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Abstract—With reconfigurable fabrics delivering increasing performance over the years, Field-Programmable Gate Arrays (FPGAs)
are becoming an appealing solution for next-generation High-Performance Computing (HPC) systems. However, in order to gain
traction among traditional Von Neumann architectures, the optimization process of FPGA designs should be further abstracted to a
higher level. In fact, while High-Level Synthesis (HLS) already provides a handy way to write FPGA code with procedural languages,
substantial effort and expertise are still required to optimize the resulting FPGA design for the underlying hardware. To overcome this
problem, we propose a semi-automated performance optimization methodology based on a Hierarchical Roofline model for FPGAs.
System-wide and applications-specific optimizations such as off-chip memory transfer and data locality optimizations are guided by the
FPGA Roofline model whereas FPGA-specific optimizations are automatically searched by a Design Space Exploration (DSE) engine.
We demonstrate how this methodology allows to easily analyze and optimize a wide set of applications ranging from particle methods,
wavefront algorithms, and sparse arithmetic computations. In addition, we illustrate how the integrated DSE engine achieves a 14.36x
maximum speedup if compared to previous automated solutions in the literature.

Index Terms—Roofline performance model, FPGA, High-Performance Computing, Hardware Accelerator Design
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1 INTRODUCTION

THE HPC market has been historically dominated by
traditional Von Neumann architectures [1]. With tran-

sistors shrinking year after year, CPU vendors have been
able to steadily improve the performance of their products
with no programmability impact. However, recent techni-
cal challenges in the semiconductor manufacturing process
substantially slowed this trend down, flattening the single-
core performance curve. With multi-core performance scal-
ing less-than-linearly due to coherency and interconnection
issues, general-purpose processors are struggling in keeping
up the HPC performance requirements.

Modern HPC systems overcome this issue offloading the
most compute-intensive tasks of an application to dedicated
co-processors, or hardware accelerators, integrated in the
compute node. Among the hardware accelerators currently
on the market, FPGAs are becoming an appealing solution
due to their increasing performance and power efficiency
[2]. Overall, FPGAs provide a fabric of programmable
logic to be configured to a domain-specific architecture. To
overcome the prohibitive time-to-market and difficulties of
hardware programming at the hardware-description level
[3], modern HLS tools [4] allow to program an FPGA with
common high-level languages. Moreover, in order to make
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best usage of the underlying resources, HLS tools inte-
grate pragma-based optimizations to drive the software-to-
hardware translation of high-level software constructs [5].
In principle, these optimizations are essential to extract best
FPGA performance. However, the complexity of exploring
the large set of system configurations prevents non-skilled
users to achieve optimal designs [3].

When a similar problem arose for CPUs, research and
industry proposed several performance optimizations tools
to assist the development flow. Among these, the Roofline
model [6] is a visual-intuitive method that, in a single per-
formance figure, visualizes attainable system performance
and optimization strategies in terms of computation, off-
chip memory bandwidth and data locality. Because of its
intuitiveness, this model has become a confirmed method-
ology to optimize HPC applications for multi-cores [7], [8]
and GPUs [9], [10] and we believe it could substantially
improve the FPGA optimization process too. However, this
model has been originally formulated for Von Neumann
architectures where the peak performance (e.g. GFlops/s)
could be computed empirically. As this does not hold for re-
configurable architectures [11], the original Roofline model
formulation cannot be directly used for FPGAs.

For this reason, we firstly formulate an FPGA version of
the Hierarchical Roofline model [8], [9] to intuitively guide
the design optimization of high-level aspects such as off-
chip memory transfer and data locality. Then, we integrate
the FPGA Roofline model with an automated DSE engine
taking care of exploring pragma-based FPGA optimizations.
Combining these features in a Computer Aided Design
(CAD) tool, we provide a novel semi-automated FPGA
optimization process for HPC HLS applications.

After introducing the Roofline model theory (Section 2)
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and related FPGA work (Section 3), we discuss the novel
contributions of this work, which are:

• An analytical Hierarchical Roofline model formula-
tion for FPGA devices (Section 4.2).

• A compiler-based methodology to compute the
FPGA Roofline components such as peak perfor-
mance (Section 4.2.1), off-chip transfer (Section 4.2.2)
and data locality (Section 4.2.3).

• An integrated DSE engine (Section 4.3) to explore the
optimization space given by HLS pragmas.

• A comprehensive FPGA off-chip memory transfer
analysis and modeling (Section 5).

Overall, this methodology has been validated over different
HPC kernels and benchmarks achieving peak system per-
formance with a drastically low design effort (Section 6).

2 THE ROOFLINE MODEL

The Roofline model intuitively visualizes performance bot-
tlenecks and optimization guidance for a given architecture.
As shown in Figure 1, the Classical Roofline formulation
[6] models CPU performance with respect to floating-point
arithmetic and off-chip memory traffic. The maximum em-
pirical value of these components is defined as the peak
floating-point performance FP [GFlops/s] and the peak DRAM
bandwidth BW [GB/s] respectively. Defining the application
operational intensity OI [GFlops/B] as the floating-point op-
erations performed per byte of DRAM traffic, the attainable
performance can be computed as P = min(FP,BW ×OI).
The intersection of peak bandwidth and peak performance
is called ridge point. Applications with OI leftmost the ridge
point (SpMV [12], Stencil [13]) are called memory bound as
limited by the DRAM memory traffic. Applications with OI
rightmost the ridge point (LBMDH [14]) are called compute
bound as limited by the floating-point arithmetic.

The first optimization step consists of calculating or pro-
filing the operational intensity and the runtime performance
of the given application. This way, the user can understand
the current performance bottleneck and the room left for
improvement. If the code is memory bound, the user should
consider to improve the data locality of the application to
move farthest right on the operational intensity axis. Once
worked on the operational intensity, memory ceilings and
computational ceilings should be used to define an optimiza-
tion strategy. A ceiling is computed through empirical mea-
surement of the system performance on a certain suboptimal
configuration avoiding specific optimizations. Therefore, if
the user wants to achieve higher performance than a specific
ceiling, the associated optimizations should be applied.
Drawing a vertical line in correspondence of the obtained
operational intensity, the intersecting ceilings represent the
required optimizations to achieve optimal performance.

