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Abstract

Identifying function-enhancing enzyme variants is a ‘holy grail’ challenge in protein science because it will allow researchers to expand the
biocatalytic toolbox for late-stage functionalization of drug-like molecules, environmental degradation of plastics and other pollutants, and medical
treatment of food allergies. Data-driven strategies, including statistical modeling, machine learning, and deep learning, have largely advanced the
understanding of the sequence–structure–function relationships for enzymes. They have also enhanced the capability of predicting and designing
new enzymes and enzyme variants for catalyzing the transformation of new-to-nature reactions. Here, we reviewed the recent progresses of
data-driven models that were applied in identifying efficiency-enhancing mutants for catalytic reactions. We also discussed existing challenges
and obstacles faced by the community. Although the review is by no means comprehensive, we hope that the discussion can inform the
readers about the state-of-the-art in data-driven enzyme engineering, inspiring more joint experimental-computational efforts to develop and
apply data-driven modeling to innovate biocatalysts for synthetic and pharmaceutical applications.

Keywords: automation, beneficial mutation, machine learning, new-to-nature reactions

Introduction

Enzyme engineering is the process of optimizing enzyme
sequences for enhanced physical (e.g. thermal stability, cold
adaption, solubility, and complex stoichiometry), chemical
(e.g. activity, substrate specificity, promiscuity, and selectivity),
and biological (e.g. expressibility) functions. Typical strategies
used in enzyme engineering include directed evolution,
truncation, ancestral sequence reconstruction, site-directed
mutagenesis, and terminal fusion (Bruggink et al., 2003; Yi
et al., 2021; Ali et al., 2020). Enzyme engineering has enabled
the development of new enzymes and enzyme variants for
synthetic, medicinal, and energy uses (Bruggink et al., 2003;
Yi et al., 2021; Ali et al., 2020; Knott et al., 2020; Rorrer
et al., 2019). Biocatalysts have been developed to accelerate
stereoselective and regioselective chemical transformations.
Well-known examples include cytochrome P450 for chemical
oxidations (Li et al., 2020), CALB for hydrolytic kinetic
resolution (Xia et al., 2017), and halide methyltransferase for
the synthesis of non-native S-adenosyl methionine analogs
(Tang et al., 2021). Enzymes have also been engineered
for therapeutics—for example, microbial transglutaminases
have been used as ‘protein glue’ in tissue engineering, α-
gliadin peptidases in gluten degradation (Gordon et al., 2012;
Wolf et al., 2015), lysosomal enzymes in the treatment of
Hunter syndrome (Hendrikse et al., 2021) and metachromatic
leukodystrophy (Simonis et al., 2019), and Cas9 enzymes for
handling the off-target effects in gene editing (Schindele and
Puchta, 2020; Yin et al., 2018). Additionally, enzymes have
been used to catalyze difficult reactions for biofuel production

and polymer upcycling. These enzymes include xylanase (Min
et al., 2021) and endo-beta-1,4-glucanase (Cecchini et al.,
2018) for biomass conversion, lipases for depolymerization of
polyesters with nano-dispersion (DelRe et al., 2021), and PET
depolymerase for plastic recycling and upcycling (Tournier
et al., 2020).

Despite the success of enzyme engineering, a priori
computational identification of function-enhancing enzymes
and enzyme variants remains a ‘holy grail’ challenge due to
the unknown sequence–structure–function relationship for
enzymes. The natural occurrence of beneficial mutations
has been reported to be below 1%, which presents an
urgent need for the development of computational tools to
optimize enzyme sequence in silico (Romero and Arnold,
2009; Melnikov et al., 2014; Fowler and Fields, 2014; Araya
and Fowler, 2011; Kries et al., 2013; Hilvert, 2013; Bunzel
et al., 2018; Zeymer and Hilvert, 2018). Different types of
statistical, machine learning (ML), and deep learning (DL)
models have been developed to guide directed evolution
(Wittmann et al., 2021a; Singh et al., 2021; Siedhoff et al.,
2020). Unlike molecular simulations that help understand
the electronic and dynamic nature of biocatalytic reactions,
data-driven modeling indicates predictive descriptors and
design principles that assist the discovery of enzymes with
enhanced functions or even new functions. Specifically,
supervised learning models enable in silico screening of
enzyme sequences for desired functions. Unsupervised learn-
ing models help avoid non-functional variants a priori. Semi-
supervised learning models leverage unsupervised pretraining
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2 Data-driven enzyme engineering to identify function-enhancing enzymes

Fig. 1. Features, models, and observables used in data-driven enzyme
engineering. MutInd: mutation indicator; VHSE: principal components
score vectors of hydrophobic, steric, and electronic properties; ProtVec:
protein-vectors; LASSO: least absolute shrinkage and selection operator;
SVM: support vector machines; XGBoost: extreme gradient boosting;
CNN: convolutional neural network; GAN: generative antagonistic
networks; RNN: recurrent neural network

(i.e. extracted from large number of protein sequences)
to build supervised learning models with low number of
sequence-function data. Generative models produce artificial
protein sequences that bear similar functions to those used
for model training.

Among numerous applications, data-driven methods have
been used to predict enzyme EC number, catalytic site, optimal
operating conditions, solubility, substrate promiscuity or
specificity, reaction selectivity, turnover number, and reaction
pathway (Feehan et al., 2021; Mazurenko et al., 2020). They
have also been used to design new orthologous enzymes
and gain-of-function enzymes from originally non-functional
structural scaffolds. Considering the extensive integration of
data-driven modeling with enzyme engineering, this review
does not intend to provide a comprehensive discussion
on all active fronts of data-driven approaches for enzyme
engineering. Rather, we emphasize the models published in
the past five years that facilitate the discovery of enzymes
with enhanced catalytic functions. In the following sections,
we first introduce the common numerical features and models
used in data-driven enzyme engineering. We then talk about
the applications of data-driven modeling in accelerating
free energy simulations for enzymes, predicting enzyme
catalytic properties, and designing new enzyme sequences.
Finally, we discuss the challenges faced by the community
to further develop multi-objective, generalizable, and trust-
worthy data-driven models. We hope the discussion can
inspire more researchers to develop and apply data-driven
modeling to innovate biocatalysts for synthetic and medicinal
uses.

Features and models used in data-driven
enzyme engineering

Building a predictive model starts from choosing numerical
features to characterize enzymes and choosing models to map
the relationship between enzyme features and observational
data (Fig. 1). In this section, we will briefly introduce some
common features and models used in data-driven enzyme
engineering.

Numerical features can be derived from enzyme’s amino
acid sequence or three-dimensional structure. For sequence-
based features, one-hot encoding is arguably the simplest form

of descriptor that encodes amino acid-level information—it
uses a binary vector (0 or 1) to indicate a certain residue
as one of the twenty natural amino acids. Similarly, to rep-
resent mutation, the binary vector can be used to indicate
the presence of specific mutations in a sequence (i.e. MutInd;
Xu et al., 2020). Despite the simplicity, one-hot encoding
does not carry much information of amino acids that could
be physically or chemically relevant to enzyme functions. As
such, physicochemical feature vectors are used. In the amino
acid index (AA-index) databases, hundreds of amino acid
descriptors can be found that involve amino acids’ geometric,
hydrophobic, steric, and electronic properties. To represent
a residue, a physicochemical feature vector can take the
sum of a subset of carefully selected AA-indices (sScales; Xu
et al., 2020). The feature vector can also consist of multi-
ple AA-indices chosen based on domain-knowledge (zScales;
Sandberg et al. 1998) or multiple extracted features derived
from the dimension reduction of large number of AA-indices
using principal component analysis (e.g. VHSE, Mei et al.,
2005; PCscores, Xu et al., 2020). Besides the physicochemical
feature vectors, language embedding models are increasingly
used for representing enzyme sequences (e.g. ProtVec, Asgari
and Mofrad, 2015; UniRep, Alley et al., 2019). In contrast,
physicochemical feature vectors can encode local amino acid
information in a physically intuitive fashion, whereas the
embedding obtained from millions of sequences is more likely
to embed global and evolutionary information.

For structure-based features, geometric descriptors (e.g.
distance, angle, and dihedral) are widely used to describe the
spatial relationship among functionally important residues
(e.g. active site residues) (Lodola et al., 2010). These fea-
tures can be incorporated in the model as distance map or
AA-index amino acid pairwise contact potential (e.g. sPairs
(Xu et al., 2020)). Notably, it has been shown that protein
structures can be predicted using sequence information alone
(Jumper et al., 2021; Morcos et al., 2011). This implies that
replacing sequence-based features by structure-based features
might not necessarily result in improved prediction perfor-
mance. However, structure-based features have the advantage
of easy incorporation of protein dynamics and substrate-
enzyme interaction information—these can be crucial for
engineering enzymes to catalyze new-to-nature reactions.

