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*S Supporting Information

ABSTRACT: We have recently reported a series of Lys-covalent agents targeting the BIR3 domain of the X-linked inhibitor of
apoptosis protein (XIAP) using a benzamide-sulfonyl fluoride warhead. Using XIAP as a model system, we further investigated a
variety of additional warheads that can be easily incorporated into binding peptides and analyzed their ability to form covalent
adducts with lysine and other amino acids, including tyrosine, histidine, serine, and threonine, using biochemical and
biophysical assays. Moreover, we tested aqueous, plasma stability, cell permeability, and cellular efficacy of the most effective
agents. These studies identified aryl-fluoro sulfates as likely the most suitable electrophiles to effectively form covalent adducts
with Lys, Tyr, and His residues, given that these agents were cell permeable and stable in aqueous buffer and in plasma. Our
studies contain a number of general findings that open new possible avenues for the design of potent covalent protein−protein
interaction antagonists.

■ INTRODUCTION

The design of effective inhibitors of protein−protein
interactions (PPIs) for therapeutic use has been notoriously
an arduous and challenging task; hence, PPIs remain a largely
untapped target space for new therapeutics. While several
factors can contribute to this challenge, one main issue in
targeting PPIs is the large surface area at the site of interaction
that is less prone to be effectively inhibited by small molecule
compounds that are typically populating libraries for high-
throughput screening (HTS) campaigns. During the past two
decades, applications of more rational biophysical approaches,
combined with fragment- and/or structure-based design
strategies, have resulted in the design of a variety of novel
PPI antagonists, culminating in 2016 in the approval of
venetoclax (ABT199),1 a Bcl-2 antagonist derived using a
combination of NMR-based fragment screening2−6 and
iterative structure-based optimizations.1 Alternative strategies
to this successful yet still relatively convoluted approach have
been proposed, including the use of short peptides derived
from structural studies of the intervening binding partners, or
from peptide library screening approaches. For example, the
inhibitors of apoptosis proteins (IAPs)7−9 are tightly regulated
in normal cells by a natural protein inhibitor, namely the
second mitochondria-derived activator of caspases (SMACs).
Structural and cellular studies identified that the activation of
SMACs after mitochondrial release into the cytosol exposes an
N-terminal tetrapeptide of the sequence Ala-Val-Pro-Phe
(AVPF, or also the peptide AVPI) that mediates its

interactions with various members of the IAP family, including
the X-linked inhibitor of apoptosis protein (XIAP).3,10−12

Using structure-based approaches aimed at increasing drug-
likeness of this tetrapeptide, including increasing their affinity,
stability, and cell permeability, several drug-like agents that
could mimic the SMAC AVPF peptide have been developed as
potential therapeutic agents5,6,13−30 and a few have entered
clinical trials. This example clearly demonstrates that short
peptide sequences could provide a valuable starting point for
the design of potential therapeutic agents against PPIs. One
major challenge while working with short peptides is
optimizing their affinity, selectivity, and drug-likeness. We
and others have recently demonstrated that potency and
selectivity of binding in peptides can be accomplished by
introducing mild electrophiles such as acrylamides or
chloroacetamides at side chain amines (including lysine or
Lys; ornithine or Orn; di-amino-propionic acid or Dap; di-
amino butyric acid or Dab) if these are in proximity of a
cysteine residue.31,32 More recently, we have also demon-
strated that coupling sulfonyl fluoride benzoic acids on the
same amines on a peptide ligand can result in peptides that can
covalently target the binding sites of Lys residues.33 Because
these approaches can covalently target a surface amino acid at
the binding site, the resulting agents can acquire remarkable
potency for the intended target. While reactivity, selectivity,

Received: April 8, 2019
Published: May 16, 2019

Article

pubs.acs.org/jmcCite This: J. Med. Chem. 2019, 62, 5616−5627

© 2019 American Chemical Society 5616 DOI: 10.1021/acs.jmedchem.9b00561
J. Med. Chem. 2019, 62, 5616−5627

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

A
L

IF
O

R
N

IA
 R

IV
E

R
SI

D
E

 o
n 

N
ov

em
be

r 
26

, 2
01

9 
at

 1
7:

46
:4

8 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/jmc
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jmedchem.9b00561
http://dx.doi.org/10.1021/acs.jmedchem.9b00561


and stability of acrylamides and chloroacetamides in targeting
Cys residues have been more extensively studied, similar
studies characterizing the introduction of aryl-sulfonyl
fluoride34−36 or aryl-fluoro sulfate37,38 warheads into binding
peptides have not been fully investigated, which is the topic of
our studies. Hence, using the BIR3 domain of XIAP, we
probed the potential reactivity of these electrophiles against the
binding site side chains, including lysine, tyrosine, histidine,
serine, and threonine. Our studies provide a number of
practical considerations and simple methodologies that are
useful in optimizing binding peptides into covalent agents
targeting lysine, tyrosine, or histidine residues that we envision
can be particularly useful in targeting PPIs.

■ RESULTS

Synthesis of Peptide Mimetics Containing Aryl-
Sulfonyl Fluorides or Aryl-Fluoro Sulfates. To incorporate
aryl-sulfonyl fluorides or aryl-fluoro sulfates into linear peptides
we used the general schemes reported in Figure 1. The
synthesis of aryl-sulfonyl fluoride peptides was easily
accomplished using orthogonal deprotection of ivDde-
protected primary amines on the side chains of Dap, Dab,
Orn, or Lys. As the ivDde protecting group is stable in 20%
piperidine, but is cleaved with 2−4% hydrazine in
dimethylformamide (DMF), it allows the amino groups of
ivDde-protected residues to be selectively unmasked on the
solid phase without affecting the side-chain protecting groups
of other residues, facilitating subsequent site-specific mod-
ifications. Hence, after selective deprotection of these primary
amines, a subsequent reaction of the free amine with sulfonyl
fluoride benzoic acids will afford agents as reported in Figure
1A. Likewise, the reaction with bromomethyl-benzenesulfonyl
fluorides will result in agents as reported in Figure 1B. The
synthesis of aryl-fluoro sulfates followed a recently developed
approach that takes advantage of the [4-(acetylamino)phenyl]-
imidodisulfuryl difluoride (AISF)37 reagent for the insertion of
the fluoro sulfate functional group into Tyr or homo-Tyr
(Figure 1C). Alternatively, substituted or unsubstituted phenol
carboxylic acids can be introduced in the side chains of Dap,
Dab, Orn, or Lys, and subsequently the phenols can be
converted to their corresponding aryl-fluoro sulfates (Figure
1D) using the same procedure as reported in Figure 1C.
Hence, these four simple strategies can inexpensively and

effectively incorporate a variety of aryl-sulfonyl fluorides or
aryl-fluoro sulfates into peptides and peptide mimetics. When
applied to tetrapeptides of sequence Ala-X-Pro-Phe-NH2, these
strategies generated a small library of sulfonyl fluorides and
fluoro sulfates listed in Tables 1 and 2. These agents were
subsequently used to assess their reactivity with surface Lys,
Tyr, Ser, Thr, or His amino acids, using biochemical and
biophysical assays.