In order to include cache behavior in the performance
analysis, the Classical Roofline model has been extended
to a Hierarchical version [9], [10] breaking down the ag-
gregate bandwidth and operational intensity to each level
of cache. In principle, as the processing work remains the
same throughout the hierarchy, the data movement for
each level is computed individually and all of the resulting
models are superimposed in a single performance figure.
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Fig. 1: IBM QS20 Cell Blade [12], [13], [14] Roofline model.

Therefore, if OP is the number of operations performed
by the application, x is some level of cache, and Dx is
the data transferred by the particular level of cache x, then
the operational intensity OIx [GFlops/B] of the level x is
computed as OIx = OP/Dx. Combining OIx with the peak
bandwidth BWx for each x-th cache level, the Hierarchical
Roofline model is computed by superposition. The cache
level with performance closer to its peak is the first potential
bottleneck in the cache hierarchy.

3 RELATED WORK

One of the first works porting the Roofline model to FPGA
is proposed by De Silva et al. [11] where the authors use
an HLS tool to measure the performance of several design
optimizations and manually compute the Roofline model
by interpolation. Although this work is a fundamental con-
tribution highlighting the difficulties of building an FPGA
Roofline model, their solution hardly finds applicability in
the HPC scenario. In fact, they propose to model FPGA
performance by means of a byte-operations-per-second met-
ric. Although this metric is indeed helpful to compare
the performance of different FPGA design variants [15], it
does not enable HPC workload characterization nor cross-
architectural comparison nowadays essential in heteroge-
neous computing [16], [17]. Muralidharan et al. [18], instead,
propose an FPGA Roofline model based on the GFlops/s
performance metric that, however, as stated by the same
De Silva, is unsuitable to accurately model FPGA behavior.
Finally, De Fine Licht et al. [19] provide an FPGA Roofline
model computing the peak performance according to the
operator balance of the application, providing more accurate
results. However, despite the way these works compute the
peak performance, these models are mainly intended for
performance analysis or estimation and they provide no
direct guidance over the FPGA optimization space.

In this direction, several automated solutions have been
proposed to efficiently explore a large set of architectural
optimizations for HLS designs [20], [21], [22]. Among these,
static-analysis model-based approaches are quite promis-
ing since offering a reduced execution time. In particular,
COMBA [20] implements a guided search to explore the de-
sign space given by combining HLS-pragma optimizations.
For each explored design, it constructs a data-flow graph of
the kernel function and recursively computes resource and
performance estimations using analytical models. However,
although this approach allows to quickly find the HLS-
pragma configuration with most promising performance,
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Fig. 2: Overview of the proposed methodology.

it does not consider off-chip memory transfer nor data
locality optimizations. With memory performance growing
way lower than processing speed [23], off-chip bandwidth
analyses and optimizations would be an increasingly critical
for the future-generation systems.

For this reason, our methodology combines the Roofline
model to guide system-wide memory optimizations and a
DSE engine to explore FPGA-specific optimizations. Hence,
the user can rely on a comprehensive methodology to
iteratively analyze and optimize both memory-bound and
compute-bound applications. Conversely from other works
in the literature, we integrate novel Roofline features for
memory transfer and data-locality optimization and we
define an analytical peak Roofline performance computation
with a performance metric that can be user-defined accord-
ing to the workload characteristics to capture.

4 PROPOSED METHODOLOGY

As FPGAs-based accelerators become increasingly com-
plex, more sophisticated optimization methodologies are
required. Overall, these accelerators are composed of an
off-chip DRAM storage (such as High-Bandwidth Memory
(HBM) and/or DDR SDRAM banks) and the FPGA fabric it-
self. This fabric, in turn, is composed of a high-performance
reconfigurable-logic matrix also embedding specific DSP
blocks and additional on-chip storage also known as Block-
RAM (BRAM). While the literature mainly focuses on au-
tomatically optimizing the on-chip FPGA usage in terms
of instruction-level and thread-level parallelism assuming
the dataset stored on-chip, the large HPC memory foot-
print usually requires off-chip memory storage. Therefore,
we propose to guide global-memory optimizations through
FPGA Roofline components whereas on-chip optimizations
are automatically explored by the DSE engine. To allow
an automated analysis of C/C++ HPC applications [24],
this methodology comes as an LLVM-based analysis tool
detailed in Figure 2. The tool takes as input the target
FPGA specifications and a C/C++ algorithm enriched with
optimizing directives compliant with the Vivado HLS spec-
ifications [4]. We support optimization directives specifying
loop unrolling, loop pipelining, loop flattening, array partitioning
and global memory mapping. Similarly to commercial HLS
tools [4], we require compile-time known loop bounds to
allow a static performance analysis.

As a first step, our tool compiles the C/C++ input code
into the LLVM Intermediate Representation (IR) then stat-
ically analyzes it to provide an initial performance and re-
source estimation. The performance is estimated by schedul-
ing the kernel function and computing the latency of the
critical path whereas the resource usage is estimated consid-
ering the resource utilization of the scheduled operators. In

order to support this phase, our methodology features a pro-
filing library that contains the estimations of performance
(latency, timing) and resource usage (BRAM, DSP, FF and
LUT) reported by Vivado HLS for operations synthesized
at different frequencies. In the next step, the workflow
automatically generates the Roofline model analysis where
performance bounds, performance ceilings, locality walls,
operational intensity and estimated performance of the cur-
rent design are visualized. At this point, the user can either
restructure the code and overcome any memory or locality
bottleneck identified by the Roofline analysis or proceed
with the automated DSE of optimization directives. Once
executed, the DSE plots the most promising results directly
on the Roofline model. In this way, the user can exploit
the Roofline analysis to individuate a suboptimal DSE ex-
ploration and use the Roofline components to investigate
the causes preventing peak performance achievements. In
the rest of the Section we detail performance estimation
(Section 4.1), FPGA Roofline generation (Section 4.2) and
DSE generation (Section 4.3) of an HLS application.