Data-driven models can be roughly classified as statistical
model, machine learning, and deep learning models. Statistical
models are designed for inferring the association or causal
relationships between enzyme features and observables. Some
common forms of statistical modeling are linear regression,
which uses a linear combination of features to fit the data
according to mathematical constraints; logistic regression,
which describes the probability of one event by having the
logarithm of the odds for the event be a linear combina-
tion of features; LASSO, which performs feature selection
and regularization to enhance the prediction accuracy and
interpretability of the statistical model (e.g. linear regression);
and Gaussian process regression, which uses an ensemble
of feature-dependent curves to fit the observational data
where the parameters associated with features are random-
ized with normal distribution (i.e. Bayesian approach). These
models facilitate researchers to investigate the quantitative
relationship between enzyme sequence or structure and their
functions, elucidating the physical or chemical principles that
can be used to identify function-enhancing enzyme variants
(detailed in Section 3).
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Different from statistical modeling that is used to infer
the feature-observable relationship, ML and DL models are
designed to make accurate prediction about enzyme observ-
ables using sequence or structure features as input. ML models
are usually built by leveraging physically, chemically, or statis-
tically meaningful descriptors as features; while in contrast,
DL models are built by employing multiple artificial neu-
ral network layers to progressively derive high-dimensional
tensors as features. Some broadly used machine learning
models include random forests, which employs an ensemble
of decision trees to conduct classification based on majority-
voting or regression based on the average prediction of indi-
vidual trees; support vector machine, which finds a maximum-
margin hyperplane in the feature space that separates the data
points into different categories and predicts which category
the new data points should fall into; and XGBoost, which
leverages an ensemble of weak learning models to conduct
prediction and is known to outperform random forests when
the weak learning model adopts the form of a decision tree. DL
model is technically part of a broader family of ML models—
they are featured by using artificial neural networks to encode
enzyme features and then conduct classification or regression
task. In enzyme engineering, models based on convolutional
neural network (i.e. CNN), recurrent neural network (i.e.
RNN), and graph neural network (i.e. GNN) have been
developed. CNN is designed to learn spatial hierarchies of
enzyme sequence or structure features using multiple building
blocks including convolution layers, pooling layers, and fully
connected layers. Most CNN models are not invariant to
translation. An SE(3)-invariant transformer has been recently
developed to encode enzyme structure information with pre-
served molecular symmetry and chirality (Adams et al., 2021).
RNN models use a series of feedforward networks to learn
sequence or time-series information. The model has been
widely applied in natural language processing and speech
recognition. The architecture of RNN naturally fits to the
task of learning enzyme’s sequence-function relationship and
predict function-enhancing mutation for enzyme engineer-
ing. GNN is designed to perform enzyme prediction tasks
because enzyme structures can be represented as graph (e.g.
representing each residue as a node). GNN adopts pairwise
message-passing architecture, where graph nodes iteratively
update their representations by exchanging information with
neighboring nodes. The permutation-equivariant layers used
in message passing also help preserve the geometric symmetry
of enzymes.

Due to the page limit, the discussion in this section does not
involve the mathematical foundations and technical imple-
mentation of different models. Interested readers should refer
to recent books and literatures for more technical details
(Bishop, 2006; Goodfellow et al., 2016; Jurtz et al., 2017). For
the prediction performance and time consumption of different
feature-model combination, we would recommend a recent
benchmark study by Xu et al. (2020) that comprehensively
investigated 44 combinations of enzyme features and models
in different enzyme engineering tasks.

Applications of machine-learning and
deep-learning models in enzyme catalysis

In this section, we will talk about examples that employed
these data-driven models to gain physical insight into
enzyme catalysis or to develop predictive models that

identify function-enhancing biocatalysts. Specifically, we will
discuss models for efficient enzyme design and engineering
applications (Table I). We will discuss research works to (i)
accelerate QM/MM-based free energy simulations (section
3.1; Pan et al., 2021; von der Esch et al., 2019; Bonk et al.,
2019), (ii) predict enzyme activity and substrate specificity
(section 3.2; Masso and Vaisman, 2011; Masso and Vaisman,
2014; Saito et al., 2021; Shroff et al., 2020; Xu et al., 2022;
Voutilainen et al., 2020; Mou et al., 2021; Robinson et al.,
2020), (iii) predict enzyme enantioselectivity (section 3.3;
Xu et al., 2020; Cadet et al., 2018), (iv) predict enzyme
kinetic and thermodynamic parameters (section 3.4; Goldman
et al., 2022; Kroll et al., 2021; Heckmann et al., 2018; Carlin
et al., 2016; Mellor et al., 2016; Li et al., 2022), (v) predict
functional fitness in enzyme evolution (section 3.5; Wittmann
et al., 2021b; Figliuzzi et al., 2016; Teze et al., 2021; Hon
et al., 2020; Luo et al., 2021; Favor and Jayapurna, 2020;
Biswas et al., 2021; Hsu et al., 2022), and (vi) design new
functional enzyme sequences (section 3.6; Russ et al., 2020;
Repecka et al., 2021; Madani et al., 2021).

Acceleration of free energy simulation for enzyme
catalysis

Free energy simulations, augmented with multiscale quantum
mechanics/molecular mechanics (QM/MM) methods, have
been widely applied to evaluate the activation barriers and
reaction energies of enzymatic reactions. From classical
molecular dynamics (MD)-sampled conformers, QM/MM
calculations can be conducted to evaluate the activation-
free energies. However, it has been an unsolved puzzle in the
community regarding what geometric features of an enzyme
conformer determine the activation barrier height of the
catalyzed chemical reaction. To answer this question, Lodola
et al. (2010) conducted statistical analyses (i.e. multivariate
linear regression and principal component analysis) to
elucidate the correlation between conformational fluctuation
and QM/MM-determined activation barrier height using the
fatty acid amide hydrolase as the model system. Among
36 conformers, the authors identified that the nucleophile
attacking distance, substrate binding, and stabilization of the
general base Lys142 are most associated with the energetic
fluctuation of the activation barrier. As far as we know,
this study represents the first systematic application of data-
driven modeling to understand the determining geometric
factors behind the fluctuation of QM/MM-calculated enzyme
potential energy barrier heights among enzyme conformers.

Bonk et al. (2019) reported the use of machine learning
algorithms to elucidate the geometric features that enable
an enzyme conformer capable of activating the substrate
to undergo a reactive event in ketol-acid reductoisomerase.
From reactive trajectories calculated using QM/MM tran-
sition interface sampling, the authors collected 68 different
geometric features in the active site that represent elements of
the local conformation (e.g. distances, planar angles, and dihe-
dral angles). Employing the LASSO method, they identified
important descriptors of the starting conformation that leads
to reactive trajectories, which are substrate conformation,
substrate bond polarization, and metal coordination geom-
etry. Based on the selected features, they trained a logistic
regression model to infer the probability of a specific tra-
jectory in the reactive portion of the conformational space.
The model exhibits an accuracy of 81.6% and an area under
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Table I. Summary of statistical, machine learning, and deep learning models for biocatalyst engineering reported in the past 5 yearsa

Section Input Predictive Model Output Performance Paper

3.1 Structural feature from
trajectories of
QM/MM transition
interface sampling

Logistic regression Reactive trajectory
classifier

• AUC = 0.89
• Accuracy = 82%

2019-Bonk (Bonk et al., 2019)

3.1 QM coordinate Elastic net regression Activation free energy • RMSD = 4.46 kcal/mol

• R2 = 0.28

2019-Esch (von der Esch et al.
(2019))

3.1 • QM coordinate
• MM coordinate
• MM charge

ANN Energy RMSD = 0.69 kcal/mol 2021-Pan (Pan et al., 2021)

3.2 Substrate structure Support vector
machine

Activity score Accuracy∼80% 2017-Pertusi (Pertusi et al.,
2017)

3.2 Sequence Supervised machine
learning decision tree

Substrate specificity Accuracy = 0.94 2017-Chevrette (Chevrette
et al., 2017)

3.2 • Sequence
• Enzyme structure

• Phylogenetic
analysis

• Rosetta design
calculation

Multipoint mutation • 100% active designs
• 10- to 4,000-fold

higher efficiencies

2018-Khersonsky (Khersonsky
et al., 2018)

3.2 • Physicochemical
property

• Structural
parameter

Decision tree Activity classifier Accuracy∼90% 2018-Yang (Yang et al., 2018)

3.2 Graph kernel derived
from protein
coordinates

Gaussian process Activity Pearson r = 0.81 2020-Voutilainen (Voutilainen
et al., 2020)

3.2 AA descriptor CNN AA type probability ∼70% in predicting the
natural AA type

2020-Shroff (Shroff et al.,
2020)

3.2 Physicochemical
feature of
enzyme-substrate pairs

• Classification:
Random forest

• Regression:
Random forest

• Activity classifier
• Activity regressor

• AUC = 0.89
• R2 = 0.75

2020-Robinson (Robinson
et al., 2020)

3.2 • Rosetta docking
score

• Electronic
structure
descriptor

• Active-site
descriptor

• Logistic regression
• Random forest
• Gradient-boosted

decision trees
• Support vector

machines

• Activity classifier • Accuracy = ∼ 82%
• ROC = 0.9

2021-Mou (Mou et al., 2021)

3.2 • Sequence
• Substrate

connectivity

• Classification:
CNN

• Regression: CNN

• Activity classifier
• Activity regressor

• AUROC = 0.94
• Spearman ρ = 0.89

2022-Xu (Xu et al., 2022)

3.3 Sequence Partial least squares
regression

Activation free energy R2 = 0.96 2018-Cadet (Cadet et al., 2018)

3.3 Sequence Gradient boosting Enantioselectivity Pearson r = 0.65 2019-Wu (Wu et al., 2019)

3.3 • Sequence
• AA descriptor

CNN Activity AUROC = 0.88 2020-Xu (Xu et al., 2020)

3.4 • Sequence
• Reaction

signature-based
features

• Classification:
Gaussian process

• Regression:
Gaussian process

• Reaction
probability
classifier

• KM regressor

• AUC = 0.91
• Q2 = 0.78b

2016-Mellor (Mellor et al.,
2016)

3.4 • Structural features
of enzyme mutants

Elastic net
regularization

kcat/KM • Pearson r = 0.76
• Spearman ρ = 0.55

2016-Carlin (Carlin et al.,
2016)

3.4 • Genome-scale
metabolic
parameter

• Enzyme structure
• Biochemistry

property
• Kinetic assay

condition

• Elastic net
• Random forest
• DNN

kapp,max R2 = 0.76 2018-Heckmann (Heckmann
et al., 2018)

(continue)
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Table I. Continued.

