an ∈ O∞∃x xn + a1x
n−1 + · · ·+ an ∈ m∞

By compactness, there is some 0-definable valuation ring On such that

∀a1, . . . , an ∈ On∃x xn + a1x
n−1 + · · ·+ an ∈ mn

This remains true in K, as K �M. Because On ⊇ O and mn ⊆ m, we get

∀a1, . . . , an ∈ O∃x xn + a1x
n−1 + · · ·+ an ∈ m

which implies that all degree n monic polynomials in O/m have roots.

3. Next, suppose O∞ has a real closed residue field. The unique extension of O∞ to M(i)
has algebraically closed residue field. Repeating the arguments we just gave with K(i)
and M(i) instead of K and M, we see that the residue field of K(i) with respect to O
is algebraically closed. So the residue field of K is real closed or algebraically closed.
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9.6 VC-minimal fields
In [24] Definition 1.4, Guingona makes the following definition:

Definition 9.6.1. A theory T is dp-small if there does not exist a model M |= T , formulas
φi(x; yi) with |x| = 1, and a formula ψ(x; z), and elements aij, bi, cj such that

M |= φi(ai′j, bi) ⇐⇒ i = i′

M |= ψ(aij′ , cj) ⇐⇒ j = j′

The combinatorial configuration here is more general than the one in the definition of
dp-minimality, so dp-smallness is a stricter condition than dp-minimality.

Like dp-minimality, dp-smallness is preserved under reducts and under naming parame-
ters. Guingona shows that VC-minimal fields are dp-small.

Theorem 9.6.2. Let K be a dp-small field. Then K is algebraically closed or real closed.

Proof. We can and do take K to be sufficiently saturated. By Theorem 1.6.4 of [24], the
value group vK is divisible for any definable valuation v on K.

By Theorem 9.5.7, there is a henselian defectless valuation v∞ on K whose valuation ring
is the intersection of all definable valuation rings onK. The residue field of v∞ is algebraically
closed, real closed, or finite. In the finite case, v∞ is definable, and by Theorem 4.3.1, the
interval [−v(p), v(p)] in the value group is finite, contradicting divisibility.

Therefore, the residue field Kv∞ is algebraically closed or real closed. For K to be
algebraically closed or real closed, it suffices to show that the value group v∞K is divisible,
by Ax-Kochen-Ershov in the real closed case, and defectlessness in the algebraically closed
case.

Let ` be any prime. Let a be an element of K×. For each definable valuation O on K,
the value group K×/O× is `-divisible. So there is an element b ∈ K× and c ∈ O× such that
a = b` ·c. The valuation ring O∞ of v∞ is the intersection of a small ordered set of O’s, so by
compactness, we can find b ∈ K× and c ∈ O×∞ such that a = b` · c. Then v∞(a) = ` · v∞(b).
So v∞ has `-divisible value group, for arbitrary `.

We can also specialize this result to C-minimal and (weakly) o-minimal fields.

Corollary 9.6.3. Dense C-minimal fields are algebraically closed.

Proof. Proposition 5.2.7 prevents dense C-minimal fields from being real-closed.

Note that “C-minimal field” merely means “field which is C-minimal.” Unlike [28], we
are not assuming any compatibility between the field operations and the C-structure.
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9.6.1 Weakly o-minimal fields
Weakly o-minimal fields turn out to be real closed. This will require a little bit of work.
First we prove a lemma:

Lemma 9.6.4. Let M be a sufficiently saturated non-strongly minimal dp-minimal field,
possibly with extra structure. Then every infinitesimal type is multiplicatively stabilized by
G0
m.

Proof. Let p be an infinitesimal type over M, and take a ∈ G0
m. Let ψ(x; z) be a formula.

We will show that a−1 · p and p have the same ψ-type.
Let φ(x; y, z) be the formula ψ(x · y; z). Every ψ-formula is a φ-formula, so it suffices to

show that a−1 · p and p have the same φ-type. Moreover, the multiplicative group acts on
φ-formulas and hence on φ-types.

For any α ∈ Gm, the type α · p is an infinitesimal type, because p is infinitesimal. By
Corollary 9.3.19, the orbit of p is small. Restricting to φ-types, we see that p|φ has a small
orbit as well.

Because infinitesimal types are definable (Corollary 9.3.20), the multiplicative stabilizer
of the φ-type p|φ is definable. Therefore the orbit is interpretable. Being bounded, it must
be finite. So p|φ is stabilized by some finite-index subgroup of Gm. As a ∈ G0

m, it follows
that a · p|φ = p|φ as claimed.

Using this, we can prove a rather strong and surprising result.

Theorem 9.6.5. Let K be a dp-minimal algebraically closed field with extra structure. Then
there is no infinite definable subset of K with a definable total ordering.

Proof. We may replace K with a monster M.
Suppose some infinite definable set D ⊆ M admits a definable total ordering <D. Then

D has non-empty interior by Proposition 9.3.22. Translating D, we may assume that 0 is in
the interior of D. So all infinitesimal types over M live in D.

Let p be some nonzero infinitesimal type. Then p is multiplicatively stabilized by G0
m. Be-

cause M is algebraically closed, Gm is divisible. This implies that it has no proper subgroups
of finite index. Therefore G0

m = Gm, so a · p = p for any a ∈ Gm.
Let ω be some root of unity, other than 1. (For example, in characteristic 6= 2, take

ω = −1.) Then ω · p = p. As p is nonzero and ω 6= 1, the type p(x) must say x 6= ω · x. By
totality of the ordering, we may assume x <D ω ·x is in p(x), reversing the order if necessary.

Now if a realizes p in some elementary extension of M, then ωi · a |= ωi · p = p. In
particular,

ωi · a <D ω · (ωi · a)

for all i. By transitivity, the map i 7→ ωi·a is strictly increasing, hence injective, contradicting
the fact that ω is a root of unity.
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Because weakly o-minimal structures are VC-minimal and dp-small, we immediately get
the following corollary, which was probably more easily proven by other means:

Corollary 9.6.6. Weakly o-minimal fields are real-closed.

Again, this is slightly more general than the result in [50], since we are not assuming that
the weakly o-minimal ordering is a field ordering.

9.7 The classification of dp-minimal fields
At this point, only Theorem 9.1.5 remains. According to [39], Chernikov and Simon prove
the following fact in [12].

Fact 9.7.1. A henselian valued field (K, v) with residue characteristic 0 is dp-minimal if
and only if vK and Kv are dp-minimal.

Theorem 9.1.51 asserts that certain theories are complete and dp-minimal. Except in the
case of positive residue characteristic, the completeness follows by the Ax-Kochen-Ershov
principle, and dp-minimality follows by Fact 9.7.1, using the dp-minimality of characteristic
0 local fields, plus the characterization of dp-minimal ordered abelian groups (Proposition
5.1 in [39]). Characteristic 0 local fields are dp-minimal by Corollary 7.8 of [3] in the non-
archimedean case, and by VC-minimality in the case of C and R.

For the remaining case of positive residue characteristic, Corollary 3.2.18 provides com-
pleteness, and Theorem 3.3.7 establishes dp-minimality. Finally, part (2) of Theorem 9.1.5
follows from a more general fact:

Theorem 9.7.2. Let K be a sufficiently saturated dp-minimal field. Then there is a henselian
defectless valuation v on K such that

• The residue field Kv is algebraically closed, real closed, or a local field of characteristic
0.

• The value group vK satisfies |vK/n · vK| < ℵ0 for all n > 0.

• If Kv has characteristic p, then vK is p-divisible.

• If v has mixed characteristic, then v(p) ∈ Intp vK.

Proof. First we note that if v is any valuation on K, then vK/n · vK is finite for all n, by
Theorem 9.4.184. For the other points, we break into cases.

Let v∞ be the valuation from Theorem 9.5.7. First suppose that Kv∞ is finite. Then v∞
is definable. By Theorem 4.3.1, v∞ has mixed characteristic and the interval [−v∞(p), v∞(p)]
is finite. Then

∆ := Z · v∞(p)
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is the smallest convex subgroup of v∞K containing v∞(p).
Let v be the coarsening of v∞ by ∆. We get a decomposition of the henselian defectless

place K → Kv∞

K
v∞K/∆→ Kv

∆→ Kv∞

Because K is saturated and v∞ is definable, countable chains of balls in (K, v∞) have non-
empty intersection, meaning that K → Kv∞ satisfies the countable intersection property
of Remark 3.1.5. Thus Kv → Kv∞ also satisfies this condition. But the value group of
Kv → Kv∞ is isomorphic to Z, so the valuation Kv → ∆ is a mixed characteristic complete
discrete valuation with a finite residue field. Therefore Kv is a characteristic 0 local field.
So v is a henselian (and defectless) valuation on K, and its residue field Kv is local of
characteristic 0. There is nothing else to show in this case, because v is equicharacteristic 0.

Otherwise, Kv∞ is real closed or algebraically closed. In this case, we take v = v∞.
It remains to show that v∞ is roughly p-divisible (see Definition 3.1.4) if Kv∞ has charac-

teristic p. By Remark 9.5.6, there is a definable valuation v1 such that Kv1 has characteristic
p. The place K → Kv∞ decomposes as

K → Kv1 → Kv∞

where K → Kv1 is roughly p-divisible by Theorem 4.3.1, and Kv1 → Kv∞ is roughly
p-divisible by Lemma 4.1.3. So the composition is roughly p-divisible by Remark 3.1.5.

9.8 Dp-minimal valued fields
The above results easily yield a sharp characterization of dp-minimal valued fields, which we
give in the next two theorems:

Theorem 9.8.1. Let (K, v) be a valued field with infinite residue field. Then (K, v) is
dp-minimal (as a pure valued field) if and only if the following conditions all hold:

1. The residue field Kv and value group vK are dp-minimal

2. The valuation v is henselian and defectless

3. In mixed characteristic, every element of [−v(p), v(p)] is divisible by p.

4. In pure characteristic p, the value group vK is p-divisible.

Proof. First suppose (K, v) is dp-minimal. Both vK and Kv are dp-minimal because they
are images of the dp-minimal field K. Corollary 9.4.16 yields henselianity. Theorem 4.3.1
yields the divisibility conditions.

Conversely, suppose (K, v) satisfies conditions 1-4. These conditions are first order, so
we may assume (K, v) is sufficiently saturated. As Kv is a dp-minimal field, there is a place
Kv → k which is henselian, defectless, roughly p-divisible, and with k algebraically closed or
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elementarily equivalent to a local field of characteristic 0. By Remark 3.1.5, the composition
K → Kv → k is also henselian, defectless, and roughly p-divisible.

Recall that an ordered abelian group Γ is dp-minimal if and only if Γ/n ·Γ is finite for all
n > 0. If Γ is an ordered abelian group, and ∆ is a convex subgroup, then Γ is dp-minimal
if and only if ∆ and Γ/∆ are.

Therefore, the value group of K → Kv → k is dp-minimal because the value groups of
K → Kv and Kv → k are.

In summary, the composite place K → k is henselian, defectless, and roughly p-divisible,
its residue field is local of characteristic 0, or algebraically closed, and its value group Γ has
the property that Γ/nΓ is finite for all n. By Theorem 9.1.5.1, the valued field K → k is
dp-minimal. The original valued field K → Kv is a coarsening of K → k, so it is definable
in the shelah expansion of K → Kv (the expansion by all externally definable sets). The
shelah expansion is still dp-minimal. Thus K → Kv is dp-minimal.

Theorem 9.8.2. Let (K, v) be a valued field with finite residue field. Then (K, v) is dp-
minimal (as a valued field) if and only if the following conditions all hold:

1. The value group vK is dp-minimal

2. The valuation v is henselian

3. The valuation is finitely ramified, in the sense that [−v(p), v(p)] is finite. (In particular,
K has characteristic 0 if v is non-trivial.)

Proof. First suppose (K, v) is dp-minimal. Then henselianity follows by Corollary 9.4.16,
and dp-minimality of vK is immediate. Finite ramification follows by Theorem 4.3.1.

Conversely, suppose (K, v) satisfies conditions 1-3. These conditions are elementary, so
we may assumeK is saturated. If v is trivial, thenK is finite, so it is dp-minimal. Otherwise,
K has characteristic 0. Let w be the coarsening of v by the convex subgroup ∆ generated
by v(p). As usual we get a decomposition K → Kw → Kv. The value group of Kw → Kv
is ∆, which has rank 1 by finite ramification. By saturation of K → Kv, the countable
chain condition of Remark 3.1.5 holds in K → Kv, hence in Kw → Kv. Thus Kw → Kv
is spherically complete. Also, ∆ is isomorphic to Z. Thus Kw → Kv makes Kw into
a complete mixed characteristic DVR with finite residue field. So Kw is a local field of
characteristic 0.

Now K → Kw is henselian (because K → Kv is). As K → Kv has dp-minimal value
group, so does K → Kw and Kw → Kv. In particular, K → Kw makes K into a henselian
valued field with dp-minimal value group and residue field local of characteristic 0. So
K → Kw is dp-minimal by Theorem 9.1.5.1.1a.

In characteristic 0 nonarchimedean local fields, the valuation ring is always definable
from the pure field language. Consequently, the dp-minimal structure K → Kw interprets
K → Kw → Kv. Thus K → Kv is also dp-minimal.

Question 9.8.3. Do the above theorems remain true when (K, v) is expanded by additional
structure on vK and Kv (preserving the dp-minimality of each)?
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9.9 Summary and future directions
We now know exactly which pure fields are dp-minimal, and we know a little bit about
dp-minimal expansions of fields.

Here is a summary of what can be said about a dp-minimal field (K,+, ·, . . .), perhaps
with other structure. Either K is strongly minimal (or finite), or all of the following facts
are true:

• There is a definable V-topology on K (Theorem 9.1.3)

• With respect to this topology, there are only boundedly many infinitesimal types, which
are all definable (Corollaries 9.3.19 and 9.3.20).

• Any unary definable set has finite boundary (Theorem 9.1.3)

• Dp-rank of definable6 sets is definable in families, and agrees with “geometric dimen-
sion.” (Corollary 9.4.7).

• Any definable valuation ring is henselian and defectless, and any two definable valuation
rings are comparable (Proposition 9.4.15, Corollary 9.4.16, Theorem 4.3.1)

• For each n, K×/(K×)n is finite (Theorem 9.4.18.4).

• G00
m = G0

m = ⋂
n(K×)n. Indeed, G0

m = ⋂
n(K×)n by the previous point. Because each

infinitesimal type lives in a specific coset of G00
m , the multiplicative stabilizer of any

infinitesimal type must be G00
m , but the stabilizer is also G0

m by Lemma 9.6.4.

• Any finite extension of K is dp-minimal as a pure field (but not as an expanion of K,
of course). This follows by inspecting the list of dp-minimal fields.

• There is at least one definable non-trivial valuation on K, unless K is finite, real closed,
or algebraically closed (Theorem 9.5.7).

There are several obvious questions we have not addressed:

Question 9.9.1. If K is a dp-minimal field, is there always a definable valuation on K
whose residue field is algebraically closed, real closed, or finite?

Question 9.9.2. Which unstable dp-minimal valued fields fail to define valuations?

Question 9.9.3. If K is a sufficiently saturated unstable dp-minimal valued field, and O∞
is the valuation ring from Theorem 9.5.7, is the expansion of K by O∞ still dp-minimal?

Question 9.9.4. Can any of the classification be extended to fields of finite dp-rank?
6One cannot hope to extend this to interpretable sets. For instance, ∃∞ is not eliminated in the value

group of Qp.
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9.9.1 Defining the canonical valuation, or not
In general, the answer to Question 9.9.1 is no, though we can characterize the failure modes.

Proposition 9.9.5. Let (K, v) be a sufficiently saturated valued field as in Theorem 9.1.5.1.
So (K, v) is dp-minimal, and vK is elementary equivalent to Falgp or a characteristic 0 local
field.

Let O∞ be the intersection of all valuation rings on K definable in the pure field language.
Let w be the associated valuation.

• If Kv is non-archimedean, then w is the composition of v with the canonical valuation
on Kv.

• If Kv is real closed or algebraically closed, then w is the coarsening of v by the maximal
convex divisible subgroup of vK.

Proof. First we make a general observation.
Remark 9.9.6. Let K → k be a place. It cannot be the case that one of K or k is finite
and the other is real closed or algebraically closed. Indeed, if K is finite then k is (obviously)
finite. If K is algebraically closed or real closed, then so is k.

First supposeKv is non-archimedean. Non-archimedean local fields define their valuation
rings, so (K, v) interprets the canonical valuation on Kv. Let K → Kv → Kv′ be the
composition, so v′ is a definable valuation on K with finite residue field Kv′.

By Proposition 9.4.15 applied to the dp-minimal structure (K, v), the valuations v′ and
w must be comparable. So we either have a place map Kw → Kv′ or Kv′ → Kw. By
Theorem 9.5.7, Kw is finite, real closed, or algebraically closed. By remark 9.9.6, Kw
cannot be algebraically closed or real closed, so it is finite. Then Kw → Kv′ or Kv′ → Kw
is trivial, and w = v′.

Next suppose Kv is real closed or algebraically closed. Let v′ be the coarsening of v by
the maximal divisible convex subgroup of vK. In the sequence

K → Kv′ → Kv

the value group of Kv′ → Kv is divisible, and the value group of K → Kv′ has no convex
divisible subgroups. Also, K → Kv′ is henselian, defectless, and roughly p-divisible. Because
Kv′ has a henselian defectless valuation with divisible value group and real or algebraically
closed residue field, Kv′ is itself real closed or algebraically closed.

So (K, v′) models one of the theories from Theorem 9.1.5.1, though (K, v′) need not be
saturated. One can show that in (K, v′), the induced structure on Kv′ is the pure field
structure.

By Proposition 9.4.15, w and v′ must be comparable. If v′ were strictly coarser than w,
we would have a non-trivial valuation Kv′ → Kw, definable in the structure (K, v′). But
pure models of RCF and ACF do not admit non-trivial valuations.
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So w is coarser than v′, which is in turn coarser than v. Let ∆w and ∆v′ be the convex
subgroups of vK whose coarsenings yield w and v′. Then ∆w ≥ ∆v′ . We want to show
w = v′, i.e., that ∆w = ∆v′ . Otherwise, ∆w > ∆v′ . As ∆v′ is the greatest convex divisible
subgroup, ∆w is not divisible. Neither is ∆w/∆v′ . So the place Kw → Kv′ has a value
group that is not divisible.

Now Kv′ is real closed or algebraically closed, so Kw is not finite by Remark 9.9.6.
Therefore Kw is real closed or algebraically closed. But then any valuation on Kw has
divisible value group. This contradicts the non-divisibilitiy of the value group of Kw →
Kv′.

Theorem 9.9.7. Let (K, v) be a dp-minimal valued field with residue field Kv algebraically
closed or elementarily equivalent to a local field of characteristic 0. Suppose K is sufficiently
saturated. The following are equivalent:

• There is a valuation w, definable in the pure field language, such that Kw is finite, real
closed, or algebraically closed.

• Kv is non-archimedean or the maximal convex divisible subgroup of vK is definable.

Proof. First suppose that Kv is non-archimedean. By Proposition 9.9.5, the canonical val-
uation on K (in the pure field language) has finite residue field (and so is definable by
Theorem 9.5.7). So there is a valuation ring on K, definable in the pure field language, with
finite residue field.

Next suppose that Kv is algebraically closed or real closed. If the maximal divisible
convex subgroup of vK is definable, let v′ be the coarsening, which is definable in (K, v).
Let w be the canonical valuation on Kv. Then w = v′ by the proposition. The valuation
ring of w is then type definable in the pure field language, and definable in (K, v). It must
then be definable in the pure field language. So w is definable in the pure field language,
and Kw is finite, algebraically closed, or real closed, by Theorem 9.5.7.

Conversely, suppose that Kw is algebraically closed, real closed, or finite, for some w
definable in the pure field language.

Now w is coarser than the canonical valuation on the pure field K which is coarser than
v by the Proposition (applied to (K, v)). So there is a place Kw → Kv. By Remark 9.9.6,
Kw is algebraically closed or real closed.

Then we can apply the Proposition to (K,w), seeing that the canonical valuation on K
is a coarsening of w. So w and the canonical valuation on K are coarser than each other,
hence equal.

Now by the Proposition applied to (K,w), w is the coarsening of v by the maximal convex
divisible subgroup of vK. This group must be definable in (K, v). As (K, v) induces the
pure ordered group structure on vK, this group is definable in vK.

Now let Γ be the lexicographic product

Z× Z[1/2]× Z[1/2, 1/3]× Z[1/2, 1/3, 1/5]× · · ·
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For each number n, all but finitely many of the factors are divisible by n, and in fact Γ/nΓ
is finite for all n. So C((tΓ)) is dp-minimal. But in a sufficiently saturated elementary
extension of Γ, the maximal divisible convex subgroup of Γ is not definable. In fact, it is the
intersection of the strictly decreasing sequence of definable subgroups:

Int2 Γ > Int3 Γ > · · ·

9.9.2 Unstable dp-minimal valued fields that define no valuations
We know that every unstable dp-minimal field K has a V-topology. This topology need
not come from a definable valuation, as exhibited by RCF. On the other hand, if K admits
no definable valuation rings, then the ring O∞ in Theorem 9.5.7 is trivial, so K must be
algebraically closed or real closed. So most dp-minimal fields admit a definable valuation,
which determines the canonical topology (by Lemma 9.4.12).

A natural open question is then:

Question 9.9.8. Are there dp-minimal unstable expansions of ACF which define no valua-
tion rings?

If the answer is no, the following conjecture is true:

Conjecture 9.9.9. Let K be an unstable dp-minimal field. Then the canonical topology on
K is induced by a definable ordering or a definable valuation.

9.9.3 Expanding by the canonical valuation
In many cases, the answer to Question 9.9.3 is yes, because the canonical valuation is defin-
able. (Whether this happens is more or less characterized by Proposition 9.9.5.) In the case
of pure fields, we know that the answer to Question 9.9.3 is yes, at least under saturation
assumptions—this is essentially the content of Theorem 9.7.2.

In general, Question 9.9.3 remains open.

9.9.4 Finite dp-rank fields
Strongly minimal fields are known to be algebraically closed by a theorem of Macintyre. To
prove this, one must prove a stronger statement: fields of finite Morley rank are algebraically
closed.

In contrast, the tools and techniques we have used to classify dp-minimal fields do not
seem to generalize in an obvious way to fields of finite dp-rank.

Unlike the case of finite Morley rank, there are (probably) pure fields of arbitrarily high
finite dp-rank. Let Rn be the localization S−1Z where S is generated by all but the first
(n − 1) primes. Let π1, π2, . . . be a countable subset of a transcendence basis of R over Q.
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Let An be ∑∞i=1Rn · πi. One can show that An has dp-rank n as an ordered abelian group,
and one expects that C((tAn)) also has dp-rank n (as a pure field).

Nevertheless, one could hope that some analogue of Theorem 9.1.5.2 holds, with Γ re-
quired only to have finite dp-rank. Several hurdles stand in the way of directly generalizing
the proof.

First of all, the definition of “infinitesimal” needs to be changed. For dp-minimal fields,
we defined ε to be a K-infinitesimal if X ∩ (X + ε) is infinite for every infinite K-definable
set ε.

This is no longer reasonable in rank 2 fields. For instance, consider the field of complex
numbers expanded by complex conjugation. If ε is non-zero, then at least one of the sets
R ∩ (R + ε) or i · R ∩ (i · R + ε) is empty. So 0 would be the only infinitesimal, which is
unacceptable.

A more likely definition for “infinitesimal” in the higher rank case is the following: ε is
K-infinitesimal if X ∩ (X + ε) has full dp-rank whenever X is K-definable of full dp-rank.

With this definition, it becomes unclear that the set of K-infinitesimals is type-definable,
however. We would need to know that the condition of being full dp-rank is definable in
families (generalizing Observation 9.2.10). The proof of Observation 9.2.10 relies heavily on
the rank 1 assumption.