4.1 Performance And Resource Estimation

The performance and resource usage of a given design are
estimated directly on the LLVM IR for a reduced execution
time. A preprocessing phase optimizes the IR with HLS-
specific passes for high estimation accuracy. In particular,
after running a base -O1 recipe, we run the following custom
passes: function versioning, loop unrolling, tree balancing
of associative operators, propagation of constant memory
accesses, advanced range analysis for types manipulation,
instruction redundancy elimination and resource mapping
for multiply-add operations. We then run selected built-
in LLVM Passes such as loop-rotate, simplifycfg, instcombine,
GVN and heuristic inline proven beneficial for HLS [25], [26].

For a given kernel, we compute its latency and resource
usage executing a scheduling simulation of each LLVM basic
block and aggregating the result according to the kernel
data-flow graph. In case of loops, the resulting latency
depends on whether the loop is pipelined. If no pipelining
is applied, the loop latency is computed as the product of
the iteration latency IL and the number of iterations N .
For pipelined loops, instead, the loop latency is computed
as IL + II · (N − 1) where II is the initiation interval
of the loop. In order to speedup the result generation, we
approximate the II as the minimum initiation interval [27]
without running time-consuming modulo scheduling algo-
rithms [28]. The latency of a single basic block is computed
with a custom Resource-Constrained List-Based Scheduler in-
tegrating instruction chaining and resource sharing. The
algorithm assumes all operations unconstrained except from
memory accesses which are regulated by partition queues.
As such, all local and global memory accesses to a single
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array partition are inserted in priority queues scheduling a
restricted amount of accesses for each cycle (e.g. 2 concur-
rent accesses/cycle for BRAM or 1 concurrent access/cycle
for DRAM/HBM). Each memory access is assigned to a
partition queue according to its base address and access
pattern (found via llvm::ScalarEvolution) and by the partition
strategies applied to the base vector. During the scheduling,
statistics are collected and forwarded to the FPGA Roofline
generator and DSE controller described next.

4.2 Automated Roofline Model analysis

This Section discusses how we adapt the Classical Roofline
model [6] to FPGAs, expand it to a hierarchical version [9],
[10] and automatically compute it starting from a given
algorithm and target device. The Classical Roofline model
computes both the peak bandwidth and the peak perfor-
mance only considering the target architecture. However,
when targeting FPGA devices, it is not accurate to provide a
peak performance independent from the target computation
to accelerate [11]. In fact, different operations have a differ-
ent resource consumption. Hence, the number and types of
processing elements that can be configured in parallel, and
so the peak performance, strongly depends on the opera-
tions to perform. For this reason, we propose a methodology
to compute the peak performance that accounts both for the
considered application and the target FPGA.

4.2.1 Peak Performance

We compute the peak performance considering an ideal
hardware implementation of the algorithmic behavior then
rescaled to fit the device characteristics. This ideal imple-
mentation assumes no data dependencies across operations,
no resource constraints, full thread-level parallelism and
full instruction-level parallelism. In this way, the ideal im-
plementation assumes to instantiate a dedicated hardware
operator for each runtime occurrence oop of a certain op-
eration op in the LLVM IR. The runtime occurrences oop
are computed through static code analysis considering the
scope of the operation op, the loop nest it resides in and the
function context in the callgraph. However, there are some
spurious LLVM operations that should not be counted when
computing the peak performance. For example, the LLVM
IR contains operators implementing control logic needed by
loops to increment the induction variables at each iteration.
If this logic implements a behavior known at compile time,
it is completely constant propagated while fully unrolling
loops, hence introducing inaccuracy in the peak perfor-
mance computation. Thus, we compute the peak perfor-
mance considering the restricted setOP of “algorithmically-
useful” unroll-invariant operators in the LLVM IR. For each
operation (e.g., a floating-point sum), we associate a corre-
sponding operator (e.g., a floating-point adder) that is phys-
ically implemented on the FPGA. We consider the operators
as fully pipelined and working at the target clock frequency
f . Hence, at each clock cycle, an operator can produce
a valid result. Ideally, an implementation with maximum
performance on FPGA would require to instantiate each
operator as many times as the corresponding operations

count oop. Such implementation requires cr resources for
each resource type r ∈ R = {BRAM,DSP, FF,LUT}:

cr =
∑

op∈OP

oop × uop,r (1)

where uop,r is the amount of resources of type r ∈ R
required by the operator op ∈ OP , which is provided by the
profiling library. Most likely, the required resources would
largely exceed the FPGA availability so we rescale the ideal
hardware implementation to a feasible one. We compute
a scale factor to take into account the amount of resource
reduction needed to fit within the target FPGA:

SF = max
r∈R

cr
avr

(2)

where avr is the amount of resources of type r ∈ R available
on the FPGA. The actual number of operators iop of type
op ∈ OP implemented in the design is scaled by a factor
SF compared to the ideal implementation:

iop =
oop
SF

(3)

and the peak performance bound (in terms of total number
of operations per second) is computed as:

P =
∑

op∈OP

iop × f (4)

This formula considers that each operator can produce a
useful result every clock cycle (pipelined operators) and that
the operators are never idle (no data dependencies). Finally,
we empirically consider as peak performance the 80% of P
due to routing congestion and timing closure issues [29].

As the total number of operations per second might
not provide an accurate performance indicator for HPC
workloads, we allow to select a custom performance metric
specifying a restricted set of operators OPres to be consid-
ered for performance counting. For example, the user can
express the result in terms of GFlops/s just restricting the set
of operators to the floating-point entities. We additionally
allow to specify the performance in terms of generated results
per second by inserting a special directive in the scope of the
source code where the results are generated. This directive
is processed as a mock instruction with null resource usage
and ores runtime occurrences that, replacing OP = {ores}
in Equation (3) and (4), provides a performance of

P =
ores
SF
× f. (5)

4.2.2 Off-chip memory bandwidth
Modern FPGA-based architectures integrate both DDR and
HBM memories accessible via AXI-based controllers as de-
tailed in Section 5. For each argument of the kernel function,
the developer can create an AXI-based memory interface
connected to a single DDR or HBM bank. Although this
hybrid solution allows to combine the high capacity of DDR
and high bandwidth of HBM, their different performance
responses require a more complex performance analysis
and optimization. For memory-bound applications, break-
ing down the off-chip transfer with respect to each memory
bank would enable a more intuitive analysis. However,
since complex applications can have a large number of
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arguments, allowing a selective breakdown is essential to
keep the analysis clear. Thus, we firstly visualize the whole
aggregate bandwidth and its related operational intensity
computed with respect to the whole off-chip data transfer.
Then, we allow the user to selectively break it down and
analyse bundles of banks independently.

