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of double-stranded RNA–triggered innate immune responses
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Edited by Luke O’Neill

Herbert “Herb” Tabor, who celebrated his 100th birthday this
past year, served the Journal of Biological Chemistry as a mem-
ber of the Editorial Board beginning in 1961, as an Associate
Editor, and as Editor-in-Chief for 40 years, from 1971 until
2010. Among the many discoveries in biological chemistry dur-
ing this period was the identification of RNA modification by C6
deamination of adenosine (A) to produce inosine (I) in double-
stranded (ds) RNA. This posttranscriptional RNA modification
by adenosine deamination, known as A-to-I RNA editing, diver-
sifies the transcriptome and modulates the innate immune
interferon response. A-to-I editing is catalyzed by a family of
enzymes, adenosine deaminases acting on dsRNA (ADARs).
The roles of A-to-I editing are varied and include effects on
mRNA translation, pre-mRNA splicing, and micro-RNA silenc-
ing. Suppression of dsRNA-triggered induction and action of
interferon, the cornerstone of innate immunity, has emerged as
a key function of ADAR1 editing of self (cellular) and nonself
(viral) dsRNAs. A-to-I modification of RNA is essential for the
normal regulation of cellular processes. Dysregulation of A-to-I
editing by ADAR1 can have profound consequences, ranging
from effects on cell growth and development to autoimmune
disorders.

Herbert “Herb” Tabor, M.D., served The Journal of Biological
Chemistry as a member of the Editorial Board, as an Associate
Editor, and then as Editor-in-Chief for 40 years until 2010 when
he became Co-Editor (1). Among the many paradigm-shifting
discoveries in biological chemistry during this period was the
identification of RNA modification by C6 deamination of aden-
osine (A) to produce inosine (I) in double-stranded RNA
(dsRNA)2 (2, 3). This process is known now as A-to-I editing

(4 –8). The focus of this JBC Review is on one of the mammalian
enzymes that catalyzes A-to-I editing, the adenosine deaminase
acting on RNA1 (ADAR1) (9). ADAR1 plays a major role in
immunity, most notably as a suppressor of the innate immune
interferon (IFN) responses triggered by cellular sensors of
dsRNA. This article is dedicated to Herb Tabor on the occasion
of his 100th birthday. Herb is a truly remarkable individual. He
is synonymous with JBC. For me, beginning as a JBC author first
when a graduate student and then continuing years later as a
member of the JBC Editorial Board and subsequently as an
Associate Editor, it has been a special privilege to work together
with Herb and learn so much from him. Herb Tabor is a scholar,
a leader, and a gentleman. Happy Birthday, Herb!

Deamination of adenosine in dsRNA structures by
ADARs

The C6 deamination of adenosine to produce inosine in
dsRNA (Fig. 1, upper) was discovered in Xenopus during anti-
sense RNA studies. It was found that stable dsRNA hybrid
structures were not formed and protected against digestion
with ssRNA-specific RNases, and the structures displayed
altered mobility under native gel electrophoresis conditions
(10, 11). It was then shown that these changes in dsRNA behav-
ior resulted from covalent deamination of adenosine to inosine
that occurred in both Xenopus (2) and mammalian cells (3).
Deamination of adenosine in dsRNA can destabilize the RNA
structure as a resultant I-U mismatch pair is less stable than an
A:U base pair (2, 3, 12). ADAR enzymatic activity was purified
and characterized from bovine nuclear extracts (13) and from
cultured HeLa cells (14). The findings, described in JBC,
revealed that the nuclear dsRNA adenosine deaminase purified
from cells not treated with interferon was a mixture of size
forms, ranging from �80 to �100 kDa. Molecular cDNA and
genomic cloning then established that there are three gene
members of the mammalian ADAR family, designated ADAR1
(ADAR), ADAR2 (ADARB1), and ADAR3 (ADARB2) (4 –8).