Targeting Lys311 of the BIR3 Domain of XIAP. In
order to assess the potential of the proposed agents in targeting
XIAP BIR3 Lys311, we prepared a number of N-methyl-Ala-X-
Pro-Phe-NH2 mimetics as listed in Table 1, which, based on
structural considerations, were predicted to juxtapose each of
the listed X electrophiles with the side chain of residue Lys311
in XIAP (Figure 2A).33 Subsequently, we characterized the

Figure 1. General schemes for the incorporation of aryl-sulfonyl fluorides (A,B) or aryl-fluoro sulfates (C,D) into peptides. Reaction conditions:
(a) 4% N2H2 in DMF (3 × 5 mL), rt; (b) FO2SPhCOOH, HATU, N,N-diisopropylethylamine (DIPEA), DMF, rt; (c) FO2SPhCH2Br, DIPEA,
DMF, rt; (d) AISF, DBU, tetrahydrofuran (THF), rt; (e) OHPhCOOH, HATU, DIPEA, DMF, rt.

Table 1. Displacement Assays, Thermal Shift Data, and
Chemical Stability Data for Aryl-Sulfonyl Fluorides and
Aryl-Fluoro Sulfates

aIC50 values represent dose−response curves obtained after
incubating protein and ligand for 15 min, 2 h, or 8 h at room
temperature. bThermal shift (ΔTm) data were obtained incubating
protein and ligand for 2 h at room temperature or 6 h at 37 °C.
cChemical stability (half-life) was assessed by collecting 1D 1H NMR
spectra at various times for ligands dissolved in phosphate buffer pH
7.5 at 37 °C (Figure 2C).
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Table 2. Displacement Assays, Thermal Shift Data for Aryl-Sulfonyl Fluorides and Aryl-Fluoro Sulfates Tested Against Several
XIAP BIR3 Mutants

aIC50 values represent dose−response curves obtained after incubating protein and ligand for 2 or 8 h at room temperature. bThermal shift (ΔTm)
data were obtained incubating protein and ligand for 2 h at room temperature or 6 h at 37 °C. The data reported represent the major peak observed
(see Supporting Information for individual curves). cIn this experiment, the peak corresponding to the noncovalent ΔTm is still present. dAn
additional smaller peak that corresponds to a ΔTm ∼30 °C is observed perhaps because of a covalent interaction with Lys322. eIn this experiment
the shift reported corresponds to a minor peak.

Figure 2. Covalent agents targeting XIAP BIR3 Lys311. (A) Covalent docking pose of compound 2 into the binding pocket of the BIR3 domain of
XIAP (PDB ID 2OPZ). (B) SDS-polyacrylamide gel electrophoresis (PAGE) gel electrophoresis followed by Coomassie staining of the BIR3
domain of XIAP in the absence and presence of compounds AVPF, 2, 3, and 4 incubated at different time points. For compounds AVPF, 2, and 3
the incubation was carried out at room temperature, while compound 4 was incubated at 37 °C. (C) Aqueous stability of compounds 2, 3, and 4
measured at 25 °C in 25 mM Tris buffer pH 7.5, 150 mM NaCl, and at 37 °C in 50 mM phosphate buffer pH 7.5, 150 mM NaCl. The stability has
been measured by NMR spectroscopy by measuring the decrease in peak intensity in the aromatic region of the spectrum. (D) [1H, 15N]-HSQC
spectra of the 20 μM BIR3 domain of XIAP selectively labeled with 15N-lysine (blue spectrum) in the presence of 40 μM of compound 4, recorded
at different incubation times: after 30 min (red), after 4 h (green), and after 7 h 30 min (yellow). The spectra were recorded in 25 mM Tris pH 8,
150 mM NaCl at 25 °C.
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interactions between each agent and the BIR3 domain of XIAP
using biochemical and biophysical assays. First, we used a
dissociation-enhanced lanthanide fluorescence immunoassay
(DELFIA) displacement assay platform, as we have recently
described,39 in which the IC50 values represented the ability of
the agents to displace the binding of the given test agent from a
biotinylated AVPI reference peptide. IC50 values were obtained
from dose response curves measured after 15 min, 2 h, or 8 h
incubation. A large increase in affinity at longer incubation
times was interpreted as a possible covalent interaction.
Subsequently, each agent was used to measure their induced
denaturation thermal shifts (ΔTm) on the BIR3 domain of
XIAP. ΔTm values were measured after different ligand/protein
incubation times. Noncovalent agents, such as AVPF or
compound 1, displayed a ΔTm < 20 °C (after 2 or 6 h
incubation), while putative covalent compounds showed
significantly larger shifts (ΔTm of >30 °C; Table 1, and Figure
S1). Finally, presumed covalent agents were verified by sodium
dodecyl sulfate (SDS) gel electrophoresis (Figure 2B) and the
rate of reactivity of the agents was assessed by collecting
samples at various incubation times. These data clearly
suggested that compounds 2, 3, and 4 formed a stable
covalent adduct with the BIR3 domain, with a reactivity order:
compound 2 > compound 3 > compound 4. Subsequently, to
assess their chemical stability, the integrity of each agent was
monitored using solution 1H 1D NMR measured over time, at
different temperatures and pH values (Figure 2C, Table 1). It
is worth noting that all agents were very stable at low pH
(Figure S2), while the benzamide-sulfonyl fluoride (compound
2) was the least stable at physiological pH = 7.2 (t1/2 ≈ 30
min). The aryl-fluoro sulfate (compound 4) and the benzyl-
sulfonyl fluoride (compound 3) presented perhaps the best
compromise between reactivity and stability in aqueous