Supposing we are analysing an application with A =
{arg0, arg1, ...} arguments. For each memory bank banki
serving a set of arguments Ai, we characterize its off-chip
memory transfer via analytical models (Section 5). These
memory models abstract the underlying memory subsystem
through a set of parameters that can be extracted from
the design configuration and source code. We consider the
peak bandwidth as the maximum sustainable bandwidth
obtainable from the bank. However, there are cases where
this bare information is not informative enough. In fact,
in case a bank does not reach the peak bandwidth, it is
unclear whether it is caused by a suboptimal memory con-
figuration or a poor memory access pattern. For this reason,
we introduce the peak configuration bandwidth and memory
ceilings. The peak configuration bandwidth (Section 5.1)
represents the attainable peak bandwidth with respect to
the interface bitwidth and design frequency. In case of
suboptimal configuration, the developer should consider,
for example, to implement optimizations such as memory
access coalescing or data reshaping to maximize memory
port usage and increase attainable performance. The mem-
ory ceilings (Section 5.3), instead, represent the achievable
bandwidth of common access patterns such as random
access or data-dependent access. The user can exploit these
ceilings as a performance target to eventually understand
if the system needs further interface tuning. For example,
increasing the FIFO size storing the requests of an argument
performing random access leads to peak bandwidth but
it comes with certain area requirements to be considered.
In the same way, increasing the memory concurrency of a
bank improves data-dependent access performance but it
introduces a banking problem to be considered. Looking at
these ceilings, the user can assess whether the tuning would
bring to actual bandwidth improvements or it would be
overshadowed by other major bottlenecks. If the user wants
to visualize a set of banks as an aggregate entity, the single
Roofline components are summed up.

4.2.3 Operational intensity and locality walls
The operational intensity measures the work done per off-
chip transferred byte. In our model, the work done is
expressed by Equation (5) whereas the off-chip transfer
is computed per bank as just illustrated. Therefore, the
operational intensity of a certain banki is

OIbanki
=

∑
op∈OPres

oop
tbbanki

(6)

where tbbanki
is the total amount of bytes accessed for bank

i. If the resulting operational intensity is leftmost the ridge
point, the user may consider to optimize the data locality of
the considered channel. In case the user wants to aggregate
different banks in a group G, the aggregate operational
intensity would be computed as

OIG =

∑
op∈OPres

oop∑
banki∈G tbbanki

(7)

def run dse ( k e r n e l i r )
opt s tack = <empty>
loop info = i n i t i a l i z e l o o p i n f o ( k e r n e l i r )
opt step = ” loop ”
do

i t e r a t e = False
o p t i r = i n s e r t o p t d i r e c t i v e s ( k e r n e l i r , opt s tack )
s t a t s = a n a l y z e i r ( o p t i r )
i f s t a t s . design area > device area

( las t opt loop , prev opt ) = opt s tack . pop ( )
loop info [ l a s t o p t l o o p ] . opt = prev opt
loop info [ l a s t o p t l o o p ] . fu l ly opt imized = True
i t e r a t e = True

e l s e
i f opt step == ” loop ”

loop = s e l e c t l o o p t o o p t i m i z e ( loop info , s t a t s )
i f loop != None

opt s tack . push ( ( loop , loop info [ loop ] . opt ) )
loop info [ loop ] . opt = s e l e c t o p t i m i z a t i o n ( loop )
i t e r a t e = True
opt step = ” array ”

e l s e
l a s t l o o p = opt s tack . g e t l a s t ( )
foreach array in l a s t l o o p . arrays

array . opt = p a r t i t i o n s t r a t e g y ( array , s t a t s )
i t e r a t e = True
opt step = ” loop ”

while ( i t e r a t e )
r e turn e x t r a c t o p t i m i z a t i o n s ( opt s tack )

Algorithm 1: Design Space Exploration policy

Whereas multicore and GPU integrate cache managers
to automatically reduce off-chip memory traffic, FPGAs
leave the data locality optimization to the user. In order to
visualize the locality requirement of each loop and provide
an optimization guidance, we introduce the locality walls.
These walls are vertical lines on the Roofline model rep-
resenting the impact on operational intensity of different
cache strategies applied to the considered argument argi.
The operational intensity of a configuration is estimated
simulating the effect of a scratchpad cache placed at a cer-
tain hierarchy of the loop nest and caching all the accesses
to argi performed by inner loops. In particular, the total
amount of bytes accessed by a loop and the cache size
needed to store the temporary data is statically estimated
combining llvm::ScalarEvolution and llvm::LoopInfo analysis
results. In this way, the user has a clear visualization on
which strategy is required to move the operational intensity
into the compute bound area.

4.3 Design Space Exploration
The design space given by architectural optimizations tar-
geting loops or arrays is generally too large to be ex-
haustively pictured on the FPGA Roofline. Therefore, our
approach automatically explores these designs with a DSE
engine and reports on the Roofline only the most promising
ones. As detailed in Alg. 1, the several design configurations
are explored in an iterative way estimating, by means of
the approach described in Section 4.1, the performance
provided by a certain set of loop optimizations so that
the next array-partitioning optimizations can be selected
accordingly. Throughout the iterations, the directive config-
urations are saved in a stack, so that, if a given configuration
is not feasible due to resource constraints, the corresponding
loop that led to exceed the available resources is marked as
fully optimized and is not considered for subsequent opti-
mizations. Then, the exploration backtracks to the previous
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feasible configuration and continues to search for other
optimization opportunities on the other loops within the
code. Each iteration (1) inserts the optimization directives in
the IR to be analyzed, (2) estimates latency and area of the
current configuration, (3) selects the optimization to apply
in the next iteration. The choice of the next configuration to
investigate is performed by a controller that alternates loop
optimizations (via loop unrolling, pipelining and flattening)
and local memory optimizations (via array partitioning). For
the loop optimizations, at each step, we recursively visit the
loop with higher latency contained in the function body or
loop nest until an innermost loop l is identified. If loop l is
not already pipelined, we attempt to pipeline it first since
pipelining a loop does not increase resource usage as much
as the unrolling of the same, keeping the configuration
feasible and faster to be analyzed. However, if l is already
pipelined, the DSE tries to achieve higher performance
by further unrolling the loop. Every subsequent unrolling
optimization of a loop l is done by selecting the next higher
unrolling factor that divides the loop trip count.