Section Input Predictive Model Output Performance Paper

3.4 • Sequence
• Substrate structure
• Substrate

physicochemical
parameter

Gradient boost model
regression

KM • MSE = 0.80
(log10-scale)

• R2 = 0.42

2021-Kroll (Kroll et al., 2021)

3.4 • Sequence
• Substrate SMILES

CNN kcat Pearson r = 0.94
(log10-scale)

2022-Li (Li et al., 2022)

3.4 • Sequence
• Substrate SMILES

Feed forward network KD classifier AUROC = 0.89 2022-Goldman (Goldman
et al., 2022)

3.5 Sequence Ridge regression Fitness MSE = 0.74 2020-Favor (Favor and
Jayapurna, 2020)

3.5 Sequence • CNN
• Tweedie regression

Fitness Spearman ρ = 0.61 2021-Wittmann (Wittmann
et al., 2021b)

3.5 Sequence Iterative MSA and
conservation analysis

Conserved AA N/A 2021-Teze (Teze et al., 2021)

3.5 Sequence RNN • Fitness classifier
• Fitness regressor

• AUROC = 0.88
• Spearman ρ = 0.91

2021-Luo (Luo et al., 2021)

3.5 Sequence Regularized linear
regression

Fitness • Spearman ρ = 0.93 2021-Biswas (Biswas et al.,
2021)

3.5 Sequence Ridge regression Fitness Spearman ρ ∼ 0.66 2022-Hsu (Hsu et al., 2022)

3.6 Sequence Generative adversarial
network

Artificial enzyme
sequence

24% with catalytic activity 2021-Repecka (Repecka et al.,
2021)

3.6 Sequence Protein language model Artificial enzyme
sequence

AUC = 0.85 2021-Madani (Madani et al.,
2021)

3.6 Sequence Direct coupling
statistical analysis of
sequence MSA

Artificial enzyme
sequence

Hit rate = 30% 2020-Russ (Russ et al., 2020)

3.6 Sequence Variational
autoencoder model of
Blast sequence

Artificial enzyme
sequence

Pearson R2 = 0.99 2022-Giessel (Giessel et al.,
2022)

aFor each research work, only the best-performing models are shown. Abbreviations: artificial neural network (ANN), convolutional neural network (CNN),
deep neural network (DNN), recurrent neural network (RNN). bQ(von der Esch et al., 2019): Leave-one-out cross-fold validation score.

the curve of the receiver operating characteristic (AUROC) of
89.0%. This model can be potentially applied to enhance the
sampling efficiency for QM/MM transition interface sampling
of ketol-acid reductoisomerase.

As a follow-up to the works of Lodola et al. (2010) and
Bonk et al. (2019), von der Esch et al. (2019) reported an
elastic net regression model to predict the activation energy
for enzymatic reactions. Besides understanding the molecular
details behind conformational dependence of enzyme cataly-
sis, the model can also be leveraged to determine suitable start-
ing conformation for reaction path calculations. The model
was trained using 150 activation free energy values derived
from QM/MM calculations of 150 MD-sampled enzyme con-
formational snapshots of Class III histone deacetylase sir-
tuin 5. For each conformation, the input feature involves 15
structural features describing the distances between nonhy-
drogen atoms and nearby water molecules within the QM
region. Although the model exhibits moderate accuracy (i.e.
RMSD = 4.46 kcal/mol; cross-validated R2 = 0.28) in the
prediction task, the author proposed strategies to further
enhance the model by using quality data of transition barrier
that are derived from free energy simulations and higher-level
quantum mechanical calculations.

Besides inferring or predicting enzyme structure-barrier
height relationships using statistical modeling or machine
learning, deep learning has been applied to accelerate
free energy calculations for enzymatic reactions based on
QM/MM methods. Pan et al. (2021) reported the first neural
network model to accelerate simulations of free energy paths
using QM/MM methods in enzymatic reactions. They built
a machine learning potential model (i.e. MLP) to predict
the energy and force of QM/MM calculations using the
cartesian coordinates and MM point charges as input. In
addition, they developed a delta learning model (called
�MLP) to predict the correction factors that improve the
accuracy of semiempirical QM/MM free energies to the ab
initio level. Compared to the existing framework, these two
models include an MM environment, incorporate long-range
electrostatics in the model training, and use a single set of
descriptors. Using chorismate mutase as a test case, both
MLP and PM3∗ + �MLP methods show similar accuracy
to the B3LYP/6-31G∗/MM method in generating free energy
profiles (i.e. less than 1 kcal/mol difference). The MLP
and PM3∗ + �MLP methods are 32- and 46-fold faster
than the B3LYP/6-31G∗/MM calculations, respectively. The
methods thus provide new approaches to compute free energy
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profiles of enzyme-catalyzed reactions with balanced accuracy
and efficiency. Looking forward, deep learning algorithms,
such as neural network potential and deep generative
models, are expected to further innovate the strategies
for enhancing free energy simulations in enzyme-catalytic
processes.

Prediction of enzyme activity and substrate
specificity

Data-driven modeling has been extensively used to predict
enzyme activity and substrate specificity. Different from bio-
physical properties (i.e. stability), enzyme activity or sub-
strate specificity depends on not only the sequence con-
text that determines protein structural fold, but also specific
functional amino acids that determine or tune the chemi-
cal reactions catalyzed in the enzyme active site. To predict
enzyme activity, earlier works primarily use sequence alone
as input; the models developed in recent decade tend to
incorporate more catalytically relevant information, such as
substrate and enzyme structure, to enhance the predictive
accuracy.

Using multiple sequence alignment as input, Casari et al.
(1995) used principal component analysis to identify enzyme
residues that modulate substrate specificity of biological func-
tion; Hannenhalli and Russell (2000) employed positional
entropy analysis to identify sequence regions that confer speci-
ficity of known enzyme sub-types and to predict sub-type for
unclassified sequences. Pertusi et al. (2017) developed the first
support vector machine-coupled active learning approach,
SimAL, to predict high-probability promiscuous enzymatic
reactions for metabolic engineering. SimAL identified active
substrates for four different enzymes with ∼80% accuracy.
With the capability of producing active compounds for exper-
imental testing, SimAL provides a computational tool for the
design of new metabolic pathways.

In addition to models using sequence-based features,
structure has also been augmented with sequence information
to enhance prediction performance. For example, Röttig et al.
(2010) developed a support vector machine model, named
active site classification, to achieve functional annotation of
enzymes within an enzyme family. The model is not only
capable of predicting enzyme activity (i.e. the type of reactions
catalyzed by the enzyme) but also substrate specificity due
to the incorporation of structural information. Masso and
Vaisman (2014) developed a random forests classifier that
predicts whether a single amino acid substitution affects
or unaffacts enzyme activity (Masso and Vaisman, 2011,
2014). The input data consist of 1417 high-resolution
PDB structures with a diverse range of sequence and
structure. The structure of the protein was represented by
the tessellation of all Cα coordinates, which describes local
environment of each residue in protein structures. In the 10-
fold cross-validation test, the successful hit rate is 84%. The
model has been embedded in a software package AUTO-
MUTE (Masso and Vaisman, 2011, 2014). Khersonsky
et al. (2018) developed FuncLib as a web application to
automate design of efficiency-enhancing enzyme variants
with multipoint mutation. Although the prediction scoring
is based on Rosetta calculations (Fleishman et al., 2011),
phylogenetic analysis (a statistical modeling approach)
was employed to identify residues that are more likely
to modulate substrate specificity. Using phosphotriesterase

and an acetyl-CoA synthetase as model enzymes, FuncLib
identifies several dozen designs with three to six active-site
mutations. These variants were tested to involve 10- to
4000-fold higher efficiencies with a range of alternative
substrates, including hydrolysis of the nerve agents soman
and cyclosarin, and synthesis of butyryl-CoA. Unlike most
models that predict experimentally-characterized enzyme
activities, Shroff et al. (2020) developed a CNN model
to predict the structurally ‘optimal’ residue type in a
protein fold environment; they applied the model to identify
mutations that enhance enzyme activity. The model was
trained using 19 136 protein PDB structures. Two types
of features were used for each amino acid, including the
local structural motif (i.e. 20 Å cube for each centered
residue) and physicochemical properties (e.g. atomic charge,
surface area, and so on). The model accuracy is 87%
in predicting the type of natural amino acid. The model
enabled the identification of beneficial mutations in TEM-1
β-lactamase and Candida albicans phosphomannose iso-
merase (CaPMI).