solution at physiological pH. To further confirm that
compounds 2, 3, and 4 targeted Lys311 selectively, we
conducted SDS gel electrophoresis measurements with a single
point mutant Lys311Ala (Figure S3). Moreover, thermal shift
data with these agents and Lys311Ala revealed ΔTm values <
20 °C, also suggesting noncovalent binding (Table 2). In
addition, 2D [15N,1H] NMR analyses with a 15N-Lys labeled
BIR3 sample and compound 4 revealed time-dependent
chemical shift changes for the backbone amide of Lys311,
presumably because of the covalent bond formation with its
side chain over time (Figure 2D). These data collectively
demonstrated that compounds 2, 3, and 4 were effective Lys-
covalent agents for the BIR3 domain of XIAP targeting Lys311.

Targeting Tyr, Ser, Thr, and His Residues. In order to
assess whether any aryl-sulfonyl fluorides or aryl-fluoro sulfates
were capable to react irreversibly with other potential
nucleophilic side chains in the protein target, we used the
BIR3 domain of XIAP as a model system and prepared several
single point mutants. These mutants introduced Tyr, Ser, Thr,
or His in lieu of Lys311, and we tested each mutant against a
small library of peptides (Table 2). Hence, each agent was
tested against each mutant in the DELFIA assay after 2 and 8 h
incubation. In addition, ligand-induced thermal shift measure-
ments were collected after 2 and 6 h incubation times for each
agent against each mutant (Table 2).
Time-dependent decreases in IC50 values and concomitant

large ΔTm values (>20 °C) were interpreted as caused by
possible covalent interactions. These criteria identified aryl-
sulfonyl fluoride compounds 2, 3 (Figure 3A), and aryl-fluoro
sulfate 4 as putative covalent agents for mutant Lys311Tyr
(Table 2). In addition, compounds 2 and 3 (Figure 3B) also
exhibited potential covalent interactions with mutant Ly-
s311His and, albeit it to a much lesser extent, also Lys311Ser

Figure 3. Covalent agents targeting XIAP BIR3 Lys311Tyr and Lys311His. (A) Covalent docking pose of compound 3 into the binding pocket of
the Lys311Tyr mutant of the BIR3 domain of XIAP (PDB ID 2OPZ). (B) Covalent docking pose of compound 3 into the binding pocket of the
Lys311His mutant of the BIR3 domain of XIAP (PDB ID 2OPZ). (C) SDS-PAGE gel electrophoresis followed by Coomassie staining of the
Lys311Tyr mutant BIR3 domain of XIAP in the absence and presence of compound 3 incubated for 2 h at room temperature, and for 6 h at 37 °C.
The bottom panel reports the LC−MS spectra of the Lys311Tyr mutant BIR3 domain of XIAP in the absence (left) and presence (right) of
compound 3 incubated at room temperature. (D) SDS-PAGE gel electrophoresis followed by Coomassie staining of the Lys311His mutant BIR3
domain of XIAP in the absence and presence of compound 3 incubated for 2 h at room temperature, and for 6 h at 37 °C. The bottom panel
reports the LC−MS spectra of the Lys311His mutant BIR3 domain of XIAP in the absence (left) and presence (right) of compound 3 incubated at
37 °C.
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and Lys311Thr (Table 2, Figure S1). Interestingly, IC50 and
ΔTm values for compounds 5 and 6 did not suggest significant
covalent interactions with any of the mutants, while
compounds 7 and 8 displayed some possible covalent
interactions with wt-BIR3, with the Lys311Tyr mutant, and
with the Lys311His mutant (Table 2), indicating that proper a
juxtaposition of the electrophile with the targeting amino acid
is essential for the reaction. Subsequently, to further confirm
possible covalent interactions with the Lys311Tyr and with
Lys311His mutants, respectively, SDS gel electrophoresis and
mass spectrometry analyses were conducted (Figure 3C,D).
Excluding compound 2 that seemed particularly unstable in
aqueous buffer (Figure 1), these data concluded that benzyl-
sulfonyl fluorides (such as compound 3) can be effective in
targeting Lys, Tyr, or His residues, while aryl-fluoro sulfates
(such as compounds 4, 7, 8) can target Lys, Tyr, and perhaps
also His residues (albeit at a slower rate). Hence, these
electrophiles could be properly incorporated into peptides
(Figure 1) to target Lys, Tyr, or His residues.
Plasma Stability, Cell Permeability, and Cellular

Activity of Covalent Agents. While in vitro studies with
purified target indicated that electrophiles in the compounds 3
and 4 could be effective Lys-, Tyr-, or His-covalent agents,
their use as pharmacological tools or future therapeutics
requires the agents to be stable not only in buffer (our studies
suggested that compound 2 was deemed too unstable in
aqueous buffer to be used in further studies), but also in
plasma, and to be cell permeable. Hence, to further make these
critical determinations we first synthesized compounds 9, 10,
and 11 listed in Table 3, in which the Phe residue in the Ala-X-
Pro-Phe-NH2 peptides was replaced by amino-indanes, that
together with the methylation of the N-terminal Ala, increased

drug-likeness and cell-permeability of the peptide mimetics.
Table 3 reports their structures together with the IC50 values
against the XIAP BIR3 domain after 2 and 8 h incubation, as
well as thermal shift values measured after 2 and 6 h incubation
times. As a reference, the antagonists LCL161 (Novartis) and
GDC0152 (Genentech)15 were also tested.
All tested agents were relatively plasma stable, with the