After every loop optimization, a global memory opti-
mization follows. Indeed, after pipelining or unrolling a
loop, performance might now be constrained by the number
of available BRAM ports. Within this step, for each array
a in the function and for each dimension d of array a,
we collect the number k of distinct offsets used to access
dimension d. Then, we partition dimension d by a factor k.
The selection among cyclic and block partitioning is done
by simulating, at schedule-time, the number of conflicts
that occur within the partitions. The partitioning type that
minimizes the maximum number of conflicts per partition is
selected. Notice that complete partitioning is automatically
performed if either block or cyclic partitioning are applied
with a factor of k equal to the number of elements in
dimension d. Finally, the exploration continues with a loop
optimization step and terminates when all the loops are
completely unrolled or marked as fully optimized.

5 MODELING ROOFLINE MEMORY COMPONENTS

This Section illustrates the memory models we used for
computing the peak (configuration) bandwidth and band-
width ceilings of the proposed FPGA Roofline model.

To comply with the OpenCL standard, flagship HPC
boards of main FPGA vendors handle global communica-
tion through memory buffers. A memory buffer is an array of
fixed size that can be allocated in any global memory bank
and managed by the host code through specific directives.
An IP core can access these buffers via its kernel-function
arguments by specifying the required interconnections at
design time. The HLS tool then instantiates the logic to
interconnect each memory port of the kernel to the memory
bank where the assigned buffer resides into. Formally, an
AXI module is called master if attached to a kernel-function
port or slave if attached to the memory side.

5.1 Peak configuration bandwidth

FPGAs communicate with the global memory asyn-
chronously. A design reaches peak bandwidth when it
generates a traffic that saturates the sustainable bandwidth
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32 B quanta

HBM Bandwidth

DDR Bandwidth
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DDR 64B quanta
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Fig. 3: Bandwidth breakdown of DDR and HBM banks with
different system configuration such as design frequency or
memory quanta as variables.

of each bank. To model this behavior, we firstly define
the memory quanta Q of an AXI master interface as the
amount of bytes that port is attempting to access each clock
cycle. Now, if the kernel is running at a frequency f , the
bandwidth required by that Q-wide port would be f × Q.
However, defining BWbank as the peak bandwidth of the
bank servicing the interface and W its physical port byte-
width, the actual interface bandwidth is

BWinterface = min(f ×Q,BWbank ×min(1, Q/W )) (8)

which is reported on the Roofline model as the peak config-
uration bandwidth.

In essence, appropriately choosing f and Q is essential
to avoid suboptimal bank utilization (f × Q < BWbank) or
kernel stalls (f × Q > BWbank). However, if the system
has several interfaces with different quantas and memories
(DDR, HBM, ...), finding the optimal configuration may
be difficult. Therefore, in addition to the Roofline model,
we provide an intuitive performance breakdown of the
achievable bandwidth that, as shown in Figure 3, includes:

• the frequency f on the x-axis,
• the achievable bandwidth on the y-axis,
• the peak bank bandwidth of different technologies

with different quantas as horizontal lines,
• the different memory quanta Q as slanted lines.

In this way, the user can easily figure out the best combi-
nation of design frequency and data coalescing to saturate
the bandwidth of each bank. In fact, the plot superim-
poses the DDR and HBM models with different memory
quantas. Tracking a vertical line on the value of the target
design frequency, the user identifies the performance of
each interface with respect to their memory quanta and the
“frequency slack” for this particular design. In the example
in Figure 3 targeting 225 MHz, the triangles indicate the
different DDR (upward triangles) and HBM (downward)
interfaces with different memory quanta (blue for 128B, red
for 64B, green for 32B). A first consideration would be that
the green triangles (32B) achieve same bandwidth as both
limited by the too narrow quanta. In this case, for example,
the user may consider to coalesce accesses and obtain the
performance indicated by the red triangles (64B). Note that
the DDR performance is still limited by the quanta whereas
the HBM bandwidth is limited by the peak itself (since



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

lower than DDR). Therefore, the user may consider that,
for the given frequency, a 128B quanta might be used for the
DDR interface whereas a HBM should use a 64B interface
since increasing to 128B would not benefit.

An important consideration is that, while the user may
think of always choosing the quanta providing the highest
bandwidth for the given frequency, this approach brings to
high kernel stalls. In fact, if the bandwidth of the bank is
saturated by the port requirement, the kernel stalls while
waiting for data of that particular interface. Therefore, the
larger the distance between the design frequency and the
peak-quanta ridge point, the larger the stall time. In case
of stall-sensitive applications, this aspect should be taken
into account. For example, in the previous case of Figure 3,
the user may consider choosing a 64B quanta for the DDR
memory interface since introducing less kernel stalls.

5.2 Bandwidth ceilings

Once the most promising design frequency and coalescing
factors have been selected, the global memory access pat-
terns should be optimized to achieve peak (configuration)
bandwidth. Since this goal may sometimes be difficult (e.g.,
for irregular sparse computation, etc.), the proposed FPGA
Roofline model provides a set of bandwidth ceilings to
visualize the transfer efficiency of common access patterns.
In principle, the AXI protocol performs data movements by
handshaking (sends a channel request, transfers the data,
and closes the channel). For compile-time unpredictable
access patterns, this handshake has to be done for each
memory access. Predictable stream access patterns, instead,
can handshake once-per-stream instead of once-per-access.
In this setting, formally known as burst mode, a binding
handshake prior to a loop allows the core to send or receive
a new data of the stream (a beat) any loop iteration without
the need of continuously synchronizing with the memory.

