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Abstract

Theoretical models of self-regulated learning highlight the
importance and dynamic nature of metacognitive monitoring
and regulation. However, traditional research typically has not
examined how different judgments, or the relative timing of
those judgments, influence each other, especially in complex
learning environments. We compared six statistical models
of performance of undergraduates (n = 55) learning in
MetaTutor-IVH, a multimedia learning environment. Three
types of prompted metacognitive judgments (ease of learning
[EOL] judgments, content evaluations [CEs], and retrospective
confidence judgments [RCJs]) were used as individual
predictors, and combined in a uniformly-weighted composite
score and empirically based weighted composite score across
the learning session. The uniformly weighted composite score
better captured performance than the models using only an
EOL judgment or RCJ judgment. However, the empirically
weighted composite model outperformed all other models.
Our results suggest that metacognitive judgments should not
be considered as independent phenomenon but as an intricate
and interconnected process.
Keywords: Learning; Metacognition; Self-regulated learning;
Intelligent Tutoring Systems; Multimedia

Introduction
Self-regulated learning (SRL) involves learners actively
monitoring, assessing, and modulating cognitive, affective,
metacognitive, and motivational processes to accomplish
learning objectives (Azevedo, Taub, & Mudrick, 2018;
Dunlosky & Rawson, 2019). Research has consistently
shown that effectively employing SRL processes (e.g.,
content evaluations) and strategies (e.g., note taking),
improves academic performance, particularly when learning
about complex topics and problem-solving tasks (e.g.,
Azevedo, 2014; Azevedo & Cromley, 2004; Bannert,
Hildebrand, & Mengelkamp, 2009; de Boer, Kostons, & M.,
2012; Dignath & Büttner, 2008; Jansen, Leeuwen, Janssen,
& Jak, 2019). Many theoretical models of SRL highlight the
importance and temporally dynamic nature of metacognitive
monitoring and regulation (Schunk & Greene, 2017; Usher &
Schunk, 2018; Winne, 2018).

Theoretical Background
Traditional research has examined metacognitive monitoring
judgments using paradigms based on Nelson and Narens
(1990)’s metamemory framework. According to this
framework, learners initiate a range of metacognitive
judgments at various temporal and conceptual stages of

learning (Winne, 2018). While there is empirical evidence
that earlier judgments (e.g., an EOL on the first trial) predict
future performance of the same type of judgment (e.g., an
EOL on the next trial; Tauber & Rhodes, 2012; Serra &
Ariel, 2014), only recently have researchers begun exploring
relations between different types of judgments. Chua and
Solinger (2015) found that feeling-of-knowing judgments
influenced RCJs. Additionally, Dougherty, Robey, and
Buttaccio (2018) found that the inclusion of a judgment
of learning could improve a subsequent RCJs. More
research is still needed to understand the relationship of all
metacognitive judgments. There is a need to understand
how they impact learning and performance together. As
such, our study aims to address this gap by comparing
three types of judgments, (1) ease of learning (EOL), (2)
content evaluations (CE), and (3) retrospective confidence
judgements (RCJ)s, as independent explanatory factors and
in conjunction as a composite of metacognitive monitoring
to assess the extent to which these processes best explains
performance (i.e., separately or together).

Ease of learning (EOL) judgments, or the initial assessment
of how easy something will be to learn made in advanced of
instructed study, are thought to be made through inferences
from prior context and domain knowledge (Jemstedt, Kubik,
& Jönsson, 2017). They are assumed to guide how we
study by making decision on how much effort and attention
to allocate, but have been found to be poor or sometimes
only moderate predictors of material difficulty. This has
been attributed to the lack of context missing prior to
learning (Leonesio & Nelson, 1990; Mazzoni, Cornoldi,
Tomat, & Vecchi, 1997; McCarley & Gosney, 2005; Son
& Metcalfe, 2000; Britton, Van Dusen, Gülgöz, Glynn, &
Sharp, 1991; Jönsson & Kerimi, 2011). However, Jemstedt
et al. (2017) found EOLs could be accurate given high item
variation, grading with a binary criterion, task type, and
item presentation timing, especially within complex learning
environments where we cannot assume a learner has zero
prior knowledge.