exception of compound 11 that was completely degraded in
plasma after 40 min (Table 3). Next, to assess cell permeability
of these agents, we obtained a cell line that is stably transfected
with HA-BIR3 of XIAP.40 Exposure of compounds to this cell
line, followed by western blot analyses of cell lysates using an
anti-HA antibody was used to assess cell permeability of our
agents. This could be appreciated by a small shift in molecular
weight (band shift), similar to what we observed in the SDS gel
electrophoresis in vitro. However, we noticed that the
unbound BIR3 domain of XIAP is fairly unstable at 37 °C,
as revealed by 1D 1H NMR measurements (Figure 4A), while
the domain gets stabilized by ligand binding, as indicated by
both 1D 1H NMR (Figure 4A) and by our thermal shift studies
(Tables 1−3). Hence, exposing the HA-BIR3 expressing the
HEK293 cell line to cell permeable compound GDC0152
resulted in the stabilization of the BIR3 domain that caused an
increase in band intensity in the western blot. On the contrary,
exposure of cells to cell impermeable AVPF did not result in a
visible band. Similarly, compounds 9, 10, and 11 stabilized
HA-BIR3 in this experiment and also induced an appreciable
gel shift, both consistent with the cell permeability of the
agents and covalent adduct formation (Figure 4B).
To further assess if these surrogate cell permeability data

translated into cellular efficacy, we tested the ability of these
agents to induce caspase-3 activation in the ovarian cancer cell
line SKOV3 that has been reported previously to be very
sensitive to XIAP antagonists (Table 3, Figure 4C).41 EC50
values obtained with various agents are reported in Table 3 and
parallel to the in vitro IC50 values, as well as the plasma
stability of the compounds.

■ DISCUSSION AND CONCLUSIONS
While targeted therapy strategies have been increasingly more
successful in bringing new agents to the clinic, the design of
effective therapeutic targeting PPIs is lagging behind despite
the fact that PPIs represent potentially a large class of viable
therapeutic targets. While several potentially effective strategies
to tackle PPIs have emerged in the past decade, including
fragment-, structure-, and/or NMR-based approaches, phage
display, and DNA encoded libraries,42−44 these strategies still
struggle to effectively optimize initial binding agents into
potent, selective, and cell permeable ligands for continued
target validation and lead optimizations. Recent years have also
witnessed a resurgence of targeted covalent therapeutics with
several newly FDA approved covalent agents targeting surface
Cys residues.45−47 More recently, Lys covalent agents have also
emerged, using a variety of possible warheads.35 Few reports
have appeared that successfully demonstrate covalent targeting
of Lys residues in active sites of proteins by the introduction of
appropriately placed electrophiles on an existing ligand.35,48,49

Most excitingly, similar studies revealed that it is possible to
target surface Lys residues located at protein−protein
interfaces, including the recent examples of a covalent Mcl-1
inhibitor,50 a covalent inhibitor of MDM2/P53 interactions,51

and our recent studies targeting Lys311 of XIAP.33 Here, we
further investigated the use of aryl-sulfonyl fluorides or aryl-

Table 3. Displacement Assays, Thermal Shift Data, and
Plasma Stability and Cellular Activity of Aryl-Sulfonyl
Fluorides and Aryl-Fluoro Sulfates

aIC50 values were calculated from dose−response curves obtained
after incubating the proteins and ligands for 2 or 8 h at room
temperature. bEC50 values estimated form the apoptosis assay
measured after 24 h (top value) or 48 h (bottom value; Figure
4C). cPlasma stability refers to the measurements of the compounds’
integrity (LC−MS method) at various time points after incubation
with mouse plasma. dThermal shift (ΔTm) data were obtained
incubating the proteins and ligands for 2 h at room temperature or 6 h
at 37 °C. The data reported represent the major peak observed (see
Supporting Information for individual curves).
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fluoro sulfates as possible warheads to target not only Lys but
also other surface amino acids, such as Tyr, His, Ser, and Thr.
As mentioned, we have recently reported the first XIAP
covalent agent incorporating a benzamide-sulfonyl fluoride in
lieu of the valine residue in its tetrapeptide ligand of sequence
Ala-Val-Pro-Phe-NH2.

33 Because simple N-methylation of the
amino terminal residue and replacements of C-terminal Phe in
the tetrapeptide with a variety of aryl compounds led to clinical
candidates, one could envision that simple strategies aimed at
identifying short linear binding peptides (perhaps using the
HTS by a NMR approach, phage display, or guided by
structural studies of the PPI as in the case of the XIAP/SMAC
complex), followed by peptide derivatization with proper
electrophiles to target Lys, Tyr, His, Ser, or Thr, could provide
an effective platform for the design of therapeutically viable
covalent PPIs antagonists. Hence, to extend previous findings
on targeting surface Cys residues located in proximity of
binding sites in PPIs,31,32 we sought here to investigate
whether aryl-sulfonyl fluorides or aryl-fluoro sulfates, which
could easily be incorporated into binding peptides (Figure 1)
could be deployed to target Lys, Tyr, His, Ser, or Thr. In
addition to measuring their basic pharmacological properties to
evaluate their suitability as chemical probes or even
therapeutics.
Our recent NMR and enthalpy measurements with Ala-X-

Pro-Phe-NH2 agents indicated that compound 1 with X = L-
Phe(p-sulfone) could form a salt bridge with Lys311,39 and
that when X = L-dap(benzamide-p-sulfonyl fluoride) the
resulting agent (compound 2) is effective in covalently
targeting Lys311.33 Hence, we further incorporated L-dap-
(benzyl-p-sulfonyl fluoride) (compound 3) and, aided by a
simple scheme reported in Figure 1C, L-Phe(p-fluoro sulfate)
(compound 4) was also obtained. Additional compounds
incorporating chains of various lengths between the backbone
and the electrophiles (compounds 5−8) were also obtained
using the general schemes of Figure 1 and are reported in
Table 2. Each agent was subsequently tested against the wt-
BIR3 domain of XIAP (hence probing their interaction with