Also, changing the definition of infinitesimals would require an analogous change in the
definition of slight maps, and the proof of Proposition 9.3.7 might become more difficult.

The next big hurdle is Theorem 9.3.16, the bound on the number of germs at 0. The
proof of Theorem 9.3.16 directly relies on dp-minimality. Moreover, Theorem 9.3.16 and its
corollaries all fail to hold in the example of the complex numbers expanded by conjugation:

• There are unboundedly many infinitesimal types, contradicting Corollary 9.3.19

• There are infinitesimal types which are not definable, contradicting Corollary 9.3.20

• There are definable sets (for instance, the upper half plane), with infinite boundary,
contradicting Proposition 9.3.22.

Intuitively, Proposition 9.3.22 should probably be changed to say that no definable set
has boundary of full dp-rank. Unfortunately, all the steps used to prove this Proposition
lack analogous generalizations!

The last place where dp-minimality was used in an essential way was Corollary 9.3.27,
which said that the groups IK and a · IK are comparable for any a ∈ M (here, IK denotes
the K-infinitesimals). The key step to proving this Corollary was a general statement about
dp-minimal abelian groups: if G and H are two subgroups which are sufficiently connected,
then G and H are comparable (Lemma 9.3.26).

This is a special case of a more general “dual Baldwin-Saxl” statement

Fact 9.9.10. Let (K,+) be an abelian group of dp-rank n. Let G1, . . . , Gm be type-definable
subgroups such that Gi = G00

i for each i. If m > n, then there exist i1, . . . , in such that
G1 + · · ·+Gm = Gi1 + · · ·+Gin
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If we could overcome all the other hurdles (proving the existence of a nontrivial type-
definable subgroup IK < Ga with (1 + IK) < Gm and IK = I00

K ), this Lemma would tell us
something non-trivial about the family of rescalings a · IK for a ∈M.
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Chapter 10

Another proof that ACF defines
geometric irreducibility

The model theory of fields occasionally utilizes the “definability” of certain basic concepts
from algebraic geometry, such as dimension, Zariski closure, irreducibility, and reducedness.
For instance, dimension is definable in the following sense: if C is a model of ACF, if φ(~x; ~y)
is a formula, and if d ∈ N, the set of ~b such that φ(C;~b) has dimension d is definable.

This sort of statement has geometric content. Among other things, it implies that if
f : V → W is a morphism of varieties, then the sets

Wd = {w ∈ W : dim f−1(w) = d}, d = 0, 1, 2, . . . , dim V

are constructible subsets of W .
Model-theoretically, these “definability” results are useful in axiomatizing certain theories

of fields. For example, the Pseudo Algebraically Closed (PAC) fields are the fields K such
that every geometrically integral K-variety contains a K-point [22]. The definability of
geometric integrality ensures that the class of PAC fields is an elementary class. Similarly,
the geometric axioms of existentially closed difference fields in (1.1) of [7] are first order
because properties like Zariski density are definable. We will see another example of this in
the next chapter, when we axiomatize the existentially closed fields with multiple valuations
in section §11.2.1.

All these “definability” facts are known classically, and can be proven directly using
the tools of computational algebraic geometry. Model-theoretic proofs exist as well. For
instance, the definability of dimension is a consequence of the definability of Morley rank in
strongly minimal sets (Proposition 1.5.16 in [57]). The other facts are less automatic. For
example, the definability of irreducibility implies that ACF has the definable multiplicity
property; not all strongly minimal sets have this. In his thesis [16], Lou van den Dries found
model-theoretic proofs of all the definability results using ultraproducts and flatness.

In this brief chapter, we present a potentially new proof of the definability of irreducibility
in algebraically closed fields. The proof will be primarily model-theoretic, using the following
input from algebraic geometry:
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• Krull dimension agrees with Morley rank

• The Zariski closed sets of codimension 1 are the zero-sets of irreducible polynomials

• Zariski-closed subsets of projective space are complete varieties, hence have closed
images under regular maps.

Most of the complexity of the proof is probably buried in the third fact, whose proof uses
valuation theory (see §II.4 of [25]).

10.1 Irreducibility in Projective Space
Let C be a monster model of ACF . For ~x ∈ Pn(C), let P~x be the n−1-dimensional projective
space of lines through ~x, and let π~x : Pn \ {~x} → P~x be the projection.

Lemma 10.1.1. Let A be a small set of parameters, and suppose ~x ∈ Pn(C) is generic over
A. Suppose V is an A-definable Zariski closed subset of Pn, of codimension greater than
1. Then π~x(V ) ⊆ P~x is Zariski closed, of codimension one less than the codimension of V .
Moreover, π~x(V ) is irreducible if and only if V is irreducible.

Proof. Replacing A with acl(A), we may assume A is algebraically closed, implying that the
irreducible components of V are also A-definable.

Note that ~x /∈ V because ~x is generic, and V has codimension at least 1. Therefore, π~x
is a regular map on V . The image π~x(V ) is Zariski closed because V is a complete variety.
Claim 10.1.2. Let C be any irreducible component of V , and let ~c ∈ V realize the generic
type of C, over A~x. Then ~c is the sole preimage in V of π~x(~c).

Proof. The generic type of C is A-definable, so ~c |̂
A
~x, and therefore

RM(~x/A~c) = RM(~x/A) = n.

Suppose for the sake of contradiction that there was a second point ~d ∈ V , ~d 6= ~c, satisfying

π~x(~d) = π~x(~c).

This means exactly that the three points ~c, ~d, and ~x are collinear. Then ~x is on the 1-
dimensional line determined by ~c and ~d, so

RM(~x/A~c~d) ≤ 1.

But then

n = RM(~x/A~c) ≤ RM(~x~d/A~c) = RM(~x/A~c~d) +RM(~d/A~c) ≤ 1 +RM(V ) < n,

by the codimension assumption.



CHAPTER 10. DEFINABILITY OF IRREDUCIBILITY 148

Using the claim, we see that π~x(V ) and V have the same dimension (= Morley rank).
Indeed, let ~v ∈ V have Morley rank RM(V ) over A~x. Then ~v realizes the generic type of
some irreducible component C, so by the claim, ~v is interdefinable over A~x with π~x(~v). But
then

RM(π~x(V )) ≥ RM(π~x(~v)/A~x) = RM(~v/A~x) = RM(V ),

and the reverse inequality is obvious. So the codimension of π~x(V ) is indeed one less.
Let C1, . . . , Cm enumerate the irreducible components of V . (Possibly m = 1.) Each of

the images π~x(Ci) is a Zariski closed subset of P~x, for the same reason that π~x(V ) is, and
each image is irreducible, on general grounds. If π~x(Ci) ⊆ π~x(Cj) for some i 6= j, then the
generic type of Ci would have the same image under π~x as some point in Cj, contradicting
the Claim. So π~x(Ci) 6⊆ π~x(Cj) for i 6= j. It follows that the images π~x(Ci) are the irreducible
components of

π~x(V ) =
m⋃
i=1

π~x(Ci).

Therefore, π~x(V ) and V have the same number of irreducible components, proving the last
point of the lemma.

Theorem 10.1.3. Let X~a ⊆ Pn be a definable family of Zariski closed subsets of Pn. Then
the set of ~a for which X~a is irreducible, is definable.

Proof. Dimension is definable in families, because ACF is strongly minimal. So we may
assume that all (non-empty) X~a have the same (co)dimension. We proceed by induction on
codimension, allowing n to vary.

For the base case of codimension 1, note that

1. The family of Zariski closed subsets of Pn is ind-definable, i.e., a small union of definable
families, because the Zariski closed subsets are exactly the zero sets of finitely-generated
ideals.

2. Using 1, the family of reducible Zariski closed subsets of Pn is also ind-definable, because
a definable set is a reducible Zariski closed set if and only if it is the union of two
incomparable Zariski closed sets.

3. Whether or not a polynomial in C[x1, . . . , xn+1] is irreducible, is definable in terms of
the coefficients, because we only need to quantify over lower-degree polynomials.

4. A hypersurface in Pn is irreducible if and only if it is the zero-set of an irreducible
homogeneous polynomial. It follows by 3 that the family of irreducible codimension 1
closed subsets of Pn is ind-definable.

5. By 2 (resp. 4), the set of ~a such that X~a is reducible (resp. irreducible) is ind-definable.
Since these two sets are complementary, both are definable, proving the base case.
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For the inductive step, suppose that irreducibility is definable in families of codimension
one less than X~a. By choosing an isomorphism between P~x and Pn−1, one easily verifies the
definability of the set of (~x,~a) such that π~x(X~a) is irreducible and has codimension one less.

By Lemma 10.1.1, X~a is irreducible if and only if (~x,~a) lies in this set, for generic ~x.
Definability of types in stable theories then implies definability of the set of ~a such that X~a

is irreducible.

Corollary 10.1.4. The family of irreducible closed subsets of Pn is ind-definable.

Proof. The family of closed subsets is ind-definable, and by Theorem 10.1.3 we can select
the irreducible ones within any definable family.

Corollary 10.1.5. The family of pairs (X,X) with X definable and X its Zarisk-closure,
is ind-definable.

Proof. By quantifier elimination in ACF , any definable set X can be written as a union of
sets of the form C ∩U with C closed and U open. Replacing V with a union of irreducibles,
and distributing, we can write X as a union ⋃m

i=1Ci ∩ Ui, with Ci Zariski closed and Ui
Zariski open. We may assume that Ci ∩Ui 6= ∅ for each i, or equivalently, that Ci \Ui 6= Ci.

In any topological space, closure commutes with finite unions, so

X =
n⋃
i=1

Ci ∩ Ui.

Now Ci ∩ Ui ⊆ Ci = Ci, and
Ci = Ci ∩ Ui ∪ (Ci \ Ui),

so by irreducibility of Ci, Ci ∩ Ui = Ci. Therefore,

X =
n⋃
i=1

Ci.

Corollary 10.1.4 implies the ind-definability of the family of pairs(
n⋃
i=1

Ci ∩ Ui,
n⋃
i=1

Ci

)

with Ci irreducible closed, Ui open, and Ci ∩ Ui 6= ∅. We have seen that this is the desired
family of pairs.

The following corollary is an easy consequence:

Corollary 10.1.6. Let X~a be a definable family of subsets of Pn. Then the Zariski closures
X~a are also a definable family.
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10.2 Irreducibility in Affine Space
Theorem 10.2.1. Let X~a be a definable family of subsets of affine n-space.

1. The family of Zariski closures X~a is also definable.

2. The set of ~a such that X~a is irreducible is definable. More generally, the number of
irreducible components of X~a is definable in families (and bounded in families).

3. Dimension and Morley degree of X~a are definable in ~a.

Proof.

1. Embed An into Pn. Then the Zariski closure of X~a within An is the intersection of An

with the closure within Pn. Use Corollary 10.1.6.

2. The number of irreducible components of the Zariski closure is the same whether we
take the closure in An or Pn. This proves the first sentence. The first sentence yields
the ind-definability of the family of irreducible Zariski closed subsets of An, from which
the second statement is an exercise in compactness.

3. We may assume X~a is closed, since taking the closure changes neither Morley rank nor
Morley degree. The family of d-dimensional Zariski irreducible closed subsets of An is
ind-definable, making this an exercise in compactness.



151

Chapter 11

Forking and Dividing in Fields with
Several Orderings and Valuations

The theory of fields with n unrelated valuations has a model companion, by the thesis of
van den Dries [16]. One can also include orderings and p-valuations. More precisely, suppose
that for 1 ≤ i ≤ n, the theory Ti is ACVF, RCF, or pCF for some p. Arrange that for
i 6= j, the languages of Ti and Tj overlap only in the language of rings. Then one forms
the theory ⋃n

i=1(Ti)∀, whose models are fields1 K with additional structure making K a
model of (Ti)∀, for each 1 ≤ i ≤ n. In van den Dries’s notation, ⋃ni=1(Ti)∀ would be denote
((T1)∀, (T2)∀, . . . , (Tn)∀).

For example, if each Ti is ACVF, then (Ti)∀ is the theory of valued fields, and

((T1)∀, (T2)∀, . . . , (Tn)∀)

is the theory of fields with n different valuations. If each Ti is RCF, the (Ti)∀ is the theory
of ordered fields, and ((T1)∀, (T2)∀, . . . , (Tn)∀) is the theory of fields with n orderings. The
case of pCF is similar, though for technical reasons one must use the Macintyre language.
The Ti can be mixed; for example

(ACV F∀, RCF∀, 3CF∀)

is the theory of fields with a valuation, an ordering, and a 3-valuation (+ Macintyre predi-
cates). In all these cases, van den Dries proves that a model companion

((T1)∀, (T2)∀, . . . , (Tn)∀)

exists. In fact, van den Dries’s result is more general than what we have stated, allowing the
Ti’s to be arbitrary theories with quantifier elimination such that the (Ti)∀ are “t-theories”
(Definition III.1.2 in [16]).

We will only consider the case where the Ti are ACVF, RCF, or pCF, however. In these
cases, we will prove the following about the model companion ((T1)∀, . . . , (Tn)∀), which we
denote T for simplicity:

1Or rather, domains. We will sweep this issue under the rug.
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1. T is NTP2, but is never NSOP (obviously), and not NIP if n > 1. See Theorems 11.5.7
and 11.5.1. If n = 1, then T is one of ACVF, RCF, or pCF, which are all known to be
NIP.

2. In fact, T is “strong” in the sense of Adler [1], i.e., every type has finite burden.
The burden of affine m-space is exactly mn, where n is the number of valuations and
orderings. See Theorem 11.5.7.

3. Forking and dividing agree over sets in the home sort, so every set in the home sort
is an “extension base for forking” in the sense of Chernikov and Kaplan [10]. See
Theorem 11.6.5.

4. Forking in the home sort has the following characterization (Theorem 11.6.10). Suppose
K |= T , and A,B,C ⊆ K are subsets of the home sort. For 1 ≤ i ≤ n, let Ki be a
model of Ti extending the reduct of K to the language of Ti. For example, in the case
of n orderings, Ki could be a real closure of K with respect to the ith ordering. Then
A |̂

C
B if and only if A |̂

C
B holds in Ki for every i. The choice of the Ki does not

matter.

In many of the cases, (1) follows from Samaria Montenegro Guzmán’s recent proof in [54]
that bounded pseudo-real-closed and pseudo-p-adically-closed fields are NTP2 (originally
Conjecture 5.1 in [11]). This includes the case

(RCF∀, RCF∀, . . . , RCF∀)

of existentially closed fields with n orderings, as well as the case when ever Ti is pCF for
some p. As far as I know, (3) and (4) are new. I conjecture that (3) also holds of sets of
imaginaries, which would imply that Lascar strong type and compact strong type agree, by
[71] Corollary 3.6. In the case of fields with n orderings, this should follow from elimination
of imaginaries, which Montenegro proved.

In the case where every Ti is ACVF, the model companion T is the theory of existentially
closed fields with n valuations. In this case, the above results can be expressed more cleanly.
It turns out (Theorem 11.3.1) that the model companion is axiomatized by the following
axioms: (K, v1, v2, . . . , vn) is a model if and only if K is algebraically closed, each vi is non-
trivial, and vi and vj induce different topologies on K, for i 6= j. In this case, forking is
characterized as follows: A |̂

C
B holds if and only if it holds in the reduct (K, vi), for every

i. This holds because each (K, vi) is already a model of ACVF, and so we can take Ki = K
in the statement of (4).

One can also express the axioms of T more concisely if exactly one of the Ti is not ACVF.
If T1 is RCF and T2, . . . , Tn are all ACVF, then we are considering the model companion
of the theory of ordered fields with (n − 1) unrelated valuations. In this case, the model
companion is axiomatized by the statement that the field is real closed, the valuations are
non-trivial, the valuations induce different topologies from each other, and the valuations
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induce different topologies from the order topology. Something similar holds with pCF in
place of RCF. See Theorem 11.3.1 for details.

As a concrete example, let K be one of the following fields: Fp(t)alg, Qalg, Qalg ∩ R,
or Qalg ∩ Qp for some p. Let R1, . . . , Rn be valuation rings on K. Then K with the ring
structure and with a unary predicate for each Ri is a strong NTP2 theory, and every set of
real elements is an extension base. The same holds for ⋂ni=1Ri as a pure ring.

The outline of this chapter is as follows. In Section 11.1, we recall some elementary facts
about ACVF, pCF, and RCF which will be needed later. In Section 11.2, we quickly reprove
the main facts needed from Chapters II and III of van den Dries’s thesis, arriving at a slightly
different way of expressing the axioms of the model companion, and handling the case of
positive characteristic, which was not explicitly considered by van den Dries. Section 11.3
is a digression aimed at proving Theorem 11.3.1, which drastically simplifies the axioms of
the model companions in some cases. Theorem 11.3.1 is probably known to experts, but
we include a proof here for lack of a reference. In Section 11.4, we construct some Keisler
measures that will be used in the later sections. In Section 11.5, we determine where the
model companion lies in terms of various classification theoretic boundaries, proving that
it is NTP2 and strong, but not NSOP and usually not NIP. In Section 11.6, we show that
forking and dividing agree over sets in the home sort, and we characterize forking in terms
of forking in the Ti’s.

11.1 Various facts about ACVF, pCF, and RCF
Let T be one of ACVF, RCF, or pCF (p-adically closed fields). Work in the usual one-sorted
languages with quantifier elimination—for pCF this would be the Macintyre language, and
for RCF this would be the language of rings.

The following fact follows easily from the various quantifier-elimination results:

Fact 11.1.1. Let M be a model of T , and K be a subfield. Every K-definable set is a
positive boolean combination of topologically open sets and affine varieties defined over K.
In particular, any K-definable subset of Mn has non-empty interior or is contained in a
K-definable proper closed subvariety of An.

Let M be a monster model of T .

Definition 11.1.2. Let K be a subfield of M. Let D ⊆Mn be a definable set, defined over
K. Define the rank rkK D to be the supremum of tr. deg(α/K) as α ranges over D.

Lemma 11.1.3.

(a) If D ⊆Mn, then rkK D = n if and only if D has non-empty interior.

(b) If D ⊆Mn and 1 ≤ k ≤ n, then rkK D ≥ k if and only if rkK π(D) = k for one of the
(finitely many) coordinate projections π : Mn �Mk.
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(c) The rank of D does not depend on the choice of K, and rank is definable in families.

(d) If D ⊆ V where V is absolutely irreducible, then rkD = dim V if and only if D(M) is
Zariski dense in V (Malg).

Proof. (a) If rkK D < n, then every tuple α from D lives inside an affine K-variety of
dimension less than n. By compactness, D is contained in the union of finitely many
affine K-varieties of dimension less than n. This union contains the Zariski closure of
D, so D is not Zariski dense. This forces D to have no topological interior, because
non-empty polydisks in affine space are Zariski dense. Conversely, if D has no interior,
then by Fact 11.1.1, D ⊆ V for some proper subvariety V ( An with V defined over
K. Then rkK D ≤ dim V < n.

(b) Clear by properties of rank in pregeometries.

(c) Combine (a) and (b).

(d) If rkD < dim V , then every point in D is contained in an affine K-variety of dimension
less than dim V . By compactness, D is contained in the union of finitely many such
varieties. This finite union contains the Zariski closure of D, and is strictly smaller
than V itself. Conversely, suppose that D is not Zariski dense in V . Let V ′ ( V be
the Zariski closure of D. As V is absolutely irreducible, dim V ′ < dim V . Also, V ′ is
defined over M rather than Malg, because it is the Zariski closure of a set of M-points.
Let L be a small subfield of M over which V ′ and D are defined. Then

rkK D = rkLD ≤ rkL V ′ ≤ dim V ′ < dim V.

Corollary 11.1.4. If K ≤ L is an inclusion of small subfields of M and α is a finite tuple,
we can find α′ ≡K α with tr. deg(α′/L) = tr. deg(α′/K).

Proof. Let n = tr. deg(α/K). Let Σ(x) be the partial type asserting that x ≡K α and that x
belongs to no L-variety of dimension less than n. I claim that Σ(x) is consistent. Otherwise,
there is some formula φ(x) from tp(α/K) and some L-varieties V1, . . . , Vm of dimension less
than n, such that φ(M) ⊆ ⋃mi=1 Vi. But then

rkK φ(M) = rkL φ(M) ≤ max
1≤i≤m

dim Vi < n,

contradicting the fact that α ∈ φ(M) and tr. deg(α/K) ≥ n.
Thus Σ(x) is consistent. If α′ is a realization, then α′ ≡K α and

tr. deg(α′/L) ≥ n = tr. deg(α/K) = tr. deg(α′/K) ≥ tr. deg(α′/L).
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Corollary 11.1.5. Let L and L′ be two fields satisfying T∀, and suppose they share a common
subfield K. Then L and L′ can be amalgamated over K in a way which makes L and L′ be
algebraically independent over K.

Proof. By quantifier elimination, we may as well assume that L and L′ and K live inside a
monster model M |= T . By Corollary 11.1.4 and compactness, we can extend tp(L/K) to
L′ in such a way that any realization is algebraically independent from L′ over K.

Definition 11.1.6. Let K ≤ L be an inclusion of fields. Say that K is relatively separably
closed in L if every x ∈ L ∩Kalg is in the perfect closure of K.

This is a generalization of K being relatively algebraically closed in L; in characteristic
zero these two concepts are the same. Note that if we embed L into a monster model M of
ACF, then K is relatively separably closed in L if and only if dcl(K) = acl(K) ∩ dcl(L) if
and only if tp(L/K) is stationary. From this, one gets

Fact 11.1.7. Let L ≥ K ≤ L′ be (pure) fields. Suppose that K is relatively separably closed
in L or L′. Then there is only one way to amalgamate L and L′ over K in such a way that
L and L′ are algebraically independent over K.

Fact 11.1.8. If K is relatively separably closed in L and α is a tuple from L, and V is the
variety over K of which α is the generic point, then V is absolutely irreducible.

11.1.1 Dense formulas
In this section, T continues to be one of ACVF, RCF, or pCF.

Definition 11.1.9. Let K be a model of T∀. Let V be an absolutely irreducible affine variety
defined over K. Let φ(x) be a quantifier-free formula with parameters from K, defining a
subset of V in any/every model of T extending K. Say that φ(x) is V -dense if rk φ(M) =
dim V . Here M is a monster model of T extending K.

The choice of M is irrelevant by quantifier-elimination in T and by Lemma 11.1.3(c).

Lemma 11.1.10. Let K be a model of T∀, L be a model of T extending K, and V be
an absolutely irreducible variety defined over K. For a quantifier-free K-formula φ(x), the
following are equivalent:

(a) φ(x) is V -dense.

(b) φ(L) is Zariski dense in V (Lalg).

(c) We can extend the T∀-structure on K to the function field K(V ) in such a way that the
generic point of V in K(V ) satisfies φ(x).
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Proof. (a) =⇒ (b) Suppose φ(x) is V -dense. Let W be the Zariski closure of φ(L) in
V (Lalg). Then W is defined over L rather than Lalg, because W is the Zariski closure
of some L-points. Therefore it makes sense to think of W as a definable set. If M is a
monster model of T extending L, then dim V = rk φ(M) ≤ rkW ≤ dimW ≤ dim V .
Therefore dimW = dimV . As V is absolutely irreducible, W = V .

(b) =⇒ (a) Let M be a monster model of T extending L, and let n = dim V . If φ(x) is
not V -dense, then every element of φ(M) has transcendence degree less than n over
K. By compactness, φ(M) is contained in a finite union of K-definable varieties of
dimension less than n. We may assume these varieties are closed subvarieties of V .
Of course φ(L) is also contained in this union, which is clearly a Zariski closed proper
subset of V . So φ(L) is not Zariski dense.

(a) =⇒ (c) Embed K into a monster model M. Let α be a point in φ(M) ⊆ V (M) with
tr. deg(α/K) = rk φ(M) = dimV . Then α is a generic point on V , i.e., K(α) ∼= K(V ).
And α satisfies φ(x).