Content evaluations (CEs) are a judgment measured during
the learning process. First introduced in Greene and Azevedo
(2007)’s SRL framework, an adaption of Winne and Hadwin
(1998, 2012)’s and Pintrich et al. (2000)’s frameworks, they
are the monitoring of content relative to goals. For example,
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a learner might read an introductory paragraph and conclude
it is not relevant towards their learning goal and therefore
decide to skip that section of the reading. Accurate CEs have
been positively related to knowledge acquisition (Pilegard &
Mayer, 2015) and the eye-gaze behaviors of learners (Dever,
Wiedbusch, & Azevedo, 2019).

Occurring after learning, retrospective confidence
judgments (RCJs) are the reported likelihood or
confidence that a learner accurately recalled the
tested information(Stretch & Wixted, 1998; Brewer &
Sampaio, 2012; Ranganath et al., 2004; Chua, Schacter,
Rand-Giovannetti, & Sperling, 2006). RCJs have been
shown to be better predictors of learning compared to
judgements that occur during the learning session (i.e.,
EOLs; (Dougherty, Scheck, Nelson, & Narens, 2005; Hines,
Touron, & Hertzog, 2009; Ryals, Rogers, Gross, Polnaszek,
& Voss, 2016)).

Current Study
The aim of our study was to explore how various
metacognitive judgement accuracy could be captured
with multiple self-reports temporally spaced to explain
performance variance of a multimedia learning task. Previous
research has shown that more accurate metacognitive
judgments can significantly impact problem solving and
learning about complex topics (Azevedo, 2014; Mayer, 2014;
Taub & Azevedo, 2018), however most rely on a singular
judgment type measured at a single point during the learning
session. This could fail to capture the temporal fluctuations
of metacognition that occur and the potential compounding
interactions between judgments. We address this issue by
posing the following research questions:

(1) Which metacognitive judgment best captures
performance variation during learning with MetaTutor-IVH?
Based on previous research (Leonesio & Nelson, 1990), we
predict that EOLs will perform the worst as an explanatory
variable. Furthermore, we believe that RCJs taken after
reflection will outperform RCJs prior to reflection. Because
CEs occur during the learning session, we predict that
they will perform the best as they are not susceptible to
retrieval effects like RCJs, but also occur once information
and context is provided (unlike EOLs). This would follow
similar patterns seen between judgments of learning (which
also occurring during learning) and RCJs (Dougherty et al.,
2018).

(2) How does a statistical model using a composite score
compare to models only using individual components? We
predict the composite score will outperform any model with
only a single judgment predictor because of the assumption
that regulation is cyclical and adaptive in nature. By capturing
more of the learning session across the temporal scale, we
believe the composite score will better reflect learning.

(3) How does an equally weighted composite score
statistical model compare to a model weighted by our findings
in (RQ2)? We predict that the score accounting for the
strength of the explanatory relationship will outperform

the equally weighted statistical model as it accounts for
differences in judgment types.

Methods
Participants and Materials
Fifty-five undergraduates, 65% female, from a large North
American University participated in our study. Their
ages ranged from 18 to 30 (M = 20.38, SD = 2.58).
All participants completed a demographic questionnaire,
an 18-item human biological systems content multiple
choice pretest, and several questionnaires assessing emotions
and motivation (i.e., Achievement Emotions Questionnaire
(AEQ; (Pekrun, Goetz, Frenzel, Barchfeld, & Perry, 2011)),
Emotion Regulation Questionnaire (ERQ; (Gross & John,
2003)), Perceived Affect Utility Scale (PAUSe; (Chow
& Berenbaum, 2012)). The main experimental study
occurred in the MetaTutor-IVH environment. All participants
were compensated $10/hr up to $30 for their participation.
IRB approval was received prior to recruitment and data
collection.