Different from the above-mentioned generalist models that
predict enzyme activity and substrate specificity across dif-
ferent types of enzymes, specialist models have also been
advanced to engineer, design, and discover new enzyme vari-
ants with desired substrate specificity. Chevrette et al. (2017)
developed a computational method, named SANDPUMA, for
ensemble prediction of substrate specificity of adenylation
domains in nonribosomal peptide synthases. They compiled
experimentally validated substrate specificity data from the
MIBGC database (i.e. minimum information about a biosyn-
thetic gene cluster) and scientific literature. Using the dataset,
they benchmarked the accuracy of multiple existing algo-
rithms (including the support vector machine method by
Röttig et al. 2010). Through analyzing 83589 adenylation
domains in the genomes across Actinobacteria, the study
revealed 458 distinct nonribosomal peptide synthases super-
families. Yang et al. (2018) developed a decision tree-based
classifier, GT-Predict, to predict glycosyltransferase activity.
The model incorporates local sequence information with the
physicochemical properties of substrate donor and acceptor
molecules. Superior to sequence-alone models, GT-Predict
exhibits an accuracy of ∼90% in the task of functional pre-
diction over the 107 sequences from the glycosyltransferase
superfamily 1 of the plant Arabidopsis thaliana. The model
is expected to guide the streamlined design and engineering
of new glycosyltransferases. Besides nonribosomal peptide
synthases and glycosyltransferases, specificity prediction mod-
els have been developed for engineering synthetic biology
enzymes, including 2-deoxy-d-ribose 5-phosphate aldolase
variants for catalyzing smaller non-phosphorylated acceptor
substrates in the aldol addition reaction with acetaldehyde
(Voutilainen et al., 2020), OleA thiolase variants for the
production of desired metabolites (Robinson et al., 2020),
and bacterial nitrilases for hydrolysis of nitrile compounds to
the corresponding carboxylic acids and ammonia (Mou et al.,
2021).

As a summary, in Table II, we listed the activity- or
specificity-enhancing enzymes and enzyme variants that
were engineered with the help of data-driven methods and
reported in the past five years. These examples demonstrate
the enormous potential of data-driven modeling to be
incorporated as a routine strategy for the bioengineering of
synthetically useful enzymes.



Y.Jiang et al. 7

Table II. Summary of enzymes used in the development of date-driven enzyme engineering models for enhanced activity or specificitya

Enzyme Substrate Mutation Performance Paper

2-succinyl-5-enolpyruvyl-6-
hydroxy-3-cyclohexene-1-
carboxylic acid
synthase

aldehyde NA new substrate specificity 2017-Pertusi (Pertusi et al., 2017)

carboxylic acid reductase carboxylic acid NA new substrate specificity 2017-Pertusi (Pertusi et al., 2017)

amino acid ester hydrolase amide, ester NA new substrate specificity 2017-Pertusi (Pertusi et al., 2017)

4-hydroxyacetophenone
monooxygenase

keton NA new substrate specificity 2017-Pertusi (Pertusi et al., 2017)

phosphotriesterase phosphotriester, ester,
lactone

I106L/F132L/H254R/
H257W/L303T

741664-fold specificity
enhancement (paraoxon)

2018- Khersonsky (Khersonsky
et al., 2018)

acetyl-CoA synthetase CoA, aliphatic acid V310I/T311V/S314T/
Y355F/V386L/F421A

7-fold activity enhancement
(butyrate)

2018- Khersonsky (Khersonsky
et al., 2018)

glycosyltransferase sugar donor, glycosyl
acceptor

NA new sequence for new substrate 2018-Yang (Yang et al., 2018)

phosphomannose isomerase phosphomannose D229W/N272K/L335A/
N388S/S425T

5-fold activity enhancement 2020-Shroff (Shroff et al., 2020)

TEM-1 β-lactamase carbenicillin N52, F60, Q88, Q99,
T114, M182, E197

gain of new function 2020-Shroff (Shroff et al., 2020)

2-deoxy-D-ribose
5-phosphate aldolase

acetaldehyde C47V/G204A/S239D ∼3-fold activity enhancement
(acetaldehyde), abolishment of
natural activity (deoxyribose-5-
phosphate, deoxyribose)

2020-Voutilainen (Voutilainen
et al., 2020)

thiolase p-nitrophenyl ester NA Specificity-determining residue,
structural/chemical feature
influencing activity

2020-Robinson (Robinson et al.,
2020)

nitrilase nitriles NA substrate scope expansion 2021-Mou (Mou et al., 2021)

aIn the column of Mutation and Performance, only the best-performing enzyme mutants are shown. Mutations separated by slash ‘/’ indicate multiple mutations
in one variant. Mutations separated by comma ‘,’ indicate different variants with single amino acid substitution.

Prediction of enzyme stereoselectivity

Enzyme stereoselectivity is the property of an enzyme to
favor the formation of one over other possible stereoisomeric
products. Enhancing enzyme stereoselectivity is critical for the
biocatalytic production of compounds with high stereochem-
ical purity—this is a prerequisite for the pharmaceutical and
fine chemical industry. Due to its intrinsic chiral binding cav-
ity, enzyme naturally fits to the task of stereoselective catalysis.
However, due to the diversity of substrate structures, wild-
type enzymes usually need to be engineered for effectively
catalyzing a specific stereoselective reaction.

Statistical and machine learning models have been devel-
oped to identify efficiency-enhancing variants for transform-
ing a certain stereoselective reaction or to identify variants
that can alter the stereoselectivity based on actual synthetic
needs. As an early attempt, Fox et al. (2003) from Codexis Inc.
reported a statistical approach, named protein sequence activ-
ity relationships (ProSAR), to help identify beneficial mutants
in directed evolution. Later, Fox et al. (2007), using ProSAR,
identified a highly efficient bacterial halohydrin dehalogenase
variant (i.e. > 4000 fold rate acceleration) for the production
of (R)-4-cyano-3-hydroxybutyrate with high enantioselective
purity.

As a new approach to describing enzyme sequence-function
relationship, Cadet et al. (2018) reported an innovative
sequence-activity relationship (innov’SAR) methodology that
first employs digital signal processing (fast Fourier transform)
to encode sequence as protein energy spectrum and then

use the energy spectrum to perform regression with wet-
lab functional data (e.g. enantiomeric excess value). Trained
with experimentally characterized ��G values obtained from
the wild-type Aspergillus niger epoxide hydrolases and nine
single-point mutants, innov’SAR exhibits an R2 of 0.96 in the
leave-one-out cross-validation. Using the model, the authors
identified L202W mutant with higher enantioselectivity than
the wild-type hydrolase for kinetic resolution. Notably, the
application of digital signal processing to encode sequence
information is distinct from most existing enzyme feature
engineering strategies that are based on one-hot encoding,
physicochemical descriptors, or contextual embedding
(Fig. 1). The learning efficiency of this encoding algorism
against other methods remains to be compared in the future
studies.

Wu et al. (2019) reported a machine learning-guided
directed evolution approach to assist the construction of
‘smart’ library for protein engineering. The model was
demonstrated in the task of identifying enzyme variants
for enantiomeric catalysis of a new-to-nature reaction.
Machine-learning models were trained with sequencing and
enantiomeric information. A wide range of machine learning
models were tested to determine the optimal one that best fits
the specific fitness landscape of selected mutation positions.
The model was applied to evolve P450 enzymes for producing
each of the two possible enantiomeric products for a
carbene Si–H insertion reaction. Combined with experimental
screening, the approach identifies seven mutations in two
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Table III. Summary of enzymes with the enhanced stereoselectivity through the date-driven enzyme engineeringa

Enzyme Substrate Mutation Performance Paper

Epoxide hydrolase Glycidyl phenyl ether L215F/A217N/L249Y/T317W/
T318V/M329P/C350V

E-value = 253 2018-Cadet (Cadet et al., 2018)

Nitric oxide dioxygenase Phenyldimethyl silane,
ethyl 2-diazopropanoate

R51V % ee = 93 2019-Wu (Wu et al., 2019)

aIn the column of Mutation and Performance, only the best-performing enzyme mutants are shown.

rounds of iterative mutagenesis and finally pinpoints variants
for enantiomeric formation of products with 93 and 79%
ee. Notably, the Si–H insertion reaction is a new-to-nature
activity evolved in the laboratory. Besides demonstrating the
model accuracy, this study also highlights the use of machine
learning for predicting non-natural functions for enzymes.

Xu et al. (2020) conducted a benchmark over 44 combi-
nations of sequence features and machine learning methods
to investigate what combination provides the best prediction
performance in protein engineering. As one of the predic-
tion tasks, stereoselectivity prediction was conducted using
the dataset from the Reetz group (Gumulya et al., 2012)
(epoxide hydrolases) and the Arnold group (Wu et al., 2019)
(P450 enzymes). The benchmark shows that the CNN model
combined with the mutation one-hot-encoding binary vec-
tor gives the best prediction accuracy (i.e. median scaled-
RMSE = 1) in identifying enantioselectivity-enhancing epox-
ide hydrolases for glycidyl phenyl ether; XGBoost model
combined with the PCscores gives the best prediction accuracy
(i.e. median scaled-RMSE = 1) in identifying P450 enzyme
variants that mediate stereoselective carbene Si–H insertion.
In general, the authors recommended CNN models built
with amino acid property descriptors as the most widely
applicable choice for prediction tasks. This study serves as
an important future guide to select the features and models
for data-driven stereoselective enzyme engineering. However,
we should note that the generality of the conclusion might
be limited by the low diversity of enzyme types and rela-
tively small number of data points in the testing set (i.e. 16
epoxide hydrolase variants and 318 P450 enzyme variants).
The limitation on the dataset will be further discussed in
a later section (i.e., Challenges).

As a summary, in Table III, we listed the stereoselectivity-
enhancing enzymes and enzyme variants that were resulted
from data-driven enzyme engineering in the past five years.
These strategies will guide the engineering of enzymes for
stereoselective biocatalysis.

Prediction of thermodynamic and kinetic properties
for enzymatic reactions

Enzyme kinetic and thermodynamic parameters inform
enzyme’s capability of binding (e.g. Michaelis constant KM
and dissociation constant KD) and converting (e.g. turnover
number kcat) substrates in reactions. Unlike enzyme activities
and substrate specificity, these parameters are rigorously
defined and are normalized over enzymes’ concentration and
expression level. Predicting these parameters are central to
establish metabolic models (Heckmann et al., 2018; Li et al.,
2022) and to pinpoint rate- or efficiency-enhancing enzyme
mutants (Goldman et al., 2022; Kroll et al., 2021; Carlin et al.,
2016).