ADAR1 proteins and their expression

The sequence for the human ADAR1 cDNA predicts an ORF
of 1226 amino acids (15–17). There are two size isoforms of
ADAR1, referred to as p110 and p150 (16). Antibodies prepared
against recombinant ADAR1 recognize two proteins present in
extracts from human cell lines: one �110 kDa (p110) that is
constitutively expressed, and the other �150 kDa (p150) that is
inducible by IFN (16). p110 is nuclear, whereas p150 is both
cytoplasmic and nuclear (16 –19). The gene for ADAR1 maps to
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a single locus, chromosome 1 q21 for human ADAR1 (20, 21)
and chromosome 3 F2 for mouse Adar1 (22). Genomic and
cDNA sequence analyses are consistent with a single ADAR1
gene, which in the human is about �40 kbp and includes 17
exons (23). Expression of the human (24 –26) and mouse (27)
ADAR1 genes is driven by multiple promoters, one of which is
IFN-inducible and the others are constitutively active. The
IFN-inducible p150 protein initiates from AUG1 present in
exon 1A of the IFN-inducible human transcript, and the con-
stitutive p110 protein initiates from the in-frame AUG296
present in exon 2 as the constitutive alternative exon 1B lacks
an AUG (23). Alternative forms of exons 6 and 7 also occur
(27–29). Expression of the mouse Adar1 gene and its exon
organization involves strategies of alternative promoter usage
and alternative splicing conceptually similar to that of the
human ADAR1 gene (23, 27–31). Exon 7a is found in constitu-
tively-expressed transcripts that specify p110, predicted to be
931 amino acids (human) or 903 amino acids (mouse). The
smaller exon 7b is present in IFN-inducible human ADAR1
transcripts that specify p150, predicted to be 1200 amino acids
(human) or 1152 amino acids (mouse) (23).

ADAR1 is both ubiquitously expressed (27, 32, 33) and
inducible by IFN (16, 24, 27, 32–35). Canonical JAK–STAT
signaling responsible for transcriptional activation of gene
expression by IFN�/� involves binding of IFN to its cognate
cell-surface receptor that is found on most types of cells. Acti-
vation of JAK1 and TYK2 kinases then mediates the phosphor-
ylation of STAT1 and STAT2 transcription factors that associ-
ate with the IRF9 factor, translocate to the nucleus, and bind at
the interferon-stimulated response DNA element to drive the
inducible gene expression (36, 37). The IFN-inducible ADAR1
promoter possesses a consensus ISRE element (23), both the
human (24) and mouse (29) genes. Induction of the p150-en-
coding transcripts by IFN depends upon both STAT2 and IRF9,
but the requirement for STAT1 varies between cell lines;
detectable induction occurs in the absence of STAT1 in mouse
but not human cells (29, 35).

The domain structures of the mammalian ADARs are sum-
marized in the Fig. 1 (lower panel) schematic. Both p110 and
p150 ADAR1 are active dsRNA adenosine deaminases (16, 28,
38). The C-terminal region of ADAR1 specifies the catalytic
domain; three copies of the dsRNA-binding domain are present
in the central region of p150 and p110 (15–17, 39). p150 is
N-terminally extended compared with p110; the additional
p150 sequence includes the Z� Z-DNA– binding domain (5,
8). Substitution mutations of the His (H) and Glu (E) amino acid
residues in the conserved CHAE sequence of the ADAR1 cata-
lytic core abolishes A-to-I deaminase activity (39 –41). Active
ADAR1 is a dimer (42–44). The RNA-binding domains present
in ADAR1 p110 and p150 (15–17, 39) are homologous to the
repeated dsRNA-binding domain discovered earlier in the
dsRNA-dependent protein kinase PKR (45–48). Substitution
mutations of a conserved lysine residue within the core of each
of the RNA-binding domains (39) as well as deletion mutations
(40) revealed that the RIII copy linearly adjacent to the deami-
nase catalytic domain is the most important for enzymatic
activity, and the central RII copy is the least important (39). The
repeated Z-DNA– binding domain present in p150, Z� and Z�,
was identified as a domain homologous to the N-terminal
region of the poxvirus E3L interferon antagonist protein (16,
49) and was shown to bind Z-DNA (50). Z� can also bind
Z-structured dsRNA (51). The physiological significance of the
Z-domains, and the nucleic acid bound by them within cells, is
not fully understood. Functionally distinct dsRNA-binding
domains are associated with splice variants of ADAR1 (28). The
dsRNA-binding domains contribute to the A-to-I editing selec-
tivity of the catalytic domains of ADAR1 and ADAR2 (38,
52–55). This is illustrated by the recombinant chimeric PKR–
ADAR1 protein, where the dsRNA-binding domains from PKR
replace those of ADAR1; significant deaminase editing activity
is retained with a synthetic dsRNA substrate but not with nat-
ural (GluRB or 5HT-2cR) substrates (52). Human ADAR1 and
ADAR2 have a 5� nearest neighbor preference of U � A � C �
G and a 3� nearest neighbor preference of G � C � A � U and
G � C �U � A, respectively (54). For ADAR2, the preferences
appear to derive from differential base flipping of the targeted
adenosine out of the double helix substrate rather than from
direct recognition of neighboring bases (56).