MetaTutor-IVH
The MetaTutor-IVH environment is a linearly structured
multimedia learning environment designed to study prompted
metacognitive judgments while learning about 9 human
biology systems (Azevedo, Mudrick, Taub, & Bradbury,
2019). Learners go through 18 trials that follow an identical
linear format at their own pace (see Figure 1). They are
first presented with a science question and asked to submit
an EOL (i.e., “How easy do you think it will be to learn
the information needed answer this question?”) on a 1-unit
sliding scale from 0 to 100. Following this judgment, they
are presented with a multimedia content slide (see Figure 2)
which consists of 3 paragraphs (Flesch-Kincaid readability
score range: 9.1-12.5; M = 10.5) along the left side panel,
a diagram in the center, the science question along the top,
and an artificial agent in the top right hand corner. The
content provided on the screen was developed with a biology
expert and designed to sometimes contain not fully relevant
information for the posed question. After 30 seconds on the
content slide, the environment prompted CEs. Participants
provided two CEs about the relevancy of (1) the text and
(2) the diagram presented within each trial. They answered
the question “Do you feel the text/diagram on this page is
relevant to the question being asked?” on a 3-point rating
scale (i.e., text/diagram is relevant; text/diagram is somewhat
relevant; or text/diagram is not relevant). These judgments
were then compared to the experimentally manipulated
relevance of the content. Participants could choose when
to respond to this prompt at any time. Once they submitted
their judgment, for the next 10 seconds, the agent expressed
its own judgment about the content relevancy (i.e., if it
felt the content was relevant). Participants could continue
studying the content slide until they were ready to answer
the posed question. Once participants answered the multiple
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Figure 1: MetaTutor-IVH Experimental Paradigm

choice question about the content they just learned, they were
asked to answer “How confident are you that the answer you
provided is correct?”on a scale from 50 to 100 in which
a score of 50 indicated the participant felt they had simply
guessed. This acted as the immediate RCJ (RCJ1). They
were then required to provide a justification for their answer
in a text-based free response section. A second delayed RCJ
(RCJ2) was asked once participants provided this reflection.

Experimental Design
The study used a 3x3x2 within-subjects design. First,
trials had varying relevance levels: fully relevant (the
text and diagram both contained pertinent information),
text somewhat relevant (the diagram provides the pertinent
information), diagram somewhat relevant (the text provides
the pertinent information). Second, trials had three possible
agent facial expressions presented: neutral facial expression
(no change to the baseline agent expression), congruent
facial expression (the agent expresses it is happy when the
content is fully relevant and confused when the content is
only somewhat relevant), and incongruent facial expression
(the agent expresses it is confused when the content is
fully relevant and happy when the content is only somewhat
relevant). Finally, two types of questions were asked about
the human body: a body function (e.g. “Please explain how
cortisol travels in the body.”) and a body malfunction (e.g.,

“Please explain what would happen if the thyroid hormone
were to diffuse freely from the thyroid all the time.”) . The
instructional content always provided enough information to
answer each question, however the source of the pertinent
information differed.

Experimental Procedure

Participants were calibrated to a wireless Shimmer 3+
electrodermal activity bracelet, eye tracker, and affect
recognition software before completing a demographic
questionnaire, questionnaires gauging emotion and
motivation followed by a biology content multiple-choice
pretest. After the pretest, participants completed 18
trials in MetaTutorIVH. Following the trials, participants
answered a series of additional motivation and emotion
questionnaires, were debriefed, compensated, and thanked
for their participation.

Apparatuses

During the 18 trials, data was collected from eye movements,
emotion recognition software, EDA, and log files of the
learners’ interactions. Eye movements (not used in this study)
were captured with an SMI RED 250 with a 60 Hz sampling
rate (downshifted from 250 Hz to allow integration with
iMotions Attention Tool). Affect (not used in this study)
was captured using a web camera before being detected and
automatically coded by iMotions FACET. EDA (not used in
this study) was captured with a Shimmer 3+ wireless bracelet
with a 128 Hz sampling rate. Finally, all log files and data
streams were collected and aligned with iMotions Attention
Tool 6.2 software (iMotions, 2016).

Coding and Scoring

Ease of Learning (EOL) Judgements To assess the
precision of the judgment, we calculated the absolute
accuracy index (AAI; (Schraw, 2009)). It is important to
highlight that because this score is the discrepancy between
judgment and performance, smaller scores correspond to
higher accuracy.