Heckmann et al. (2018) pioneered in the development
of elastic net regression, random forests, and deep neural

network models to conduct genome-scale kcat prediction in
Escherichia coli. The training and testing data consist of 172
in vitro kcat values of and 106 in vivo kapp,max values (i.e.
the maximal effective turnover rate), which were curated
from BRENDA, Metacyc, and SA-BIORK. The input features
involve genome-scale metabolic parameters, enzyme struc-
tures, biochemistry properties, and kinetic assay conditions.
In different models, the cross-validated R2 is around 0.31 for
the kcat and 0.76 for the kapp,max. Enabled by the predicted
kcat values, the authors improved the accuracy of metabolic
models in the prediction of quantitative proteome data than
previous approaches. Li et al. (2022) applied DL models to
predict genome-scale kcat values for over 300 yeast species.
The DL model encodes substrate connectivity using 2 layers
of graphic neural network (GNN) and protein sequences using
3 layers of CNN; and then predict kcat using a CNN model.
The model was trained on 7822 unique enzyme sequences
and 2672 unique substrates with an overall 16 838 kcat data
points. The model shows a Pearson r of 0.94 in predicting the
kcat of well-studied enzyme-substrate pairs from literatures
and original datasets. Compared to the ML models used by
Heckmann et al. (2018), the DL model reported by Li et al.
(2022) substantially improved the prediction accuracy for
not only the native enzymes but also the enzyme mutants.
Besides, the DL model only took protein sequence and sub-
strate connectivity as input, which is in contrast to the use
of a diverse range of metabolic, biochemical, and structural
features in Heckmann et al.’s ML models. Notably, it remains
an open question regarding whether Li et al. (2022) DL
model can be used to identify function-enhancing enzymes or
enzyme variants for engineering uses. Despite a wide variety of
substrates involved in the kcat dataset, the amount of substrate
data for each single enzyme is rather small. In addition, the
magnitude to what the DL model learns the catalytically
essential substrate-enzyme interaction also remains unknown.
Nonetheless, both works demonstrate the capability of data-
driven modeling in large-scale prediction of turnover values.
Importantly, they shared well-curated datasets to the commu-
nity for the development of future machine learning models.

Besides models to predict turnover numbers, Mellor et al.
(2016) built a semi-supervised Gaussian process model to
predict KM. The KM data were collected from BRENDA and
other public datasets with 7318 reaction labels. The EC num-
bers range from 1.1.1 to 6.2.1 (Schomburg et al., 2002). The
input features involve k-mer vector representation of enzyme
sequence and binary reaction feature vectors that describe the
change of atomic connectivity in bonding rearrangement. The
Q2 scores of the leave-one-out cross-validation for the three
datasets were between 0.5 and 0.8. The model was applied to
identify enzymes used in the synthesis of N-Acetyl-L-Leucine
and flavonoids, respectively. Kroll et al. (2021) developed a
deep learning framework to predict KM. The authors curated
a dataset of 5158 KM values from BRENDA. They employed



Y.Jiang et al. 9

a GNN to encode substrate and enzyme sequence, leading
to a 120-dimensional feature vector for substrates and 769-
dimensional binary vector for enzymes. The feature vectors
were then used to predict KM in a gradient boost regression
model. The cross-validated mean-squared error (MSE) and R2

between the experimental and predicted log10-scale KM values
are 0.72 and 0.42, respectively.

To guide enzyme-substrate specificity screenings, Goldman
et al. (2022) constructed a self-supervised learning framework
to predict enzyme’s binding affinity to a substrate (i.e. KD
values). The model was trained on 36 000 enzyme-substrate
pairs from six different types of enzymes including halogenase,
glycosyltransferase, thiolase, beta-keto acid cleavage enzyme,
esterase, and phosphatase. The input features are represented
using a substrate autoencoder and protein encoder. Specifi-
cally, the authors compared between autoencoder (JT-VAE),
Morgan circular fingerprints, and compound-protein interac-
tion model in encoding substrate information; they applied a
pretrained model, ESM-1b, to represent proteins. The stud-
ies showed the incapability of existing compound-protein
interaction models to learn interactions between compounds
and proteins across various families of enzymes. The authors
introduced an active-site pooling strategy for enhanced rep-
resentation of enzyme-substrate interactions, which can be
potentially used to guide developments of future machine
learning models for predicting substrate-protein interactions.
We should note that this work provides a working solution
to a fundamental problem in deep learning-facilitated enzyme
engineering, which involves the representation of physical
interactions between enzyme and ligand in a physically mean-
ingful fashion. For enzyme engineering, however, the problem
is likely to be more complex, because both enzyme and
substrate can adopt reactive conformation, instead of their
ground-state conformation, to accomplish the barrier-crossing
events.

Besides generalist models for large-scale kcat, KM, or KD pre-
diction, Carlin et al. (2016) developed a multivariate regres-
sion model to predict kcat and KM of glycoside hydrolases.
Instead of curating kinetic parameters from publicly available
databases, the authors experimentally characterized kcat and
KM values for 100 mutants of a glycoside hydrolase enzyme,
BglB. They extracted the structural features of these enzyme
mutants based on their computationally optimized molecular
models. They employed the elastic net regularization method
to identify statistically significant structural features; using
these features, they built a multivariate linear regression model
to predict kcat and KM values. The model exhibits a cross-
validated Pearson r of 0.76 and Spearman ρ of 0.55. The
model also identified the hydrogen bonding energy of the
substrate as the most informative feature to predict kcat/KM.
Besides the predictive models, the quality kcat and KM data
of mutant glycoside hydrolases reported in this work are
valuable for future work of data-driven modeling. As the
advancement of microfluidic strategies for high-throughput
kinetic parameter measurement (Markin et al., 2021), we
expect to see more quality specialist models emphasizing
accurate prediction of enzyme kinetics.

Prediction of fitness or mutational landscape in
enzyme evolution

Predicting the impact of mutation on enzyme functional fit-
ness is a central challenge in protein engineering. Unlike
physical or chemical observables, functional fitness is an

evolutionary property that is relevant to the survival rate of
the biological host in a certain environment. Higher functional
fitness is usually correlated to better enzyme expressibility,
activity, thermostability, or solubility. In the past years, sta-
tistical (Figliuzzi et al., 2016; Teze et al., 2021; Hon et al.,
2020), ML (Wittmann et al., 2021b), and DL models (Luo
et al., 2021; Favor and Jayapurna, 2020; Biswas et al., 2021;
Hsu et al., 2022) have been significantly advanced to encode
enzyme sequence information to predict functional fitness in
enzyme evolution. For example, using multiple sequence align-
ment as an input, Hon et al. (2020) established a bioinformat-
ics web server, EnzymeMiner, to select enzymes with enhanced
solubility while preserving enzyme activity. Teze et al. (2021)
conducted clustering analysis of protein family sequences to
identify conserved mutations as candidate beneficial muta-
tions for trans-glycosylation by glycoside hydrolases (GH).
Both works essentially take advantage of the evolutionary
information to infer the mutational landscape for beneficial
mutation selection.

Wittmann et al. (2021b) reported a machine learning-
assisted directed evolution (i.e. MLDE) method that encodes
enzyme variants using Rosetta scoring (i.e. REF2015) to
describe protein mutation effect on stability and physicochem-
ical features to represent protein sequences (e.g. Georgiev
protein sequences embeddings). Tested with 384 variants
derived from GB1 datasets, the MLDE experiment exhibits
a maximum normalized discounted cumulative gain (i.e.
NDCG) value of 0.91. Notably, the use of Rosetta scoring
embeds both physical and statistical information in an
empirical fashion. Different from typical physicochemical
features derived from individual amino acids in solution or
vacuum, the Rosetta scoring can account for electrostatic and
van der Waals interactions between residues in the protein,
thus encoding many-body effects into the model.

To extract the coevolutionary and other context informa-
tion from protein sequence, language-based DL models have
been developed, including UniRep (Alley et al., 2019), MSA
transformer (Rao et al., 2021), EVMutation (Hopf et al.,
2017), DeepSequence (Riesselman et al., 2018), Autoregres-
sive (Shin et al., 2021), and so on. These models extract
biophysical and evolutionary ‘embeddings’ from large amount
of protein sequences to guide enzyme engineering. Favor
and Jayapurna (2020) developed an end-to-end pipeline,
eUniRep, to guide enzyme engineering. The eUniRep model
involves a semi-supervised learning architecture consisting of
unsupervised pretrained sequence embedding and supervised
regression models. The pretrained embedding was trained on
Uniref50 with more than 20 million raw protein sequences—
they served as an evolutionary description of the protein
sequences. The model was tested on three enzymes, TEM-1 β-
lactamase, IsPETase and MS2 bacteriophage’s capsid protein.
The best predictive accuracy for protein fitness score involves
a mean square error (MSE) of 0.74 on double mutations of
MS2 bacteriophage’s capsid protein. eUniRep outperforms
other neural network models in predicting the enzyme fitness
landscape.

