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Abstract: Alcohol consumption is associated with an increased risk of several cancers, including
oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and
aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive.
Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol
are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer
stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression
of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a
significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required
to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling
between cancer stemness and metabolic reprogramming. We further demonstrated that chronic
ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional
studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype
and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes
cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel
insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism
of alcohol-mediated carcinogenesis.

Keywords: alcohol; OSCC; cancer stem cells; glycolysis; NFAT

1. Introduction

OSCC, a common malignant tumor of the head and neck, is the sixth most common
cancer worldwide with more than 50,000 new cases and 10,000 deaths in the United
States alone [1,2]. Recently, incidence of OSCC among young adults has been alarmingly
elevated [3,4], indicating that OSCC is an emerging public health concern.

Heavy alcohol consumption is one of the high-risk factors for cancer, and 2 to 4 percent
of all cancer cases relate to alcohol consumption [5,6]. Alcohol use is associated with an
increased risk of cancer, as well as with the aggressiveness of existing cancers, especially
those in the head and neck, liver, and breast. Though alcohol itself may not be carcinogenic,
many of its cellular effects produce likely conditions in which cells can become proliferative
and invasive. Since alcohol is so widely consumed regardless of culture or social class, a
detailed exploration of its molecular mechanism is necessary to counter its widespread
public health effects. There are several proposed molecular mechanisms for alcohol-related
carcinogenesis [7]. Acetaldehyde (AA), the major mutagenic metabolite of alcohol pro-
duced in the liver, can readily react with DNA and cause chromosomal damage to promote
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lesion-like growths [8,9]. Another proposed mechanism of alcohol-related carcinogene-
sis is through the induction of the cytochrome P450 2E1 involved in the metabolism of
alcohol into AA [10] and in the breakdown of mutagens such as nitrosamines, aflatoxin,
and hydrazine into their more carcinogenic counterparts [11]. However, the molecular
mechanisms governing alcohol-promoted carcinogenesis remain elusive, especially the
local carcinogenic effects of alcohol on tissues in closest contact on ingestion of alcohol,
such as the epithelial cell lining in the oral mucosa.

Recent studies have reported the promoting effects of alcohol on tumor progression
in chemically induced murine OSCC models [12,13]. Interestingly, the chemical induction
of OSCC resulted in the clonal expansion of surviving stem cell populations in the basal
layer of the epithelia [13], which suggests the important role of stem cell expansion in
the development of OSCC. Indeed, many studies have shown the presence of CSCs (also
known as tumor-initiating cells) in various human cancers, including OSCC [14]. CSCs are a
subpopulation of cells within the tumor that retain certain stemness properties such as a self-
renewal capacity, high mobility, and drug resistance [14]. Therefore, CSCs are responsible
for tumorigenicity, metastasis, therapy resistance, and recurrence of cancers, indicating
their pivotal role in tumor progression [15–18]. Accumulating evidence suggests that the
expansion of CSCs and their stemness property is an important underlying mechanism
for tumor progression. However, the mechanisms leading to CSC promotion are not fully
understood, which has hindered the development of effective targeted therapies and the
chemoprevention of cancers including OSCC.

Aerobic glycolysis (also known as the Warburg effect) has been widely recognized as
a central hallmark of cancer [19]. Increased aerobic glycolysis is required for the generation
of enough ATP and intermediates for macromolecular biosynthesis to meet the needs of
enhanced cancer cell proliferation. Recent emerging evidence indicates that metabolic
reprogramming has an important role in the maintenance of CSC populations and their
stemness feature [20]. For instance, CSCs exhibit enhanced aerobic glycolytic activity
compared to non-CSCs [21–25]. Enhanced aerobic glycolysis promoted cancer stemness
properties in human cancer [26–28]. Conversely, inhibition of aerobic glycolysis suppressed
CSC population and property in breast cancer cells [29]. However, other studies also
demonstrated that slow-cycling CSCs have less aerobic glycolytic activity and higher mito-
chondrial oxidative phosphorylation (OXPHOS) than their differentiated progeny [30,31],
indicating differential metabolic reprogramming in CSCs of different tumor types.

In addition to the link between alcohol consumption and cancer risk, emerging evi-
dence also suggests that continued alcohol use after a cancer diagnosis may be associated
with worse oncologic outcomes [32–36].

In this study, we explored the effects of chronic alcohol exposure on cancer stemness
and aerobic glycolysis in OSCC. We also investigated the mechanism by which EtOH
regulates cancer stemness and aerobic glycolysis in OSCC.