Lys311; Figure 2) and against a variety of Lys311 mutants,
including Lys311Ala, Lys311Tyr, Lys311His, Lys311Ser, and
Lys311Thr (Table 2). Two general measurements were
conducted: first, the IC50 values using a displacement DELFIA
assay were measured after incubation of the ligand and protein
at various times (Tables 1 and 2); second, thermal shift data
with each ligand/protein pair was obtained, and also measured
after different incubation times (Tables 1 and 2). Ligands/
protein complexes that displayed a time-dependent decrease in
the IC50 values and concomitantly increased ΔTm values (>20
°C), compared to those observed with the reference
noncovalent agents, were interpreted as potential covalent
complexes. The isolated BIR3 domain of XIAP in its unbound
form is relatively unstable at 37 °C. Indeed, thermal shift
measurements indicated a relatively large effect by noncovalent
agents such as the peptide AVPF (ΔTm = 17 °C), the
Genentech agent GDG0152 (ΔTm = 19.5 °C), or the Novartis
clinical candidate (https://clinicaltrials.gov/ct2/show/
NCT01934634) LCL161 (ΔTm = 18.5 °C), after 6 h
incubation (Tables 1 and 3). In agreement with the covalent
nature of the interactions provided by compounds 2, 3, and 4
against wt-BIR3, their thermal shifts were dramatically larger
under the same experimental conditions (ΔTm = 37, 35, and
33 °C, respectively, after 6 h incubation; Table 1).
Interestingly, the thermal shifts for the aryl-fluoro sulfate
compound 4 after 2 h incubation are closer to those of
noncovalent agents, suggesting a slower reaction rate. These
observations were further corroborated by SDS gel electro-
phoresis collected on compounds 2, 3, and 4 in the complex
with wt-BIR3 after various incubation times (Figure 2B).
These studies indicated the relative Lys-reactivity order:
benzamide-sulfonyl fluoride (compound 2) > benzyl-sulfonyl
fluoride (compound 3) > aryl-fluoro sulfate (compound 4),
that paralleled the relative aqueous reactivity of these agents
(Figure 2C). ΔTm values with these agents were also collected
against the Lys311Ala mutant (Table 2). It is worth noting that
a minor peak in the thermal shift spectra of the Lys311Ala in
the complex with compounds 3, after 6 h incubation, is visible

Figure 4. Cellular permeability and efficacy of selected agents. (A) 1H-1D NMR spectra of the amide/aromatic region of the 20 μM BIR3 domain
of XIAP in the apo form (top panel), in the presence of 40 μM of AVPF (middle panel), or in the presence of 40 μM of GDC0152 (bottom panel).
The blue spectra were collected at time 0, the red the spectra were collected after 1 h at 37 °C for the apo protein, and after 3 h at 37 °C in the
presence of AVPF, or GDC0152. (B) Immunoblot of HEK293 expressing the HA-tagged BIR3 domain of XIAP. The lysates were collected from
the cells that were exposed for 6 h to 10 μM of the indicated compounds. (C) SKOV3 cells were exposed to different compounds at various
concentrations. Subsequently, the plate was imaged by the IncuCyte S3 live-cell analysis system and images were collected every 2 h for 48 h and
data were analyzed using the IncuCyte S3 basic analyzer. The histogram represents data collected at 48 h.
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corresponding to a ΔTm of about 29 °C (Figure S1). It is
possible that at longer incubation times, these agents could
reach a nearby Lys322 (Figure 1A). This is consistent with a
SDS gel shift assay conducted with agents 2, 3 and 4,
performed against a Lys311Ala mutant, where a broader band
is observed only for compound 3 (Figure S4). Albeit more
speculative, 2D [15N,1H] HSQC NMR data (using 15N-Lys
selectively labeled the wt-BIR3 domain of XIAP) was also
consistent with covalent interactions, with covalent agents
inducing time-dependent chemical shift perturbations of the
backbone amide of Lys311 compared to noncovalent agents
(Figure 2D).
Analysis of IC50 and ΔTm values with the compound library

tested against the various mutants revealed that compounds 2,
3, and 4 could not only be putative covalent agents for Lys311,
but also Tyr311, or His 311. SDS gel collected with the
Lys311Tyr mutant after exposure to putative covalent
compound 3 (Table 2) revealed that this agent forms
potentially a covalent adduct with this mutant, as also
confirmed by mass spectrometry analyses (Figure 3A,B).
Likewise, data with agents 2, 3, 7, and 8 (Table 2) suggested a
possible covalent interaction with the mutant Lys311His, as
corroborated by the SDS gel shift and mass spectrometry data
with compound 3 (Figure 3D), albeit the reactions required
longer incubation times to be completed, as compared to those
observed with Lys and Tyr. Hence, collectively these data
identified compounds 2, 3, 4, 7, and 8 as putative Lys/Tyr/His
covalent agents.
To further ascertain if these agents could be used as

pharmacological tools and eventually be moved along into lead
optimization studies, we first probed their aqueous stability at
various temperatures and pH values. Not surprisingly, all the
agents were very stable at low pH, while various degrees of
instability were observed at the physiological pH, with
benzamide-sulfonyl fluoride (compound 2) being the least
stable, aryl-fluoro sulfate (compound 4) being the most stable
(Table 1), and benzyl-sulfonyl fluoride (compound 3)
displaying intermediate stability. These chemical stability
data also paralleled the rate of reactivity of the agents for
Lys311 (Figure 2B). On balance, it seemed that aryl-fluoro
sulfates and benzyl-sulfonyl fluorides may possess the best
compromise between aqueous stability and reactivity with the
binding site nucleophiles among the agents tested. To further
investigate plasma stability and cell permeability of these
agents, we further incorporated Phe mimetics39 into the N-Me-
Ala-X-Pro-Phe-NH2 agents 3 and 4, resulting in agents 9, 10,
and 11 (Table 3), and compared their pharmacological
properties with LCL161 and GDC0152. Not surprisingly, all
the tested agents were found to be plasma stable under the
same experimental conditions, with the notable exception of
11 that still displayed a relatively short plasma half-life (Table
3). Next, we obtained an HA tagged BIR3 construct and
transfected HEK293 cells. The isolated BIR3 domain of XIAP,
in its unbound form, seemed particularly unstable at 37 °C as
revealed by our thermal shift studies (Tables 1−3) and by 1D
1H NMR (Figure 4A). In agreement, western blot analysis
using anti-HA antibody of HEK293 cell lysates that express
HA-BIR3, revealed only a fainted band (if any) for HA.
Exposing the cells to GDC0152, but not to Ala-Val-Pro-Phe-
NH2 which is not cell permeable, resulted in the stabilization of
the BIR3 domain (again, as also observed in vitro by NMR and
by thermal shift assays) as it is manifested in an intense band in
the western blot (Figure 4B). Similarly, exposing cells to