Enabled by eUniRep, Biswas et al. (2021) developed a
fitness predictor using low-number protein sequences as train-
ing data (e.g. tens of protein sequences). A major contribu-
tion of this work is to demonstrate the power of pretrained
embeddings for significantly enhancing the data efficiency in
the process of model training. As a proof of concept, the
model was trained on 96 TEM-1 β-lactamase single mutant
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sequences and applied to identify mutants with 5- to 10-
fold higher hit rate than the full-sequence one-hot encoding
in the plate-based antibiotic selection experiment. Different
from DL sequence encoders trained from a large amount
of sequences, Luo et al. (2021) developed ECNet to pre-
dict the functional fitness of enzymes using local coevolu-
tion features generated from direct coupling analysis. The
incorporation of local coevolution features enables ECNet
to prioritize high-order, high-performing variants for fitness
prediction. As a proof of concept, ECNet was applied to
identify 37 TEM-1 β-lactamase variants covering 22 residue
positions with improved resistance to ampicillin. A 4-point
mutation, E26K/N98S/L100V/A182V, has the highest resis-
tance. Despite the gigantic number of sequences used in the
model training, the lack of substrate information likely limits
the model’s generalizability to predict function-enhancing
enzymes for transforming non-native substrates and reac-
tions. In addition, most data-driven models apply β-lactamase
as their testing system—new types of enzymes with greater
chemical and functional diversity should be experimentally
assessed.

Functional enzyme sequence design

In recent years, statistical and generative models have
been advanced to computationally design artificial enzyme
sequences that involve similar or superior functions to natural
enzymes (Russ et al., 2020; Repecka et al., 2021; Madani et al.,
2021). For instance, Russ et al. (2020) developed statistical
models to design new chorismate mutases. The model adopts
direct coupling analysis to identify conserved amino acids
and evolutionarily correlated pairs of amino acids for a
family of enzyme sequences. By incorporating these conserved
residues and residue pairs, artificial sequences can be designed
to mimic natural enzyme function. As a proof of concept,
the authors computationally designed and experimentally
characterized a new artificial chorismate mutase. The overall
hit rate of the prediction is 30%.

Repecka et al. (2021) built a generative adversarial net-
works (GAN) model, ProteinGAN, to generate artificial pro-
tein sequences with natural-like functional properties. The
self-attention-based GAN consists of a customized temporal
convolutional network with an additional self-attention layer
to encode information of enzyme catalytic residues. The model
was trained on malate dehydrogenase (MDH) with a total
of 16,706 mutant sequences. The catalytic performance of
the resulting sequences was experimentally validated. The
results indicate that 24% of artificial enzymes show catalytic
activity comparable to natural MDH. Notably, the average
sequence identity between the generated sequences and the
native MDH sequence is 64.6%; this result highlights the
diversity of the generated sequences. Similar to ProteinGAN,
Madani et al. (2021) adapted a general protein language
model, ProGen, to generate novel lysozyme sequences. ProGen
is a self-supervised protein language model that was trained
on millions of raw protein sequences across protein families
and functions. The model generates lysozyme sequences by
using transformer architecture with functional annotation. In
the following wet lab evaluation, the author used ProGen
to generate 100 artifact protein sequences and received an
activity AUROC of 0.85 compared with experimental data.
Giessel et al. (2022) reported a variational autoencoder model
(VAE) to generate human ornithine transcarbamylase (hOTC)
sequences with enhanced catalytic activity. The VAE model

was applied to generate 87 variants. Experimental tests show
that these enzyme variants involve an average enhancement of
specificity by 1.4-fold relative to the wild-type hOTC. Despite
the capability of generating artificial sequences with natu-
ral functions, most of the generated sequences only exhibit
comparable catalytic competency to the wild-type enzyme. As
such, it remains an open question regarding how to generate
sequences with substantially improved catalytic activity by
exploiting the latent space. In addition, it remains unknown
how to develop a model for generating artificial sequences for
enzymes with human-desired new-to-nature functions. This
capability requires the model to master the chemical and phys-
ical principles behind enzyme catalysis and to understand the
role of reactive intermediate in chemical transformation. This
likely calls for a feature-embedding form that incorporates
the contextual, structural, and evolutionary information for
sequence and substrate.

Challenges

In this section, we will discuss three challenges that are
involved in developing accurate and generalizable data-driven
models for enzyme engineering—curation of enzyme structure
and function data, generation of predictive features from first-
principle simulations, and incorporation of substrate informa-
tion.

The roadblock for data curation manifests in data col-
lection, cleaning, and joining. First, data collection is hard
because enzyme structure and functional data are stored
in different databases, such as PDB for enzyme structure
(Berman et al., 2000), BRENDA and SA-BIORK for enzyme
kinetics (Jeske et al., 2019; Wittig et al., 2012), M-CSA for
enzyme catalytic mechanisms (Ribeiro et al., 2018), UniProt
for sequences (UniProt, 2019; Apweiler et al., 2004), ProTher-
mDB for thermostability (Nikam et al., 2021), eSOL for
solubility (Niwa et al., 2009), ProtaBank for designed and
engineered enzymes (Wang et al., 2018), and so on (Carlin
et al., 2016). These databases involve a variety of hierarchical
structures for data storage and algorithms for data query. To
train holistic and multi-objective data-driven models, signifi-
cant efforts are needed to search and collect data from these
sources. Second, data cleaning is difficult because enzyme
databases adopt various data standard, format, and validation
mechanism. In many enzyme entries, essential parameters
are missing, such as mutational spot labeling and experi-
mental conditions for kinetic assays. In addition, inconsis-
tency exists between the stored data and original literature,
which might be caused by manual input and other numer-
ical rounding errors. To clean the data, significant manual
curation and validation are needed. Third, data joining is
difficult because no unified primary or foreign keys exists
across various enzymology databases to allow one-to-one
mapping of sequence, enzyme-substrate complex structure,
and catalytic function data. For example, kinetic databases
lack the information of enzyme structure identifiers (e.g. PDB
ID), but structure database typically do not have sufficient
quantitative functional annotation. Efforts are needed to map
different types of enzymology data. As a first step to address
this challenge, we are building an integrated enzyme struc-
ture–function database, IntEnzyDB, which stores clean and
tabulated structure and kinetics data by adopting a relational
architecture with the flattened data structure (Yan et al.,
2021; Yan et al., 2022) In addition, we expect that the use of
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AlphaFold-2 in enzyme structure prediction will expand the
pool of quality structural data (Jumper et al., 2021). Based on
the well-curated dataset, a gold standard benchmark set can be
established that comprehensively incorporate biocatalytic per-
formance of enzymes under different mutations, substrates,
and experimental conditions. This will make it possible to
provide an objective assessment on the ML and DL models
constructed from different research groups.

Generating features from first-principles molecular simu-
lations is essential but challenging. Structural and physic-
ochemical descriptors have been widely used to represent
enzyme residues, but they are incapable of describing unique
aspects of enzyme catalysis, including chemical bonding in
enzyme catalytic cycle (Petchey and Grogan, 2019), enzyme
interior long-range electrostatics (Sagui and Darden, 1999;
Baker, 2010; Yang et al., 2021), charge transfer between
reactive species and active-site residues (Yang et al., 2019a;
Yang et al., 2019b; Kulik, 2018; Acosta-Silva et al., 2020),
and protein dynamics for substrate positioning and thermal
activation (Mehmood et al., 2021; Khersonsky et al., 2012;
Gao et al., 2020). Generating features from molecular sim-
ulations, such as classical molecular dynamics and quantum
chemistry, will provide descriptors of electronic structure and
protein dynamics, which are critical to physical description of
enzyme catalysis. However, automatic workflows are needed
to enable generation of large number of simulation-derived
features for enzymes and their mutants. To address this, we are
developing a software suite, EnzyHTP, for automating enzyme
model construction, mutant generation, and molecular simu-
lations (Shao et al., 2021). We expect that this tool will be
further advanced to generate molecular features for building
predictive data-driven models.

Incorporating substrate information represents a distinct
challenge in building predictive models for enzyme catalysis.
Sequence-alone models have been developed to predict
enzyme activity (Xu et al., 2022). However, due to the lack
of generalizable substrate representation, these models are
likely to fail in predicting enzymes for new-to-nature reactions
with non-native substrates. Although different representations
have been used to embed substrate in the model, including
similes string, Morgan fingerprint, or 3D fingerprint, these
representations typically fail to manifest enzyme-substrate
interaction in enzymatic reactions. Goldman et al. (2022)
showed that the compound–protein interaction model, which
augments the substrate Morgan fingerprint with protein
sequence features, does not show superior performance
to sequence-alone model in the task of predicting enzyme
promiscuity. Rather, labeling enzyme active-site residues can
improve the predictive accuracy. These results highlight the
urgent need of developing strategies to incorporate substrate-
enzyme interactions. In addition, chirality is frequently missed
in substrate representation. The models without substrate
chirality annotation will not predict enzyme’s preference
toward a certain substrate stereoisomer. The advancement
of chirality-resolved 3D representation of substrate structure
is expected to address the challenge.

Conclusion

In this mini-review, we discussed recent development of
statistical, ML, and DL models to identify function-enhancing
enzymes or enzyme mutants. Models have been developed
to accelerate QM/MM-based free energy and reactive

trajectory simulations, predict substrate specificity in various
enzymes (e.g. nonribosomal peptide synthases, bacterial
nitrilases, OleA thiolases, and SrtA), predict stereoselectivity
of epoxide hydrolases and P450 enzymes, evaluate ther-
modynamic and kinetic parameters such as kcat, KM, and
KD, predict the functional fitness score to facilitate directed
evolution, and even design new enzyme sequences with similar
or superior functions to natural enzymes. In addition, we
discussed challenges in developing accurate and generalizable
data-driven models for enzyme engineering, including
curation of enzyme structure and function data, generation
of predictive features from first-principles simulations, and
incorporation of substrate information. We hope that this
review can inform the readers of the recent progresses of
data-driven modeling in enzyme engineering. As more and
more quality enzymology data are available to the public, we
believe that the upcoming years will witness a rapidly growing
impact of data-driven strategies on enzyme engineering.