Figure 1. RNA editing by ADARs. Upper panel, C6 deamination of adenosine
(A) in duplex RNA to produce inosine (I) catalyzed by ADARs. ADAR1, both the
IFN-inducible p150 and the constitutively expressed p110, and ADAR2 pos-
sess deaminase activity. ADAR3 lacks deaminase activity and is implicated as
a negative regulator of editing by ADAR1 and ADAR2. Lower panel, domain
organization of ADAR proteins. The nucleic acid– binding domains include
repeated dsRNA-binding domains (red, RI, RII, and RIII), either two (ADAR2 and
ADAR3) or three (ADAR1 p110 and p150) copies. The N-terminal region of
ADAR1 p150 possesses two copies of a Z-DNA– binding domain (pink, Z� and
Z�), and ADAR3 has an arginine-rich ssRNA-binding domain (green, ARG). The
deaminase catalytic domain (yellow) is C terminus; ADAR3 (cross-hatched yel-
low) is not yet demonstrated to possess enzymatic activity. (Adapted from
Ref. 5.)
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ADAR2 and ADAR3 proteins

In addition to ADAR1, there are two more mammalian
ADARs, ADAR2 and ADAR3 (4 –8). The single mammalian
gene for ADAR2 encodes multiple size isoforms of ADAR2 pro-
tein by alternative promoter usage and alternative splicing, with
major isoforms predicted to be 701 and 750 amino acids for the
human protein (23). ADAR2 is an active A-to-I deaminase,
localizes to the nucleus, possesses two copies of the dsRNA-
binding domain, and a C-terminal catalytic domain. As dis-
cussed in the following section, although ADAR1 is responsible
for most of the A-to-I editing observed in mammalian cells,
ADAR2 is generally responsible for the highly selective editing
observed in the comparatively small number of identified
exonic coding sites (8, 33). ADAR3 differs from ADAR1 and
ADAR2 in an important manner: ADAR3 has not yet been
demonstrated to possess enzymic activity (5–8). Expression of
ADAR3 is limited to regions of the brain (57), unlike the ubiq-
uitous expression seen for ADAR1 (4 –8).

Substrate RNAs and roles of A-to-I editing

Transcripts encoding the glutamate and serotonin 2C recep-
tors were among the first substrates identified, and the highly
specific A-to-I editing of them is exquisitely well characterized
(38, 58 – 63). The editing of GluRB and 5HT-2cR transcripts
occurs within exonic sequences at the pre-mRNA level prior to
splicing, thereby leading to amino acid substitutions in the
expressed receptor proteins that alter their function. Editing
specificity is dictated by unique cis-acting inverted repeat
sequences predicted to form imperfect duplex structures in the
substrate RNAs. Based on results of complementation studies,
the glutamine (Q) to arginine (R) site of GluRB is the main
target of ADAR2 as the knockin of GluRB encoding arginine
at the Q/R site largely rescues the mouse Adar2 knockout phe-
notype (62). ADAR3 binding to the GluRB pre-RNA inhibits
ADAR2 editing at the Q/R site, with elevated inhibition of Q/R
editing in glioblastoma cells (63). In addition to specific editing
events that recode mRNA genetic information, thereby leading
to amino acid substitutions during translation (GluRB, 5HT-
2cR), the editing of an amber UAG termination codon to gen-
erate a tryptophan UIG codon occurs in hepatitis D virus,
thereby permitting synthesis of large delta antigen (5, 64).