covalent agents 9, 10, and 11, resulted in intense bands that are
also appreciably shifted, suggesting that each agent was cell
permeable and covalently interacted with the target in cell.
Finally, to further corroborate these data, we preliminarily
assessed the cellular efficacy of these agents by measuring their
ability to induce cell apoptosis in the ovarian cancer cell line
SKOV3 that has been reported to be very sensitive to XIAP
antagonists (Table 3, Figure 4C).41 Using the IncuCyte
Cytotox Green apoptosis assay with different compounds in
Table 3 at various concentrations, we observed nanomolar
efficacy with all the agents, with the EC50 values that all in all
paralleled the observed in vitro data. For example, compound
11, despite being the most active in vitro, is also the least stable
in plasma, and thus was less active in cell. Compound 9 was
less potent in vitro and in cell, while compound 10 seemed to
possess the best properties in terms of affinity for XIAP and
plasma stability, resulting in the most efficacious agent (Table
3, Figure 4C). More extensive studies with a battery of cell
lines are ongoing and fall outside the scope of this manuscript.
Hence, the full potential of these agents as therapeutics in
oncology and for other indications such as pulmonary
fibrosis,52 has yet to be fully determined.
In conclusion, taken together, our studies identified possible

simple avenues to derive covalent ligands to PPIs starting from
short binding peptides of modest affinity (single digit
micromolar). These initial binding peptides could be obtained
by the structural studies of the binding partners, by phage
display, or by other approaches such as our recently proposed
HTS by NMR, for example.53−58 Structural studies of the
identified peptide in the complex with the target could suggest
possible derivatizations with benzyl-sulfonyl fluorides or aryl-
fluoro sulfates to reach Lys, Tyr, or His, or Lys of Tyr,
respectively.59 Given the ease of synthesis in incorporating
these electrophiles into short peptides, absence of structural
studies, one can also envision introducing these residues
systematically at various positions of a binding peptide and use
simple follow up characterizations, including thermal shift
measurements, and/or SDS gel electrophoresis, and/or mass
spectrometry, and/or IC50 measurements after various
incubation times, to investigate if any of the agents can form
a covalent adduct with the target.37 However, caution must be
taken when incorporating aryl-sulfonyl fluorides, though it may
be appealing to use these electrophiles to target both Lys33 or
Tyr,60,61 as these are too unstable to be used as chemical
probes, let alone for therapeutics in current forms. Benzamide
sulfonyl fluorides were very unstable in buffer, hence our data
suggest that these electrophiles should be avoided. The benzyl-
sulfonyl fluorides seemed significantly more stable in buffer,
but it still was fairly unstable in plasma. Perhaps the
introduction of deactivating groups in the phenyl ring could
ameliorate this problem. Therefore, all in all, the aryl-fluoro
sulfates should be preferred when targeting Lys or Tyr
residues, and potentially also His residues, given their
increased stability in buffer and plasma. Hence, even in the
absence of structural information on the complex, a systematic
approach introducing aryl-fluoro sulfates, reported in Figure
1C,D, on a short binding peptide seems entirely feasible,
entailing the synthesis of a few dozen agents. However,
available SAR studies and other considerations can also be
used to narrow down the number of residues where the
electrophiles could be placed. For example, binding peptides
containing glutamic or aspartic residues (or other residues for
which there are reasons to believe that they are solvent-
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exposed) are likely the best candidates for substitution with
electrophiles targeting Lys. Likewise, Tyr or Phe residues in
binding peptides could be directly replaced with aryl-fluoro
sulfates in an attempt to reach possible binding site Tyr or His
residues in their proximity. Our data also suggest that
measurements at various times of 2D [15N,1H] NMR
correlation spectra of 15N-Lys-specific labeled spectra of a
given protein target could be used as a rapid screening method
to test the libraries of aryl-fluoro sulfate containing peptides or
peptide mimetics, perhaps arranged in a positional scanning
fashion.53−58 This approach could be easily adapted to detect
Tyr, via 13C labeling, or His, via direct NMR measurements of
their side chains,56 and we are currently investigating these
possible applications.
With the resurgence and the success of covalent drugs, and

the paucity of effective PPI antagonists in the clinic, we are
confident that our studies provide novel and practical insights
into the optimization and derivation of effective covalent
peptides that widen the target space from cysteinome45−47 to
other more abundant residues such as Lys, Tyr, or even His.
Applying them to PPIs, we are confident that such covalent
agents could represent significant stepping-stones in the
development of novel pharmacological tools or even drug
candidates against such a large class of therapeutic targets.

■ EXPERIMENTAL SECTION
General Chemistry. Solvent and reagents were commercially

obtained and used without further purification. NMR spectra used to
check concentration were recorded on a Bruker AVANCE III 700
MHz. High-resolution mass spectral data were acquired on an Agilent
LC-TOF instrument. Reverse phase-high performance liquid
chromatography (RP-HPLC) purifications were performed on a
JASCO preparative system equipped with a PDA detector and a
fraction collector controlled by a ChromNAV system (JASCO) on a
Luna C18 10μ 10 × 250 mm (Phenomenex) to >95% purity. LCL161
and GDG0152 were obtained from MedChem Express. 2-Chlorotrityl
chloride and Rink amide resins were purchased from Novabiochem.
Fmoc-amino acids were purchased from Chem-Impex and Nova-
biochem. The AISF reagents obtained by Paloza Molecule. Peptides
were synthesized by using standard solid phase protocols or using
standard microwave-assisted Fmoc peptide synthesis protocols with a
Liberty Blue peptide synthesizer (CEM). For each coupling reaction,
6 equiv of Fmoc-AA, 3 equiv of DIC, and 1 equiv of OxymaPure in
4.5 mL of DMF were used. The coupling reaction was allowed to
proceed for 5 min at 90 °C. ivDde deprotection was performed using
4% N2H2 in DMF (3 × 5 mL), at room temperature. Fmoc
deprotection was performed by treating the resin-bound peptide with
20% 4-methylpiperidine in DMF (2 × 3 ml) for 3 min at 90 °C. The
peptides were cleaved from the Rink amide resin with a cleavage
cocktail containing trifluoroacetic acid (TFA)/TIS/water/phenol
(94:2:2:2) for 3 h. The cleaving solution was filtered from the resin
and evaporated under reduced pressure, and the peptides were
precipitated in Et2O, centrifuged, and dried in high vacuum. The
crude peptide was purified by preparative RP-HPLC using a Luna
C18 column (Phenomenex) and water/acetonitrile gradient (5−
100%) containing 0.1% TFA. The final compounds were charac-
terized by HRMS. Detailed experimental procedures for key
compounds are reported below.
Compound 9: 4-((S)-3-((S)-2-((2,3-Dihydro-1H-inden-2-yl)-