(c) =⇒ (a) Embed K(V ) into a monster model M. Let α denote the generic point of
V , so that M |= φ(α) holds. Clearly tr. deg(α/K) = dimV . Thus rkK φ(M) ≥
tr. deg(α/K) = dimV , implying V -density of φ(x).

Lemma 11.1.11. Let L be a model of ACVF, and let V ⊆ An be an irreducible affine variety
over L. Suppose 0 ∈ V . Let OnL be the closed unit polydisk in An. Then OnL ∩ V is Zariski
dense in V .

This Lemma is essentially Lemma 1.1 in [18], but we will give give a more elementary
proof based on the proof of Proposition 4.2.1 in [20].

Proof. Let L(α) be the function field of V , obtained by adding a generic point α of V to the
field L. By the implication (c) =⇒ (b) of Lemma 11.1.10 applied in the case where φ(x) is
the formula defining OnL ∩ V , it suffices to extend the valuation on L to L(α) in such a way
that every coordinate of α has nonnegative valuation.

Now L[α] is the coordinate ring of V , so the fact that 0 ∈ V implies that there is an
L-algebra homomorphism L[α] → L sending every coordinate of α to zero. This yields an
OL-algebra homomorphism f : OL[α] → OL sending every coordinate of α to 0. Let m be
the maximal ideal of OL, and let p = f−1(m). Then p is a prime ideal, and p ∩ OL = m.
Also, as f kills the coordinates of α, the coordinates of α live in p.

Since OL[α] is a domain, there is a valuation v′ on L(α), the fraction field of OL[α], with
the following properties:

• Every element of p has positive valuation. In particular, the elements of m and the
coordinates of α have positive valuation.
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• Every element of OL[α] \ p has valuation zero. In particular, the elements of O×L =
OL \m have valuation zero.

(Indeed, it is a general fact that if S is a domain and p is a prime ideal, then there is a
valuation on the fraction field of S which assigns a positive valuation to elements of p and a
vanishing valuation to elements of S \ p. To find such a valuation, take a valuation ring in
Frac(S) dominating the local ring Sp.)

The resulting valuation on L(α) extends the valuation on L, because it assigns positive
valuation to elements in m, and zero valuation to elements in OL \m. Also, the valuation of
any coordinate of α is positive, hence non-negative, so α lives in the closed unit polydisk.

Lemma 11.1.12. Let V be an absolutely irreducible affine variety over K |= T∀, and let
φ(x) be a quantifier-free K-formula. Let L be a model of T extending K. Suppose φ(x)
defines an open subset of V (L).

(a) If T is ACVF, then φ(x) is V -dense if and only if φ(L) is non-empty.

(b) In general, φ(x) is V -dense if φ(L) contains a smooth point of V .

Proof. (a) If φ(x) is V -dense, then certainly φ(L) is non-empty. Conversely, suppose φ(L)
is non-empty. Let p be a point in φ(L) and let U be an open neighborhood of p, with
U ∩ V ⊆ φ(L). There is some L-definable affine transformation f which sends p to
the origin and moves U so as to contain the closed unit polydisk. Then f(U ∩ V ) =
f(U) ∩ f(V ) is Zariski dense in f(V ), by Lemma 11.1.11. So φ(L) ⊇ U ∩ V is Zariski
dense in V . Thus φ(x) is V -dense, by Lemma 11.1.10.

(b) If φ(x) is V -dense, then φ(L) contains a smooth point of V , because the smooth locus of
V is a Zariski dense Zariski open. Conversely, suppose φ(L) contains a smooth point p.
Note that L is perfect. The tangent space TpV is L-definable. By Hilbert’s Theorem 90,
there is an L-definable basis of TpV . Therefore, after applying an L-definable change
of coordinates, we may assume TpV is horizontal. By the implicit function theorem, V
then looks locally around p like the graph of a function. In particular, the coordinate
projection maps a neighborhood of p homeomorphically to an open subset of affine
n-space, where n = dim V . By Lemma 11.1.3, this ensures that any neighborhood of
p, such as φ(L), has rank at least n. So φ(x) is V -dense.

Remark 11.1.13. Here, and in Lemma 11.3.3 below, we are using the model-theoretic
version of Hilbert’s theorem 90. This folk theorem says that if M |= ACF , if K is a perfect
subfield of M , and if V is a K-definable M-vector space, then V admits a K-definable basis.
It is an easy exercise to derive this fact from standard Galois descent of vector spaces, which is
part of Grothendieck’s modern generalization of Hilbert’s original Theorem 90. (See III.4.10
in [53].)
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Lemma 11.1.14. Let V be an absolutely irreducible affine variety over K |= T∀, and let φ(x)
be a quantifier-free K-formula that is V -dense. Then there is a quantifier-free K-formula
ψ(x) that is also V -dense, such that in any/every L |= T extending K, ψ(L) is a topologically
open subset of V (L), and ψ(L) ⊆ φ(L).

Proof. Choose some monster model M |= T extending K and let ψ(M) pick out the topo-
logical interior of φ(M) inside V (M). By quantifier-elimination, we can take ψ(x) to be
quantifier-free with parameters from K. It remains to show that ψ(M) is V -dense. Let
α ∈ φ(M) have transcendence degree n over K, where n = dimV . By Fact 11.1.1, φ(M) can
be written as a finite union of finite intersections of K-definable opens and varieties. Let X
be one of these finite intersections, containing α. So X = W ∩U for some K-variety W and
some K-definable open U . As α ∈ W and α is a generic point on V , we must have V ⊆ W .
Then

α ∈ V ∩ U ⊆ W ∩ U ⊆ φ(M).

But V ∩U is a relative open in V (M), so it must be part of ψ(M). In particular, α ∈ ψ(M).
As tr. deg(α/K) = n, we conclude that ψ(x) is V -dense.

11.1.2 Forking and Dividing
We continue to work in one of ACVF, RCF, or pCF. Recall that RCF and pCF have definable
Skolem functions in the home sort. Thus if S is a subset of the home sort, then acl(S) =
dcl(S) is a model. In ACVF, acl(S) is the algebraic closure of S, which is a model unless
acl(S) is trivially valued.

We will always be working in the home sort, rather than working with imaginaries.

Lemma 11.1.15. Let S be a set (in the home sort) and let φ(x; b) be a formula. Then
φ(x; b) forks over S if and only if it divides over S.

Proof. Indiscernibility over S is the same thing as indiscernibility over acl(S), so φ(x; b)
divides over S if and only if it divides over acl(S). Similarly, φ(x; b) forks over S if and only
if it forks over acl(S). So we may assme S = acl(S). If T is RCF or pCF, then S is a model,
and therefore forking and dividing agree over S by Theorem 1.1 of [10]. If T is ACVF, then
forking and dividing agree over all sets, by Corollary 1.3 in [10].

We use |̂ to denote non-forking or non-dividing, and |̂ ACF to denote algebraic inde-
pendence.

Lemma 11.1.16. Let M be a monster model of T , and let B,C be small subsets of M, with
B finite. Then we can find a sequence B0, B1, B2, . . . in M that is C-indiscernible, such that
B0 = B and Bi |̂

ACF

C
B<i for every i.

Proof. We may assume that B is ordered as a tuple in such a way that the first k elements
of B are a transcendence basis of B over C. Construct a sequence D0, D1, . . . of realizations
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of tp(B/C) such that Di |̂
ACF

C
D<i for every i. This is possible by using Corollary 11.1.4 to

extend tp(B/C) to a type over CD<i having the same transcendence degree over CD<i as
over C. Let B0, B1, B2, . . . be a C-indiscernible sequence modeled on D0, D1, . . .. Let π(X)
pick out the first k elements of a tupleX. Then π(D0)_π(D1)_π(D2)_ · · · is an algebraically
independent sequence of singletons over C. This is part of the EM-type of the Di over C,
so it is also true that π(B0)_π(B1)_π(B2)_ · · · is an algebraically independent sequence of
singletons over C. Since Di ≡C B for every i, we also have Bi ≡C B for every i. Thus
π(Bi) is a transcendence basis for Bi over C, and we conclude that Bi |̂

ACF

C
B<i for every

i. Finally, moving the Bi by an automorphism over C, we may assume that B0 = B.

Lemma 11.1.17. A |̂
C
B implies A |̂ ACF

C
B.

Proof. Assume A |̂
C
B. By Lemma 11.1.16, we can find a sequence B0, B1, B2, . . . of realiza-

tions of tp(B/C), indiscernible over C, and satisfying Bi |̂
ACF

C
B<i for every i. Suppose for

the sake of contradiction that in some ambient model of ACF, tp(A/BC) contains a formula
φ(X;Y ) which divides (in the ACF sense) over C. By quantifier elimination in ACF, we
may assume φ is quantifier-free. In stable theories such as ACF, dividing is witnessed in any
Morley sequence. In particular ∧

i

φ(X;Bi)

is inconsistent in the ambient model of ACF, hence inconsistent in the original smaller
structure. Thus φ(X;B) forks and divides over C in the original structure, a contradiction.

Lastly, we show that dividing is always witnessed by an algebraically independent se-
quence.

Lemma 11.1.18. If a formula φ(x; a) divides over a set A, then the dividing is witnessed
by an A-indiscernible sequence a = a0, a1, a2, . . . such that ai |̂

ACF

A
a<i for every i.

Proof. Apply Claim 3.10 of [10] with the abstract independence relation taken to be |̂ (non-
forking). Forking satisfies (1)-(7) of [10] Definition 2.9 by Fact 2.12(5) of [10]. And A is an
extension base for forking by Lemma 11.1.15 above and Theorem 1.1 of [10] (or by Fact 2.14
of [10] in the cases other than pCF). So Claim 3.10 of [10] is applicable. Consequently we
get a model M containing A, a global type p extending tp(a/M), |̂ -free over A, such that
any/every Morley sequence generated by p overM witnesses the dividing of φ(x; a). Because
|̂ is stronger than Lascar invariance, any such Morley sequence will be M -indiscernible,
hence A-indiscernible. Because |̂ is stronger than algebraic independence (Lemma 11.1.17),
and p is |̂ -free over A, any Morley sequence a0, a1, . . . generated by p will be algebraically
independent over A. Specifically, ai |= p|Ma<i , so as p is |̂ -free over A, ai |̂ AMa<i, and
hence ai |̂

ACF

A
a<i.
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11.2 The Model Companion
Now we turn our attention to fields with several valuations, several orderings, and several
p-valuations. For 1 ≤ i ≤ n, let Ti be one of ACVF, RCF, or pCF (in the same languages as
in the previous section). Let Li denote the language of Ti; assume that Li ∩ Lj = Lrings for
i 6= j. Let T 0 be ⋃ni=1(Ti)∀, the theory that would be denoted ((T1)∀, (T2)∀, . . . , (Tn)∀) in van
den Dries’s notation. Technically speaking, models of T 0 should be allowed to be domains,
rather than fields. However, we will assume that T 0 also includes the field axioms, sweeping
domains under the rug.

One essentially knows that T 0 has a model companion T by Chapter III of van den Dries’s
thesis [16]. We will quickly reprove the existence of T in this section, expressing the axioms
of the model companion in a more geometric and less syntactic form, and also including the
case of positive characteristic explicitly.

11.2.1 The Axioms
Consider the following axioms that a model K of T 0 could satisfy:

A1: K is existentially closed with respect to finite extensions, i.e., if L/K is a finite algebraic
extension and L |= T 0, then L = K.

A1’: For every irreducible polynomial P (X) ∈ K[X] of degree greater than 1, there is some
1 ≤ i ≤ n such that P (x) = 0 has no solution in any/every model of Ti extending
K � Li.

A2(m): Let V be an m-dimensional absolutely irreducible variety over K. For 1 ≤ i ≤
n, let φi(x) be a V -dense quantifier-free Li-formula with parameters from K. Then⋂n
i=1 φi(K) 6= ∅.

A2(≤ m): A2(m′) holds for all m′ ≤ m.

A2: A2(m) holds, for all m

Remark 11.2.1. For K |= T 0, A1 and A1’ are equivalent.

Proof. Suppose K satisfies A1, and P (X) ∈ K[X] is irreducible of degree greater than 1.
Suppose that for every 1 ≤ i ≤ n, there is a solution αi of P (x) = 0 in a model Mi |= Ti
extending K � Li. Then we can extend the Li-structure from K to K(α) ∼= K[X]/P (X).
Because this holds for every i, we can endow K[X]/P (X) with the structure of a model of
T 0. By A1, K[X]/P (X) must be K, so P (X) has degree 1.

Conversely, suppose K satisfies A1’ but not A1. Let L/K be a counterexample to A1,
and take some α ∈ L \ K. Let P (X) be the irreducible polynomial of α over K. This
polynomial must have degree greater than 1. For each i let Mi be a model of Ti extending
L � Li. Then P (x) = 0 has a solution in L, hence in Mi, which is a model of Ti extending
K. This contradicts A1’.
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Lemma 11.2.2. Let K be a model of T 0, and m ≥ 1. The following are equivalent:

(a) For every model L of T 0 extending K, for every tuple α from L with tr. deg(α/K) ≤ m,
the quantifier-free type qftp(α/K) is finitely satisfiable in K.

(b) K satisfies A1 and A2(≤ m).

Proof. (a) =⇒ (b) For A1, suppose that L/K is a finite extension, and L |= T . If α ∈ L,
then α is algebraic over K, so tr. deg(α/K) = 0 ≤ m. By (a), the quantifier-free type of α is
realized in K. So the irreducible polynomial of α over K has a zero in K, implying α ∈ K.
As α ∈ L was arbitrary, L = K.

For A2(m′), let V be an m′-dimensional absolutely irreducible variety over K. For 1 ≤
i ≤ n, let φi(x) be a V -dense quantifier-free Li-formula with parameters from K. By Lemma
11.1.10(c), we can extend the Li-structure to K(V ) in such a way that the generic point
satisfies φi(x). Doing this for all i, we make K(V ) be a model of T 0 extending K, such that if
α ∈ K(V ) denotes the generic point, then ∧ni=1 φi(α) holds. Now tr. deg(α/K) = dim V ≤ m,
so by (a), qftp(α/K) is finitely satisfiable in K. In particular, the formula ∧ni=1 φ(x) is
satisfiable in K, which is the conclusion of A2(m′).

(b) =⇒ (a). Suppose L is a model of T 0 extending K and α is a tuple from L, with
tr. deg(α/K) ≤ m. By A1, K is relatively algebraically closed in L. Let V be the K-
variety of which α is a generic point. Then V is absolutely irreducible, by Fact 11.1.8. Also,
m′ := dimV = tr. deg(α/K) ≤ m. Let ψ(x) be a statement in qftp(α/K). We want to show
that ψ is satisfied by an element of K. We may assume that ψ(x) includes the statement
that x ∈ V . By Fact 11.1.1, ψ(x) is a positive boolean combination of statements of the
form

• x ∈ W , for some K-definable affine variety W . Since we intersected ψ(x) with V , we
may assume W ⊆ V .

• θ(x), where θ(x) is a quantifier-free Li-formula for some i, such that θ(L) is an open
subset of the ambient affine space, for any/every L |= Ti extending K � Li.

Writing ψ(x) as a disjunction of conjunctions of such statements, and replacing ψ(x) by
whichever disjunct α satisfies, we may assume that ψ(x) is a conjunction of such statements.
An intersection of K-varieties is a K-variety, and an intersection of open subsets of affine
space is an open subset of affine space, so we may assume

ψ(x) ≡ “x ∈ W” ∧
n∧
i=1

φi(x),

where W is some K-variety contained in V , and where φi(x) is a quantifier-free Li-formula
defining an open subset of the ambient affine space, when interpreted in any/every model of
Ti extending K � Li.

Because α satisfies ψ(x), and α is a generic point of V , W must be V . Rewrite ψ as∧n
i=1 φ

′
i(x), where each φ′i(x) asserts that x ∈ V and φi(x) holds. Because K satisfies axiom
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A2(m′), ψ(x) will be satisfiable in K as long as φ′i(x) is V -dense for each i. But note that L
provides a way of extending the Li-structure from K to K(α) ∼= K(V ) in such a way that
φ′i(α) holds, so φ′i is V -dense by Lemma 11.1.10(c).

Theorem 11.2.3. The theory T 0 has a model companion T , whose models are exactly the
K |= T 0 satisfying A1 and A2.

Proof. It is well known that a model K is existentially closed if and only if for every model
L extending K and for every tuple α from L, the quantifier-free type qftp(α/K) is finitely
satisfiable in K. So by Lemma 11.2.2, a model of T 0 is existentially closed if and only if
it satisfies A1 and A2. By basic facts about model companions of ∀∃-theories, it remains
to show that A1 and A2 are first order. For A1, this comes from Remark 11.2.1, because
A1’ is first order by quantifier-elimination in the Ti. Axiom A2 is first order by quantifier-
elimination in the Ti, by Lemma 11.1.3(c), and by the fact that absolute irreducibility is
definable by a quantifier-free formula in the language of fields (this is well-known and proven
in Chapter IV of [16]).

Henceforth, we will use T to denote the model companion. Also, we will use T∀ instead
of T 0, sweeping the distinction between domains and fields under the rug.

We make several remarks about the axioms:

Remark 11.2.4. In the case where Ti is ACVF for i > 1, axiom A1 merely says that K � L1
is a model of T1, i.e., is algebraically closed or real closed or p-adically closed.

Remark 11.2.5. In Axiom A2(m), it suffices to consider the case of smooth V . If V is not
smooth, one can find an open subvariety V ′ of V which is smooth, and which is isomorphic
to an affine variety. (Use the facts that the smooth locus of an irreducible variety is a Zariski
dense Zariski open, and that the affine open subsets of a scheme form a basis for its topology.)
If φi(x) is V -dense, then φi(x) ∧ “x ∈ V ′” is V ′-dense, essentially by Lemma 11.1.10(b).
Then applying the smooth case of A2(m) to V ′ yields a point in V ′ satisfying ∧ni=1 φi(x).

Remark 11.2.6. In Axiom A2, it suffices to consider V -dense formulas φi(x) such that
φi(L) defines an open subset of V (L) for any/every L |= T extending K � Li. This follows
by Lemma 11.1.14.

Remark 11.2.7. We can combine the previous two remarks. Then Lemma 11.1.12(b), yields
the following restatement of A2(m): if V is an absolutely irreducible m-dimensional smooth
affine variety defined over K, and if φi(x) is a quantifier-free Li-formula over K for each
1 ≤ i ≤ n, and if φi(Ki) is a non-empty open subset of V (Ki) for any/every Ki |= T
extending K � Li, then

⋂n
i=1 φi(K) 6= ∅.

Remark 11.2.8. If every Ti is ACVF, then A1 merely says that K is algebraically closed.
Consequently, in Remark 11.2.7 the Ki can be taken to be K itself. Thus A2(m) ends up
being equivalent to the statement that if V is a smooth irreducible m-dimensional affine
variety, and φi(x) is a quantifier-free Li-formula defining a non-empty open subset of V for



CHAPTER 11. MULTI-VALUED FIELDS 163

1 ≤ i ≤ n, then ⋂ni=1 φi(K) is non-empty. Even more concisely, this means that for every
smooth m-dimensional variety V , the diagonal map V (K)→ ∏n

i=1 V (K) has dense image in
the product topology, using the topology from the ith valuation for the ith entry in the product.

In fact, in Section 11.3, we will see that it suffices to check the case of V = A1, the affine
line(!)

11.2.2 Quantifier-Elimination up to Algebraic Covers
As in the previous section, T∀ is the theory of fields with (Ti)∀ structure for each 1 ≤ i ≤ n,
and T is the model companion of T∀.

Lemma 11.2.9. Let K be a model of T∀. Let L and L′ be two models of T∀ extending
K. Suppose that K is relatively separably closed in L or L′ (Definition 11.1.6). Then L
and L′ can be amalgamated over K, and this can be done in such a way that L and L′ are
algebraically independent over K.

Proof. For each 1 ≤ i ≤ n, we can find some amalgam Mi |= (Ti)∀ of L � Li and L′ � Li
over K � Li, by Corollary 11.1.5. The resulting compositums LL′ must be isomorphic on
the level of fields, by Fact 11.1.7. Consequently, we can endow the canonical field LL′ with
a (Ti)∀-structure extending those on L and L′, for each i. This gives LL′ the structure of a
T∀-model. And L and L′ are algebraically independent inside LL′.

Corollary 11.2.10. Let K be a model of T∀ and let L be a model of T extending K. Then
K is relatively algebraically closed in L if and only if K satisfies axiom A1. (In particular,
this does not depend on L.)

Proof. If K satisfies axiom A1, then obviously K is relatively algebraically closed in L. Con-
versely, suppose that K is relatively algebraically closed in L but does not satisfy A1. Then
there is some model L′ of T∀ extending K, with L′/K finite and L′ 6= K. By Lemma 11.2.9,
we can amalgamate L and L′ over K. Embed the resulting compositum LL′ in a model M
of T . Because T is model-complete, L � M . Now choose some α ∈ L′ \K. The irreducible
polynomial of α over K has a root in M , and hence has a root in L, contradicting the fact
that K is relatively algebraically closed in L.

Corollary 11.2.11. Let K be model of T∀, and suppose K satisfies A1. Then the type of K
is determined, i.e., if L and L′ are two models of T extending K, then K has the same type
in L and L′. Equivalently, the diagram of K implies the elementary diagram of K, modulo
the axioms of T .

Proof. By Corollary 11.2.10, K is relatively algebraically closed in L and L′. So we can
amalgamate L and L′ over K, by Lemma 11.2.9. If M is a model of T extending LL′, then
by model completeness L �M � L′, ensuring that K has the same type in each.

Corollary 11.2.12. In models of T , field-theoretic algebraic closure agrees with model-
theoretic algebraic closure.
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Proof. Let M be a model of T . Let S be a subset of M . Let K be the field-theoretic
algebraic closure of S, i.e., the relative algebraic closure of S in M . By Lemma 11.2.9,
we can amalgamate M and a copy M ′ of M over K in a way that makes M and M ′ be
algebraically independent over K. Embedding MM ′ into a model N of T , and using model
completeness, we get M � N � M ′. Now acl(S) is the same when computed in M , N , or
M ′. In particular, acl(S) ⊆M ∩M ′. Since M and M ′ are algebraically independent over K
and K is relatively algebraically closed in each, M ∩M ′ = K. Thus acl(S) ⊆ K. Obviously
K ⊆ acl(S).

For K a field, let Abs(K) denote the algebraic closure of the prime field in K.

Corollary 11.2.13. Two models M1,M2 |= T are elementarily equivalent if and only if
Abs(M1) and Abs(M2) are isomorphic as models of T∀.

Proof. If M1 and M2 are elementarily equivalent, we can embed them as elementary sub-
structures into a third model M3 |= T . Then Abs(M1) = Abs(M3) = Abs(M2), so certainly
Abs(M1) is isomorphic to Abs(M2).

Conversely, suppose Abs(M1) ∼= Abs(M2). Then, as Abs(M1) is relatively algebraically
closed inM1 and inM2, it follows by Corollaries 11.2.10 and 11.2.11 that we can amalgamate
M1 andM2 over Abs(M1). Embedding the resulting compositum into a model of T and using
model completeness, we get M1 ≡M2.

Corollary 11.2.14. Suppose T1 6= ACV F and Ti is ACVF for i > 1. Consider the expanded
theory where we add in symbols for every zero-definable T1-definable function. (This makes
sense because if M |= T , then M � L1 |= T1, by Remark 11.2.4.) Then T has quantifier-
elimination.

Proof. After adding in these new symbols, a substructure is the same as a subfield K closed
under all T1-definable functions. As RCF and pCF have definable Skolem functions, this is
equivalent to K � L1 being a model of T1, which is equivalent to K satisfying axiom A1,
as noted in Remark 11.2.4. Now apply Corollary 11.2.11 to get substructure completeness,
which is the same thing as quantifier-elimination.