2. Results
2.1. Chronic EtOH Exposure Increases OSCC Growth In Vitro and In Vivo

To investigate the effect of alcohol on OSCC, we first examined the short-term effect
of EtOH exposure (25–300 mM for 3 and 7 days) on the cell growth of human OSCC cell
lines (SCC9 and UM6). Our results showed that there were no significant growth inhibitory
effects at 25–150 mM concentrations (Figure S1). Since chronic alcohol consumption confers
a significant risk of cancer development and progression, we sought to investigate the
effect of chronic EtOH exposure on OSCC. We exposed SCC9 and UM6 to a non-cytotoxic
dose of EtOH (100 mM) for extended periods and periodically examined the effect of EtOH
on cell proliferation. Fifteen weeks (3 months) after the exposure, SCC9 and UM6 cells
showed enhanced cell proliferation; thus, they were denoted SCC9/EtOH and UM6/EtOH,
respectively (Figure 1A). Importantly, it should be noted that after 15 weeks of exposure,
we withdrew EtOH from the culture medium and performed all the experiments in the
absence of EtOH. By doing so, we wanted to exclude the immediate effect of EtOH on the
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biological behaviors of tested OSCC cells. We further examined the effect of chronic EtOH
exposure on malignant growth properties, such as anchorage-independence growth. A soft
agar assay revealed that the anchorage-independent growth ability of SCC9/EtOH and
UM6/EtOH was much greater than their corresponding untreated controls, SCC9 and UM6,
respectively (Figure 1B). Since the ability of anchorage-independence growth has been
linked to tumor cell aggressiveness in vivo, including tumorigenicity [34], we performed a
xenograft tumor assay to measure tumorigenicity. As shown in Figure 1C, SCC9 and UM6
cell lines failed to form tumors in nude mice, indicating that they are not full tumorigenic or
weakly tumorigenic [37,38]. They also displayed different tumor-forming/growth kinetics
in the animal. SCC9/EtOH and UM6/EtOH developed tumors faster than their controls,
SCC9 and UM6, respectively, and the sizes of tumors were greater than those developed
from their controls. In addition, in vivo tumor growth of SCC9/EtOH and UM6/EtOH
sustained longer periods than those of the controls. Nevertheless, tumors formed by the
EtOH-exposed cells completely regressed 2 months after the inoculation (data not shown).
Taken together, our data suggest that chronic exposure to EtOH increases OSCC growth
in vivo, an indication of increased tumorigenic potential. However, the chronic EtOH
exposure failed to convert the tested weakly tumorigenic OSCC cells to fully tumorigenic
in the xenograft assay.
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Figure 1. Chronic EtOH exposure increases tumor growth of OSCC both in vitro and in vivo. (A) Ef-
fect of chronic EtOH exposure on proliferation capacity of OSCC was determined by cell counting.
Passage-matched controls, SCC9 and UM6, were used to compare with SCC9/EtOH and UM6/EtOH,
respectively. The assay was performed in the absence of EtOH. * p < 0.001 compared to untreated
controls by Student’s t-test. (B) Effect of chronic EtOH exposure on anchorage independent growth
ability of OSCC was determined by soft agar assay. The assay was performed in the absence of
EtOH. Data are means ± SD of triplicate experiments. * p < 0.001 compared to untreated controls
by Student’s t-test. (C) Effect of chronic EtOH exposure on in vivo tumorigenicity of OSCC was
determined by xenograft tumor assay. * p < 0.001.

2.2. Chronic EtOH Exposure Increases the Number of ALDH1HIGH Stem-like Cell Populations and
Characteristics Associated with Stemness in OSCC