RNA-seq strategies with high coverage and high accuracy
have identified many A-to-I editing sites in RNA isolated from
cultured cells and animal tissues (8, 33). Although a few addi-
tional nonrepetitive exon– coding sites were found, the vast
majority of the �2 million-plus human A-to-I editing events
occur in repetitive noncoding sequences (mostly Alu sequences
in the human) (8, 33, 65–71). The extent of editing seen at a
given site is typically partial, with editing at most sites less than
20% (7, 68, 73). However, the values vary widely, from near
100% (for the GluRB Q/R site) to less than 1% (7, 68). ADAR1
appears predominantly responsible for A-to-I editing of non-
coding sites and ADAR2 for editing of coding sites (33). Fur-
thermore, the knockin of the catalytically inactive E861A
mutant of Adar1 gives normal mice when rescued by the con-
current knockout of Mda5, indicating that protein recoding by
ADAR1 catalyzed A-to-I editing is not essential for normal

mouse development and homeostasis (72). When 557 loci con-
taining 11,103 editing sites were analyzed in untreated and IFN-
treated WT and mutant mouse MEF cells, it was found that the
vast majority of A-to-I editing events were dependent upon
ADAR1 and not ADAR2; furthermore, this editing was
enhanced by IFN treatment in a manner dependent upon the
p150 isoform of ADAR1 (73).

Biochemical mechanisms

A-to-I editing of RNA transcripts affects multiple processes
of mammalian cells and their viruses (Fig. 2). Among the mech-
anisms by which ADARs act, in addition to effects exerted on
mRNA translation, are those on pre-mRNA splicing and
microRNA processing and targeting. For RNA viruses, editing
of viral RNA sequences also can potentially lead to genome
mutation. For ADAR1, A-to-I editing events observed in mouse
and human RNA transcripts largely occur in noncoding repet-
itive sequences that form duplex structures, and the major role
of this editing is the suppression of innate immune interferon
responses.

mRNA translation

Because inosine generated by deamination of adenosine
base-pairs as if the I were a G instead of an A, A-to-I RNA
editing has the capacity to alter decoding during mRNA trans-
lation, thereby leading to amino acid substitution in the protein
product. As discussed above, among the earliest and best-char-
acterized examples of editing that affects translation and gives
rise to protein products with altered function are the editing of
the cellular GluRB and 5HT2cR transcripts encoding neu-
rotransmitter receptors and hepatitis D virus RNA encoding
delta antigen. In these cases, the editing is highly selective,
changing a codon and thereby recoding genetic information
within the pre-mRNA, leading to amino acid substitutions or
elimination of a termination codon. Only a very few exon

Figure 2. Biochemical mechanisms by which A-to-I editing of RNA tran-
scripts possessing double-stranded structure may affect gene expres-
sion and product function. Because I base-pairs as G instead of A, A-to-I RNA
editing has the capacity to alter processes, including mRNA translation by
altering codons and hence coding potential, pre-mRNA splicing by changing
splice site recognition sequences, and RNA silencing by altering microRNA
production or targeting. A-to-I editing may also lead to RNA mutations of viral
genomes and transcripts by changing template and hence product
sequences during RNA-dependent RNA replication. Finally, A-to-I editing
may lead to I-U mismatches in place of A:U bp, thereby destabilizing dsRNA
structures and hence affecting the activity of dsRNA sensing proteins of the
interferon response, including the MDA5 RIG-I–like receptor, protein kinase
PKR, and 2�-5�-oligoadenylate synthetase OAS–RNase L. (Adapted from Ref.
146.)
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recoding sites have been identified among the many A-to-I sites
in the human transcriptome (8, 33, 70, 71).