The burst mode is quite efficient since avoiding the cost
of servicing all the channel requests coming out each loop
iteration. In order to quantify the impact of the channel
requests overhead, we implemented a microbenchmark test-
ing different access patterns. In particular, we firstly intend
to evaluate the response of the memory subsystem over two
dimensions like spatial locality and memory concurrency.
The spatial locality is the number of bytes accessed by a
certain burst. It can be calculated multiplying the memory
quanta for the burst length. Finally, the memory concurrency
is the amount of in-flight outstanding transactions in the
memory subsystem. For the sake of clarity, we refer to the
subsequent locations accessed within a burst transfer as
locality segment. We classify as random access any pattern
in which the access location of a locality segment is not
dependent from the previous segments. We classify as data-
dependent access any pattern in which the access location
of a certain locality segment depends on the previous seg-
ments. In both cases, we spawn a request for each segment.
However, in the random access pattern the beats and re-
quests can be overlapped whereas they cannot for the data-
dependent access pattern, exposing the controller latency
for each segment. Figure 4 visualizes measured response of
an HBM and DDR bank with respect to these two access
patterns while varying spatial locality. At a high level,
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HBM random segments
HBM data-dependent segments
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Fig. 4: HBM and DDR single-bank bandwidth accessing
random or data-dependent segments and varying spatial lo-
cality. Quanta fixed to 64B and design frequency to 450MHz.

the random access follows a min function over the bank
bandwidth and a requests-per-second bound (slanted line).
The data-dependent access, instead, follows an α−β model
over the bank access-time and bandwidth. To formalize
these concepts, we analytically model the transfer behaviors.
Therefore, we assume to transfer a payload of B bytes that,
according to the chosen spatial locality SL, would require R
requests to complete. As requests and beats of the random-
access pattern can overlap, the required time would be the
maximum between the time required for servicing all the
requests and the time required for transferring the payload.
Therefore, defining PBW as the maximum payload bytes
transferred per second and PR as the maximum requests
per second, the required time would be max( B

PBW
, R
PR

) and
the random access patterns with compile-time predictable
addresses would have bandwidth

BWrandom =
B

max( B
PBW

, R
PR

)
= min(PBW , SL× PR) (9)

Conversely, for data-dependent access patterns with
compile-time unpredictable addresses we have bandwidth

BWdata−dep. =
B

B
PBW

+ R
PR

=
1

P−1BW + SL−1 × P−1R

(10)

as channel request and payload transfer are executed se-
quentially over the segments. Evaluating the values of
these models with the memory quanta of a given interface
gives the random an data-dependent ceilings shown in the
Roofline. If hitting these ceilings, the user should optimize
the interface (as explained next) to reach peak bandwidth.

5.3 Access patterns optimizations
Equation (9) shows that the random access pattern is limited
by the number of outstanding requests. However, as shown
in Figure 5, this bottleneck can be mitigated by tuning the
design. In fact, these outstanding requests are stored in
FIFOs whose capacity can be increased up to achieving peak
bandwidth in case the interface is hitting the random ceiling.
To ease the optimization flow, the tool suggests an opti-
mal queue size estimated using Little’s law. Equation (10),
instead, shows that the data-dependent access pattern is
limited by the memory access time, which, however, is a
technological constraint. Anyway, as shown in Figure 5, the
user can still mitigate this bottleneck introducing memory
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Fig. 5: Performance impact of increasing outstanding re-
quests or memory concurrency of an HBM bank. Quanta
fixed to 64B and design frequency to 450MHz.

concurrency on the same bank. In practice, this is imple-
mented by allocating several buffers on the same bank and
increasing memory concurrency. If C concurrent streams are
accessing one bank, we can modify Equation (10) as

BWconcurr. =
1

P−1BW + SL−1 × (PR × C)−1
(11)

Reversing this formula, the tool suggests the optimal con-
currency value.

6 EXPERIMENTAL EVALUATION

We validated the whole methodology on several HPC ker-
nels and benchmarks. In particular, we illustrate the opti-
mization of the N-body physics simulation algorithm where,
in few steps, we converge to peak performance. Then, start-
ing from a memory-bound state-of-the-art Smith-Waterman
implementation, we use the FPGA Roofline model to port
the design to a more suitable new-generation board. More-
over, we use the FPGA Roofline model to perform a bot-
tleneck analysis and optimization of the latency-bound
SpMV kernel approaching peak DDR bandwidth. Finally,
we evaluate the DSE efficiency on the Polybench test suite
outperforming state-of-the-art approaches up to a 14.36x.

6.1 N-body simulation test case
The N-body process [30] simulates the evolution of a particle
system under the influence of physical forces approximated
by an all-pairs approach. Due to the high memory require-
ment, a plain software implementation [31] is generally
memory-bound on most FPGA systems. However, we use
the proposed FPGA Roofline model to easily design a
compute-bound implementation and the DSE engine to hit
peak performance of the target DDR-based Xilinx Virtex
UltraScale+ VU9P board on Amazon Web Service (AWS).

Before starting the optimization process, we set a pairs/s
(particle-pair interactions per second) performance metric
by placing a result-generation directive in the innermost
loop. By means of our tool, we now optimize the plain ver-
sion [31] of the algorithm reporting all the steps in Figure 6.
The plotted Roofline analysis clearly visualizes that the
baseline design (downward red triangle) is memory bound.
Since this prevents achieving peak performance, we need
to optimize data locality to cross the ridge point. The tool
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Fig. 6: Roofline model representing the optimization process
of the N-body algorithm.