Since emerging evidence indicates that expansion of CSCs and their stemness property
are critically implicated in OSCC progression [14], we further explored the effect of EtOH on
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the CSC phenotype in OSCC. The activity of aldehyde dehydrogenase 1 (ALDH1) has been
widely used as a marker for isolating CSCs. Moreover, ALDH1HIGH cancer cells displayed
higher CSC properties compared to ALDH1low cells, indicating that the ALDH1HIGH cells
are CSC-enriched populations [39–41]. We sorted ALDH1HIGH and ALDH1low cells from
the EtOH-exposed OSCC and their control cells by performing flow cytometry analysis.
The assay revealed a significant increase in the ALDH1HIGH cell population in SCC9/EtOH
and UM6/EtOH compared to their controls (Figure 2A,B). Moreover, gene expression of
ALDH1 and other CSC markers, including CD44 [42] and CD133 [43], were significantly
upregulated in the EtOH-exposed OSCC cells (Figure 2C), indicating that chronic EtOH
exposure to OSCC increases CSC populations. Many studies have demonstrated that self-
renewal capacity and increased migration ability are important characteristics of CSCs [14].
Compared to the untreated controls, SCC9/EtOH and UM6/EtOH showed a robust in-
crease in self-renewal (Figure 2D) and migration capacity (Figure 2E). CSC factors related
with self-renewal and migration capacity were also increased in the EtOH-exposed cell
compared to their controls (Figure 2F). However, such changes were not detected by acute
EtOH exposure (data not shown). Taken together, our data indicate that chronic exposure
to alcohol expands CSC populations and promotes their stemness property in OSCC.
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Figure 2. Chronic EtOH exposure enhances CSC population and property of OSCC. (A) Effect of
chronic EtOH exposure on ALDH1HIGH CSC population in OSCC was determined by Aldefluor flow
cytometry-based assay. Data are means ± SD of three independent assays. * p < 0.001, ** p < 0.05.
(B) Representative images of Aldefluor flow cytometry-based assay. The number shown in each panel
reflects the percentage of ALDH1HIGH cells in each cell type. (C) Effect of chronic EtOH exposure
on CSC markers (ALDH1A, CD44, and CD133) in OSCC was determined by qPCR. * p < 0.001.
(D) Effect of chronic EtOH exposure on self-renewal capacity in OSCC was measured by tumor
sphere formation assay. Representative images of tumor spheres formed by the OSCC cells were
shown on the right of bar graph. Data are means ± SD of triplicate experiment. * p < 0.001. (E) Effect
of chronic EtOH exposure on migration ability in OSCC was determined by transwell migration assay.
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Migration ability was described as number of migrated cells per field with data as mean ± SD for
three randomly selected fields. Representative images of transwell migration assay are shown on the
right of bar graph. * p < 0.001 (F) Effect of chronic EtOH exposure on stemness-related genes in OSCC
was determined by qPCR. * p < 0.001, ** p < 0.05.

2.3. Chronic EtOH Exposure Promotes Aerobic Glycolysis in OSCC

Aerobic glycolysis (also known as the Warburg effect) is a unique metabolic phenotype
of cancer cells that requires enough ATP and intermediates for macromolecular biosyn-
thesis to meet the needs of enhanced cell proliferation [19]. Moreover, recent emerging
evidence indicates that increased aerobic glycolytic activity is required to maintain CSCs
in human cancer [20]. Thus, to assess the effect of chronic EtOH exposure on aerobic
glycolysis in OSCC, we compared key aerobic glycolytic activities (i.e., glucose uptake
and lactate secretion) of the control and EtOH-exposed OSCC cells. Both glucose uptake
(Figure 3A) and lactate secretion (Figure 3B) were significantly increased in SCC9/EtOH
and UM6/EtOH compared to their untreated controls. We also tested the acute effect of
EtOH on glycolysis and found that acute EtOH exposure had no significant effects on
glucose uptake and lactate secretion in OSCC (Figure S2). To further confirm the increased
glycolysis in the EtOH-exposed cells, we measured gene expression of glycolytic enzymes
and found that multiple key glycolytic enzymes (i.e., GP1, TPI1, ENO1, and PKM2) were
robustly increased in SCC9/EtOH and UM6/EtOH (Figure 3C) compared to their controls.
Collectively, our findings indicate that chronic EtOH exposure to OSCC promotes aerobic
glycolysis, suggesting a functional link between EtOH-promoted cancer stemness and
aerobic glycolysis.
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Figure 3. Chronic EtOH exposure increases the glycolytic activity of OSCC. (A) Effect of chronic EtOH
exposure on glucose uptake by OSCC was determined using a Glucose-Glo™ assay kit (Promega).
Relative glucose uptake by the EtOH-exposed cells (SCC9/EtOH and UM6/EtOH) were plotted as
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fold induction against those in their corresponding untreated controls (SCC9 and UM6). Data are
means ± SD of triplicate experiments. (B) Effect of chronic EtOH exposure on lactate secretion by
OSCC was determined using Lactate-Glo™ assay (Promega). * p < 0.001, ** p < 0.05. (C) Effect of
chronic EtOH exposure on glycolytic gene expression in OSCC was determined by qPCR. Levels of
the glycolytic genes were normalized with the level of GAPDH. Their levels in the EtOH-exposed cells
(SCC9/EtOH and UM6/EtOH) were plotted as fold induction against those in their corresponding
untreated controls (SCC9 and UM6). * p < 0.001, ** p < 0.05.