carbamoyl)pyrrolidin-1-yl)-2-((S)-2-(methylamino)propanamido)-
3-oxopropyl)phenyl Fluoro-Sulfate. The 2-Chlorotrityl chloride
resin was used as a solid-phase support (0.05 mmol scale), and the
previously described coupling conditions were used to obtain the
peptidic part of the agent. Aryl-fluoro sulfate incorporation was
performed on the resin, using the AISF reagent (1.2, 2.2 equiv of
DBU in THF, overnight reaction at room temperature). The
protected sequence was then cleaved from the resin using a 2%

TFA solution in DCM for 1 h, then purified by preparative RP-HPLC
using a Luna C18 column (Phenomenex) and water/acetonitrile
gradient (5−100%) containing 0.1% TFA. The purified material was
coupled with 2-aminoindane (3, 3 equiv HATU, and 5 equiv DIPEA
in DMF, overnight reaction at room temperature), then completely
deprotected using HCl 4 N in dioxane for 30 min, and finally purified
using the previous described method to obtain a white powder (12.6
mg, 42.8%). HRMS: calcd 560.2107 (M + H)+; obs 561.2179 (M +
H)+, 583.1993 (M + Na)+.

Compound 10: 4-((S)-3-((S)-2-(((R)-4-Fluoro-2,3-dihydro-1H-
inden-1-yl)carbamoyl)pyrrolidin-1-yl)-2-((S)-2-(methylamino)-
propanamido)-3-oxopropyl)phenyl Fluoro-Sulfate. The 2-Chloro-
trityl chloride resin was used as a solid-phase support (0.05 mmol
scale), and the previously described coupling conditions were used to
obtain the peptidic part of the agent. Aryl-fluoro sulfate incorporation
was performed on the resin, using AISF37 reagent (1.2, 2.2 equiv of
DBU in THF, overnight reaction at room temperature). The
protected sequence was then cleaved from the resin using a 2%
TFA solution in DCM for 1 h, then purified by preparative RP-HPLC
using a Luna C18 column (Phenomenex) and water/acetonitrile
gradient (5−100%) containing 0.1% TFA. The purified material was
coupled with 4-fluoro-1R-aminoindane (3, 3 equiv HATU and 5
equiv DIPEA in DMF, overnight reaction at room temperature), then
completely deprotected using HCl 4 N in dioxane for 30 min, and
finally purified using the previously described method to obtain a
white powder (15.3 mg, 52.9%). HRMS: calcd 578.2011 (M + H)+;
obs 601.2416 (M + Na)+.

Compound 11: 4-((((S)-3-((S)-2-(((R)-4-Fluoro-2,3-dihydro-1H-
inden-1-yl)carbamoyl)pyrrolidin-1-yl)-2-((S)-2-(methylamino)-
propanamido)-3-oxopropyl)amino)methyl)benzenesulfonyl Fluo-
ride. The 2-Chlorotrityl chloride resin was used as a solid-phase
support (0.05 mmol scale), and the previously described coupling
conditions were used to obtain the peptidic part of the agent. The
ivDde protecting group was removed as previously described, and 4-
(bromomethyl)benzenesulfonyl fluoride (1.2, 3 equive of DIPEA in
DMF, overnight reaction at room temperature) was added to the
reactor. The protected sequence was then cleaved from the resin using
a 2% TFA solution in DCM for 1 h, then purified by preparative RP-
HPLC using a Luna C18 column (Phenomenex) and water/
acetonitrile gradient (5−100%) containing 0.1% TFA. The purified
material was coupled with 4-fluoro-1R-aminoindane (3, 3 equiv
HATU and 5 equiv DIPEA in DMF, overnight reaction at room
temperature), then completely deprotected using HCl 4 N in dioxane
for 30 min, and finally purified using the previous described method
to obtain a white powder (9.9 mg, 33.5%). HRMS: calcd 591.2327
(M + H)+; obs 592.2403 (M + H)+, 614.221 (M + Na)+.

Protein Expression and Purification. For the expression of
XIAP BIR3, pET15b vector encoding for the human BIR3 domain of
the XIAP fragment (residues 253−347) and an N-terminal His tag
was transformed into E. coli BL21(DE3) gold cells and expressed as
reported previously.33 For the expression of 15N-Lys labeled BIR3,
200 mg of U-15N Lys (Sigma) were added to 1 L of minimal media
just prior to induction with 1 mM IPTG overnight at 25 °C, as
recently published.62 Bacteria were collected and lysed by sonication
at 4 °C and proteins were purified using Ni2+ affinity chromatography.
The final buffer used for the eluted protein was finally exchanged
using a desalting column into aqueous buffer composed of 25 mM
Tris pH = 8.0, 150 mM NaCl, 50 μM Zn(Ac)2, and 1 mM
dithiothreitol (DTT). The BIR3 domain of XIAP, where the Lys311
was mutated to either Ala, Tyr, His, Ser, or Thr, was expressed in the
same way described above.