This probably also holds if Ti 6= ACV F for more than one i, though the extra functions
would become partial functions.

Without adding in extra symbols, quantifier elimination fails. But we still get quantifier-
elimination up to algebraic covers, in a certain sense.

Theorem 11.2.15. In T , every formula φ(x) is equivalent to one of the form

∃y P (y, x) = 0 ∧ ψ(y, x), (11.1)

where y is a singleton, ψ(y, x) is quantifier-free, and P (y, x) is a polynomial in y and the
coordinates of x, with integer coefficients, monic as a poynomial in y.
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Proof. Let Σ(x) be the set of all formulas of the form (11.1). First we observe that Σ(x) is
closed under disjunction, because

(∃y P (y, x) = 0 ∧ ψ(y, x)) ∨ (∃y Q(y, x) = 0 ∧ ψ′(y, x))

is equivalent to
∃y P (y, x)Q(y, x) = 0 ∧ ψ′′(y, x),

where ψ′′(y, x) is the quantifier-free formula

(P (y, x) = 0 ∧ ψ(y, x)) ∨ (Q(y, x) = 0 ∧ ψ′(y, x)) .

Now given a formula φ(x), not quantifier-free, let Σ0(x) be the set of formulas in Σ(x)
which imply φ(x), i.e.,

Σ0(x) = {σ(x) ∈ Σ(x) : T ` ∀xσ(x)→ φ(x)}.

Of couse Σ0(x) is closed under disjunction. It suffices to show that φ(x) implies a finite
disjunction of formulas in Σ0(x), because then φ(x) implies and is implied by a formula in
Σ0(x).

Suppose for the sake of contradiction that φ(x) does not imply a finite disjunction of
formulas in Σ0(x). Then the partial type

{φ(x)} ∪ {¬σ(x) : σ(x) ∈ Σ0(x)}

is consistent with T . Let M be a model of T containing a tuple α realizing this partial type.
So φ(α) holds in M , but not because of any formula of the form (11.1).

Let R be the ring Z[α] ⊆ M . Let K ⊆ M be the smallest perfect field containing R;
note that M itself is perfect so this makes sense. Indeed, if every Ti is ACVF, then M is
algebraically closed by Remark 11.2.4. Otherwise, one of the Ti’s is RCF or pCF, making
M be characteristic zero.

Let K be the relative algebraic closure of K (or equivalently, α) insideM . By Corollaries
11.2.10 and 11.2.11, the diagram of K implies the elementary diagram of K. In particular,
the diagram of K implies φ(α). By compactness, the diagram of L implies φ(α), for some
finite extension L of K. Because K is perfect, L = K(β) for some singleton β. Multiplying
β by an appropriate element from R, we may assume that β is integral over R. Note that L
is perfect, because it is an algebraic extension of a perfect field, and in fact L is the smallest
perfect field containing α and β.

As the diagram of L implies φ(α), so does the diagram of Z[α, β], by Lemma 11.2.16
below. By compactness, there is some quantifier-free formula ψ(y, x) which is true of (β, α)
such that

T ` ∀y∀xψ(y, x)→ φ(x).
Let P (y, x) be the polynomial witnessing integrality of β over R. Then clearly

T ` ∀x (∃yP (y, x) = 0 ∧ ψ(y, x))→ φ(x),

so ∃yP (y, x) = 0 ∧ ψ(y, x) is in Σ0(x), contradicting the fact that it holds of α in M .
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Lemma 11.2.16. Let M be a model of T and R be a subring of M . Let K ⊆ M be the
smallest perfect field containing R. Let α be a tuple from R, and φ(x) be a formula such
that M |= φ(α). If T and the diagram of K imply φ(α), then T and the diagram of R imply
φ(α).

Proof. If not, then there is a model N of T extending R, in which φ(α) fails to hold. This
model N must not satisfy the diagram of K. Now N certainly contains a copy of the pure
field K, because the fraction field and perfect closure of a domain are unique. Consequently,
there must be at least two ways to extend the T -structure from R to K, one coming from M
and one coming from N . But this is absurd, because each valuation/ordering/p-valuation
on R extends uniquely to K, by quantifier elimination in the Ti.

11.2.3 Simplifying the axioms down to curves
Lemma 11.2.17. Let K be an ℵ1-saturated and ℵ1-strongly homogeneous model of T∀ sat-
isfying axioms A1 and A2(1). Let M be a monster model of T extending K. Let S be a
countable subset of K and α be a countable tuple from M. Then tp(α/S) is realized in K.

Proof. Consider the following statements:

• Ak: if α is a finite tuple from M, with tr. deg(α/S) ≤ k, then qftp(α/S) is realized in
K.

• Bk: if α is a countable tuple from M, with tr. deg(α/S) ≤ k, then qftp(α/S) is realized
in K.

• Ck: if α is a countable tuple from M, with tr. deg(α/S) ≤ k, then tp(α/S) is realized
in K.

There are several implications between these statements:

• For each k, Ak implies Bk, by compactness.

• For each k, Bk implies Ck. Indeed, if α is as in Ck, apply Bk to α′ := acl(αS) and use
Corollary 11.2.11.

• Ck for all k implies the statement of the Lemma, by compactness.

Finally, observe that Ck and Cj imply Ck+j: if α has transcendence degree k + j over
S, let β be a subtuple of α with transcendence degree k. Then tr. deg(β/S) ≤ k and
tr. deg(α/βS) ≤ j. By Ck, we can apply an automorphism over S to move β inside K. By
Cj applied to tp(α/βS), we can then find a further automorphism moving α inside K.

Lemma 11.2.2 and ℵ1-saturation of K imply A1. By the above comments, this implies
C1, which in turn implies C1+1, C3, C4, . . .. By compactness, the Lemma is true.
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Theorem 11.2.18. A field K |= T∀ is existentially closed, i.e., a model of T , if and only if
it satisfies A1 and A2(1).

Proof. If K is existentially closed, then certainly K satisfies A1 and A2(1). Conversely,
suppose K satisfies A1 and A2(1). Let K ′ be an ℵ1-saturated ℵ1-strongly homogeneous
elementary extension of K. As K ≡ K ′, it suffices to show that K ′ |= T . Let M be a
monster model of T , extending K ′. It suffices to show that K ′ � M. It suffices to show
that if D is a non-empty K ′-definable subset of M, then D intersects K ′. Let S be a finite
subset of K ′ that D is defined over, and let α be a point in D. By Lemma 11.2.17, tp(α/S)
is realized in K ′. Such a realization must live in D.

Consequently, in checking the axioms one only needs to consider curves. In fact, one only
needs to consider smooth curves, by Remark 11.2.5.

11.3 A Special Case
In the case where almost every Ti is ACVF, the axioms can be drastically simplified.

Theorem 11.3.1. Suppose T2, . . . Tn are all ACVF. A model K |= T∀ is existentially closed
(i.e., a model of T ) if and only if the following three conditions hold:

• K � L1 |= T1

• Each valuation v2, . . . , vn is non-trivial.

• Ti and Tj do not induce the same topology on K, for i 6= j.

For example, if we are considering the theory of ordered valued fields, this says that
a model is existentially closed if and only if the field is real closed, the valuation is non-
trivial, and the ordering and valuation induce different topologies on K. A field with n
valuations is existentially closed if and only if it is algebraically closed and the valuations
induce distinct non-discrete topologies on the field. Using this, we can easily see that Qalg

with n distinct valuations is an existentially closed field with n valuations. This surprised
me, since I expected the Rumely Local-Global principle (Theorem 1 of [64]) to be necessary
in the proof.

Theorem 11.3.1 is not model theoretic, and is presumably known to experts in algebraic
geometry or field theory.

In the proof of Theorem 11.3.1, we will use A. L. Stone’s Approximation Theorem ([69],
Theorem 3.4):

Fact 11.3.2. Let K be a field. Let t1, . . . , tn be topologies on K arising from orderings and
non-trivial valuations. Suppose that ti 6= tj for i 6= j. Then the {ti} are independent, i.e., if
Ui is a non-empty ti-open subset of K for each i, then ⋂ni=1 Ui is non-empty. Equivalently,
the diagonal map K → ∏n

i=1K has dense image with respect to the product topology, using
the topology ti for the ith term in the product.
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Note that Fact 11.3.2 does not contradict the existence of valuations which refine each
other, because two non-trivial valuations which refine each other always induce the same
topology. A self-contained model-theoretic proof of Stone Approximation is given in [61],
Theorem 4.1.

Also, we will need the following straightforward lemma.

Lemma 11.3.3. Let K be a model of T . Let C be an affine smooth curve over K, absolutely
irreducible. Let C be the canonical smooth projective model (as an abstract variety). For each
i, let φi(x) be a C-dense quantifier-free Li-formula with parameters from K. Then we can
find a K-definable rational function f : C → P1 which is non-constant, and has the property
that the divisor f−1(0) is a sum of distinct points in ⋂ni=1 φi(K), with no multipliticities. (In
particular, the support of the divisor contains no points from C(Kalg) \C(K) and no points
from C \ C.)

Proof. Let g be the genus of C.
Claim 11.3.4. We can find g + 1 distinct points p1, . . . , pg+1 in ⋂ni=1 φi(K) ⊆ C(K).

Proof. For each i, choose a model Ki of Ti extending K � Li. Then φi(Ki) is Zariski dense
in C(Kalg

i ). This (easily) implies that φi(Ki)g+1 is Zariski dense in Cg+1(Kalg
i ). If U denotes

the subset of Cg+1 consisting of (x1, . . . , xg+1) such that xi 6= xj for every i and j, then U is
a Zariski dense Zariski open subset of Cg+1, because its complement is a closed subvariety
of lower dimension. The intersection of a Zariski dense set with a Zariski dense Zariski open
is still Zariski dense. So φi(Ki)g+1 ∩ U is still Zariski dense in Cg+1. Let ψi(x1, . . . , xg+1) be
the following quantifier-free Li-formula over K:

g+1∧
j=1

φi(xj) ∧
∧
j 6=k

xj 6= xk.

Then ψi(Ki) = φi(Ki)g+1 ∩ U is Zariski dense in Cg+1(Kalg
i ), so ψi(−) is Cg+1-dense. By

Axiom A2, it follows that some tuple (p1, . . . , pg+1) satisfies

n∧
i=1

ψi(x1, . . . , xg+1) ≡
 n∧
i=1

g+1∧
j=1

φi(xj)
 ∧

∧
j 6=k

xj 6= xk

 .
Then (p1, . . . , pg+1) has the desired properties.

Now letD be the divisor∑j pj on the curve C. By Riemann-Roch, l(D) ≥ degD+1−g =
2. The space of global sections of O(D) is a K-definable vector space of dimension at
least 2. Now K is either algebraically closed or has characteristic zero, so K is perfect.
Therefore, by Hilbert’s Theorem 90 we know that this vector space has a K-definable basis
(see Remark 11.1.13). Thinking of the sections of O(D) as functions with poles no worse
than D, we can find a non-constant meromorphic function g, with (g) − D ≥ 0. Then the
divisor of poles of g is a subset of D, so every pole of g has multiplicity 1 and is in ⋂ni=1 ψi(K).
Take f = 1/g.
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Proof (of Theorem 11.3.1). If K |= T , then K satisfies Axioms A1 and A2. Axiom A1
implies that K is algebraically closed or real closed or p-adically closed (Remark 11.2.4). As
K is existentially closed, it is also reasonably clear that all the named valuations must be
non-trivial. Consequently K � L1 |= T1 and v2, . . . , vn are non-trivial. Lastly, suppose Ti
and Tj induce the same topology on K for some i. For notational simplicity assume i = 1
and j = 2. As the topologies are Hausdorff, we can find non-empty U1 and U2 with U1 a
T1-open, U2 a T2-open, and U1 ∩ U2 = ∅. Since the topologies from T1 and T2 have a basis
of open sets consisting of quantifier-free definable sets, we can shrink U1 and U2 a little, and
assume U1 is quantifier-free definable in L1 and U2 is quantifier-free definable in L2. Now
U1 and U2 are both Zariski dense in the affine line, so the formulas defining U1 and U2 are
A1-dense. Hence, by Axiom A2, U1 must intersect U2, a contradiction.

The other direction of the theorem is harder. We proceed by induction on n, the number
of orderings and valuations. The base case where n = 1 is easy/trivial, so suppose n > 1.
Suppose K satisfies the assumptions of the Theorem. By Fact 11.3.2, we know that the n
different topologies on K1 are independent. The first bullet point ensures that K satisfies
axiom A1. By Theorem 11.2.18, it suffices to prove axiom A2(1). By Remark 11.2.7, we
merely need to prove the following:

Let C be an absolutely irreducible smooth affine curve defined over K. Let φ1(x)
be a quantifier-free L1-formula with parameters from K such that φ1(K) is a
non-empty open subset of C. For 2 ≤ i ≤ n, let φi(x) be a quantifier-free Li-
formula with parameters fromK such that φi(x) defines a non-empty open subset
of C(Kalg) with respect to any/every extension of the ith valuation vi from K to
Kalg. THEN ⋂n

i=1 φi(K) is non-empty.

Here we are using the facts that K � L1 is already a model of T1, and that for i > 1, the
field Kalg with any extension of vi will be a model of Ti = ACV F .

For 1 < i ≤ n, choose some extension v′i of the valuation vi to Kalg.
Claim 11.3.5. K is dense in Kalg with respect to the v′i-adic topology on Kalg.

Proof. The claim is trivial if all the Ti are ACVF, in which caseK = Kalg. So we may assume
characteristic zero. It suffices to show that K is dense in every finite Galois extension of K.2
Let L/K be a finite Galois extension. We can write L as K(ζ) for some singleton ζ. Let
P (X) ∈ K[X] be the minimal polynomial of ζ over K. The function x 7→ P (x) from K to
K is finite-to-one, so it has infinite image. As K is a model of ACVF, pCF, or RCF, we see
by Fact 11.1.1 that the image P (K) of this map contains an open subset of K with respect
to the T1-topology. Because the vi-adic topology on K is independent from the T1-topology
on K, we can find elements of P (K) of arbitrarily high v-valuation. By the cofinality of
the value groups, for every γ ∈ v′i(Kalg), we can find an x ∈ K with vi(P (x)) > γ. Let

2Note that the value group v′i(K) is cofinal in v′i(Kalg), so e.g. the vi-adic topology on K is the restriction
of the v′i-adic topology on Kalg to K. Various pathologies are thus avoided.
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ζ1, . . . , ζm ∈ L be the conjugates of ζ over K, counted with multiplicities. Then we have just
seen that for any γ ∈ v′i(Kalg), we can find an x ∈ K with

γ < v′i(P (x)) =
n∑

i=m
v′i(x− ζi).

This implies that at least one of the ζi’s is in the topological closure of K with respect to
v′i. Consequently, the v′i-topological closure of K in L must contain K[ζi] for some i. But
K[ζi] = L, so K is v′i-dense in L.

Now suppose we are given an absolutely irreducible smooth affine curve C defined over
K, and we have Li-formulas φi(x) with parameters from K, such that φ1(K) is a non-empty
open subset of C(K), and for 1 < i ≤ n, φi(Kalg) is a non-empty v′i-open subset of C(Kalg).
(Here we are interpreting φi(Kalg) using v′i.) By the inductive hypothesis, K �

⋃
i<n Li

is an existentially closed model of ⋃i<n(Ti)∀. Applying Lemma 11.3.3 to it, we can find
a K-definable rational function f : C → P1, whose divisor of zeros has no multiplicities
and consists entirely of points in ⋂

i<n φi(K) (and no points at infinity and no points in
C(Kalg) \ C(K)). Write this divisor as ∑m

j=1(Pj), where the Pj are m distinct points in⋂
i<n φi(K). Note that m is the degree of f .

Claim 11.3.6. There is a T1-open neighborhood U ⊆ K of zero such that for every y ∈ U1,
the divisor f−1(y) consists of j distinct points in φ1(K). In particular, it contains no points
in C(Kalg) \ C(K) and no points in C \ C.

Proof. Because the Pj are distinct, they have multiplicity one, so f does not have a critical
point at any of the Pj’s. Consequently, by the implicit function theorem there is a T1-open
neighborhood Wj ⊆ C(K) of Pj such that f induces a T1-homeomorphism from Wj to an
open neighborhood of 0. By shrinking Wj if necessary, we may assume that Wj ⊆ φ1(K),
and that Wj ∩Wj′ = ∅ for j 6= j′. Now let U = ⋂m

j=1 f(Wj). This is an open neighborhood
of 0 in the affine line K1. And if y ∈ U , then f−1(y) contains at least one point in each Wj.
Since the Wj are distinct, these points are distinct. Since f is a degree-m map, this exhausts
the divisor f−1(y).

Claim 11.3.7. For 1 < i < n, there is a γi ∈ vi(K) such that if y ∈ Kalg and v′i(y) > γi,
then f−1(y) are all in φi(Kalg).

Proof. Use the same argument as Claim 11.3.6.

By Claim 11.3.5, K is dense in Kalg with respect to the v′n-adic topology. Also, by
assumption, φn(x) interpreted in (Kalg, v′n) yields a non-empty v′n-open subsetW ⊆ C(Kalg).
Since f is finite-to-one, the image f(W ) is an infinite subset of P1(Kalg), hence it has non-
empty v′n-interior. Let V be a v′n-open subset of P1(Kalg) contained in f(W ). Now, as K is
v′n-adically dense in Kalg, V must intersect K. In particular, V ∩K is a non-empty vn-adic
open subset of K. By independence of the topologies, we can find a y in A1(K) such that
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• y is in U , the T1-open neighborhood of 0 from Claim 11.3.6.

• vi(y) > γi, for 1 < i < n, where the γi are from Claim 11.3.7

• y is in V ∩K.

Having chosen such a y, we know by Claim 11.3.6 that f−1(y) consists of j distinct points
in φ1(K). In particular, each point in f−1(y) is a point of C(K). And by Claim 11.3.7, each
of these points also belongs to φi(Kalg), hence satisfies φi(−), for i < n. Finally, because y
is in V ∩K, y is in the image of φn(Kalg) under f . So there is some x ∈ φn(Kalg) mapping
to y. But we said that every point in C(Kalg) mapping to y is already in C(K) and even in⋂
i<n φi(K). Thus

x ∈ φn(Kalg) ∩
⋂
i<n

φi(K) =
n⋂
i=1

φi(K).

In particular some point in C(K) satisfies ∧ni=1 φi(x), and the theorem is proven.

11.4 Keisler Measures
To establish NTP2 and analyze forking and dividing in T , we need the following tool.

Theorem 11.4.1. Let T be one of the model companions from §11.2. For each K |= T∀
that is a perfect field, each formula φ(x) and each tuple a from K, we can assign a number
P (φ(a), K) ∈ [0, 1] such that the following conditions hold:

• If K is held fixed, the function P (−, K) is a Keisler measure on the space of completions
of the quantifier-free type of K. Thus

P (φ(a), K) + P (ψ(b), K) = P (φ(a) ∧ ψ(b), K) + P (φ(a) ∨ ψ(b), K)

P (¬φ(a), K) = 1− P (φ(a), K)

for sentences φ(a) and ψ(b) over K. And if φ(a) holds in every model of T extending
K, then P (φ(a), K) = 1. For example, if φ(x) is quantifier-free, then P (φ(a), K) is 1
or 0 according to whether or not K |= φ(a). And if K is satisfies axiom A1 of §11.2.1,
then P (φ(a), K) ∈ {0, 1} for every φ(a), by Corollary 11.2.11.

• Isomorphism invariance: if K,L are two perfect fields satisfying T∀, and f : K → L is
an isomorphism of structures, then P (φ(a), K) = P (φ(f(a)), L) for every K-sentence
φ(a).

• Extension invariance: if K0 ⊆ K are perfect fields satisfying T∀, and K0 is rela-
tively algebraically closed in K, and φ(a) is a formula with parameters from K0, then
P (φ(a), K0) = P (φ(a), K).
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• Density: if K |= T∀ is a perfect field and φ(a) is a K-formula, and if M |= φ(a) for
at least one M |= T extending K, then P (φ(a), K) > 0. In other words, the associ-
ated Keisler measure is spread out throughout the entire Stone space of completions of
qftp(K).

11.4.1 The Algebraically Closed Case
We first prove Theorem 11.4.1 in the case where every Ti is a model of ACVF, i.e., the
case of existentially closed fields with n valuations. Define P (φ(a), K) as follows. Fix some
algebraic closure Kalg of K. For each 1 ≤ i ≤ n, let v′i be an extension to Kalg of the ith
valuation vi on K. Choose automorphisms σ1, . . . , σn ∈ Gal(Kalg/K) randomly with respect
to Haar measure on Gal(Kalg/K). Then

Kσ1,...,σn := (Kalg, v′1 ◦ σ1, v
′
2 ◦ σ2, . . . , v

′
n ◦ σn)

is a model of T∀ satisfying axiom A1 of §11.2.1. In particular, whether or not φ(a) holds
in a model of T extending Kσ1,...,σn does not depend on the choice of the model, by Corol-
lary 11.2.11. Define P (φ(a), K) to be the probability that φ(a) holds in any/every model of
T extending Kσ1,...,σn . This probability exists, i.e., the relevant event is measurable, because
whether or not φ(a) holds is determined by the behavior of the valuations on some finite
Galois extension L/K, by virtue of Theorem 11.2.15.

Note that the choice of the v′i does not matter. If v is a valuation on K and w1 and w2
are two extensions of v to Kalg, then there is a τ in Gal(Kalg/K) such that w1 = w2 ◦ τ . I
believe this is well-known, and at any rate it is an easy consequence of quantifier-elimination
in ACVF. From this, it follows that if σ is a randomly chosen element of Gal(Kalg/K), then
w1 ◦ σ and w2 ◦ σ have the same distribution. Consequently the choice of the valuations v′i
does not effect the resulting value of P (φ(a), K).

So we have a well-defined number P (φ(a), K), and it is defined canonically. The first two
bullet points of Theorem 11.4.1 are therefore clear. The density part can be seen as follows:
suppose M |= φ(a) for some M |= T extending K. Let Kalg be the algebraic closure of K in
M . For the v′i’s, take the restrictions of the valuations on M to Kalg. By Theorem 11.2.15,
there is a field K ≤ L ≤ Kalg with L/K a finite Galois extension, such that φ(a) is implied
by T and the diagram of L. Specifically, write φ(a) as ∃yQ(y; a) = 0 ∧ ψ(y; a), and let L
be the splitting field of the polynomial Q(X; a) ∈ K[X]. Now with probability 1/[L : K]n,
every σi will restrict to the identity on L. Consequently, Kσ1,...,σn will be a model of T∀
extending L, so in any model M of T extending Kσ1,...,σn , φ(a) will hold. So φ(a) holds with
probability at least 1/[L : K]n, and consequently P (φ(a), K) ≥ 1/[L : K]n.

It remains to verify the extension invariance part of Theorem 11.4.1. Let K0 ≤ K
be an inclusion of perfect fields, with K0 relatively algebraically closed in K. Let φ(a)
be a formula with parameters a from K0. As in the previous paragraph, write φ(a) as
∃yQ(y; a) = 0 ∧ ψ(y; a) and let L0 be the splitting field of Q(y; a) over K0. At present L0
is nothing but a pure field. Write L0 = K0(β) for some singleton β ∈ L0, and let Q(X) be



CHAPTER 11. MULTI-VALUED FIELDS 173

the irreducible polynomial of β over K0. Let L = L0K = K(β); this is a Galois extension
of K. There are only finitely many ways of factoring Q(X) in Kalg, so in each way of
factoring Q(X), the coefficients come from Kalg

0 . In particular, if Q(X) can be factored
over K, the coefficients would belong to Kalg

0 ∩ K = K0. So Q(X) is still irreducible over
K. Consequently [L : K] = degQ(X) = [L0 : K0]. Now there is a natural restriction map
Gal(L/K)→ Gal(L0/K0). It is injective because an element of Gal(K(β)/K) is determined
by what it does to β. Since Gal(L/K) has the same size as Gal(L0/K0), the restriction
map must be an isomorphism. Consequently, if τ is chosen from Gal(L/K) randomly, its
restriction to L0 is a random element of Gal(L0/K0). Consequently, if σ is a random element
of Gal(Kalg/K) and σ0 is a random element of Gal(Kalg

0 /K0), then σ � L0 and σ0 � L0 have
the same distribution, namely, the uniform distribution on Gal(L0/K0). From this, it follows
easily that P (φ(a), K) = P (φ(a), K0).