Funding

National Institute of General Medical Sciences of the National Institutes
of Health (award number R35GM146982 to Z.J.Y., Y.J., and X.R.).

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgments

We thank Chris Jurich for proofreading the whole article.

References

Acosta-Silva, C., Bertran, J., Branchadell, V. and Oliva, A. (2020)
ChemPhysChem, 21, 295–306.

Adams, K., Pattanaik, L. and Coley, C.W. (2021) CoRR, abs/2110.
04383.

Ali, M., Ishqi, H.M. and Husain, Q. (2020) Biotechnol. Bioeng., 117,
1877–1894.

Alley, E.C., Khimulya, G., Biswas, S., AlQuraishi, M. and Church, G.M.
(2019) Nat. Methods, 16, 1315–1322.

Apweiler, R., Bairoch, A., Wu, C.H. et al. (2004) Nucleic Acids Res., 32,
115D–1119D.

Araya, C.L. and Fowler, D.M. (2011) Trends Biotechnol., 29, 435–442.
Asgari, E. and Mofrad, M.R. (2015) PLoS One, 10, e0141287.
Baker, D. (2010) Protein Sci., 19, 1817–1819.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weis-

sig, H., Shindyalov, I.N. and Bourne, P.E. (2000) Nucleic Acids Res.,
28, 235–242.

Bishop, C. (2006) Pattern Recognition and Machine Learning. New
York City, New York, Springer.

Biswas, S., Khimulya, G., Alley, E.C., Esvelt, K.M. and Church, G.M.
(2021) Nat. Methods, 18, 389–396.

Bonk, B.M., Weis, J.W. and Tidor, B. (2019) J. Am. Chem. Soc., 141,
4108–4118.

Bruggink, A., Schoevaart, R. and Kieboom, T. (2003) Org. Process Res.
Dev., 7, 622–640.

Bunzel, H.A., Garrabou, X., Pott, M. and Hilvert, D. (2018) Curr. Opin.
Struct. Biol., 48, 149–156.

Cadet, F., Fontaine, N., Li, G., Sanchis, J., Ng Fuk Chong, M., Pandjai-
tan, R., Vetrivel, I., Offmann, B. and Reetz, M.T. (2018) Sci. Rep., 8,
1–15.

Carlin, D.A., Caster, R.W., Wang, X. et al. (2016) PLoS One, 11,
e0147596.



12 Data-driven enzyme engineering to identify function-enhancing enzymes

Casari, G., Sander, C. and Valencia, A. (1995) Nat. Struct. Biol., 2,
171–178.

Cecchini, D.A., Pepe, O., Pennacchio, A., Fagnano, M. and Faraco, V.
(2018) AMB Express, 8, 74.

Chevrette, M.G., Aicheler, F., Kohlbacher, O., Currie, C.R. and
Medema, M.H. (2017) Bioinformatics, 33, 3202–3210.

DelRe, C., Jiang, Y., Kang, P. et al. (2021) Nature, 592, 558–563.
Favor, A. and Jayapurna, I. (2020) Authorea Preprints.
Feehan, R., Montezano, D. and Slusky, J.S.G. (2021) Protein Eng. Des.

Sel., 34, 1–10.
Figliuzzi, M., Jacquier, H., Schug, A., Tenaillon, O. and Weigt, M. (2016)

Mol. Biol. Evol., 33, 268–280.
Fleishman, S.J., Leaver-Fay, A., Corn, J.E. et al. (2011) PLoS One, 6,

e20161.
Fowler, D.M. and Fields, S. (2014) Nat. Methods, 11, 801–807.
Fox, R., Roy, A., Govindarajan, S., Minshull, J., Gustafsson, C., Jones,

J.T. and Emig, R. (2003) Protein Eng. Des. Sel., 16, 589–597.
Fox, R.J., Davis, S.C., Mundorff, E.C. et al. (2007) Nat. Biotechnol., 25,

338–344.
Gao, S., Thompson, E.J., Barrow, S.L., Zhang, W., Iavarone, A.T. and

Klinman, J.P. (2020) J. Am. Chem. Soc., 142, 19936–19949.
Giessel, A., Dousis, A., Ravichandran, K., Smith, K., Sur, S., McFadyen,

I., Zheng, W. and Licht, S. (2022) Sci. Rep., 12, 1536.
Goldman, S., Das, R., Yang, K.K. and Coley, C.W. (2022) PLoS Comput.

Biol., 18, e1009853.
Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning.

Cambridge, Massachusetts, MIT Press.
Gordon, S.R., Stanley, E.J., Wolf, S., Toland, A., Wu, S.J., Hadidi, D.,

Mills, J.H., Baker, D., Pultz, I.S. and Siegel, J.B. (2012) J. Am. Chem.
Soc., 134, 20513–20520.

Gumulya, Y., Sanchis, J. and Reetz, M.T. (2012) Chem. Bio. Chem., 13,
1060–1066.

Hannenhalli, S.S. and Russell, R.B. (2000) J. Mol. Biol., 303,
61–76.

Heckmann, D., Lloyd, C.J., Mih, N., Ha, Y., Zielinski, D.C., Haiman,
Z.B., Desouki, A.A., Lercher, M.J. and Palsson, B.O. (2018) Nat.
Commun., 9, 5252.

Hendrikse, N.M., Sandegren, A., Andersson, T. et al. (2021) iScience,
24, 102154.

Hilvert, D. (2013) Annu. Rev. Biochem., 82, 447–470.
Hon, J., Borko, S., Stourac, J., Prokop, Z., Zendulka, J., Bednar, D.,

Martinek, T. and Damborsky, J. (2020) Nucleic Acids Res., 48,
W104–W109.

Hopf, T.A., Ingraham, J.B., Poelwijk, F.J., Scharfe, C.P., Springer, M.,
Sander, C. and Marks, D.S. (2017) Nat. Biotechnol., 35, 128–135.

Hsu, C., Nisonoff, H., Fannjiang, C. and Listgarten, J. (2022) Nat.
Biotechnol., 40, 1114–1122.

Jeske, L., Placzek, S., Schomburg, I., Chang, A. and Schomburg, D.
(2019) Nucleic Acids Res., 47, D542–D549.

Jumper, J., Evans, R., Pritzel, A. et al. (2021) Nature, 596, 583–589.
Jurtz, V.I., Johansen, A.R., Nielsen, M., Almagro Armenteros, J.J.,

Nielsen, H., Sonderby, C.K., Winther, O. and Sonderby, S.K. (2017)
Bioinformatics, 33, 3685–3690.

Khersonsky, O., Kiss, G., Rothlisberger, D., Dym, O., Albeck, S., Houk,
K.N., Baker, D. and Tawfik, D.S. (2012) Proc. Natl. Acad. Sci. USA.,
109, 10358–10363.

Khersonsky, O., Lipsh, R., Avizemer, Z. et al. (2018) Mol. Cell., 72,
178–186.e5.

Knott, B.C., Erickson, E., Allen, M.D. et al. (2020) Proc. Natl. Acad.
Sci., 117, 25476–25485.

Kries, H.; Blomberg, R.; Hilvert, D., De Curr. Opin. Chem. Biol. 2013,
17 , 221–228.

Kroll, A., Engqvist, M.K.M., Heckmann, D. and Lercher, M.J. (2021)
PLoS Biol., 19, e3001402.

Kulik, H.J. (2018) Phys. Chem. Chem. Phys., 20, 20650–20660.
Li, F., Yuan, L., Lu, H., Li, G., Chen, Y., Engqvist, M.K.M., Kerkhoven,

E.J. and Nielsen, J. (2022) Nat. Catal., 5, 662–672.
Li, Z., Jiang, Y., Guengerich, F.P., Ma, L., Li, S. and Zhang, W. (2020) J.

Biol. Chem., 295, 833–849.

Lodola, A., Sirirak, J., Fey, N., Rivara, S., Mor, M. and Mulholland, A.J.
(2010) J. Chem. Theory Comput., 6, 2948–2960.

Luo, Y., Jiang, G., Yu, T., Liu, Y., Vo, L., Ding, H., Su, Y., Qian, W.W.,
Zhao, H. and Peng, J. (2021) Nat. Commun., 12, 1–14.

Madani, A., Krause, B., Greene, E.R. et al. (2021) bioRxiv.,
2021.2007.2018.452833.

Markin, C.J., Mokhtari, D.A., Sunden, F., Appel, M.J., Akiva, E.,
Longwell, S.A., Sabatti, C., Herschlag, D. and Fordyce, P.M. (2021)
Science, 373, eabf8761.

Masso, M. and Vaisman, I.I. (2011) Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc., 2011, 3221–3224.

Masso, M. and Vaisman, I.I. (2014) Adv. Bioinform., 2014, 1–7.
Mazurenko, S., Prokop, Z. and Damborsky, J. (2020) ACS Catal., 10,

1210–1223.
Mehmood, R., Vennelakanti, V. and Kulik, H.J. (2021) ACS Catal., 11,

12394–12408.
Mei, H., Liao, Z.H., Zhou, Y. and Li, S.Z. (2005) Biopolymers, 80,

775–786.
Mellor, J., Grigoras, I., Carbonell, P. and Faulon, J.L. (2016) ACS Synth.

Biol., 5, 518–528.
Melnikov, A., Rogov, P., Wang, L., Gnirke, A. and Mikkelsen, T.S.