Figure 2: Sample MetaTutor-IVH Content Slide
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Table 1: Correlations of all metacognitive absolute accuracy
index

M SD 1 2 3
1. EOL 0.016 0.004
2. CE 0.016 0.005 0.270*
3. RCJ1 0.013 0.005 0.394* 0.449**
4. RCJ2 0.014 0.004 0.354* 0.532** 0.803**

Note: * indicates p <0.05; ** indicates p <0.005. EOl:
Ease of learning; CE: Content Evaluations; RCJ1/2:
Immediate/delayed retrospective confidence judgment

Content Evaluations (CEs) A completely accurate CE
was awarded .5 point (up to 1 point per trial), while a partially
correct CE was awarded 0.25 points. An incorrect CE did
not earn the participant any points. For example, in a trial
in which the diagram was somewhat relevant and the text
was fully relevant, if a participant reported both the text and
diagram as fully relevant, they earned 0.75 points for that
trial (0.5 for the diagram’s completely correct judgment and
0.25 for the text partially correct judgment). Like EOLs, we
calculated CEs AAI according to Schraw (2009).

Retrospective Confidence Judgements (RCJs) RCJ AAI
was also calculated according to Schraw (2009). As with the
other accuracies, the higher the absolute difference, the less
accurate the participant’s judgment was.

Equally-Weighted Composite Metacognitive Judgement
Score We calculated an equally weighted composite score
that consisted of all four metacognitive monitoring judgments
accuracies.

Composite Score =
EOL+CE +RCJ1+RCJ2

4
(1)

Results
Preliminary
Participants (N = 55) on average answered 62% (SD = 0.14)
of trials correctly (about 11/18 trials). All metacognitive
judgments AAI were correlated with one another (see Table
1). Due to this multicollinarity, a multivariable statistical
model for our second and third research questions was
deemed inappropriate.

Which metacognitive judgment best captures
performance variation during learning with
MetaTutor-IVH?
Using each metacognitive judgment accuracy (i.e., EOL,
CE, immediate RCJ, reflection RCJ) as a single explanatory
variable, we ran four simple linear regression models
to predict participant performance on the multiple-choice
questions embedded in MetaTutor-IVH (see Table 2 for
model’s parameters, F, p, and R2 statistics). EOL’s AAI
was a significant predictor of performance (F = 8.716 (1,54),
p = 0.005), suggesting that for every 0.01 increase in the
index value (i.e., the less accurate the participant was),

performance decreased by .139 points (about 2.5 additional
incorrect trials). CE’s AAI was a significant predictor of
performance (F = 45.18 (1,54), p <0.0005), suggesting that
for every 0.01 increase in the index value (i.e., the less
accurate the participant was), performance decreased by .205
points (about 3.7 additional incorrect trials). RCJ1’s AAI
(Immediate RCJ) was a significant predictor of performance
(F = 8.2 (1,54), p = 0.006), suggesting that for every
0.01 increase in the index value (i.e., the less accurate
the participant was), performance decreased by .137 points
(about 2.5 additional incorrect trials). Finally, RCJ2’s AAI
(delayed) was also a significant predictor of performance
(F = 24.1 (1,54), p <0.0005), suggesting that for every
0.01 increase in the index value (i.e., the less accurate
the participant was), performance decreased by .216 points
(about 3.9 additional incorrect trials). CE AAI was able to
explain 47.47% of the variance in participant’s performance,
making it the strongest explanatory variable of all of the
judgments. RCJ2 AAI’s performed the next best, explaining
32.62% of performance variance. RCJ1 and EOL AAI both
performed about the same, explaining 14.09% and 14.85%.

How does a model using a composite score compare
to models only using individual components?
Using the uniformly weighted composite score (see Equation
1), we ran a simple linear regression to model participant
performance. This score was a significant predictor (F =
39.9 (1,54), p <0.0005), and suggested that for every 0.01
increase in the score, performance decreased by 0.300 points
(about 5.4 additional incorrect trials). This model was able to
explain 44.39% of the variation in performance. Compared
to the previous models, it outperformed all except for the CE
AAI.