This completes the proof of Theorem 11.4.1 when every Ti is ACVF. The other cases are
more complicated, though as a consolation all fields are characteristic zero, hence perfect.

A first attempt at defining P (φ(a), K) is as follows: fix some algebraic closure Kalg of
K. For each i such that Ti is RCF, let Ki be a real closure of (K,<i) inside Kalg. For
each i such that Ti is pCF, let Ki be a p-adic closure of (K, vi) inside Kalg. For each i
such that Ti is ACVF, let Ki be Kalg with some valuation extending vi. In each case, there
is a choice, but any two choices are related by an element of Gal(Kalg/K). Now choose
σ1, . . . , σn ∈ Gal(Kalg/K) randomly. For each i, consider σi(Ki), which is (usually) a model
of Ti extending K. Let K ′ be the field

K ′ =
n⋂
i=1

σi(Ki).

There is an obvious way to give K ′ the structure of a T∀-model. If we knew that K ′ satisfies
condition A1 of §11.2.1 with high probability, we could define P (φ(a), K) to be the prob-
ability that φ(a) holds in any/every model of T extending K ′. Unfortunately, K ′ usually
satisfies condition A1 with probability zero. Instead, we will proceed by repeating the above
procedure with K ′ in place of K, getting a third field K ′′. Iterating this, we get an increasing
sequence K ⊆ K ′ ⊆ K ′′ ⊆ · · · ⊆ K(n) ⊆ · · · of T∀-structures on subfields of Kalg. The union
K∞ = ⋃∞

n=1K
(n) does actually turn out to satisfy axiom A1 with probability 1, and we let

P (φ(a), K) be the probability that φ(a) holds in any/every model of T extending K∞.
The rest of this section will make this construction more precise, and verify that it satisfies

the requirements of Theorem 11.4.1.

11.4.2 The General Case
All fields will be perfect, unless stated otherwise. All models of T∀ and (Ti)∀ will be (perfect)
fields, unless stated otherwise. Galois extensions need not be finite Galois extensions.

We start off with some easy but confusing facts that will be needed later.
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Lemma 11.4.2. Let L/K be a Galois extension of fields, and suppose K has the structure
of a (Ti)∀ model (but L does not). The following are equivalent

(a) For every F , if F is a model of (Ti)∀ extending K, and F is a subfield of L, then F = K.

(b) There is a model M |= Ti extending K, such that M ∩ L = K.

(c) For every model M |= Ti extending K, M ∩ L = K.

Note that it makes sense to talk about whether M ∩ L = K, because L/K is Galois.

Proof. The equivalence of (b) and (c) follows from quantifier elimination in Ti. Indeed, the
statement that M ∩ L = K is equivalent to the statement that for each x ∈ L \ K, the
irreducible polynomial of x over K has no zeros in M . This is a conjunction of first order
statements about K, so it holds in one choice of M if and only if it holds in another choice
of M .

Suppose (a) holds. Let M be a model of Ti extending K. Taking F = M ∩L, (a) implies
that M ∩ L = K. So (a) implies (c).

Conversely, suppose (a) does not hold. Let F witness a contradiction to (a), so K ( F ⊆
L, and F is a model of (Ti)∀ extending K. Let M be a model of Ti extending F and hence
K. Then M ∩ L contains F , contradicting (c).

Definition 11.4.3. Say that K is locally Ti-closed in L if it satisfies the equivalent conditions
of the previous lemma.

Definition 11.4.4. Let L/K be a Galois extension of fields, and suppose K has the structure
of a (Ti)∀-model (but L does not). Let Ci(L/K) denote the set of models of (Ti)∀ which extend
K, are subfields of L, and are locally Ti-closed in L.

The subscript on Ci is present so that Ci(L/K) will be unambiguous when K is a model
of T∀, in addition to being a model of (Ti)∀.

There is a natural action of Gal(L/K) on Ci(L/K).

Lemma 11.4.5. Suppose L/K is a Galois extension of fields, and K |= (Ti)∀.

(a) The action of Gal(L/K) on Ci(L/K) has exactly one orbit.

(b) Suppose K ′ is a model of (Ti)∀ extending K, and L′ is a field extension of L and K ′,
with L′ Galois over K ′. If F ∈ Ci(L′/K ′), then F ∩ L ∈ Ci(L/L ∩K ′).

Proof. (a) Note that Ci(L/K) is non-empty by a Zorn’s lemma argument and condition (a)
of Lemma 11.4.2. Now suppose F and F ′ are two elements of Ci(L/K). By quantifier
elimination in Ti, we can amalgamate F and F ′ over K. Thus, we can find a model
M |= T extending F , and an embedding ι : F ′ → M which is the identity on K.
Choosing some way of amalgamating M and L as fields, we get that ι(F ′) ⊆ L ⊇ F ,
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because of L/K being Galois. The compositum ι(F ′)F is a subfield of L with a (Ti)∀-
structure extending that on F and ι(F ′), so by local Ti-closedness of ι(F ′) and F
in L, ι(F ′) = ι(F ′)F = F . It follows that F ′ and F are isomorphic over K. This
isomorphism must extend to an automorphism of L, because L/K is Galois. So some
automorphism on L/K maps F ′ to F (as (Ti)∀-structures).

(b) Let M be a model of Ti extending F . Choose some way of amalgamating M with L′.
ThenM ∩L′ = F by (c) of Lemma 11.4.2. Therefore, M ∩L = M ∩L′∩L = F ∩L. So
by (b) of Lemma 11.4.2, F ∩L is locally Ti-closed in L. Therefore it is in Ci(L/L∩K ′).

Now we turn our attention from Ti to T .

Definition 11.4.6. Let K |= T∀ and let L be a pure field that is a Galois extension of K.
Let S(L/K) be the set of all K ′ |= T∀ extending K, with K ′ a subfield of L. In other words,
an element of S(L/K) is a subfield F of L, endowed with a T∀-structure, such that F ⊇ K
and the structure on F extends the structure on K.

There is a natural partial order on S(L/K) coming from inclusion of substructures.
There is also a natural action of Gal(L/K) on S(L/K). One should think of S(L/K) as
the set of states in a Markov chain, specifically the random process described at the end of
the previous section.

Definition 11.4.7. Suppose K |= T∀ and L/K is a Galois extension of K. For 1 ≤ i ≤ n,
choose some Li ∈ Ci(L/K). Choose σ1, . . . , σn ∈ Gal(L/K) independently and randomly,
using Haar measure on Gal(L/K). Let F be ⋂ni=1 σi(Li), with the obvious choice of a T∀
structure. So F is a random variable with values in S(L/K). Let µ1

L/K be the probabil-
ity distribution on S(L/K) obtained in this way. The choice of the Li’s is irrelevant, by
Lemma 11.4.5(a).

The superscript 1 is to indicate that this is the first step of the Markov chain.

Lemma 11.4.8. Suppose L/K is finite. Then every event (subset of S(L/K)) which has
positive probability with respect to µ1

L/K has probability at least 1/mn, where m = [L : K].

Proof. The only randomness comes from the σi’s. Each element of Gal(L/K) has an equal
probability under Haar measure, and this probability is 1/m. Since the σi’s are chosen
independently, each choice of the σi’s has probability 1/mn of occurring.

Lemma 11.4.9. Suppose L/K is finite, and F is a maximal element of S(L/K). Then
µ1
L/K({F}) > 0.

Proof. For each i, let Mi be a model of Ti extending F � Li, and choose some way of
amalgamating Mi and L as fields over F . Let Fi = L ∩ Mi. Of course Fi ⊇ F . By
Lemma 11.4.2(b), Fi ∈ Ci(L/K). Let F ′ = ⋂n

i=1 Fi. Then F ′ ∈ S(L/K) and F ′ extends
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F , so F = F ′ by maximality of F . Now if we choose σ1, . . . , σn ∈ Gal(L/K) randomly,
then ⋂n

i=1 σi(Fi) is distributed according to µ1
L/K . Since L/K is finite, there is a positive

probability that σi = 1 for every i, in which case ⋂ni=1 σi(Fi) = F ′ = F .

Lemma 11.4.10. Let L/K be a Galois extension, and K be a model of T∀. Let K ′ be a
model of T∀ extending K. Let L′ be a field extending L and K ′, with L′ Galois over K ′.
If F ∈ S(LK ′/K ′) is distributed randomly according to µ1

L′/K′, then F ∩ L is distributed
randomly according to µ1

L/L∩K′.

Proof. For 1 ≤ i ≤ n, choose some Fi ∈ Ci(L′/K ′). By Lemma 11.4.5(b), Fi ∩ L is in
Ci(L/L ∩K ′).
Claim 11.4.11. If we choose σ from Gal(L′/K ′) randomly using Haar measure, then σ � L
is also randomly distributed in Gal(L/L ∩K ′) with respect to Haar measure.

Proof. It probably suffices to show that if x ∈ L, then the probability that σ � L fixes x is the
same as the probability that a random element of Gal(L/L ∩K ′) fixes x. This is equivalent
to showing that x has the same number of conjugates under the action of Gal(L/L ∩ K ′)
as under the action of Gal(L′/K ′). If x and y are conjugate over K ′, then clearly they are
conjugate over L ∩K ′. Conversely, if they are conjugate over K ′ ∩ L but not over K ′, then
let S ⊆ L be the orbit of x under Gal(L′/K ′). The code for the finite set S is definable over
K ′. It is also definable over L, as S ⊆ L. Thus the code for S is in L ∩K ′. As x and y are
conjugate over L ∩K ′, we conclude that y ∈ S ⇐⇒ x ∈ S, a contradiction.

From the Claim, we conclude that if the σi are distributed randomly from Gal(L′/K ′),
then σi � L are distributed randomly from Gal(L/L ∩K ′). Taking F = ⋂n

i=1 σi(Fi), we get
F distributed according to µ1

L′/K′ . But

F ∩ L =
n⋂
i=1

(σi � L)(Fi ∩ L)

is then distributed according to µ1
L/L∩K′ , because Fi ∩ L ∈ Ci(L/(K ′ ∩ L)) and σi � L is

distributed according to Haar measure on Gal(L/L ∩K ′).

Definition 11.4.12. Let L/K be a Galois extension, and K be a model of T∀. Define a
series of distributions {µiL/K}i<ω on S(L/K) as follows:

• µ0
L/K assigns probability 1 to {K} ⊆ S(L/K).

• µ1
L/K is as above.

• For i > 0, if we choose F ∈ S(L/K) randomly according to µiL/K, and then choose
F ′ ∈ S(L/F ) ⊆ S(L/K) randomly according to µ1

L/F , then F ′ is distributed according
to µi+1

L/K.
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In other words, we are running some kind of Markov chain whose states are the elements
of S(L/K). The transition probabilities out of the state F are given by µ1

L/F , and µnL/K is
the distribution of the Markov chain after n steps.

Lemma 11.4.13. Let L/K be a finite Galois extension, and K be a model of T∀. Then
limi→∞ µ

i
L/K exists, and the corresponding distribution on S(L/K) is concentrated on the

maximal elements of S(L/K).

Proof. The fact that the limit distribution exists is a general fact about Markov chains with
finitely many states such that the graph of possible transitions has no cycles other than
self-loops.

It remains to check that in the limit, we land in a maximal element of S(L/K) with
probability one. Let m = [L : K]. If F ∈ S(L/K) is not maximal, then the probability
of moving from F to some bigger element is positive by Lemma 11.4.9, and at least 1/mn,
by Lemma 11.4.8. The probability of getting stuck at F is therefore bounded above by
limk→∞(1 − 1/mn)k = 0. As there are finitely many non-maximal F , we conclude that the
probability of getting stuck at any of them is zero.

We let µ∞L/K denote the limit distribution on S(L/K).

Lemma 11.4.14. Let L/K be a finite Galois extension, and K be a model of T∀. Then
every maximal element of S(L/K) has a positive probability with respect to µ∞L/K.

Proof. This follows immediately from Lemma 11.4.9, and the fact that once the Markov
chain reaches a maximal element of S(L/K), it must remain there.

Lemma 11.4.15. Let L/K be a Galois extension, with K a model of T∀. Let K ′ be a model
of T∀ extending K. Let L′ be a field extending K ′ and L, Galois over K ′. If F is a random
element of S(L′/K ′) distributed according to µiLK′/K′, then F ∩L is distributed according to
µiL/L∩K′.

Proof. We proceed by induction on i. For i = 0, F is guaranteed to be K ′, and F ∩ L is
guaranteed to be K ′ ∩ L, which agrees with µ0

L/L∩K′ .
For the inductive step, suppose we know the statement of the lemma for µi, and prove

it for µi+1. If we let F ∈ S(L′/K ′) be chosen according to µiL′/K′ , and we then choose
F ′ ∈ S(L′/F ) ⊆ S(L′/K ′) according to µ1

L′/F , then F ′ is randomly distributed according to
µi+1
L′/K′ , by definition of µi+1. Also, F ∩L is distributed according to µiL/L∩K′ , by the inductive

hypothesis. By Lemma 11.4.10 we know that F ′ ∩ L is distributed according to µ1
L/L∩F . In

particular, the distribution of F ′∩L only depends on F ∩L. So if we want to sample F ′∩L,
we can simply choose F ∩ L using µiL/L∩K′ , and can then choose F ′ ∩ L using µ1

L/F∩L. This
is the recipe for sampling the distribution µi+1

L/K′∩L. So F ′∩L is indeed distributed according
to µi+1

L/K′∩L.
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Corollary 11.4.16. When L/K and L′/K ′ are finite Galois extension, Lemma 11.4.15 holds
for i =∞.

Definition 11.4.17. Let K |= T∀ be a perfect field, φ(a) be a formula in the language of T
with parameters a from K. Say that a finite Galois extension L/K determines the truth of
φ(a) if the following holds: whenever M and M ′ are two models of T extending K, if M ∩L
is isomorphic as a model of T∀ to M ′ ∩ L, then [M |= φ(a)] ⇐⇒ [M ′ |= φ(a)]. (Note that
the isomorphism class of M ∩ L does not depend on how we choose to form the compositum
ML.)

For every formula φ(a), there is some finite Galois extension L/K which determines the
truth of φ(a). Namely, use Theorem 11.2.15 to write φ(a) in the form ∃yQ(y; a) = 0∧ψ(y; a),
and take L to be the splitting field over K of Q(X; a) ∈ K[X].

Lemma 11.4.18. Let K be a model of T∀, M be a model of T extending K, and let L/K
be a Galois extension of K. Assume M and L are embedded over K into some bigger field.
Then M ∩ L is a maximal element of S(L/K).

Proof. Suppose not. Let F be an element of S(L/K), strictly bigger than M ∩ L, and
finitely generated over M ∩ L. Let x be a generator of F over M ∩ L. If S denotes the set
of algebraic conjugates of x over M , then the code for the finite set S is in M , and also in L
because S ⊆ L. So the code for S is in M ∩ L, implying that S is also the set of algebraic
conjugates of x over M ∩ L. Since we are assuming that all fields are perfect, this implies
that the degree of x over M is the same as the degree of x over M ∩ L. In particular, the
irreducible polynomial Q(X) of x over M ∩ L remains irreducible over M . For 1 ≤ i ≤ n,
let Mi be a model of Ti extending M � Li. Let Ni be a model of Ti extending F � Li. The
polynomial Q(X) has a zero in F , namely x. Hence it has a zero in Ni ⊇ F . As Mi and
Ni are two models of Ti extending M ∩ L and Q(X) is defined over M ∩ L, it follows from
quantifier-elimination in Ti that Q(X) also has a zero in Mi.

Now we have a polynomial Q(X) of degree > 1, irreducible over M , such that Q(X) has
a root in Mi for every i. This contradicts condition A1’ of §11.2.1.

Definition 11.4.19. Let L/K be a Galois extension, with K a model of T∀. Let F(L/K) be
the set of maximal elements of S(L/K).

By Zorn’s lemma, it is clear that every element of S(L/K) is bounded above by an
element of F(L/K), even if L/K is infinite. When L/K is a finite extension, µ∞L/K induces
a probability distribution on F(L/K).

Remark 11.4.20. F(L/K) is exactly the set of F of the form L∩M , where M is a model of
T extending K. One inclusion is Lemma 11.4.18. The other inclusion is obvious: if F is a
maximal element of S(L/K), then letting M be a model of T extending F , and combining M
and L into a bigger field in any way we like, we have F ⊆M ∩L ∈ S(L/K), so maximality
of F forces M ∩ L = F .
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Suppose that L/K determines the truth of φ(a). Then by Remark 11.4.20, there must
be a uniquely determined map fφ(a),L from F(L/K) to {⊥,>} such that for every M |= T
extending K, and every way of forming the compositumML, the truth ofM |= φ(a) is given
by fφ(a),L(M ∩ L).

Another corollary of Remark 11.4.20 is that if K ≤ L ≤ L′, with L′ and L Galois
extensions of K |= T∀, and if F ∈ F(L′/K), then F = M ∩L′ for some model M , and hence
F ∩ L = M ∩ L′ ∩ L = M ∩ L is in F(L/K).

Finally, we define P (φ(a), K) to be µ∞L/K({F : fφ(a),L(F ) = >}).

Lemma 11.4.21. The choice of L does not matter.

Proof. If L and L′ are two finite Galois extensions of K which determine the truth of φ(a),
then so does their compositum LL′. So we may assume L ⊆ L′. Let r : F(L′/K)→ F(L/K)
be the restriction map, F 7→ F ∩ L.
Claim 11.4.22. fφ(a),L′ = fφ(a),L ◦ r.

Proof. For F ∈ F(L′/K), we will show fφ(a),L′(F ) = fφ(a),L(r(F )). Write F asM∩L′, withM
a model of T extending F . Then fφ(a),L′(M∩L′) = fφ(a),L′(F ) is the truth value ofM |= φ(a).
ButM∩L = F∩L, so by definition of fφ(a),L, we also know that fφ(a),L(M∩L) = fφ(a),L(r(F ))
is the truth value of M |= φ(a), which is the same thing. So fφ(a),L(r(F )) = fφ(a),L′(F ).

By Corollary 11.4.16 applied in the K = K ′ case, if F is a random element of F(L′/K)
chosen according to µ∞L′/K , then r(F ) = F ∩L is distributed according to µ∞L/K . In particular,
the probability of fφ(a),L′(F ) or equivalently of fφ(a),L(r(F )) is the same as the probability
of fφ(a),L(F ′), with F ′ chosen directly from µ∞L/K . But the former probability is P (φ(a), K)
computed using L′, while the latter is P (φ(a), K) computed using L.

So P (φ(a), K) is at least a well-defined number. The “isomorphism invariance” part
of Theorem 11.4.1 is clear from the definitions. We need to prove the other conditions of
Theorem 11.4.1.

Lemma 11.4.23. For any fixed K, the function P (−, K) is a Keisler measure on the space
of completions of the quantifier-free type of K.

Proof. It suffices to prove the following:

• If φ(a) and ψ(b) are forced to be logically equivalent by T and the diagram of K, then
P (φ(a), K) = P (ψ(b), K). This is easy/trivial, because if we choose a finite Galois
extension L determining the truth of both φ(a) and ψ(b), we see that fφ(a),L = fψ(b),L
by unwinding the definitions.

• P (φ(a), K) = 1 − P (¬φ(a), K), which follows similarly, though it uses the fact that
µ∞L/K is concentrated on F(L/K).
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• If φ(a) ∧ ψ(b) contradicts T ∪ diag(K), then P (φ(a) ∨ ψ(b), K) = P (φ(a), K) +
P (ψ(b), K). Again, this is not difficult: if L is a field determining the truth of both
φ(a) and ψ(b), then it is clear that

fφ(a),L ∧ fψ(b),L = fφ(a)∧ψ(b),L = ⊥

fφ(a),L ∨ fψ(b),L = fφ(a)∨ψ(b),L.

Consequently, {F : fφ(a)∨ψ(b),L(F ) = >} is a disjoint union of {F : fφ(a),L(F ) = >} and
{F : fψ(b),L(F ) = >}, so we reduce to the fact that µ∞ is a probability distribution.

• 0 ≤ P (φ(a), K) ≤ 1, which is clear from the definition.

This finishes the lemma.

Lemma 11.4.24. If K ⊆ K ′ are models of T∀ and K is relatively algebraically closed in K ′,
and φ(a) is a formula with parameters from K, then P (φ(a), K) = P (φ(a), K ′).

(This is the “extension invariance” part of Theorem 11.4.1.)

Proof. Let L be a finite Galois extension of K determining the truth of φ(a). Let L′ be a
finite Galois extension of K ′ determining the truth of φ(a); we may assume L′ ⊇ L. (In fact,
we can take L′ = LK ′.) Because K is relatively algebraically closed in K ′, L ∩ K ′ = K.
So by Corollary 11.4.16, if F ∈ F(L′/K ′) is distributed according to µ∞L′/K′ , then F ∩ L is
distributed according to µ∞L/K . Using Lemma 11.4.14, this implies that F ∩L ∈ F(L/K) for
any F ∈ F(L′/K ′). Let r : F(L′/K ′) → F(L/K) be the map F 7→ F ∩ L. By unwinding
the definitions (as in the claim in the proof of Lemma 11.4.21), one sees that fφ(a),L′/K′ =
fφ(a),L/K ◦ r. As in the proof of Lemma 11.4.21, we see that for F ′ choosen randomly from
F(L′/K ′) and F chosen randomly from F(L/K), the distribution of F and r(F ′) is the same,
and therefore so too is the distribution of

fφ(a),L′/K′(F ′) = fφ(a),L/K(r(F ′))

and
fφ(a),L/K(F ).

This ensures that P (φ(a), K) = P (φ(a), K ′).

Lemma 11.4.25. If K |= T∀ and φ(a) is a K-formula which holds in some model of T
extending K, then P (φ(a), K) > 0.

(This is the “density” part of Theorem 11.4.1.)

Proof. Let M be the model where φ(a) holds. Let L be a Galois extension of K determining
the truth of φ(a). Then L ∩M ∈ F(L/K) and fφ(a),L(L ∩M) = >. By Lemma 11.4.14,
P (φ(a), K) > 0.

We have verified each condition of Theorem 11.4.1, which is now proven.
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11.5 NTP2 and the Independence Property
We show that the model companion T (usually) fails to be NIP, but is always NTP2, the
next best possibility. In many cases, perhaps all, these results are already known, though
they may not have been written down yet.

11.5.1 Failure of NIP
If n = 1, then T = Ti is one of ACVF, RCF, or pCF, which are all known to be NIP. On the
other hand,

Theorem 11.5.1. Suppose n > 1. Then T has the independence property.

Other people have already pointed this out, but here is a proof.

Proof. We give a proof which works in characteristic 6= 2. It is not hard to modify it to work
in characteristic 2.
Claim 11.5.2. For each i, we can produce quantifier-free Li-formulas φi(x, y) and χi(y)
without parameters such that x, y are singletons, and such that if Ki |= Ti, then χi(Ki) is a
non-empty open set and for every b ∈ χi(Ki), both square roots of b are present in Ki, and
exactly one of them satisfies φi(x, b).

Proof. If Ti is RCF, let χi(y) say that y > 0 and φi(x, y) say that x > 0. If Ti is ACVF, let
χi(y) say that v(y−1/4) > 0, and φi(x, y) say that v(x−1/2) > 0. Note that if v(y−1/4) > 0
and x2 = y, then t = x− 1/2 satisfies

t2 + t+ 1/4− y = (t+ 1/2)2 − y = 0.