2.4. Increased Aerobic Glycolysis Is Required to Maintain the Stemness Characteristics of
EtOH-Exposed OSCC Cells

Next, to investigate whether chronic EtOH exposure promotes the CSC phenotype of
OSCC by increasing aerobic glycolysis, we utilized 2-deoxy-glucose (2-DG), a glycolysis
inhibitor, to suppress the glycolytic activity of OSCC cells. We found that there was
minimal cytotoxic effect of 2-DG at 1–5 mM concentrations for 2 and 4 days (Figure S3).
Using these concentrations, we demonstrated that 2-DG suppressed the aerobic glycolytic
activity of the EtOH-exposed OSCC cells (Figure S4). Furthermore, 2-DG inhibited self-
renewal (Figure 4A) and the migration ability (Figure 4B) of the EtOH-exposed cells in
a dose-dependent manner. Interestingly, the magnitude of cancer stemness suppression
in the EtOH-exposed cells was significantly greater than that in their untreated controls.
These indicate that the CSC phenotype of the EtOH-exposed cells is more dependent on
glycolysis than those of the control cells, suggesting that increased glycolysis is required to
support the CSC phenotype in the EtOH-exposed OSCC cells. Taken together, our findings
conclude that chronic EtOH exposure promotes the cancer stemness of OSCC by increasing
aerobic glycolysis.
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Figure 4. EtOH-exposed OSCC cells depend on glycolysis for their stemness property. (A) Effect of
glycolysis inhibitor 2-DG on self-renewal capacity of EtOH-exposed OSCC and their untreated con-
trols were determined by tumor sphere formation assay. The assay was performed in the tumor sphere
medium containing indicated 2-DG concentrations (0–5 mM), and the numbers of tumor spheres
were counted. * p < 0.001, ** p < 0.05. (B) Effect of 2-DG on migration capacity of EtOH-exposed
OSCC and their untreated controls were determined by transwell migration assay.

2.5. Chronic EtOH Exposure Activates NFAT Signaling

Emerging evidence indicates a dual role of NFAT signaling in cancer stemness and
glycolysis [44,45], further suggesting that NFAT signaling could be a potential molecu-
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lar player responsible for the EtOH-induced events. Thus, to gain an insight into the
mechanism by which EtOH promotes cancer stemness and aerobic glycolysis in OSCC,
we explored the role of NFAT signaling in the EtOH-induced phenotypic changes. First,
we investigated the effect of chronic EtOH exposure on NFAT activity using a luciferase
reporter vector under the control of a chimeric promoter containing three adjacent canon-
ical NFAT binding sites [46]. Thus, luciferase activity is indicative of NFAT activity. The
assay revealed that the luciferase activity is significantly increased in SCC9/EtOH and
UM6/EtOH compared to their controls (Figure 5A). Given that chronic EtOH exposure
activates NFAT activity, we also measured the expression of NFAT downstream target genes
in the EtOH-exposed OSCC cells. Well-known downstream targets of NFAT, such as IL2,
IL4, IL6, and TNFα, were significantly upregulated in the EtOH-exposed cells (Figure 5B),
indicating the activation of NFAT signaling by chronic EtOH exposure.
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Figure 5. Chronic EtOH exposure activates NFAT signaling in OSCC. (A) Effect of chronic EtOH
exposure on NFAT activity was determined by luciferase promoter assay. Cells were transfected
with pGL3-NFAT-luc vector whose luciferase activity is under the control of a chimeric promoter
containing three adjacent canonical NFAT binding sites. Cells were also transfected with pRL-SV40
for normalization of transfection efficiency. * p < 0.001. (B) Effect of chronic EtOH exposure on
the expression of NFAT downstream targets (IL2, IL4, IL6, and TNFα) in OSCC was determined
by qPCR. * p < 0.001, ** p < 0.05. (C) Effect of chronic EtOH exposure on the expression of NFAT
isoforms (NFATc1, NFATc2, and NFATc3) in OSCC was determined by qPCR. * p < 0.001, ** p < 0.05.
(D) Effect of chronic EtOH exposure on the intracellular localization of NFATc2 was determined by
confocal laser scanning microscopy. SCC9 has NFATc2 immunofluorescence staining (red) mainly in
the cytoplasm while SCC9/EtOH has stronger staining both in the cytoplasm and the nucleus, which
indicates increased NFATc2 expression, as well as dominant nuclear translocation. Bar, 20 µm.

Since there are multiple NFAT members (NFATc1-c4) identified [47], we further investi-
gated which of the NFAT members are involved in the EtOH-induced NFAT activation. We
found a significant upregulation of NFATc2 in both SCC9/EtOH and UM6/EtOH compared
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to their corresponding controls (Figure 5C). Moreover, NFATc2 was primarily found in the
cytoplasm of untreated controls but accumulated both the cytoplasm and the nucleus of
EtOH-exposed OSCC cells (Figure 5D), indicative of NFATc2 activation by chronic EtOH
exposure. NFATc1 and NFATc3 were also increased in SCC9/EtOH but not in UM6/EtOH
compared to their untreated controls (Figure 5C). NFATc4 was not detected in the OSCC
cells. Collectively, our results indicate the activation of NFATc2 by chronic EtOH exposure
in OSCC.