Thermal Shift Assay. Thermal shift assays for BIR3 construct/
inhibitor complexes were conducted using a BioRad CFX Connect
real-time PCR detection system, with studies on each inhibitor/
protein complex being conducted in triplicate. Incubation of the BIR3
protein with the inhibitor followed one of two parameters, either 37
°C for 6 h or 25 °C for 2 h. Protein/inhibitor complexes and 5000×
SYPRO Orange dye (Sigma) were diluted using reaction buffer, 50
mM Tris pH 8.0, 150 mM NaCl, and 50 μM zinc acetate, to obtain
final concentrations of 5 μM BIR3, 10 μM inhibitor, and 60× SYPRO
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Orange. Sample plates were heated from 10 to 95 °C with heating
increments of 0.5 °C, over 30 min. Fluorescence intensity was
measured within the excitation/emission ranges 470−505/540−700
nm.
Gel Electrophoresis. 10 μM of each protein were incubated at

various times with 20 μM of compounds in 25 mM Tris at pH 8, 150
mM NaCl, 50 μM zinc acetate, and 1 mM DTT buffer. The samples
were subjected to gel electrophoresis with SDS-PAGE gel using the
NuPAGE 12% bis−tris mini gels (Life Technologies), and MES as
running buffer. The gels were subsequently stained with SimplyBlue
SafeStain (Life Technologies) according to the manufacture’s
protocol.
Immunoblot Study. The HA-XIAP-BIR3 plasmid was a gift from

Dr. Colin Duckett (Addgene plasmid #25689). One million HEK293
cells were plated in 6-well plates and left to attach overnight. The
following day, the cells were transfected with 1 μg of the HA-XIAP-
BIR3 plasmid using Lipofectamine 2000 (Thermo Fisher) in
complete Dulbecco’s modified Eagle medium (DMEM) media. 18
h post-transfection, the media was replaced with serum-free DMEM
containing 10 μM of compounds [1% of dimethyl sulfoxide
(DMSO)] and incubated for an additional 6 h. Finally, the cells
were lysed with lysis buffer [20 mM Tris, pH 7.4, 120 mM NaCl, 1%
Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1% IGEPAL, 5
mM ethylenediaminetetraacetic acid (EDTA)] supplemented with
EDTA-free protease inhibitor cocktail and PhosSTOP (Sigma-
Aldrich) for 10 min on cold ice. Lysates were centrifuged and
supernatants were collected. The protein content was quantified and
the samples were prepared using a NuPAGE antioxidant and LDS
sample buffer (Thermo Fisher) and heated for 10 min at 70 °C. Each
sample containing 10 μg of proteins were loaded into 12% NuPAGE
bis−tris precast gels and transferred to PVDF membranes. The
membranes were blocked with 5% milk in TBS and 0.1% Tween
(TBST) and incubated with anti-HA (Y-11, sc-805, Santa Cruz
Biotechnology) overnight at 4 °C. Next day, the membrane was
washed with TBST and incubated with goat antirabbit HRP
secondary antibodies. The antigen−antibody complexes were
visualized using a Clarity Western ECL kit (BIO-RAD). The
membrane was stripped, and the western blot was repeated using a
β-actin primary antibody (sc-69879, Santa Cruz Biotechnology) to
check for loading.
Apoptosis Assay. Human ovarian cancer cell line SKOV3 was

obtained from the American Type Culture Collection (ATCC; www.
atcc.org) and cultured according to standard mammalian tissue
culture protocols, and a sterile technique in the McCoy’s 5a modified
medium supplemented with 10% fetal bovine serum, 100 units/mL
penicillin/100 μg/mL streptomycin. The cells were plated in 96-well
plates at 1 × 104 cells/well and incubated to attach overnight. The
following day, the media was replenished with fresh media containing
IncuCyte Cytotox Green and cells were exposed to the different
compounds in Table 3 (Figure 4C) at various concentrations.
Subsequently, the plate was imaged by an IncuCyte S3 live-cell
analysis system and images were collected every 2 h for 48 h and data
were analyzed using an IncuCyte S3 basic analyzer.
Plasma Stability. Mouse plasma (GenTex: GTX73236) was

diluted to 80% with 0.05 M phosphate buffered saline (pH 7.4) at 37
°C. The reactions were initiated by the addition of the test
compounds to 1 mL of preheated plasma solution to yield a final
concentration of 200 μM (37 °C in triplicate). The samples (50 μL)
were subsequently taken at 0, 15, 30, 45, 60, 90, and 120 min and
added to 200 μL acetonitrile (4 °C) in order to deproteinize the
plasma. After vortex mixing for 1 min and centrifugation at 4 °C for
15 min at 14 000 rpm, the clear supernatants were analyzed by mass
spec analysis. The values represent the mean of three independent
experiments.
Molecular Modeling. Covalent docking of compounds in Figures

2 and 3 was obtained using Gold (Cambridge Crystallographic Data
Center; www.ccdc.cam.ac.uk) and Protein Data Bank entry 2OPZ.
The covalent models reported for compound 10 and wt-BIR3,
Lys311Tyr BIR3, and Lys311His-BIR3 were prepared from the
Protein Data Bank entry 2OPZ and modified using SYBYL-X 2.1.1

(Certara, Princeton, NJ), including energy minimizations. The table
of content graphic figure was generated using Chimera (http://www.
cgl.ucsf.edu/chimera; UCSF). The coordinates for compound 10 in
the complex with wt-BIR3 and the mutants are included as the
Supporting Information.

Dissociation-Enhanced Lanthanide Fluorescence Immuno-
assay. The assay was conducted using the same protocol as we
recently reported33 measured using a VICTOR X5 microplate reader
(PerkinElmer) with excitation and emission wavelengths of 340 and
615 nm, respectively. The final protein concentrations were 30 nM for
each XIAP BIR3 mutant and the final antibody concentrations used
were 22.2 ng/well. DELFIA assay buffer (PerkinElmer) was used to
prepare the protein, peptide, and antibody solutions, and the
incubations were done at room temperature and different times as
indicated in Tables 1−3. All the samples were normalized to 1%
DMSO and reported as % inhibition. The IC50 values were calculated
from dose−response curves by GraphPad Prism version 7 and the
reported SE was derived from replicate measurements.
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■ ABBREVIATIONS

XIAP, X-linked inhibitor of apoptosis protein; BIR, baculovirus
IAP repeat domains; cIAP1, cellular inhibitor of apoptosis
protein 1; DELFIA, dissociation-enhanced lanthanide fluo-
rescent immunoassay; DMF, dimethylformamide; ivDde, 1-
(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbutyl;
HATU, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo-
[4,5-b]pyridinium 3-oxide hexafluorophosphate; DIPEA,
N,N-diisopropylethylamine; AISF, 4-(acetylamino)phenyl]-
imidodisulfuryl difluoride; DBU, 1,8-diazabicyclo[5.4.0]-
undec-7-ene; THF, tetrahydrofuran; rt, room temperature
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