By Newton polygons, one of the possibilities for t has valuation zero, and the other has
valuation v(y − 1/4) > 0. If Ti is pCF, the same formulas work as in the case of ACVF.
The only thing to check is that if v(y − 1/4) > 0 for some y ∈ K |= pCF , then the two
roots of T 2 + T + (1/4 − y) = 0 are present in K. If not, then since the two roots have
different valuations (in an ambient model of ACVF), there are two different ways to extend
the valuation from K to K[T ]/(T 2 + T + (1/4− y)), contradicting Henselianity of K.

Given the φi and χi from the Claim, let χ(y) = ∧n
i=1 χi(y). Note that χ(y) defines an

infinite subset of any model of T , by condition A2 of §11.2.1. (Each χi(−) is A1-dense.) If
K |= T and b ∈ χ(K), then X2 − b has roots in K by choice of χi(−) and condition A1’ of
§11.2.1. So each element of χ(K) is a square.

Let ψ(y) assert that χ(y) holds and there is a square root of y which satisfies exactly one
of φ1 and φ2. Note that if χ(b) holds, then both square roots of b are present in K, exactly
one of them satisfies φ1, and exactly one of them satisfies φ2. Letting, ⊕ denote exclusive-or,
we can write ψ(y) as φ1(√y)⊕ φ2(√y), where the choice of √y is unimportant.
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Let K be a model of T . We will show that ψ(x + y) has the independence property in
K. Let a1, . . . , am be any m elements in χ(K), which as we noted above is an infinite set.
We will show that for any subset S0 ⊆ {1, . . . ,m}, there is a b in K such that j ∈ S0 ⇐⇒
K |= ψ(b + aj). It suffices to find such a b in an elementary extension of K, rather than K
itself. Let K ′ � K be an elementary extension containing an element ε which is infinitesimal
compared to K, with respect to every one of the valuations. That is, for each i such that Ti is
valuative, we want vi(ε) > vi(K), and for each i such that Ti is RCF, we want −α <i ε <i α
for every α >i 0 in K. The fact that such an ε exists follows by our axiom A2, and can be
shown directly.

Note that for 1 ≤ j ≤ m, aj + ε ∈ χ(K ′). (Indeed, for every i, K ′ |= χi(ai + ε),
because χi(−) defines an open set in a model of Ti, and ε is infinitesimal with respect to
the prime model of Ti over K � Li.) Consequently, √aj + ε ∈ K ′ for every 1 ≤ j ≤ m.
Let L be K(√aj + ε : 1 ≤ j ≤ m) ⊆ K ′, as a model of T∀. Since ε is transcendental
over K, Gal(L/K(ε)) ∼= (Z/2Z)m. In particular, for every S ⊆ {1, . . . ,m}, there is a field
automorphism σS ∈ Gal(L/K(ε)) which swaps the square roots of aj + ε if and only if j ∈ S.
Let LS be the T∀-model with underlying field L, with the same Li-structure as L for i > 1,
and with the L1-structure obtained by pulling back the L1-structure of L along σS. If ∆
denotes symmetric difference of sets, then

{j : LS |= φ2(
√
aj + ε)} = {j : L |= φ2(

√
aj + ε)}

{j : LS |= φ1(
√
aj + ε)} = {j : L |= φ1(σS(

√
aj + ε))}

= {j : L |= φ1(
√
aj + ε)} ∆ S,

where the last equality holds because L |= φ1(√aj + ε) ⇐⇒ ¬φ1(−√aj + ε). Now let KS

be a model of T extending LS. Since LS is a model of T∀ extending K, KS � K. Also,

{j : KS |= ψ(aj + ε)} = {j : LS |= φ1(
√
aj + ε)}∆{j : LS |= φ2(

√
aj + ε)}

= {j : L |= φ1(
√
aj + ε)}∆{j : L |= φ2(

√
aj + ε)}∆S

= {j : K ′ |= ψ(aj + ε)}∆S

Therefore, by choosing S = S0 ∆ {j : K ′ |= ψ(aj + ε)}, we can arrange that

{j : KS |= ψ(aj + ε)} = S0,

i.e., KS |= ψ(aj + ε) if and only if j ∈ S0. Taking b to be ε ∈ KS, this completes the
proof.

Because T has the independence property and clearly has the strict order property, the
best classification-theoretic property we could hope for T to have is NTP2.
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11.5.2 NTP2 holds
First we make some elementary remarks about relative algebraic closures.

Lemma 11.5.3. Let M be a pure field. Let K be a subfield of M which is relatively separably
closed in M (in the sense of Definition 11.1.6). Let a and b be two tuples from M such that
a |̂ ACF

K
b, i.e., a and b are algebraically independent from each other over K. Then K(a) is

relatively separably closed in K(a, b).

Proof. Embed M into a monster model M |= ACF . By the remarks after Definition 11.1.6,
tp(a/K) and tp(b/K) are stationary. Since a |̂

K
b, the type of b over acl(K(a)) is K-

definable. Now suppose that some singleton c ∈ K(a, b) is algebraic over K(a). Write c as
f(a, b), for some rational function f(X, Y ) ∈ K(X, Y ). Note that stp(b/K(a)) includes the
statement f(a, x) = c. On the other hand, it does not include f(a, x) = c′ for any conjugate
c′ 6= c of c over K(a). As stp(b/K(a)) is definable over K, ac and ac′ cannot have the same
type over K. But if c and c′ are conjugate over K(a), then ac and ac′ have the same type.
So c′ does not exist, and c has no other conjugates over K(a). Thus c ∈ dcl(K(a)). So
cp
k ∈ K(a) for some k. As c was an arbitrary element of K(a, b)∩K(a)alg, we see that K(a)

is relatively separably closed in K(a, b).

Lemma 11.5.4. Let M be a pure field. Suppose K0 ⊆ K1 ⊆ K2 are three subfields of M ,
each relatively separably closed in M . Let c be tuple from M , possibly infinite. Suppose that
c |̂ ACF

K0
K2, i.e., K2 and c are algebraically independent over K0. Then K1(c) is relatively

separably closed in K2(c).

Proof. As in the previous lemma, embedM into a monster modelM of ACF. Then c |̂
K0
K2,

and by properties of forking, K1(c) |̂
K1
K2. By the previous lemma, K1(c) is relatively

separably closed in K2K1(c) = K2(c).

Now we return to existentially closed fields with valuations and orderings. As always, T
is the model companion.

Lemma 11.5.5. In a monster model of T , let B be a small set of parameters and a1, a2, . . .
be a B-indiscernible sequence. Suppose that B = acl(B) and ai = acl(Bai) for any/every
i. Suppose also that aj |̂

ACF

B
a<j for every j, i.e., the sequence is algebraically independent

over B. Let c be a finite tuple and suppose that a1, a2, . . . is quantifier-free indiscernible over
cB, i.e., if i1 < · · · < im and j1 < · · · < jm, then

qftp(ai1ai2 · · · aim/cB) = qftp(aj1aj2 · · · ajm/cB).

Let φ(x; y) be a formula over B such that φ(c; a1) holds. Then ∧∞j=1 φ(x; aj) is consistent.

Proof. Because a1, a2, . . . is B-indiscernible, it suffices to show for each k that ∧∞j=1 φ(x; aj)
is not k-inconsistent.
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First observe that whether or not c |̂ ACF
B

aj holds depends only on the quantifier-free type
of c and aj over B. In particular, it does not depend on j, by quantifier-free indiscernibility
of a1, a2, . . . over cB. If c 6 |̂ ACF

B aj for one j, then this holds for all j. As the aj are
an algebraically independent sequence over B, this contradicts the fact that finite tuples
have finite preweight in ACF. So c |̂ ACF

B
aj for each j. The same argument applied to the

sequence a1a2, a3a4, . . . shows that c |̂
ACF

B
a1a2. Similarly c |̂ ACF

B
a1a2a3, and so on, and so

c |̂ ACF
B

a1a2a3 . . ..
Let M be the monster model. Any subset of M closed under acl(−) is relatively al-

gebraically closed in M , hence relatively separably closed in M . In particular, if we let
K0 = B, K1 = B(aj) = aj, and K2 = acl(Ba1a2 . . .), then each of K0, K1, K2 is relatively
separably closed in M , and K0 ⊆ K1 ⊆ K2. By the previous paragraph, c |̂ ACF

B
K2, so by

Lemma 11.5.4, we conclude that K1(c) is relatively separably closed in K2(c), i.e., B(aj, c) is
relatively separably closed in K2(c). Using bars to denote perfect closures, this means that
B(aj, c) is relatively algebraically closed in K2(c).

Recall the function P (−,−) from Theorem 11.4.1. By the “extension invariance” part of
that theorem,

P (φ(c; aj);B(aj, c)) = P (φ(c; aj);K2(c)).
Now by quantifier-free indiscernibility of a1, a2, . . . over cB, we see that B(aj, c) ∼= B(aj′ , c)
for all j, j′. By the isomorphism-invariance part of Theorem 11.4.1,

P (φ(c; aj);B(aj, c)) = P (φ(c; aj′);B(aj′ , c))

for all j, j′. Consequently, P (φ(c; aj);K2(c)) does not depend on j.
Now M is a model of T extending K2(c), and in M , φ(c; a1) holds. So by the “density”

part of Theorem 11.4.1, P (φ(c; a1);K2(c)) is some positive number ε > 0. Consequently,
P (φ(c; aj);K2(c)) = ε > 0 for every j.

Suppose for the sake of contradiction that ∧∞j=1 φ(x; aj) is k-inconsistent for some k.
Let N be big enough that Nε > k. Let ψ(x) be the statement over K2 asserting that
at least k of φ(x; a1), . . . , φ(x; aN) hold. By the Keisler measure part of Theorem 11.4.1,
P (ψ(c);K2(c)) > 0, and there is a model M ′ of T extending K2(c) in which ψ holds. In
particular, M ′ |= ∃xψ(x). But K2 is relatively algebraically closed in M , hence satisfies
axiom A1 of §11.2.1 by Corollary 11.2.10. By Corollary 11.2.11, the statement ∃xψ(x) holds
in M if and only if it holds in M ′. Consequently, it holds in M , and therefore ∧nj=1 φ(x; aj)
is not k-inconsistent.

Recall from [1] or [9] that the burden of a partial type p(x) is the supremum of κ such
that there is an inp-pattern in p(x) of depth κ, that is, an array of formula φi(x; aij) for
i < κ and j < ω, and some ki < ω such that the ith row ∧

j<ω φi(x; aij) is ki-inconsistent for
each i, and such that for any η : κ→ ω, the corresponding downwards path ∧i<κ φi(x; ai,η(i))
is consistent with p(x). A theory is NTP2 if every partial type has burden less than ∞. A
theory is strong if every partial type has burden less than ℵ0, roughly. (See [1] for a more
precise statement.) At any rate, if every partial type has burden less than ℵ0, then the
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theory is strong. By the submultiplicativity of burden (Theorem 11 in [9]), it suffices to
check the burden of the home sort.

Fact 11.5.6. If D and E are definable sets, bdn(D × E) ≥ bdn(D) + bdn(E).

In fact, if φi(x; ai) is an inp-pattern for D and ψj(y; bj) is an inp-pattern for E, then
{φi(x; ai)} ∪ {φj(y; bj)} is an inp-pattern for D × E.

In NIP theories, burden is the same thing as dp-rank, which is known to be additive [41].
The theories ACVF, pCF, and RCF are all known to be dp-minimal, i.e., to have dp-rank 1
[15]. One of the descriptions of dp-rank is that a partial type Σ(x) over a set C has dp-rank
≥ κ if and only if there are κ-many mutually indiscernible sequences over C and a realization
a of Σ(x) such that each sequence is not indiscernible over Ca.

Theorem 11.5.7. The model companion T is NTP2, and strong. In fact, the burden of
affine m-space is exactly mn, where n is the number of valuations and orderings.

Proof. To show that the burden of Am is at least mn, it suffices by Fact 11.5.6 to show
that bdn(A1) ≥ n. In the case where every Ti is ACVF, one can take φi(x; y) to assert
that vi(x) = y, for 1 ≤ i ≤ n, and take ai,0, ai,1, . . . to be an increasing sequence in the ith
valuation group. Variations on this handle the remaining cases. We leave the details as an
exercise to the reader.

For the upper bound, suppose for the sake of contradiction that there is an inp-pattern
{φi(x; aij)}i<mn+1; 0≤j<ω of depth mn + 1, with x a tuple of length m. We may assume
that the aij form a mutually ∅-indiscernible array. Extend the array to the left, i.e., let
j range over negative numbers. Let B be acl(aij : j < 0). From stability theory, one
knows that aij |̂

ACF

B
ai0ai1 · · · ai,j−1 for every j. By mutual indiscernibility, each sequence

ai0, ai1, . . . is indiscernible over {aij : j < 0}, hence over B. In particular, aij ≡B aij′ for
j 6= j′. For each i < mn + 1, let bi0 be an enumeration of acl(Bai,0). For j > 0, choose
bi,j such that ai,jbi,j ≡B ai,0bi,0. Then bi,j is an enumeration of acl(Bai,j) for every i and
every j ≥ 0. Let ci,jdi,j be a mutually B-indiscernible array modeled on the array ai,jbi,j.
Then ci,jdi,j ≡B ai,0bi,0, so di,j is an enumeration of acl(Bci,j). Also, because ai,0, ai,1, . . . was
already B-indiscernible, we must have

ci,0ci,1 · · · ≡B ai,0ai,1 · · ·

for each i. Consequently, ci,j |̂
ACF

B
ci,0 · · · ci,j−1. And since di,j ⊆ acl(Bdi,j), we also have

di,j
ACF

|̂
B

di,0di,1 · · · di,j−1,

using Corollary 11.2.12. As bi,0 is an enumeration of acl(Bai,0), the elements of ai,0 must
actually appear somewhere in bi,0. Let πi be the coordinate projection such that πi(bi,0) =
ai,0. Hence ci,j = πi(di,j).
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Because the aij formed a mutually ∅-indiscernible array, the collective type of all the ci,j’s
must agree with that of all the ai,j’s. Hence φi(x; ci,j) is still an inp-pattern of depth mn+1.
Let ψi(x; y) be φi(x; πi(y)). Then ψi(x; di,j) is an inp-pattern of depth mn + 1. Let c be a
realization of ∧i<mn+1 ψi(x; di,0). Note that c is a tuple of length m.

Let M be the ambient monster. For each 1 ≤ k ≤ n, let Mk be a model of Tk extending
M � Lk. By quantifier-elimination, the array {di,j} is still mutually B-indiscernible in Mi.
By additivity of dp-rank and by dp-minimality of the home sort in Mk, we know that the
dp-rank of tp(c/B) in Mk is at most m. In particular, for each 1 ≤ k ≤ n, at most m of the
rows in the array {di,j} can fail to be Bc-indiscernible in Mk. By the pigeonhole principle,
there must be some value of i such that the sequence di,0, di,1, . . . is Bc-indiscernible in
each of M1,M2, . . . ,Mn. Back in M, this means that di,0, di,1, . . . is quantifier-free Bc-
indiscernible. Since di,0, di,1, . . . is also B-indiscernible and B-independent, Lemma 11.5.5
applies. Consequently, ∧∞j=0 ψi(x; di,j) is consistent, because ψi(c; di,0) holds. This contradicts
the fact that {ψi(x; di,j)} is an inp-pattern.

11.6 Forking and Dividing
We will make use of the following general fact, which is the implication (ii) =⇒ (i) in
Proposition 4.3 of [36].3

Fact 11.6.1. Let M be a monster model of some theory, let S ⊆ M be a small set, and
let φ(x) be a formula with parameters from M. Suppose there is a global Keisler measure µ
which is Lascar-invariant over S, and suppose µ(φ(x)) > 0. Then φ(x) does not fork over
S.

Now we specialize to the theory T under consideration.

Lemma 11.6.2. Let M be a monster model of T . Let S be a small subset of M, and let p
be a complete quantifier-free type over M which is Lascar-invariant over S. Then there is
a Keisler measure µ on S(M), Lascar-invariant over S, whose support is exactly the set of
completions of p.

This is nothing but a restatement or special case of Theorem 11.4.1.

Proof. Let a be a realization of p in some bigger model, and consider the structure M[a]
generated by M and a. The structure of M[a] is determined by p. Also, if σ is any Lascar
strong automorphism of M over S, then p = σ(p). This implies that there is a uniquely
determined automorphism σ′ of M[a] extending σ on M and fixing a.

Let M[a] denote the perfect closure of the field of fractions of M[a]. This is uniquely
determined (as a model of T∀) by M[a], and hence is determined by p. Let µ be the Keisler
measure on M which assigns to an M-formula φ(x; b) the value

P (φ(a; b);M[a]),
3Hrushovski and Pillay assume NIP, but the assumption is unused for the implication (ii) =⇒ (i).
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where P is as in Theorem 11.4.1. By the Keisler measure part of Theorem 11.4.1, this is
a Keisler measure on the space of completions of qftp(M[a]). By model completeness, any
extension of qftp(M[a]) to a complete type must satisfy tp(M), so we have a legitimate
Keisler measure on the space of extensions of p to complete types over M. And if σ is
any Lascar strong automorphism over S, then by the “isomorphism invariance” part of
Theorem 11.4.1,

P (φ(a;σ(b));M[a]) = P (φ(σ′(a);σ′(b));M[a]) = P (φ(a, b);M[a])

where σ′ is the aforementioned automorphism of M[a] extending σ and fixing a. Thus
µ(φ(x; b)) = µ(φ(x;σ(b))). We conclude that µ(φ(x; b)) = µ(φ(x; b′)) for any formula φ(x; y)
and any b, b′ ∈ M having the same Lascar strong type over S. Finally, if b is a tuple from
M and φ(a; b) is a formula which is consistent with p, then φ(a; b) is also consistent with the
diagram of M[a], hence has positive probability by the “density” part of Theorem 11.4.1.

Corollary 11.6.3. Let M be a monster model of T and S be a small subset of M. Suppose
q is a complete quantifier-free type on M which is Lascar invariant over S. Then every
complete type on M extending q does not fork over S.

Proof. Let p(x) be a complete type extending q(x). Let φ(x) be any formula from p(x).
Let µ be the Keisler measure from Lemma 11.6.2. Then µ is Lascar invariant over S, and
µ(φ(x)) is positive because φ(x) is consistent with q(x). By Fact 11.6.1, φ(x) does not fork
over S.

If M is a model of T and A,B,C are subsets of M , let A |̂ Ti
C
B indicate that A |̂

C
B

holds in any/every model of Ti extending M � Li.

Lemma 11.6.4. Work in a monster model M of T . Let a be a finite tuple, and B and C
be sets (in the home sort, as always). Suppose C = acl(C). Suppose a |̂ Ti

C
B holds for every

1 ≤ i ≤ n. Then qftp(a/BC) can be extended to a quantifier-free type q(x) on M which is
Lascar invariant over C.

Proof. Let V be the variety over C of which a is a generic point. By Fact 11.1.8, V is
absolutely irreducible.

Let Mi be a model of Ti extending M � Li. Within Mi, a |̂
Ti
C
B. By Adler’s character-

ization of forking in NIP theories (Proposition 2.1 in [36]), there is an Li-type pi(x) on Mi

which extends the type of a over BC and which is Lascar-invariant over C. The restriction
of this Li-type to a quantifier-free Lrings-type must say that x lives on V and on no Mi-
definable proper subvarieties of V . This follows from Lemma 11.1.17. Let qi(x) be the set
of quantifier-free Li-statements in pi(x) with parameters from M. Then qi(x) is a complete
quantifier-free Li-type on M. Let q(x) be ⋃ni=1 qi(x). This is a complete quantifier-free type
on M; it is consistent because the qi(x) all have the same restriction to the language of
rings, namely, the generic type of V . Also, q(x) extends qftp(a/BC), because the Li-part of
qftp(a/BC) is present in pi(x) and qi(x).
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To show Lascar-invariance of q(x) over C, it suffices to show that if I is a C-indiscernible
sequence in M, a and a′ are two elements of I, and φ(x; y) is a quantifier-free formula, then
φ(x; a) ∈ q(x) if and only if φ(x; a′) ∈ q(x). In fact, we only need to consider the case where
φ(x) is a quantifier-free Li-formula, for some i. But then

φ(x; a) ∈ q(x) ⇐⇒ φ(x; a) ∈ pi(x) ⇐⇒ φ(x; a′) ∈ pi(x) ⇐⇒ φ(x; a′) ∈ q(x)

where the middle equivalence follows from the fact that pi(x) is Lascar-invariant, and I is
C-indiscernible within Mi (by quantifier-elimination in Ti). Thus q(x) is Lascar-invariant
over C, as claimed.

Theorem 11.6.5. Forking and dividing agree over every set (in the home sort).

Proof. First we show that if a is a finite tuple and B is a set, then qftp(a/B) does not fork
over B. By Lemma 11.6.4, there is a global quantifier-free type q(x) which is Lascar-invariant
over B. By Corollary 11.6.3, any extension of q(x) to a complete global type does not fork
over B. So qftp(a/B) has a global non-forking extension. Now if a is any small tuple, and B
is a set, then qftp(a/B) does not fork over B, by compactness. Consequently, if a is a small
tuple and B is a (small) set, then qftp(a′/B) does not fork over B, where a′ enumerates
acl(aB). By Corollary 11.2.11, qftp(a′/B) implies tp(a′/B), so tp(a′/B) does not fork over
B. By monotonicity, tp(a/B) does not fork over B. As a and B are arbitrary, every set in
the home sort is an extension base for forking in the sense of [10], so by Theorem 1.2 in [10],
forking and dividing agree over every set in the home sort.

Lemma 11.6.6. Let M be a monster model of T and C = acl(C) be a small subset of M .
Suppose p(x) is a complete type on C and q(x) is a complete quantifier-free type on M , with
q(x) extending the quantifier-free part of p(x). Suppose q(x) is Lascar-invariant over C.
Then q(x) ∪ p(x) is consistent.

Proof. Let M[a] be the structure obtained by adjoining a realization a of q(x) to M. Let
W be the variety over M of which a is the generic point. By Fact 11.1.8, W is absolutely
irreducible. Moreover, the ACF-theoretic code pWq for W must lie in M. By Lascar
invariance of q(x), one sees that W is Lascar invariant over C. Consequently, the finite
tuple pWq is fixed by every Lascar strong automorphism over C. So pWq ⊆ acl(C) = C.
Consequently, in an ambient model of ACF we have Cb(stp(a/M)) ⊆ C, and so a |̂ ACF

C
M.

By Lemma 11.5.3, C(a) is relatively algebraically closed in M(a).
Because the quantifier-free type of a over C is consistent with p(x), there is a model

N |= T extending C[a] such that within N , tp(a/C) = p(x). By Lemma 11.2.9, we can
amalgamate M(a) and N over C(a). So there is a model N ′ of T extending N and M(a).
In N , tp(a/C) = p(x). As N � N ′, tp(a/C) = p(x) holds in N ′ as well. And as N ′ �M(a),
qftp(a/M) = q(x). So q(x) ∪ p(x) is consistent.

Lemma 11.6.7. Work in a monster model M of T . Let a be a finite tuple, and B and C
be sets (in the home sort, as always). Suppose a |̂ Ti

C
B holds for every 1 ≤ i ≤ n. Then

a |̂
C
B.
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Proof. A type forks/divides over C if and only if it forks/divides over acl(C), so it suffices
to show that tp(a/BC) does not fork over acl(C). By monotonicity, it suffices to show that
tp(a/ acl(BC)) does not fork over acl(C). By Claim 3.6 in [10] and Lemma 11.1.15 above,
a |̂ Tiacl(C) acl(CB) for every i. So we may assume that C = acl(C) ⊆ B = acl(B).