2.6. Silencing NFATc2 Inhibits Cancer Stemness and Aerobic Glycolysis in EtOH-Treated OSCC

Next, to investigate whether EtOH-induced NFATc2 activation contributes to the
increase in CSC phenotype and aerobic glycolysis in OSCC, we suppressed NFATc2 using
siRNA in the EtOH-exposed OSCC cells (Figures 6A and S5). Suppression of NFATc2
also resulted in decreased NFAT downstream targets (Figure 6B), indicating functional
suppression of NFATc2 by siRNA. Inhibition of NFATc2 led to a significant decrease in self-
renewal (Figure 6C) and migration ability (Figure 6D) both in SCC9/EtOH and UM6/EtOH,
indicating that increased NFATc2 is required to maintain the EtOH-increased stemness
phenotype in OSCC. We also examined the effect of NFATc2 inhibition on glycolysis and
found that NFATc2 inhibition resulted in a significant suppression in glucose uptake
(Figure 7A) and lactate secretion (Figure 7B) in SCC9/EtOH and UM6/EtOH, indicating
that increased NFATc2 is required to maintain EtOH-induced glycolytic activity in OSCC.
Taken together, our results indicate that activation of NFATc2 is required to maintain
increased cancer stemness and aerobic glycolysis in the EtOH-exposed OSCC cells. Further
studies using the NFAT antagonist, cyclosporine A (CsA) revealed that chemical inhibition
of NFAT also inhibited both CSC properties and glycolysis in the EtOH-exposed OSCC
cells (Figure S6). Our findings also indicate a novel dual role of NFAT in the regulation of
glucose metabolism and cancer stemness in OSCC.
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using siRNA against NFATc2 (NFATc2i). The cells transfected with control siRNA (CTLi) were
included for comparison. NFATc2 knockdown was confirmed by qPCR. * p < 0.001 compared to
CTLi-transfected controls by paired t test. (B) Effect of NFATc2 knockdown on the expression of
NFAT downstream targets (IL2, IL4, IL6, and TNFα) was determined by qPCR. * p < 0.001, ** p < 0.05.
(C) Effect of NFATc2 knockdown on self-renewal capacity of the EtOH-exposed OSCC cells was
determined by tumor sphere formation assay. * p < 0.001, ** p < 0.05. (D) Effect of NFATc2 knockdown
on migration capacity of the EtOH-exposed OSCC cells was determined by transwell migration assay,
respectively. * p < 0.001.
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3. Discussion

In this study, we demonstrated that chronic EtOH exposure enhanced tumor growth
and the malignant property of OSCC, indicating that chronic EtOH exposure could play
a role in promoting the progression of OSCC. Interestingly, we also found that chronic
EtOH exposure increased aerobic glycolysis and the stemness phenotype of OSCC, and the
increase in glycolysis was required to maintain the EtOH-induced stemness phenotype of
OSCC cells. Subsequently, we found that NFAT signaling was activated by chronic EtOH
exposure. Chemical inhibition of NFAT signaling suppressed EtOH-induced glycolysis and
cancer stemness. Last, we demonstrated that silencing NFATc2 successfully repressed these
two EtOH-induced events in OSCC, suggesting a dual role of NFATc2 in the regulation of
glycolysis and cancer stemness. Hence, our results offer a novel insight into the potential
mechanism of alcohol-mediated cancer progression.

EtOH concentration of 20 mM represents a blood alcohol concentration of 0.08%.
Although the use of 100 mM EtOH could be deemed high, a high concentration of EtOH
was used to investigate the direct effects of EtOH, which could represent a local level
of alcohol in the oral cavity as opposed to a diluted level of alcohol in the bloodstream.
Obviously, alcohol consumption is not as long as a duration of 3 months. However, to
ensure the effects of chronic alcohol were not fleeting, we selected cells that were tolerant
to the EtOH concentration (100 mM) and the duration of the EtOH exposure. The dose of
100 mM EtOH did not induce a significant reduction in OSCC growth for both short-term
and long-term exposure.

The Warburg effect, also known as aerobic glycolysis, is a classical hallmark of cancer
metabolism and enables cancer cells to satisfy the energy demanded for rapid cell growth
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and division [19]. Indeed, many studies demonstrated increased aerobic glycolysis in
multiple cancer types, including OSCC [48]. Interestingly, the involvement of alcohol in
the process of glycolysis has been shown. For instance, alcohol administration increased
the activity of glycolytic enzymes and the contents of glucose and lactate in the rat brain
in vivo [49]. A similar observation was also found in mouse auditory cells in vitro, clearly
indicating the promoting effects of alcohol on glycolysis [50]. However, the effect of
alcohol on glycolysis in human cells, especially OSCC cells, has yet to be documented. Our
study revealed that chronic EtOH exposure in OSCC cells promoted aerobic glycolysis
as demonstrated by increased glucose uptake, lactate production, and glycolysis-related
gene expression. As demonstrated by 2-DG, the glycolysis inhibitor, the EtOH-exposed
OSCC cells were more dependent on glycolysis than their control cells for their growth,
suggesting that the increased glycolysis is required for the enhanced proliferation capacity
caused by chronic ethanol exposure. These findings agree with the Warburg effect.