(2014) Nucleic. Acids. Res., 42, e112.
Min, K., Kim, H., Park, H.J., Lee, S., Jung, Y.J., Yoon, J.H., Lee, J.S., Park,

K., Yoo, Y.J. and Joo, J.C. (2021) Bioresour. Technol., 340, 125737.
Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D.S., Sander, C.,

Zecchina, R., Onuchic, J.N., Hwa, T. and Weigt, M. (2011) Proc.
Natl. Acad. Sci., 108, E1293–E1301.

Mou, Z., Eakes, J., Cooper, C.J., Foster, C.M., Standaert, R.F., Podar,
M., Doktycz, M.J. and Parks, J.M. (2021) Proteins, 89, 336–347.

Nikam, R., Kulandaisamy, A., Harini, K., Sharma, D. and Gromiha,
M.M. (2021) Nucleic Acids Res., 49, D420–D424.

Niwa, T., Ying, B.W., Saito, K., Jin, W., Takada, S., Ueda, T. and Taguchi,
H. (2009) Proc. Natl. Acad. Sci. USA., 106, 4201–4206.

Pan, X., Yang, J., Van, R., Epifanovsky, E., Ho, J., Huang, J., Pu, J., Mei,
Y., Nam, K. and Shao, Y. (2021) J. Chem. Theory. Comput., 17,
5745–5758.

Pertusi, D.A., Moura, M.E., Jeffryes, J.G., Prabhu, S., Walters Biggs, B.
and Tyo, K.E.J. (2017) Metab. Eng., 44, 171–181.

Petchey, M.R. and Grogan, G. (2019) Adv. Synth. Catal., 361,
3895–3914.

Rao, R., Liu, J., Verkuil, R., Meier, J., Canny, J.F., Abbeel, P., Sercu, T.
and Rives, A. (2021) bioRxiv.

Repecka, D., Jauniskis, V., Karpus, L., Rembeza, E., Rokaitis, I., Zrimec,
J., Poviloniene, S., Laurynenas, A., Viknander, S. and Abuajwa, W.
(2021) Nat. Mach. Intell., 3, 324–333.

Ribeiro, A.J.M., Holliday, G.L., Furnham, N., Tyzack, J.D., Ferris, K.
and Thornton, J.M. (2018) Nucleic Acids Res., 46, D618–D623.

Riesselman, A.J., Ingraham, J.B. and Marks, D.S. (2018) Nat. Methods,
15, 816–822.

Robinson, S.L., Smith, M.D., Richman, J.E., Aukema, K.G. and Wackett,
L.P. (2020) Synth. Biol., 5, 1–12.

Romero, P.A. and Arnold, F.H. (2009) Nat. Rev. Mol. Cell Biol., 10,
866–876.

Rorrer, N.A., Nicholson, S., Carpenter, A., Biddy, M.J., Grundl, N.J.
and Beckham, G.T. (2019) Joule, 3, 1006–1027.

Röttig, M., Rausch, C. and Kohlbacher, O. (2010) PLoS Comput. Biol.,
6, e1000636.

Russ, W.P., Figliuzzi, M., Stocker, C. et al. (2020) Science, 369, 440–445.
Sagui, C. and Darden, T.A. (1999) Annu. Rev. Biophys. Biomol. Struct.,

28, 155–179.
Saito, Y., Oikawa, M., Sato, T., Nakazawa, H., Ito, T., Kameda, T., Tsuda,

K. and Umetsu, M. (2021) ACS Catal., 11, 14615–14624.
Sandberg, M., Eriksson, L., Jonsson, J., Sjostrom, M. and Wold, S. (1998)

J. Med. Chem., 41, 2481–2491.
Schindele, P. and Puchta, H. (2020) Plant Biotechnol. J., 18, 1118–1120.
Schomburg, I., Chang, A. and Schomburg, D. (2002) Nucleic Acids Res.,

30, 47–49.
Shao, Q., Jiang, Y. and Yang, Z.J. (2021) J. Chem. Inf. Model., 62,

647–655.



Y.Jiang et al. 13

Shin, J.-E., Riesselman, A.J., Kollasch, A.W., McMahon, C., Simon, E.,
Sander, C., Manglik, A., Kruse, A.C. and Marks, D.S. (2021) Nat.
Commun., 12, 2403.

Shroff, R., Cole, A.W., Diaz, D.J., Morrow, B.R., Donnell, I., Anna-
pareddy, A., Gollihar, J., Ellington, A.D. and Thyer, R. (2020) ACS
Synth. Biol., 9, 2927–2935.

Siedhoff, N. E.; Schwaneberg, U.; Davari, M. D. (2020) Methods in
Enzymology, Vol.643, Cambridge, Massachusetts, Academic Press,
pp. 281–315.

Simonis, H., Yaghootfam, C., Sylvester, M., Gieselmann, V. and
Matzner, U. (2019) Hum. Mol. Genet., 28, 1810–1821.

Singh, N., Malik, S., Gupta, A. and Srivastava, K.R. (2021) Emerging
Top. Life Sci., 5, 113–125.

Tang, Q., Grathwol, C.W., Aslan-Uzel, A.S., Wu, S., Link, A., Pavlidis,
I.V., Badenhorst, C.P.S. and Bornscheuer, U.T. (2021) Angew. Chem.
Int. Ed. Engl., 60, 1524–1527.

Teze, D., Zhao, J., Wiemann, M. et al. (2021) Chemistry–A. Eur. J.
Dermatol., 27, 10323–10334.

Tournier, V., Topham, C.M., Gilles, A. et al. (2020) Nature, 580,
216–219.

UniProt, C. (2019) Nucleic Acids Res., 47, D506–D515.
von der Esch, B., Dietschreit, J.C.B., Peters, L.D.M. and Ochsenfeld, C.

(2019) J. Chem. Theory. Comput., 15, 6660–6667.
Voutilainen, S., Heinonen, M., Andberg, M. et al. (2020) Appl. Micro-

biol. Biotechnol., 104, 10515–10529.
Wang, C.Y., Chang, P.M., Ary, M.L., Allen, B.D., Chica, R.A., Mayo,

S.L. and Olafson, B.D. (2018) Protein Sci., 27, 1113–1124.
Wittig, U., Kania, R., Golebiewski, M. et al. (2012) Nucleic Acids Res.,

40, D790–D796.
Wittmann, B.J., Johnston, K.E., Wu, Z. and Arnold, F.H. (2021a) Curr.

Opin. Struct. Biol., 69, 11–18.
Wittmann, B.J., Yue, Y. and Arnold, F.H. (2021b) Cell Syst., 12, 1026–

1045.e7.

Wolf, C., Siegel, J.B., Tinberg, C., Camarca, A., Gianfrani, C., Paski, S.,
Guan, R., Montelione, G., Baker, D. and Pultz, I.S. (2015) J. Am.
Chem. Soc., 137, 13106–13113.

Wu, Z., Kan, S.B.J., Lewis, R.D., Wittmann, B.J. and Arnold, F.H. (2019)
Proc. Natl. Acad. Sci., 116, 8852–8858.

Xia, B., Xu, J., Xiang, Z., Cen, Y., Hu, Y., Lin, X. and Wu, Q. (2017)
ACS Catal., 7, 4542–4549.

Xu, Y., Verma, D., Sheridan, R.P., Liaw, A., Ma, J., Marshall, N.M.,
McIntosh, J., Sherer, E.C., Svetnik, V. and Johnston, J.M. (2020) J.
Chem. Inf. Model., 60, 2773–2790.

Xu, Z., Wu, J., Song, Y.S. and Mahadevan, R. (2022) Machine Learning
in Computational Biology. PMLR, pp. 78–87.

Yan, B., Ran, X., Jiang, Y., Torrence, S.K., Yuan, L., Shao, Q. and Yang,
Z.J. (2021) J. Phys. Chem. B, 125, 10682–10691.

Yan, B., Ran, X., Gollu, A., Cheng, Z., Zhou, X., Chen, Y. and
Yang, Z.J. (2022) J. Chem. Inf. Model., In Press. https://doi.org/10.
1021/acs.jcim.2c01139.

Yang, M., Fehl, C., Lees, K.V., Lim, E.-K., Offen, W.A., Davies, G.J.,
Bowles, D.J., Davidson, M.G., Roberts, S.J. and Davis, B.G. (2018)
Nat. Chem. Biol., 14, 1109–1117.

Yang, Z., Hajlasz, N., Steeves, A. and Kulik, H. (2021) ChemRxiv., 1,
362–373.

Yang, Z., Liu, F., Steeves, A.H. and Kulik, H.J. (2019a) J. Phys. Chem.
Lett., 10, 3779–3787.

Yang, Z., Mehmood, R., Wang, M., Qi, H.W., Steeves, A.H. and Kulik,
H.J. (2019b) React. Chem. Eng., 4, 298–315.

Yi, D., Bayer, T., Badenhorst, C.P.S., Wu, S., Doerr, M., Hohne,
M. and Bornscheuer, U.T. (2021) Chem. Soc. Rev., 50,
8003–8049.

Yin, Y., Wang, Q., Xiao, L. et al. (2018) J. Biomed. Nanotechnol., 14,
456–476.

Zeymer, C. and Hilvert, D. (2018) Annu. Rev. Biochem., 87,
131–157.

https://doi.org/https://doi.org/10.&break;1021/acs.jcim.2c01139

	 Data-driven enzyme engineering to identify function-enhancing enzymes
	 Introduction
	 Features and models used in data-driven enzyme engineering
	 Applications of machine-learning and deep-learning models in enzyme catalysis
	 Challenges
	 Conclusion
	 Funding
	 Conflict of Interest
	 Acknowledgments 