Now by Lemma 11.6.4, there is a global quantifier-free type q(x) extending qftp(a/BC) =
qftp(a/B), with q(x) Lascar-invariant over C. Clearly q(x) is also Lascar-invariant over B,
so by Lemma 11.6.6, q(x) is consistent with tp(a/B). Let p(x) be a global complete type
extending q(x) ∪ tp(a/B). Then p(x) does not fork over C by Corollary 11.6.3.

Let qftpi(a/B) denote the quantifier-free Li-type of a over B, and let qftpACF (a/B)
denote the field-theoretic quantifier-free type of a over B.

Lemma 11.6.8. Let M be a monster model of T , and let C = acl(C) be a small subset.
For each i, let Mi be a model of Ti extending M � Li. For each i, let ai be a tuple in Mi.
Suppose that qftpACF (ai/C) does not depend on i. Then we can find a tuple a in M such
that qftpi(a/C) = qftpi(ai/C) for every i.

Proof. Let C[ai] denote the subring or subfield ofMi generated by C and ai. By assumption,
C[ai] is isomorphic to C[ai′ ] as a ring, for every i and i′. Use these isomorphisms to identify
all the C[ai] with each other, getting a single ring C[a] which is isomorphic to C[ai] for
every i. Use these isomorphisms to move the (Ti)∀ structure from C[ai] to C[a]. Now C[a]
is a model of T∀, and qftpi(a/C) = qftpi(ai/C), for every i. As C = acl(C), C is relatively
separably closed in M, so by Lemma 11.2.9, one can embed C[a] and M into a bigger model
of T . By model completeness and saturation, tp(a/C) is already realized in M.

Lemma 11.6.9. Let a,B,C be small subsets of a monster model M |= T . Suppose a 6 |̂ T1
C b.

Then a 6 |̂ Cb.

Proof. By Claim 3.6 in [10] applied to both T1 and T , we may assume C = acl(C) and
B = acl(BC). By finite character of forking, we may assume a is finite. For every i, let Mi

be an even more monstrous model of Ti extending M � Li. As a 6 |̂ T1
C B, within M1 we have

a 6 |̂ CB. By Lemma 11.1.15, some L1-formula φ(x;B) in tp(a/BC) divides over C. By
quantifier-elimination in Ti, we may assume that φ(x; y) is a quantifier-free L1-formula. By
Lemma 11.1.18, there is a sequence B = B1

0 , B
1
1 , B

1
2 , . . . in M1 which is indiscernible over C

and algebraically independent over C, and such that ∧∞j=0 φ(x;B1
j ) is k-inconsistent in M1,

for some k. Thus qftp1(B1
j /C) = qftp1(B/C), and in a certain sense

qftpACF (B1
0B

1
1B

1
2 · · · /C) = qftpACF (B/C)⊗ qftpACF (B/C)⊗ · · · .

The right hand side makes sense because C is relatively separably closed in B (Defini-
tion 11.1.6), so qftpACF (B/C) is stationary.

Meanwhile, for i > 1, we can apply Lemma 11.1.16 to Mi and tp(B/C), getting a
sequence B = Bi

0, B
i
1, B

i
2, . . . which is indiscernible over C and algebraically independent
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over C. (Note that Lemma 11.1.16 is true even without the restriction that B be finite.) So
again, we get qftpi(Bi

j/C) = qftpi(B/C), and

qftpACF (Bi
0B

i
1B

i
2 · · · /C) = qftpACF (B/C)⊗ qftpACF (B/C)⊗ · · · .

In particular, qftpACF (Bi
0B

i
1B

i
2 · · · /C) does not depend on i, as i ranges from 1 to n. By

Lemma 11.6.8, we can therefore find a sequence B0, B1, . . . in M such that

qftpi(B0B1 . . . /C) = qftpi(Bi
0B

i
1B

i
2 . . . /C)

for every i. In particular, qftpi(Bj/C) = qftpi(Bi
j/C) = qftpi(B/C). Because this holds

for all i, qftp(Bj/C) = qftp(B/C). Because B = acl(B), qftp(B/C) ` tp(B/C) by Corol-
lary 11.2.11. So tp(Bj/C) = tp(B/C) for every j. Also,

qftp1(B0B1 . . . /C) = qftp1(B1
0B

1
1 . . . /C)

implies that there is an automorphism σ of M1 sending B1
0B

1
1 . . . to B0B1 . . .. Consequently,∧∞

j=0 φ(x;Bj) is k-inconsistent in M1. Clearly it is also k-inconsistent in M, because M is
smaller than M1. Since B0, B1 is a sequence of realizations of tp(B/C), we conclude that
φ(x;B) divides over C, in M.

Theorem 11.6.10. Let M be a model of T , and let A,B,C be subsets of M (in the home
sort). The following are equivalent:

• A |̂
C
B, i.e., the type of A over BC does not fork over C.

• The type of A over BC does not divide over C.

• A |̂ Ti
C
B for every 1 ≤ i ≤ n.

Proof. The first two bullet points are equivalent by Theorem 11.6.5. If A |̂
C
B, then by

Lemma 11.6.9 A |̂ T1
C
B. Similarly, A |̂ Ti

C
B for every 1 ≤ i ≤ n. Conversely, if A |̂ Ti

C
B for

every 1 ≤ i ≤ n, then by Lemma 11.6.7, a |̂
C
B for every finite subset a ⊆ A. By finite

character of forking, A |̂
C
B.
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Chapter 12

Definable Strong Euler
Characteristics on Pseudofinite Fields

12.1 Introduction

12.1.1 Euler characteristics
Let M be a structure and R be a ring. Let Def(M) denote the collection of definable sets
in M . Recall the following definitions from [44] and [45]. An R-valued Euler characteristic
is a function χ : Def(M)→ R such that

• χ(∅) = 0

• χ(X) = 1 if X is a singleton

• χ(X) = χ(Y ) if X and Y are in definable bijection.

• χ(X × Y ) = χ(X) · χ(Y )

• χ(X ∪ Y ) = χ(X) + χ(Y ) if X and Y are disjoint.

If the following additional property holds, then χ is called a strong Euler characteristic:

If f : X → Y is a definable function and r ∈ R is such that for every y ∈ Y ,
χ(f−1(y)) = r, then

χ(X) = r · χ(Y ).

An Euler characteristic χ is definable if for every definable function f : X → Y and every
r ∈ R, the set {y ∈ Y : χ(f−1(y)) = r} is definable.
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12.1.2 Examples of Euler characteristics
The simplest example of an Euler characteristic is the counting function on a finite structure.
If M is a finite structure, there is a Z-valued Euler characteristic given by

χ(X) = |X|

where |X| denotes the size of X. This χ is always strong and 0-definable.
Another well-known example is the Euler characteristic on dense o-minimal structures

[17]. If (M,<, . . .) is a dense o-minimal structure, there is a Z-valued Euler characteristic
on M , characterized by the fact that χ(C) = −1dimC for any open cell C. This Euler
characteristic is strong and 0-definable. By work of Kamenkovich and Peterzil [40], it can be
extended to M eq. On o-minimal expansions of the reals, χ(X) agrees with the topological
Euler characteristic for compact definable X ⊆ Rn.

Pseudofinite structures have strong Euler characteristics arising from counting mod n.
More precisely, if M is an ultraproduct of finite structures, there is a canonical strong
Euler characteristic χn : Def(M) → Z/nZ defined in the following way. Let M be the
ultraproduct ∏i∈IMi/U , and X = φ(M ; a) be a definable set. Choose a tuple 〈ai〉i∈I ∈∏
i∈IMi representing a. Then define χn(X) to be the ultralimit along U of the sequence

|φ(Mi; ai)|+ nZ ∈ Z/nZ

This ultralimit exists because Z/nZ is finite.
More intuitively, if we take Z∗ = ∏

i∈I Z/U � Z, then there is a non-standard counting
function χ∗ : Def(M)→ Z∗ assigning to each definable set X ⊆Mn its non-standard “size”
in Z∗. Then χn is the composition

Def(M) χ∗→ Z∗ → Z∗/nZ∗ ∼→ Z/nZ

The map χ∗ happens to be a strong Euler characteristic itself, though we will not discuss it
further.

The mod n Euler characteristics on pseudofinite structures need not be definable. A
simple example of this is an ultraproduct of the totally ordered sets {0, 1, . . . ,m} as m→∞.
If (M,<) is the resulting ultraproduct, then M admits no definable Z/nZ-valued Euler
characteristics (for n > 1). Indeed, if χ is an Euler characteristic on M , consider the
function

f(a) = χ ([0, a]) ∈ Z/nZ

Then f(b) = f(a) + 1 when b is the successor of a. The set f−1(0) must therefore contain
every nth element ofM , and hence cannot be definable, becauseM is (non-dense) o-minimal.

We will see below (Theorem 12.1.1.1) that this does not happen with ultraproducts of
finite fields: the χn are always definable on ultraproducts of finite fields.
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On an ultraproduct M of finite structures, these χn maps are compatible in the sense
that the following diagram commutes when n divides m:

Def(M) χm //

χn

%%

Z/mZ

��
Z/nZ

Consequently, they assemble into a map

χ̂ : Def(M)→ Ẑ

where Ẑ is the ring lim←−n∈N Z/nZ.
More generally, if M is any structure, we will say that a map χ : Def(M)→ Ẑ is

1. an Euler characteristic if all the compositions Def(M) → Ẑ → Z/nZ are Euler char-
acteristics

2. a strong Euler characteristic if all the compositions Def(M) → Ẑ → Z/nZ are strong
Euler characteristics

3. a definable Euler characteristic if all the compositions Def(M) → Ẑ → Z/nZ are
definable Euler characteristics.

For 2 and 3, this is an abuse of terminology.
We can repeat this discusison with the p-adics Zp = lim←−k Z/p

kZ. Recall that

Ẑ ∼=
∏
p

Zp

by the Chinese remainder theorem. Giving an Euler characteristic χ̂ : Def(M)→ Ẑ is there-
fore equivalent to giving an Euler characteristic χp : Def(M)→ Zp for every p. Moreover, χ̂
is strong or definable if and only if every χp is strong or definable, respectively.

12.1.3 Statement of Results
By definition, a structure is pseudofinite if it is infinite, but elementarily equivalent to an
ultraproduct of finite structures. Recall from the work of Ax [4] that a field K is pseudofinite
if and only if K satsifies the following three conditions:

• K is perfect

• K is pseudo-algebraically closed: every geometrically integral variety over K has a
K-point.
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• Gal(K) ∼= Ẑ, or equivalently, K has a unique field extension of degree n for each n.

Our first main result can be phrased purely in terms of pseudofinite fields.

Theorem 12.1.1.

1. Let K = ∏
iKi/U be an ultraproduct of finite fields. Then the non-standard counting

functions χn are acleq(∅)-definable.

2. Every pseudofinite field admits an acleq(∅)-definable strong Euler characteristic.

Note that the χn are not 0-definable, by Theorem 7.3 of [44].
We can state a more precise result, in terms of a certain type of difference field. Recall

that a difference field is a pair (K, σ) where K is a field and σ is an automorphism of K.

Definition 12.1.2. A periodic difference field (PDF) is a difference field (K, σ) such that
every element of K has finite orbit under σ.

PDFs are not an elementary class in the language of difference fields. However, they
constitute an elementary class if we regard them as multi-sorted structures (K1, K2, . . .)
where Ki is the fixed field of σi, with the following structure:

• The difference-field structure on each Ki

• The inclusion map Kn → Km for each pair n,m with n dividing m

For notational simplicity, we will write (K, σ) when we really mean (K1, K2, . . .).
These objects were considered by Hrushovski in [33], and we will give an overview of their

basic properties in §12.2 below.
For any q, let Fq denote (Falgq , σ), where σ is the qth power Frobenius. We will call the

Fq’s Frobenius PDFs. Frobenius PDFs are morally finite, in the sense that every definable set
is finite. Consequently, ultraproducts of Frobenius PDFs admit Z/nZ-valued strong Euler
characteristics χn.

Up to elementary equivalence, the existentially closed PDFs are exactly the non-principal
ultraproducts of Frobenius PDFs (see Fact 12.2.3 below). We will write ECPDF as an
abbreviation for “existentially closed PDF”. ECPDFs are closely related to pseudofinite fields,
as explained in Fact 12.2.4.2 below.

Here is the analog of Theorem 12.1.1 for ECPDFs

Theorem 12.1.3.

1. There is a Ẑ-valued 0-definable strong Euler characteristic χ on any ECPDF, uniformly
definable across all ECPDFs
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2. χ is the unique Ẑ-valued strong Euler characteristic on (K, σ) satisfying the following
property: if C is a smooth geometrically integral curve over K1, if J is the Jacobian of
C, and if q is a prime power, then

χq(C) = 1− t1 + t2,

where χq is the composition Def(K) χ→ Ẑ→ Z/qZ, where t1 is the trace of σ on the q-
torsion J [q], and where t2 is the trace of σ on the q-torsion Gm[q] in the multiplicative
group Gm = K×.

3. If (K, σ) is an ultraproduct of Frobenius PDFs, then χ agrees with the non-standard
counting Euler characteristic χ̂ : Def(K)→M.

4. For any formula φ(x; y) in the language of PDFs, any n ∈ N, and any k ∈ Z/nZ, there
is a formula ψφ,n,k(y) such that for any Frobenius PDF Fq and any tuple b from Fq,

|φ(Fq; b)| ≡ k mod n ⇐⇒ Fq |= ψφ,n,k(b)

It seems highly likely that 2 can be generalized to higher dimensional varieties using
`-adic cohomology, though we do not pursue this here.1 The idea of using `-adic cohomology
originated with Hrushovski, who also suggested that these Euler characteristics are definable
from the non-standard Frobenius automorphisms (see Krajíček’s comments at the end of
[44]).

12.2 Review of Periodic Difference Fields
In this section, we review the basic facts about periodic difference fields. All the facts here
are due to Ax [4] or Hrushovski [33]. PDFs are my preferred way of establishing the basic
theory of pseudofinite fields, so we will sketch some of the proofs.

Recall that we are secretly thinking of a periodic difference field (K, σ) as a multi-sorted
structure (K1, K2, . . .) where Kn is the fixed field of σn, with the following structure:

• The inclusion maps Kn ↪→ Km when n divides m

• The difference field structure on each Kn

Fact 12.2.1. A PDF (K, σ) is existentially closed if and only if K is algebraically closed,
Gal(K/K1) ∼= Ẑ, and K1 is pseudo-algebraically closed (PAC): every geometrically irreducible
variety over K1 has a K1-rational point.

1Specifically, if V is a geometrically integral variety over K1, and ` is prime to the characteristic of K,
then the Z` component of χ(V ) is probably an alternating sum of the traces of the action of σ on the `-adic
cohomology groups Hn(V ⊗K1 K;Z`). We avoid this line of proof, because it seems unnecessarily advanced,
doesn’t handle the case where ` = charK, and may run into problems in positive characteristic due to lack
of resolution of singularities.
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Proof. First suppose (K, σ) is existentically closed. Extending σ arbitrarily to Kalg, we get
a bigger PDF (Kalg, σ), which contradicts existential closedness unless K = Kalg. Let V be
geometrically integral over K1. The field K(V ) can be thought of as the definable closure
of K and a generic point p on the variety V . Extend σ to K(V ) by having σ fix p. Then
K(V ) is periodic (as a difference field), and its fixed field contains a point on V , so V (K1)
must be non-empty by existential closedness. The statement that Gal(K/K1) ∼= Ẑ amounts
to the statement that for every n ∈ N, there is an element in K whose orbit under σ has size
exactly n. This follows by existential closedness and K(t1, . . . , tn) with σ extended to map
t1 7→ t2 7→ · · · 7→ tn 7→ t1.

Conversely, suppose K = Kalg, Gal(K/K1) ∼= Ẑ, and K is PAC. Let (L, σ) extend (K, σ).
If ~t is a basis of Kn over K, then the orbit σZ(~t) has size n, hence also has size n inside L.
This ensures that [L(~t) : L] ≥ n, hence L(~t) = Ln. It follows that Ln = L1 ⊗K1 Kn for every
n, and therefore L = L1 ⊗K1 K. As K = Kalg

1 , the extension L1/K1 is regular, so by PAC,
K1 is relatively existentially closed in L1. This implies that L1 embeds into an ultrapower
K∗1 of K1. If K∗ = (K∗1 , K∗2 , . . .) denotes the ultrapowers of the structure (K, σ) using the
same ultrafilter, then by the argument we gave for L, K∗ = K∗1 ⊗K1 K. So, the embedding
L1 ↪→ K∗1 induces an embedding

L = L1 ⊗K1 K ↪→ K∗1 ⊗K1 K = K∗

of difference fields. Because L embeds into an ultrapower of K, it follows that K is relatively
existentially closed in L.

The conditions in Fact 12.2.1 are first order (in spite of appearances to the contrary), so
the class of PDFs has a model companion.

If (K, σ) is a PDF, let Abs(K) denote the “absolute numbers,” the algebraic closure
within K of the prime field. Note that Abs(K) is a sub-PDF of K.

Fact 12.2.2. Two ECPDFs K1 and K2 are elementarily equivalent if and only if Abs(K1) ∼=
Abs(K2). More generally, if K1 and K2 are two ECPDFs, a partial map f from S ⊆ K1 to
K2 is a partial elementary map if and only if it can be extended to an isomorphism of PDFs
from Salg to f(S)alg.

Proof. The proof is the same as in ACFA ([7], Theorem 1.3), and boils down to the fact that
we can amalgamate PDFs over algebraically closed PDFs, by taking tensor products.

Recall the Frobenius PDFs Fq = (Falgq , (·)q).

Fact 12.2.3. A PDF (K, σ) is existentially closed if and only if it is a non-principal ultra-
product of Frobenius PDFs.

Proof. Suppose K is a non-principal ultraproduct of Frobenius PDFs. Frobenius PDFs
satisfy the axioms that K is algebraically closed and Gal(K/K1) ∼= Ẑ, so we only need to
check that K1 is PAC. This follows in the usual way from the Weil conjectures for curves;
see §6 of [4].
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Conversely, supposeK is an ECPDF. IfK has characteristic 0, we can use the Chebotarev
density theorem (as in [4]) to find a sequence of primes p1, p2, . . . such that,in the limit, the
non-standard Frobenius belongs to the same conjugacy class of Gal(Qalg/Q) as σ|Abs(K).
By the previous paragraph, the ultraproduct of the Fpi ’s will be an ECPDF, and it will be
elementarily equivalent to K by Fact 12.2.2. The positive characteristic case is similar, but
significantly easier.

Putting things together, we see that

Fact 12.2.4.

1. A field K is pseudofinite if and only if it has absolute Galois group Ẑ, it is perfect, and
it is PAC

2. If K is a pseudofinite field and σ is any topological generator of Gal(K), then (Kalg, σ)
is an ECPDF, and all ECPDFs arise this way.

3. The ECPDFs are exactly the non-principal ultraproducts of Frobenius PDFs, up to
elementary equivalence

4. Let K be a pseudofinite field. Then (Kalg, σ) is K-interpretable in K, where by (Kalg, σ)
we really mean (K1, K2, . . .) as above. In particular, every (Kalg, σ)-definable subset of
K is also K-definable in the pure field language on K.

Note that 4 holds because each Kn is just the unique degree n extension of K = K1,
which we can identify with Kn after choosing an irreducible polynomial for a generator.

We will use the following additional fact about pseudofinite fields and ECPDFs:

Fact 12.2.5. Pseudofinite fields and ECPDFs are supersimple of finite SU rank.

Finite rank supersimplicity of pseudofinite fields is proven in [7], and follows in ECPDF
by Fact 12.2.4.4.

12.3 Some technical lemmas
Because PDFs can be amalgamated over algebraically closed PDFs using tensor products,
the field theoretic and model theoretic notions of algebraic closure agree in ECPDFs, as well
as in pseudofinite fields. Now pseudofinite fields have SU-rank 1, so SU(a/S) = tr. deg(a/S)
when |a| = 1. By Lascar inequalities, we indeed see SU(a/S) = tr. deg(a/S) when a is a
tuple of any length.

Lemma 12.3.1. Let K be a pseudofinite field, and X ⊆ Kn be quantifier-free definable, of
SU-rank 1. Then there exists a collection {C1, . . . , Cm} of smooth projective geometrically
irreducible curves over K, and a definable bijection between a cofinite subset of X and a
cofinite subset of ∐m

i=1Ci(K).
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Proof. Let K∗ be a sufficiently saturated elementary extension of K. There is no tuple
a ∈ X(K∗) having transcendence degree 2 or higher, over K. By compactness, X must
be contained in a finite union of curves over K. Therefore X contains only finitely many
non-algebraic quantifier free types p1, . . . , pm. Note that each pi must be wholly contained
in X, as X is quantifier-free definable.

Choose elements a1, . . . , am ∈ X(K∗) representing these types. In an ambient model of
ACF, tpACF (ai/K) is stationary, as K is relatively algebraically closed in K∗. Therefore
there is an absolutely irreducible Zariski-closed curve Di ⊆ An, defined over K, such that pi
is the generic type of Di. As X is quantifier-free definable, Di \X must be finite. Moreover,⋃m
i=1Di contains all the quantifier-free types in X of positive rank, so X \ ⋃mi=1Di is also

finite.
Consequently, X and ⋃mi=1Di differ by a finite set. Let Ci be a smooth projective model

of Di for each i. We end up with the following chain of sets, each of which is in definable
bijection with the next set (up to finitely many exceptional points):

X(K) ≈
m⋃
i=1

Di(K) ≈
m∐
i=1

Di(K) ≈
m∐
i=1

Ci(K)

Consequently, we get a definable bijection between X(K) and ∐m
i=1Ci(K), except at finitely

many points.

Lemma 12.3.2. Let (K, σ) be an ECPDF and let Y be a quantifier-free definable set. Then
there is some definable set X ⊆ (K1)m in definable bijection with Y , such that X is quantifier-
free definable in K1 in the pure field language (with parameters from K1).

Proof. Choose d large enough that Y lives in some power of Kd, and Kd contains all the
parameters used to define Y . Then all the variables and terms in the definition of Y live
within Kd. Choosing a basis of Kd over K1, we can identify Kd with (K1)d. Under this
identification, the addition, multiplication, and σ maps on Kd are all given by polynomial
maps on K1, with coefficients from K1. Consequently, Y becomes identified with a definable
subset of a power of K1, whose definition is quantifier-free using only constants from K1 and
the langauge of rings.

Lemma 12.3.3. Let (K, σ) be an ECPDF and let X be a definable set. Then there exists a
quantifier-free definable set Y and a definable surjection Y → X with finite fibers.

Proof. Let P be the collection of all sets of the form π(Y (K)) where Y is a quantifier-free
definable set and π is a coordinate projection, such that the map Y (K) → π(Y (K)) has
finite fibers.

The collection P is closed under finite unions and finite intersections.
Claim 12.3.4. Let K∗ be a sufficiently saturated elementary extension of K. Let a and b be
two tuples from the same product of sorts. Suppose that a ∈ P =⇒ b ∈ P for every P ∈ P.
Then tp(a/K) = tp(b/K).
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Proof. We claim that we can find an embedding f of PDFs from K(a)alg to K∗ mapping
a to b and fixing K pointwise. This follows by compactness, unless the diagram of K(a)alg
is inconsistent with b. In this case there would be a finite tuple c from K(a)alg, and some
quantifier-free formula φ(z;x) over K such that φ(c; a) holds, but φ(c′; b) does not hold for
any c′, i.e.,

K∗ |= ∀z¬φ(z; b) (12.1)

We may as well add to φ the statement witnessing that c is algebraic over a. Let Y be the
set

{(z; y)|K∗ |= φ(z; y)}

and let π be the projection sending (z; y) to y. Then Y is quantifier-free definable over
K, and the fibers of Y → π(Y ) are finite, so π(Y ) ∈ P . The existence of c ensures that
a ∈ π(Y ). The assumption connecting a and b then implies that b ∈ π(Y ), contradicting
(12.1).