Animal studies have demonstrated the promoting effect of alcohol on tumor progres-
sion in 4-nitroquinoline-1-oxide (4NQO)-induced murine tongue cancer models [12,13].
Interestingly, the chemical induction of OSCC resulted in the expansion of surviving
stem/progenitor cell population, which suggests the importance of stem cell expansion
for oral cancer development [13]. Moreover, compared to 4NQO administration alone,
alcohol administration combined with 4NQO increased the active form of β-catenin [13],
which is a key regulator for the cancer stemness pathway [51]. These data suggest that
alcohol may promote OSCC progression by increasing CSCs. Indeed, our study demon-
strated that chronic EtOH exposure to OSCC increased ALDH1HIGH CSC population. The
increased CSC population was accompanied with promoted CSC properties, including, i.e.,
self-renewal, migration, anchorage-independent growth, and tumorigenicity. Our findings
are consistent with previous studies demonstrating the promoting effects of EtOH on CSC
population and phenotype in multiple cancer types, such as breast [52,53] and liver [54,55].

Studies have indicated essential roles of metabolic reprogramming for the genesis and
maintenance of CSC population and phenotype. CSCs exhibit a higher aerobic glycolytic
activity compared to their corresponding non-CSCs [21–25,56]. Inhibition of glycolysis
decreased CSC population and property [29,57]. CSCs also expressed elevated levels of
glycolytic enzymes such as Glut-1, HK, G6PD, PDK1, PKM2, and LDH [21,23,56]. Moreover,
ectopic expression of glycolytic enzymes enhanced CSC phenotype [58,59]. These data
indicate that increased aerobic glycolysis is required to support the CSC phenotype. In
our study, we showed that EtOH increased not only aerobic glycolysis, but also the CSC
phenotype in OSCC. In agreement with previous reports, 2-DG inhibited glycolysis and key
CSC properties such as self-renewal and the migration capacity of the EtOH-exposed OSCC
cells. Moreover, the CSC phenotype of the EtOH-exposed OSCC cells is more dependent
on glycolysis than those of the control cells, indicating that the EtOH-induced glycolysis is
required to maintain the CSC phenotype in the EtOH-exposed cells. Thus, we hypothesize
that chronic EtOH exposure promotes cancer stemness of OSCC by increasing aerobic
glycolysis. However, molecular mechanisms underlying the EtOH-induced events are not
well-understood. To further broaden our understanding of the role of alcohol on oral cancer
progression, the effect of chronic EtOH exposure to immortalized and non-tumorigenic
human oral keratinocytes, i.e., OKF6/tert and HOK-16B, should warrant investigation [60].

NFAT signaling plays an oncogenic role in multiple cancer types by promoting can-
cer stemness. For instance, NFATc2 promoted cancer stemness of colorectal cancer via
AJUBA-mediated YAP activation [61]. NFATc2 enhanced the CSC phenotype through the
NFATc2/Sox2ALDH axis in lung adenocarcinoma [62]. We reported that NFATc3 plays an
oncogenic role in OSCC by promoting cancer stemness via expression of Oct4. Interestingly,
recent studies have also demonstrated the significant role of NFAT in metabolic repro-
gramming in various human cancers. NFATc1 is overexpressed in prostate cancer cells,
and its inhibition suppresses aerobic glycolysis, concurrent with a decrease of pyruvate
kinase 2 (PKM2) [45]. NFAT5 is upregulated in pancreatic cancer cells and promotes aerobic
glycolysis by inducing phosphoglycerate kinase 1 (PGK-1) [44]. Moreover, HIF1α, the
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key transcription factor involved in glycolysis, contains a consensus NFAT binding site
in its promotor region, and its transcription is activated by NFAT [63]. Collectively, these
clearly indicate the potential dual roles of NFAT signaling in glycolysis and cancer stemness.
However, the role of NFAT in glycolytic activity in OSCC remains largely unknown.