assists this operation by means of the locality walls (green
vertical lines). Each line indicates the impact on operational
intensity if all the inner loops below a specific point would
cache their accesses. Those walls indicate that fully caching
the data movement would turn the design compute bound.
Moreover, observing that the estimated cache size associated
with the full cache wall fits the BRAM constraints, we move
on modifying the kernel. We add an initial phase for copying
the data into the local memories before the computation and
a final phase for copying the result back in global memory
after the computation. Now that we moved the design in the
compute-bound area, we focus on improving performance
exploiting the application parallelism. Our tool assists this
process with an automatic search of architectural optimiza-
tions. However, a first DSE run returns an optimization
configuration that, if compared with the peak performance,
is clearly suboptimal. Before executing the DSE process, our
tool performs a preliminary performance analysis that iden-
tifies possible bottlenecks. A synthetic report indicates that
the loop-carried dependency on the inner loop may limit
DSE performance. Since these limitations are commonly
overcome by loop inversion, we rewrite the code and run
the DSE engine again. Free of dependencies, the optimal
design performs a tiled computation unrolling the internal
loop by a factor of 96 and then pipelining it, cyclically
partitioning the local memory accordingly. This final design
(upward red triangle) has an estimated performance just
3.7% lower the theoretical bound and uses 75.57% of the
area out of the 80% allowance. Testing the design on the
AWS platform [32], the design performs 1.207×1010pairs/s
which, in the end, is approximately 20% below the tool
estimations due to memory transfer overheads. With respect
to the literature, our final design achieves performance
comparable to a custom implementation [30] only yielding
a 8.98% performance loss.

6.2 Smith-Waterman
Smith-Waterman [33] is a sequence alignment algorithm for
identifying relationships between strings of genetic data.
Given a database of length M and a query of length N ,
Smith-Waterman works by finding regions of similarity
between subsequences of all possible lengths and holding
the similarity scores in a M ×N matrix. The state-of-the-art
design [34] maps the characteristic wavefront computation
of this algorithm in a systolic array that is limited by the
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Fig. 7: Superimposed Roofline models of the considered
architectures with the associated design performance.

DDR bandwidth of the target board. For this reason, we
investigate how porting this design to a higher-bandwidth
device would provide some performance benefit. The first
candidate platforms is the Amazon EC2 F1 instance fea-
turing a 16 nm Xilinx Virtex Ultrascale+ FPGA with four
DDR4 banks [32]. The second option, instead, is the Xilinx
Alveo U280 integrating 32 HBM banks [35]. Since these
architectures have different characteristics both in terms of
bandwidth and compute capability, we rely on the Roofline
model to shed light on the best choice. Generating and
combining the two models, we can directly compare at-
tainable performance and required optimization strategies.
Selecting a CUP/s (cell updates per second) performance
metric, the same results can also be directly compared with
the literature [34], [36]. In order to maximize the port usage,
we coalesce the data access to a 64B quanta and select a
frequency of 280 MHz for AWS and 225 MHz for the Alveo
(Section 5.1). Figure 7 reports the superimposed Roofline
models visualizing the performance bounds (black solid
lines) and operational intensity (blue dotted line) of the
application for the considered architectures. According to
Figure 7, the algorithm is memory bound on the AWS
platform and compute bound on the Alveo U280 so different
optimization strategies might be required to achieve optimal
performance. In principle, the Roofline model indicates that,
disregarding the adopted parallelization strategy, we can
achieve a 4x or 8x performance speedup depending on the
considered architecture. A simple yet effective optimization
strategy consists of increasing the task-level parallelism by
replicating the main compute unit to manage different cou-
ples of query-targets in parallel. In this case, however, the
memory and compute bound should be handled differently.
In the memory-bound implementation, the maximum de-
gree of parallelism is obtained saturating the memory sub-
system. Performing an initial loading of query and database
on the device, we can use a single 64B-wide memory port
per compute unit and bind one compute unit to each of the
four memory banks. In this way, we obtain the 4-core imple-
mentation whose measured performance of 174.8 GCUP/s,
out of the 184.619 predicted by the model, is reported as
a red cross in Figure 7. We notice that the observed 5.3%
performance loss is directly proportional to the frequency
rescaling performed by the synthesis tool. Although we
might attempt to further improve the frequency and reduce
the gap, we consider the obtained performance satisfying

enough with respect the low engineering effort spent. Simi-
larly, we replicate the compute unit to approach the compute
bound given by the Alveo U280. Since, as indicated by
the tool, the final design would utilize a large percentage
of LUTs, we should expect some frequency degradation
due to the final design density. For this reason, we plan
ahead improving the compute connectivity distributing the
cores among the Super Logic Regions and HBM stacks.
Moreover, since our tool suggests an 8-core implementation
and the HBM provides 32 memory ports, we consider using
two memory ports per core to stream input/output data
at each clock cycle instead of using spare BRAMs for the
in-core caching required with single port. In this way, we
achieve a design with 384.22 measured GCUP/S indicated
with a green cross in Figure 7. Beside exactly matching
the peak performance, an a-posteriori investigation revealed
that the simple optimizations we yielded a 24% boost in
performance with respect to a bare compute unit replication,
highlighting the advantage of a guided approach.

6.3 Sparse matrix-vector multiplication

The sparse matrix-vector multiplication (SpMV) kernel [12]
performs the multiplication y = Ax of a sparse matrix A
and a dense vector x. We encode the sparse matrix in CSR
format as one of the most used [37], [38]. As such, we store
the non-zero (nnz) elements of the matrix into an array
A, where A[i].data and A[i].idx are the value and
column index of the i-th nnz-element in row-major order.
The ptr array, instead, stores the cumulative number of
non-zero elements for each row. In this example, we use the
FPGA Roofline model to analyze and optimize a memory-
bound design on the Xilinx Alveo U280 when, to maximize
capacity, we store A in a DRAM bank (2 billion fixed-point
non-zeros per bank) and ptr in an HBM bank (64 million
integer row-pointers per bank). If x and y are the input and
output dense vectors respectively (allocated in HBM), the
hot loops of a basic implementation are:

L1:for(int i=0; i<ROWS; i++) {
fixed_point_t sum = 0;
L2:for(int j=ptr[i]; j<ptr[i+1]; j++)
sum += A[j].data * x[A[j].idx];

y[i] = sum;
}

Figure 8 visualizes the Hierarchical Roofline model of the
baseline SpMV design processing different matrices with
exponentially larger 1 ≤ nnz-per-row ≤ 4096 values.
Considering the operational intensity of each input variable,
A and x are the first potential performance bottlenecks since
limited by their peak configuration bandwidth. In detail,
the peak configuration bandwidth of A and x indicates
that the current memory configuration could only achieve
up to 12.5% of the bank bandwidth. Moreover, the actual
A and x performance nearby the data-dependent ceiling
indicates that memory latency is substantially impacting
our design performance (only 5% bandwidth usage). To
improve the memory configuration, we coalesce the access
on A computing multiple products in parallel over several
lanes. Using the schema of Figure 3, we can choose a suitable
coalescing factor (i.e. 8) across the interfaces and a proper
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Fig. 8: Hierarchical Roofline model of the baseline SpMV
design running with increasing nnz-per-row matrices.
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Fig. 9: Hierarchical Roofline model of the optimized SpMV
design running with increasing nnz-per-row matrices.

design frequency (i.e. 450 MHz). To avoid banks conflicts
while accessing the sparse vector, each lane allocates a
private copy of x in a dedicate HBM bank. Moreover, since
x is accessed randomly, we should consider increasing the
outstanding-request FIFOs (Figure 5) on the HBM banks to
avoid getting stuck in the blue ceiling in Figure 8. In order to
improve the access pattern, we combine different dataflow
stages to build a decoupled architecture more resilient to
memory latency. Figure 9 reports the performance of the
optimized design achieving a speedup over the baseline
design ranging from 38x to 65x. The figure indicates that,
despite A approaches peak bandwidth for high-degree ma-
trices (nnz-per-row > 16), lower-degree matrices run up to
10 times slower (due to some row-startup overhead). In case
we were considering particularly low-degree workloads, we
could saturate the banks’ bandwidth enforcing memory con-
currency (Figure 5). In practice, this is done partitioning the
workload over different cores all attached to the same banks.
At this point, plotting the Roofline model with aggregate
interfaces, we can notice that we are using a fraction of
the board potential ( 12 DDR and 10

32 HBM banks). Therefore,
we can double the number of instantiated cores achieving a
total 130x speedup over the baseline.

6.4 PolyBench test suite
We evaluate the DSE accuracy, execution time and effec-
tiveness on the PolyBench test suite [39] and compare our
results against COMBA [20]. We reproduce the settings of
COMBA, and target a Xilinx Virtex-7 device running at 100
MHz. Moreover, since COMBA assumes the design fully

TABLE 1: DSE summary on PolyBench test suite.

Benchmark DSE time [s] Design space Speedup Area usage [%]

Ours HLS Exaustive Explored wrt HLS wrt [20] Ours [20]
ATAX 12.39 348.97 3.28e+7 28 664.50x 10.50x 71.11 6.67
BICG 51.89 407.79 1.44e+8 20 396.13x 4.50x 71.11 11.11

GEMM 33.21 485.76 2.62e+9 24 1090.75x 11.67x 71.11 71.11
GESUMMV 21.68 335.40 2.1e+8 19 272.50x 10.00x 75.56 4.72

MM 23.84 658.8 1.59e+13 41 364.25x 2.38x 80.00 40.00
MVT 25.65 525.59 2.62e+9 33 140.25x 2.14x 35.55 53.33

SYR2K 56.22 857.06 2.62e+9 22 688.90x 14.36x 82.22 45.94
SYRK 48.24 737.63 4.1e+6 24 667.25x 4.70x 40.00 26.67
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Fig. 10: Pareto walks of DSE on two PolyBench test cases.

cached, the Roofline model intervention is not required as
all the considered implementations are compute bound.
We obtained the latency and area results of COMBA by
applying the optimal optimization directives reported in
their work [20] and running Vivado HLS 2018.2.

Table 1 summarizes the results achieved by the DSE.
In particular, we report the execution time of our DSE on
the different test cases comparing it with the execution time
needed to run the same DSE approach but relying on Vivado
HLS for the performance and resource estimation. The Table
reports the size of the solution space (possible combinations
of optimization directives for a given benchmark) and the
number of designs needed by our DSE to converge to the
final solution. As we can see, our DSE requires from 8x to
28x less time compared to the HLS-based solution while
achieving the same final configurations. Furthermore, the
DSE effectively explores a small number of interesting opti-
mization configurations from a larger design space. Table 1
also reports the improvement with respect to the baseline
unoptimized HLS implementation and the result achieved
by [20] in terms of reduction in the overall kernel latency.
Besides, the Table shows the area utilization (computed
considering the most constraining resource) of both our final
designs and the ones from COMBA. Overall, we can observe
an average latency reduction of 7.53x compared to the opti-
mal configurations found by COMBA, achieved in less than
a minute. The main reason for the improved results comes
from the additional code transformation applied during the
resource and performance estimation phase and the policy
adopted by the DSE controller. Since both COMBA and our
DSE do not explore optimizations that lead to exceeding
the available resources, our accurate predictions prevent
stopping the search too early, driving the exploration toward
solutions exploiting, on average, 65.83% of the device area,
2.03x more than COMBA. On the other side, alternating loop
optimizations and array partitioning optimizations allows
the DSE controller to fine tune the partitioning factors and
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types according to the array accesses. Finally, Table 1 reports
the optimal configurations found by our DSE and illustrates
how our methodology identifies coherent array partitioning
with the loop optimizations applied.

Figure 10 describes the DSE process in terms of latency
and area usage of Gesummv and Mm. We focus on these test
cases as requiring the lowest and the highest number of DSE
iterations to converge, respectively. Gesummv results having
a prediction error of 1.90% in performance and 1.24% in
resource usage whereas Mm has a prediction error of 4.08%
in performance and 5.60% in resource usage. For each graph,
the projection obtained by interpolating all the designs
shows how the DSE controller alternates loop pipelining
(steep traits) and loop unrolling (linear traits) and converges
to a 75.56% and 80% of area utilization respectively.

7 CONCLUSIONS

We presented a semi-automated methodology to optimize
HPC applications for FPGA. Our novel approach combines
an FPGA Roofline model to guide memory-bound optimiza-
tions and a DSE engine to automatically optimize compute-
bound designs. In this way, we abstract the FPGA optimiza-
tion process to a software level, democratizing FPGAs to a
broader set of users. We validated this approach by opti-
mizing different HPC kernels where we obtained relevant
performance speedups with a minimal design effort.
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