So we can find an embedding of K(a)alg into K∗ mapping a to b and fixing K pointwise.
The image must of course be K(b)alg. Now by Fact 12.2.2, tp(a/K) = tp(b/K).

Now if p is any type over K consistent with X, let Σp be the collection of all sets in P
consistent with p. By the Claim, Σp ` p ` X. By compactness, and the fact that P is closed
under finite intersections, some P ∈ Σp implies X.

Consequently, we can write X as a union of sets in P . By compactness of the type space,
X is a finite union of sets in P . As P is closed under finite unions, X is in P .

12.4 Uniqueness and definability
We will use the following form of Beth implicit definability:

Theorem 12.4.1. Let L+ ⊇ L− be languages. Let T− be an L− theory and T+ be an L+

theory extending T−. Let φ(x) be an L+ formula. Suppose that whenever N |= T−, and M+
1

and M+
2 are two expansions of N to a model of T+, that φ(M+

1 ) = φ(M+
2 ). Then there is

an L−-formula ψ(x) such that T+ ` φ↔ ψ.

This is Theorem 6.6.4 in [29]. We would like to apply this to the conditions in part 2 of
Theorem 12.1.3. The language L− will be the language of PDFs discussed in the previous
section. The language L− will be an expansion of L− by some new predicates Pφ,n,k(y) for
every formula φ(x; y), every n ∈ N, and every k ∈ Z/nZ. The theory T− will be ECPDF,
and T+ will be T− with the following additions:

1. The statement that for every φ, n, and b, there is a unique k such that Pφ,n,k(b) holds.
Let fφ,n(b) denote this unique k.

2. The statement that if φ(K; b) = φ′(K; b′), then fφ,n(b) = fφ′,n(b′), for each n. Let
χn(X) denote fφ,n(b) for any representation of X as φ(K; b).



CHAPTER 12. PSEUDOFINITE FIELDS 200

3. The statement that χn is a strong Euler characteristic for each n.

4. The statement that the diagrams

Def(M) χm //

χn

%%

Z/mZ

��
Z/nZ

commute when n divides m.

5. The statement that if q is a prime-power, if C is a smooth projective genus g curve
over K1, if J is a projective group variety over K1, and if J is birationally equivalent
(over K1) to Symg C, then χq(C) is given by the formula 1 − t1 + t2 where t1 is the
trace of σ on the q-torsion on J(K) and t2 is the trace of the σ on the q-torsion of
Gm(K).

Points 1-4 encode the statement that χ is a Ẑ-valued strong Euler characteristic. Note that
the conditions in 5 correctly ensure that J is the Jacobian of C, because by §V.1 of [65]
there is a birational equivalence between the Jacobian of C and Symg C, and by [52] I.3.7
any birational map between two projective group varieties extends to an isomorphism.2

Our first goal is to show that on any ECPDF (K, σ), there is at most one Ẑ-valued Euler
characteristic satisfying the axioms of T+.

Lemma 12.4.2. Fix n ∈ N. Let (K, σ) be an ECPDF, admitting two expansions to a
model of T+. Let χ and χ′ be the corresponding Ẑ-valued strong Euler characteristics. Then
χ(X) = χ′(X) for all definable X ⊆ (K1)n.

Proof. We proceed by induction on n. First suppose n = 1. Say that a set is good if
χ(X) = χ′(X). Finite sets are good. If X is in definable bijection with Y and X is good,
then so is Y . A disjoint union of two good sets is good. If S is a cofinite subset of X, then
S is good if and only if X is good. Consequently, if a cofinite subset of X is in definable
bijection with a cofinite subset of Y , then X is good if and only if Y is good.

If C is a projective smooth curve over K1, then C(K1) is good, because of the explicit
definition involving Jacobians (Axiom 5 of T+). Any disjoint union of sets of this form is
also good. By Lemmas 12.3.1 and 12.3.2, this establishes goodness for any quantifier-free
definable set of rank 1.

Now let X be a definable subset of (K1)1. By Lemma 12.3.3, there is a quantifier-free
definable set Y and a definable surjection Y � X given by a coordinate projection. Let

2We are sweeping a lot of computational algebraic geometry and “definability” results under the rug,
though Chapter 10 helps considerably. Smoothness of C can be checked by calculating the rank of the
matrix of partial derivatives of the functions defining the curve. We can witness that C has some genus g by
exhibiting a section of the cotangent bundle, and counting its poles and zeros to verify that the cotangent
bundle has degree 2g − 2–or by exhibiting a birational map to P1 for genus 0.
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Yn denote the n-fold fiber product Y ×X Y ×X · · · ×X Y . So an element of Yn is a tuple
(y1, . . . , yn, x) such that (yi, x) ∈ Y for each Y . Because Y is quantifier-free definable, so is
each Yn.

Each of the maps Yn → X has finite fibers. By Lascar inequalities, it follows that
SU(YN) ≤ SU(X) ≤ SU(K1) = 1. Therefore, each Yn is good.

Let m be a bound on the size of the fibers of Y → X. For 1 ≤ k ≤ m, let Xk denote the
set of a ∈ X such that f−1(a) has size m. Let αk and βk denote χ(Xk) and χ′(Xk).

Because χ and χ′ are strong Euler characteristics,

χ(Yn) =
m∑
k=1

αkk
n

χ′(Yn) =
m∑
k=1

βkk
n

for all n. As the Yn’s are good,
m∑
k=1

αkk
n =

m∑
k=1

βkk
n

for n = 1, . . . ,m. By invertibility of the Vandermonde matrix 〈kn〉1≤k≤m, 1≤n≤m, and the
fact that Ẑ has no Z-torsion, it follows that αk = βk for all k. Consequently,

χ(X) =
m∑
k=1

αk =
m∑
k=1

βk = χ′(X). (12.2)

Therefore X is good.
This completes the base case. Now suppose n > 1. Let φ(x; y; z) be a formula with (x; y)

an n-tuple in K1, and |y| = 1 (so |x| = n− 1). For any m and any k ∈ Z/mZ, let Pm,k(y; z)
denote the predicate in L+ indicating

Pm,k(b; c) ⇐⇒ χm(φ(K; b; c)) = k +mZ

The sets φ(K; b; c) are in (K1)n−1, so by induction Pm,k agrees in two models of T+ sharing
the same underlying model of T−. By Beth implicit definability (Theorem 12.4.1), it follows
that Pm,k is definable across all models of T+ by an L−-formula ψm,k(y; z).

Now let (K, σ) be a specific ECPDF, let χ and χ′ be two strong Euler characteristics
satisfying T+, and let X be a definable subset of (K1)n of the form φ(K;K; c). We will
show that χ(X) = χ′(X). If not, then χm(X) 6= χ′m(X) for some m. For k ∈ Z/mZ, let
Yk = ψm,k(K; c). Thus, for any b ∈ K1,

χm(φ(K; b; c)) ≡ k ⇐⇒ b ∈ Yk ⇐⇒ χ′m(φ(K; b; c)) ≡ k (12.3)

Let Xk be the (x; y) ∈ X such that y ∈ Yk. Equation (12.3) says that every fiber of Xk → Yk
has Euler characteristic k with respect to both χm and χ′m. By definition of strong Euler
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characteristic, it follows that

χm(X) =
∑

k∈Z/mZ
χm(Xk) =

∑
k∈Z/mZ

kχm(Yk)

χ′m(X) =
∑

k∈Z/mZ
χ′m(Xk) =

∑
k∈Z/mZ

kχ′m(Yk)

As each Yk is a definable subset of K1, it follows by induction that χm(Yk) = χ′m(Yk), so the
right hand sides are equal. Therefore, χm(X) = χ′m(X), completing the inductive step and
the proof.

Proposition 12.4.3. Let (K, σ) be an ECPDF. There is at most one expansion of (K, σ)
to a model of T+.

Proof. Let χ and χ′ be two strong Euler characteristics both satisfying the axioms of T+.
Let X be an arbitrary definable set; we will show χ(X) = χ′(X). Each sort Kn in (K, σ)
is in definable bijection with (K1)n, so we may find a definable bijection between X and a
definable subset Y ⊆ (K1)n for some n. Then

χ(X) = χ(Y ) = χ′(Y ) = χ′(X) (12.4)

where the middle equivalence is Lemma 12.4.2.

By 12.4.1,

Corollary 12.4.4. Let (K, σ) be an ECPDF. If χ is a strong Euler characteristic on (K, σ)
satisfying the axioms of T+, then χ is a 0-definable Euler characteristic.

12.5 Some algebraic geometry
In this section, we review some algebraic geometry we will need, culminating in Theo-
rems 12.5.8 and 12.5.10. These facts are well-known, but I had trouble finding direct refer-
ences, so I explain some of the proofs.

If f : A → A is an isogeny on an abelian variety A, then f has a well-defined degree
deg(f), which can be written as a product

deg(f) = degs(f) · degi(f)

where degs(f) and degi(f) denote the separable and inseparable degrees of f . Moreover,
degs(f) is the size of the set theoretic kernel of f . These facts are proven in ([55] §6
Application 3). Since isogenies are finite and flat, deg(f) is also the length of the scheme-
theoretic kernel of f . Thus degi(f) is the length of the connected component (ker f)0 of the
scheme-theoretic kernel of f .
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Lemma 12.5.1. Let G be a finite connected group scheme of length n over Fq. If n < q
then the qth-power Frobenius annihilates G.

Proof. We can write G as SpecA for some local Artinian n-dimensional Fq-algebra A. Let
m be the maximal ideal of A; then m is also the nilradical, so every x ∈ m is nilpotent. In
fact, xq = 0 for all x ∈ m. Otherwise, the descending chain of ideals

A ) (x) ) (x2) ) · · · ) (xq) ) (0)

would contradict length ≤ q.
So the qth power homomorphism on A annihilates m, and must therefore be

A� A/m
∼→ Fq ↪→ A

Thus the qth power Frobenius on G must be G→ SpecFq → G, the zero map.

Recall the Tate modules T`(A) and Tp(A) of an Abelian variety (defined in §18 of [55]).
If g denotes the dimension of A, then T`(A) is a free Z`-module of rank 2g, and Tp(A) is a
free Zp-module of rank r, for some r ≤ g known as the p-rank of A. If φ is an endomorphism
of an Abelian variety, then we can talk about the determinants and traces of the induced
maps T`(φ) and Tp(φ).

The following fact is noted in the proof of Theorem 19.4 in [55]:

Fact 12.5.2. For any ` (possibly ` = p),

v`(detT`(φ)) = v`(| kerφ|) = v`(degs(φ))

Moreover, Theorem 19.4 in [55] yields the following:

Fact 12.5.3. For any endomorphism φ, and ` 6= p,

deg(φ) = detT`(φ)

and therefore, if α1, . . . , α2g denote the eigenvalues of T`(φ), then

1. The αi’s are algebraic integers that do not depend on `

2. For any polynomial P (X), we have

deg(P (φ)) =
2g∏
i=1

P (αi)

The αi’s are called the characteristic roots of the endomorphism φ.
Now we need two technical lemmas
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Lemma 12.5.4. Suppose k is sufficiently large relative to i, p, andg. Let A be a g-dimensional
variety over Fq, for q = pk. Let r be the p-rank of A. Let φq denote the qth power Frobenius
endomorphism of A. Then deg(φq − pi) is divisible by pi(2g−r), where r is the p-rank of A.

Proof. By Fact 12.5.3, deg(pi) = p2gi because T`(A) has dimension 2g. Let K denote the
scheme-theoretic pi-torsion in A, i.e., the kernel of multiplication by pi. Then K is a finite
group scheme of length deg(pi) = p2gi. By definition of p-rank, K(Falgq ) ∼= (Z/piZ)r, so

|K(Falgq )| = pir

and therefore the connected component K0 has length p2gi/pir = pi(2g−r). As q is sufficiently
big relative to i and 2g, q > pi(2g−r), and therefore φq annihilates K0 by Lemma 12.5.1.

Let K ′ denote the kernel of φq−pi. Then K0 ⊆ K ′, so the length of K0 (which is pi(2g−r))
divides the length of K ′, which is deg(φq − pi).

Lemma 12.5.5. There is some function h(d, d′, p, s) such that if Q(X) is a monic polynomial
of degree d such that vp(Q(pi)) ≥ vp(pid

′) for all i ≤ h(d, d′, p, s), then at least d′ roots of
Q(X) (counting multiplicities) have p-adic valuation at least s.

Proof. Identify the space of Q(X)’s with the Stone space Zdp. The set of Q(X) such that
vp(Q(pi)) ≥ vp(pid

′) is closed (even clopen). The set of Q(X) such that at least d′ roots of
Q(X) have p-adic valuation at least s is also clopen, using Newton polygons. By compactness,
it suffices to show that if vp(Q(pi)) ≥ vp(pid

′) for all i, then at least d′ roots of Q(X) are 0,
hence have p-adic valuation at least s. Indeed, if we let the roots be ρ1, . . . , ρd, then

lim
ε→0

vp(Q(ε))
vp(ε)

counts exactly how many of the ρi are 0. The assumption that vp(Q(pi)) ≥ d′ · vp(pi) implies
this limit is at least d′.

Corollary 12.5.6. Let A be a g-dimensional abelian variety over Fq, for q = pk. Let φq
denote the qth power Frobenius on A.

If q is sufficiently large relative to p, g, j, then, counting multiplicities, 2g − r of the
characteristic roots of φq have p-adic valuation greater than j.

We also make the following observation:

Lemma 12.5.7. Let A be an abelian variety over Fq for q = pk. Let β1, . . . , βr be the
eigenvalues of Tp(φq), for φq the qth power Frobenius on A. Then {βi} is a submultiset of
the characteristic roots {αi} of φq.

Proof. By Lemma 12.5.2,

vp

(
r∏
i=1

P (βi)
)

= vp(detTp(P (φq))) = vp(degs(P (φq))) ≤ vp(deg(P (φq))) = vp

 2g∏
i=1

P (αi)

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for any polynomial P (X) ∈ Z[X]. By continuity, the outer inequality

vp

(
r∏
i=1

P (βi)
)
≤ vp

(
r∏
i=1

P (βi)
)

(12.5)

holds for all P (X) ∈ Zp[X]. For each βi, if we let Qi(X) denote the minimal polynomial
over Zp, then applying (12.5) with P (X) = Qi(X + ε) and sending ε → 0 implies that the
multiplicity of βi in the α’s is greater than or equal to the multiplicity of βiin the β’s.

Here is a summary statement about abelian varieties:

Theorem 12.5.8. Let A be a g-dimensional abelian variety over Fq for q = pk, and let φq
denote the qth power Frobenius map. Then

|A(Fqn)| =
2g∏
i=1

(1− αni )

where α1, . . . , α2g are algebraic integers satisfying the following properties:

1. For ` 6= p, the αi are the eigenvalues of T`(φq)

2. If r is the p-rank of A, then r of the αi are the eigenvalues of Tp(φq) (hence have p-adic
valuation 0, as Tp(φq) is an automorphism). If q is sufficiently large relative to g, p, ε,
then the other 2g − r of the αi have p-adic valuation less than ε.

3. Choosing some embedding into the complex numbers, each αi has magnitude |αi| =
√
q.

Proof. This is Theorem III.4 in [55], except for 2, which is Corollary 3 and Lemma 12.5.7.

Next, we would like to tie things to curves. Recall the Riemann hypothesis for curves:

Fact 12.5.9. Let C be a genus g curve over a finite field Fq. Then there exist α1, . . . , α2g ∈ C,
each of magnitude √q, such that for every n,

|C(Fqn)| = 1−
 2g∑
i=1

αn

+ qn

Moreover, if J is the Jacobian of C, then J(Fq) has size

|J(Fq)| =
2g∏
i=1

(1− αi) (12.6)

Proof. This is well-known; see §3.5 of [22] and Exercise C.5.7 in [25]. For the “moreover”
clause, recall the following formula from §3.5 of [22]:

Z(t) = Φ(t) + h

qg
q − 1 · t

2g−1

1− qt −
h

q − 1 ·
t2g−1

1− t
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where Φ(t) is some polynomial, h is the class number of C, (i.e., |J(Fq)|), and where

Z(t) =
∏2g
i=1(1− αit)

(1− t)(1− qt)

. Clearing denominators, we see that

2g∏
i=1

(1− αit) = Φ(t)(1− qt)(1− t) + hqg

q − 1t
2g−1(1− t)− h

q − 1 · t
2g−1(1− qt)

Substituting in t = 1 gives (12.6).

Using this, we verify the following well-known result:

Theorem 12.5.10. Let C be a curve over a finite field Fq, and let J be its Jacobian. Then

|C(Fq)| = 1−
 2g∑
i=1

αi

+ q

where the αi are the characteristic roots of the qth power Frobenius on J (the numbers from
Theorem 12.5.8).

Proof. For each m, we can consider C as a curve over Fqm . By Fact 12.5.9, there are
α1,m, . . . , α2g,m such that

|C(Fqnm)| = 1−
 2g∑
i=1

αni,m

+ qnm (12.7)

for all n, and

|J(Fqm)| =
2g∏
i=1

(1− αi,m) (12.8)

From (12.7) one can easily verify that, after applying permutations for each m, αi,m = αmi
for each m, for some fixed αi’s. Plugging this into (12.8) then yields

|J(Fqn)| =
2g∏
i=1

(1− αni )

for all i.
Now let β1, . . . , β2g be the characteristic roots of the qth power Frobenius on J . By

Theorem 12.5.8,
2g∏
i=1

(1− αni ) = |J(Fqn)| =
2g∏
i=1

(1− βni )
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This implies that the two multisets

{
∏
i∈S

αi : |S| odd}

{
∏
i∈S

βi : |S| odd}

are equal. Filtering out the elements with complex absolute value √q, we see that the α’s
and β’s must be the same things.

12.6 Verifying the implicit definition
Next, we show that on any non-principal ultraproductK of Frobenius PDFs, the nonstandard
counting Euler characteristic χ : Def(K)→ Ẑ does in fact satisfy the axioms of T+.

Proposition 12.6.1. Let (K, σ) be a non-principal ultraproduct of Frobenius PDFs. Then
the nonstandard counting function χ : Def(K)→ Ẑ satisfies the axioms of T+.

Proof. We need to show that each instance of the axioms holds in all but finitely many
Frobenius PDFs. Axioms 1 through 4 hold in any finite structure, hence in any Frobenius
PDF. This leaves Axiom 5, which says that C(Fq) is congruent mod `k to 1− t1 + t2, where
t1 is the trace of the action of φq on the `k-torsion in the Jacobian J , and t2 is the trace of
the action of φq on the `k torsion in Gm. Note that t1 and t2 are just the mod `k reductions
of the traces of the actions on the full `-adic Tate modules of J and Gm. When ` is not the
characteristic, we know that C(Fq) is exactly 1− t1 + t2 with no caveats:

• The trace of the action on T`J is the sum of the αi’s from Theorem 12.5.8.

• The qth power Frobenius acts as multiplication by q on Gm, hence on T`Gm, so the
sole eigenvalue is q. Thus t2 is q mod `k.

• By Theorem 12.5.10,

|C(Fq)| = 1− α1 − · · · − α2g + q = 1− t1 + t2

So any counterexamples will have to happen in the bad characteristic ` = p. In this case,
Theorem 12.5.8 tells us that we can order the αi’s in such a way that α1, . . . , αr are the
eigenvalues of Tp(φq), and αr+1, . . . , α2g are p-adically small (if q is sufficiently large). So,
for fixed pk and sufficiently large q,

|C(Fq)| = 1− α1 − · · · − α2g + q ≡ 1− α1 − · · · − αr = 1− t1 = 1− t1 + t2

mod pk. Note that t2 = 0 because Tp(Gm) vanishes in characteristic p.
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12.7 Completing the proofs
We now complete the proofs of Theorems 12.1.1 and 12.1.3.

Proof (of Theorems 12.1.1 and 12.1.3). By Proposition 12.6.1, any ultraproduct of Frobe-
nius PDFs admits a strong Euler characteristic χ satisfying T+. By Corollary 12.4.4, this
strong Euler characteristic is 0-definable. An arbitary ECPDF (K, σ) admits an elementary
embedding into such an ultraproduct (K ′, σ). It is a general fact that if N � M , any 0-
definable Euler characteristic on M induces a 0-definable Euler characteristic on N , having
the same first order properties. Applying this to (K, σ) � (K ′, σ), we see that (K, σ) has a
0-definable Euler characteristic that is also strong, and in fact satisfies the conditions of T+.

Consequently, every ECPDF can be expanded to a model of T+. By Beth implicit defin-
ability, T+ is a definitional expansion of ECPDF. This establishes part 1 of Theorem 12.1.3,
and the existence part of 12.1.3.2. The uniqueness part of 12.1.3.2 was established in Propo-
sition 12.4.3. Part 3 of Theorem 12.1.3 follows by Proposition 12.6.1. To prove part 4
of 12.1.3, take the uniform definitions of χ for ECPDFs from part 1 and apply them to
Frobenius PDFs. By part 3, each definition must agree with the standard counting Euler
characteristic, except on finitely many Frobenius PDFs. The definitions can be modified to
correctly handle the finite set of exceptions.

Finally, we turn to Theorem 12.1.1. For part 1, given an ultraproduct K = ∏
i Fqi/U , let

(L, σ) = ∏
i Fqi/U be the corresponding ultraproduct of Frobenius PDFs. Then K ∼= L1. The

non-standard counting function on L is definable, so its restriction to K is also definable.
Because L is interpretable within K (by Fact 12.2.4.4), the non-standard counting function
on K itself is definable.

Finally, for part 2 of Theorem 12.1.1, given a pseudofinite fieldK, choose some topological
generator σ of Gal(K). Then (Kalg, σ) is bi-interpretable (after naming parameters) with
K, and the larger structure (Kalg, σ) admits a strong definable Euler characteristic, which
induces a strong definable Euler characteristic on K. This Euler characteristic is acleq(0)-
definable, because it has a bounded number of conjugates under Aut(K), owing to the
bounded set of choices for σ.

12.8 Conclusion
We have relied heavily on algebraic geometry and number theory to prove a relatively simple
model-theoretic fact. One could dream of turning around the process and applying the model-
theoretic result to yield new insights in number theory. There are sources of pseudofinite
fields other than ultraproducts of finite fields. For example, (Q, σ) is an ECPDF, for random
σ ∈ Gal(Q) (with probability 1) by results in [22]. Perhaps one could prove non-trivial facts
by reasoning about non-standard sizes of definable sets in these structures.

Unfortunately, from a number-theoretic point of view we have probably done nothing
interesting. The nonstandard sizes we have defined are probably a simple artifact of etale
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cohomology, which is already well understood. The strong Euler characteristic condition—
the ability to fiber a space E over a base B and calculate the “size” of E by “integrating”
the “sizes” of the fibers over B—is probably a disguised way of saying that the cohomology
of E can be calculated in terms of the cohomology of B with coefficients in the cohomology
of the fibers (the Leray spectral sequence).

One tool which might be new on the model-theoretic side is elimination of imaginaries,
which holds in ECPDFs by work of Hrushovski [33]. One could imagine proving non-trivial
facts about etale cohomology by defining interesting equivalence relations on pseudo-finite
fields, and doing combinatorics on the quotients. (For example, this approach shows that
if A is a definable abelian group in a pseudofinite field, and A has n-torsion, then χ(A) is
divisible by n.)

One interesting thing to note is that the strong Euler characteristic condition is related
to p-adic integration, in a manner we now explain. Suppose we have a definable strong
Zp-valued Euler characteristic χ in some structure. Then χ induces a p-adic measure on
the type space of any definable set Y . Moreover, if f : X � Y is a surjection, then the
map y 7→ χ(f−1(y)) is continuous on this type space, and its p-adic integral with respect
to the measure is exactly χ(X). In this way, model theory could conceivably offer a new
pseudofinite perspective on p-adic integration and p-adic L-functions. I lack the expertise to
pursue this connection further, however.
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