Our study demonstrated that NFAT signaling is activated by chronic EtOH exposure
in OSCC. The activation was supported by observation showing augmented NFAT activity
with the induction of a subset of NFAT downstream targets. Moreover, among NFAT mem-
bers, NFATc2 was consistently upregulated by chronic EtOH exposure in multiple OSCC
cell lines. Silencing NFATc2 in the EtOH-exposed OSCC cells significantly diminished
not only the stemness phenotype but also glycolytic activity, indicating the dual role of
NFAT activation in the two EtOH-induced events in OSCC. Chemical inhibition of NFAT
also suppresses both EtOH-increased glycolysis and cancer stemness in OSCC. Thus, we
conclude that activation of NFAT signaling by chronic EtOH exposure results in an increase
in the aerobic glycolysis and stemness phenotype of OSCC. Therefore, NFAT could be an
effective therapeutic target for alcohol-related cancer. However, the underlying molecular
mechanism of how NFAT signaling regulates these two processes warrants investigation.

In our study, we found that silencing NFATc2 in the EtOH-exposed OSCC cells resulted
in a decrease in multiple genes involved in glycolysis and cancer stemness, including
HIF1α, TP1, ENO1, PKM2, ALDH1A, Bmi1, and Oct4 (data not shown). Furthermore, the
expression of these genes was increased by chronic EtOH exposure in OSCC, suggesting
that they could be potential candidates to investigate downstream targets of NFATc2-
regulated glycolysis and cancer stemness. Indeed, studies revealed that HIF1α and Oct4
are the transcription targets of NFAT [62–64]. We also found the presence of multiple
NFATc2 consensus binding sites (5′-GGAAA-3′) in the promoter region of PKM2 (data not
shown). Therefore, further investigation is necessary to identify the downstream targets of
the EtOH-NFATc2 axis that are responsible for EtOH-induced events, such as glycolysis and
cancer stemness, in OSCC. Overall, our study demonstrates that chronic alcohol exposure
promotes tumor progression by enhancing glycolysis and cancer stemness via activation of
NFAT signaling in OSCC.

4. Materials and Methods
4.1. Cell Culture and Reagent

Two human OSCC cell lines, SCC9 and UM6, were cultured in DMEM/F12 (LifeTech-
nologies, Carlsbad, CA, USA) supplemented with 10% serum (Gemini Bioproducts, West
Sacramento, CA, USA), 0.4 µg/mL hydrocortisone (Sigma-Aldrich, St. Louis, MO, USA),
and 5 µg/mL Gentamycin aminoglycoside antibiotic (Invitrogen, Waltham, MA, USA). All
cell lines were grown in a humidified incubator with 5% CO2 at 37 ◦C. Cells were cultured
in the culture medium containing the indicated ethanol concentration, and the medium
was changed every 3–4 days. Absolute ethanol was purchased from Fisher Bioreagents.
2-Deoxy-D-glucose (2-DG) was purchased from Sigma-Aldrich. All cell lines were routinely
tested and authenticated using cell morphology, proliferation rate, a panel of genetic mark-
ers, and contamination checks. All cell lines were also tested for mycoplasma, using the
MycoAlert detection kit (Cambrex, East Rutherford, NJ, USA) and shown to be negative.

4.2. Cell Proliferation Assay

Cell growth was determined by using the tetrazolium salt (MTT) cell proliferation as-
say kit (ATCC, Manassas, VA, USA) and cell counting. The cells were plated at 2 × 103 cells
per well into a 96-well plate. They were then incubated in a culture medium containing
various ethanol concentrations (0–300 mM) for 2 and 7 days. Absorbance at 570 nm was de-
termined using a microplate reader. For cell counting, the cells were plated at 2 × 104 cells
per well into a 6-well plate. They were then incubated for indicated days and counted.
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4.3. Anchorage-Independent Growth

To determine colony-forming efficiency in a semi-solid medium, 1 × 104 cells were
plated in culture medium containing 0.3% agarose over a base layer of serum-free medium
containing 0.5% agarose. Three weeks after incubation, colonies were counted. The
experiment was performed in the absence of ethanol and in triplicates with 60 mm dishes.

4.4. In Vivo Xenograft Tumor Assay

Five million cells were subcutaneously injected into the flank of immunocompromised
mice (strain nu/nu, Charles River Laboratories, Wilmington, MA, USA). Five immunocom-
promised mice (female, 6 to 8 weeks old) per group were used and there were four groups:
mice injected with SCC9, SCC9/EtOH, UM6, and UM6/EtOH. The animal study was
performed according to the protocol approved by the UCLA Animal Research Committee.
The kinetics of the tumor growth were determined by measuring the volume in three
perpendicular axes of the nodules using micro-scaled calipers.

4.5. Glucose Uptake and Lactate Secretion

Glucose uptake was measured with a Glucose-Glo™ assay kit (Promega, Madison, WI,
USA). Lactate secretion was measured with Lactate-Glo™ assay (Promega). Measurements
were normalized to cell number.