How does an equally weighted composite score
model compare to a model weighted by our findings
in (RQ2)?
We modified our original composite score to reflect how well
each judgment was able to explain performance variation.
Because there is currently no empirical or theoretical
evidence for how all judgments should be weighted, we
naively ranked with a 10% increase in weight per variable
ranked by their R2s (see Equation 2).

Composite Score = (0.4∗EOL)+(0.3∗CE)+

(0.2∗RCJ1)+(0.1∗RCJ2)
(2)

Table 2: Model parameters, F, p, and R2

Intercept B R2 F (1,54) p
EOL 0.839 -13.917 0.149 8.716 <0.005
CE 0.955 -20.531 0.475 45.181 <0.005
RCJ1 0.802 -13.742 0.141 8.200 0.006
RCJ2 0.915 -21.647 0.326 24.100 <0.005
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This new score was a significant predictor of performance
(F = 55.48 (1,54), p <0.0005), suggesting that for every
0.01 increase in the score (i.e., as accuracy decreased) we
would expect a decrease in 0.311 points (about 5.6 additional
incorrect trials). This new model was able to explain 52.60%
of the variation in performance which outperformed all
previous models.

Discussion

To explore how different metacognitive monitoring
judgments taken throughout the entire learning session
could be used in conjunction to better capture performance
variation, we compared six models of participants using a
multimedia learning environment while they learned about
complex human biology systems. We showed that even with
a naively weighted composite score accounting for temporal
fluctuations of metacognitive monitoring accuracy, we were
able to better capture performance variation than any singular
judgment could capture alone. The first four models we
used were all able to significantly describe the variation
of performance to varying degrees of success, which is
consistent with previous research (Dever et al., 2019;
Dougherty et al., 2005; Hines et al., 2009; Jemstedt et al.,
2017; Pilegard & Mayer, 2015; Ryals et al., 2016). Similarly,
we found that CEs were the best predictor of performance
while EOLs performed the worst, supporting our hypothesis.
Furthermore, delayed RCJs outperformed immediate RCJs
which suggest that reflection can increase the accuracy of
metacognitive monitoring processes (Efklides, Schwartz,
& Brown, 2018). This also provides support to the idea
that judgments occurring later in the learning session are
influenced by previous judgments. CEs proved to be the
strongest predictor, which we believe is due to the direct
allocation of effort and attention. While outside the scope
of this analysis, it is also possible that the agent’s given CE
could have also effected the accuracy of both RCJs, and
potentially in different ways. Future analysis will explore
any differences in both the accuracy of these judgements, and
behaviors of the participants once a judgement was provided
by the agent. When accounting for these differences in our
weighted composite score (RQ3), we were able to create
a statistical model that captured 52.60% of performance
variation. More statistically sophisticated weighting (i.e.,
PCA or factor analysis) might provide stronger weight values
that could increase model performance even more. However,
first more research should examine the relationship of these
metacognitive monitoring judgments across multiple tasks
across various domains to see if they remain consistent.
For example, do CEs always provide the most information,
or only for text-heavy environments? If similar patterns
emerge, we might conclude that judgments occurring later in
the learning session are affected by previous judgments and
decisions based on those judgments. Future research should
also consider capturing metacognitive monitoring through
other measures outside of self-reports such as eye-tracking

or think-aloud protocols. These measures would allow for
even more granular analysis of the temporal fluctuations of
metacognitive monitoring processes.

Metacognitive monitoring is a dynamic process, and
empirical models aimed at capturing those processes should
reflect this. Judgments that are made later in a learning
session appear to be influenced by prior judgments and
the experience gained from decisions based on monitoring.
This study has begun to explore ways that we can naively
capture the variation of performance by considering multiple
judgments and considering their relationship to one another.
Content evaluations, which occur during learning, are the
strongest predictors of performance while ease of learning
judgments are poor predictors. Retrospective confidence
judgments were also strong predictors, especially after
prompted reflection of the learned material. A model
that accounts for these differences was able to outperform
models that looked at the processes independently of one
another. Future research on metacognitive monitoring
should begin by validating and replicating similar findings
within new environments in order to explore how how
different judgments effect one another and what processes are
shared across the learning session and during different tasks,
domains, and learning techniques.
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