4.6. Quantitative Real-Time PCR (qPCR)

cDNA was synthesized from 5 µg of total RNA using the SuperScript first-strand
synthesis system (Invitrogen). Then, qPCR was performed using a PowerUp SYBR Green
Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) and QuantStudio 3 qPCR System
(Thermo Fisher Scientific) as described in our prior work [64]. The primer sequences were
obtained from the Universal Probe Library (Roche, Basel, Switzerland) and the sequences
can be made available upon request. A second derivative Cq value determination method
was used to compare fold-differences according to the manufacturer’s instructions.

4.7. ALDH1 Assay

Using an Aldehyde Dehydrogenase-Based Cell Detection Kit (STEMCELL, Vancouver,
Canada), the ALDH enzymatic activity was determined. A total of 1 × 106 cells were
re-suspended in the Aldeflour assay buffer in a volume of 1 mL. Fluorescent nontoxic Alde-
flour Reagent BODIPY™ (1.25 µL) was added as a substrate to measure ALDH enzymatic
activity in intact cells. Immediately after adding the substrate reagent, 0.5 mL of the cell
suspension was transferred into the control tube that contains the specific inhibitor for
ALDH, diethylaminobenzaldehyde (DEAB) for calculating background fluorescence. Then,
cells were incubated at 35 °C for 30 min and fluorescence data acquisition was made by
using a BD FACScan flow cytometer (BD Biosciences, East Rutherford, NJ, USA).

4.8. Tumor Sphere Formation Assay

Three thousand cells were grown in 3 mL of serum-free DMEM/F12 media supple-
mented with 1:50 B27 (Invitrogen), 20 ng/mL EGF, 20 ng/mL, 10µg/mL insulin, penicillin,
streptomycin, and amphotericin B in ultra-low attachment 6-well plates (Corning, Corning,
NY, USA). SCC9 and its derivatives were incubated for 6 days, and UM6 and its derivatives
were cultured for 10 days. The number of tumor spheres formed was observed and counted
under a microscope. The experiment was performed in the absence of ethanol.

4.9. Migration Assay

Cell migration was measured using 6.5 mm transwell chambers with 8.0 µm polycar-
bonate membranes (Corning: Product#3422) as described in our previous publication [65].
The experiment was performed in the absence of ethanol.
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4.10. Luciferase Reporter Assay

Transfection and a luciferase assay were carried out as described in prior work [66].
Briefly, cells were transfected with the pGL3-NFAT-luc vector for 24 h. Cells were then har-
vested, and luciferase activity was measured using a dual luciferase reporter assay system
(Promega). For the normalization of transfection efficiency, the cells were also co-transfected
with pRL-SV40 (Promega) containing the renilla luciferase gene under SV40 promoter.

4.11. Confocal Laser Scanning Microscopy

Five thousand cells were seeded on the four chamber slides (Thermo Fisher Scientific)
one day prior to the immunofluorescence staining. After cell permeabilization and blocking,
cells were probed with NFATc2 primary antibody overnight, then with Alexa Fluor 594 dye-
conjugated secondary antibody and DAPI (blue-green) for confocal laser scanning. Confocal
laser scanning microscopy was performed using a Fluoview FV10i Confocal Microscope
(Olympus, Tokyo, Japan) and images were captured with 60X oil objective under different
gain settings. The 559 nm laser diode was used to capture NFATc2 staining, and the 405 nm
laser diode was used to capture the DAPI nuclear stain. Image acquisition and further
adjustment of brightness was performed using an Olympus FluoView FV10ASW Version
4.2a software. Fluorescent images of cells were taken as single channel images and then
converted to overlay images and all images were saved in TIFF format.

4.12. Small Interfering RNA (siRNA) Transfection

NFATc2 siRNA (sc-36055; Santa Cruz Biotechnology, Dallas, TX, USA) and control
siRNA (sc-37007; Santa Cruz Biotechnology) were purchased and introduced into cells using
Lipofectamine RNAiMAX (Invitrogen). Cells (2 × 105) were plated in 60 mm dishes and
transfected with 10 µg siRNA. The cultures were harvested after one day post-transfection
for expression and functional analyses.

4.13. Statistical Analysis

The statistical analyses were calculated using GraphPad Prism 5. The data were
expressed as mean ± standard deviation (SD). Data between two groups were compared
using parametric Student’s t-test or paired t-test. A value of p < 0.05 was considered as
statistically significant.

5. Conclusions

We demonstrate that chronic alcohol exposure enhances OSCC progression by increas-
ing cancer stemness and aerobic glycolysis via activation of NFAT signaling. Thus, our
study provides a novel insight into the roles of cancer stemness and metabolic plasticity in
the molecular mechanism of alcohol-mediated carcinogenesis.
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