Pre-mRNA splicing

Most introns are of the U2-type and are flanked by GT-AG
splice site dinucleotides. Because I is recognized as G by the
spliceosome machinery, alternative 5�-AT or AA-3� sites can be
converted into canonical sites by editing. A-to-I editing leading
to alternative splicing during the processing of pre-mRNA was
first demonstrated for ADAR2 transcripts. This ADAR2
autoediting of its own pre-mRNA creates a 3� AG splice site
(AA changed to AI (AG)) for alternative splicing (74). Human
nuclear prelamin A recognition factor transcript includes an
Alu-exon that depends upon A-to-I editing for exonization in a
tissue-dependent manner, again by creation of a functional 3�
AG splice site (75). Tumor-associated intronic editing of the
HNRPLL splicing factor transcript by ADAR1 p110 and
ADAR2 generates a novel variant containing an additional exon
12A (76). A comprehensive survey of noncanonical splice sights
using deep transcriptome profiling identified seven U2/U12-
like noncanonical sites that are converted to canonical sites by
A-to-I editing (77). Three of the noncanonical sites are AT-AG,
and four are GT-AA, and all are involved in alternative splicing
(77).

MicroRNA silencing

The discovery that A-to-I editing may affect RNA silencing
by microRNAs (miRs) provides an additional manner by which
ADARs impact gene expression. Editing effects are observed at
the level of processing of miR precursor RNA to produce a
functional miR (illustrated by miR-142 and miR-151) or by
altering the targeting of the miR (illustrated by miR-376 and
miR-378). Pri-miRNA precursors are processed by Drosha and
Dicer endonucleases together with dsRNA-binding proteins to
produce mature miRs. Estimates are that �20% of the pri-miRs
are subject to editing by the ADARs (78). Editing of the pri-
miR-142 impairs processing by the Drosha DGCR8 complex,
reducing the amount of mature miR-142 produced (79). Editing
of the pri-miR-151 impairs cleavage by Dicer-TAR RNA-bind-
ing protein complex (80). Editing within the seed sequence of
miR-376 by ADAR2 alters targeting and subsequent silenc-
ing (81), whereas ADAR1 creates an miR-378 recognition site
in the 3�-UTR of the human aryl hydrocarbon receptor tran-
script (82). Furthermore, comprehensive analyses of miRNA-
seq datasets of human cancer tissues identified multiple editing
sites in miRs and their 3�-UTR targets (83, 84). ADARs are
potent dsRNA-binding proteins and in some instances impair
knockdown efficiency of siRNAs independent of their catalytic
activity (85, 86).

Viral RNA mutation

Viruses that possess RNA genomes typically encode a viral
RNA-dependent RNA polymerase that transcribes and repli-
cates the genome. If complementary sequences are generated,
dsRNA structures may arise that would provide targets for edit-
ing. This, then, might generate viral RNA mutations. Editing
within a template RNA strand by ADAR to substitute an “I” for
an “A” would lead to a complementary change in the product

RNA strand following replication by the viral polymerase.
ADAR A-to-I editing then would generate either A-to-G or
U-to-C transitions dependent upon the strand sequenced.
Studies of a number of viruses reveal that ADARs are both
antiviral and proviral, dependent upon the virus– host combi-
nation, a subject that has been reviewed (5). Viral A-to-I sub-
stitution editing has a long history, beginning with measles
virus. Viral RNAs from brain autopsies of subacute sclerosing
pan-encephalitis patients were found to possess extensive
A-to-G (U-to-C) transitions characteristic of ADAR editing
(87). For measles virus deficient in C protein expression, defec-
tive interfering dsRNAs are generated frequently and early,
activate PKR, and impair virus growth (88, 89). These dsRNA
structures are destabilized by ADAR-mediated hypermuta-
tions, and ADAR1 suppresses measles virus-induced apoptosis
and PKR activation (90, 91). Increased A-to-G and U-to-C
mutations characteristic of ADAR editing are described for
lymphocytic choriomeningitis virus (LCMV), with bias to the
glycoprotein region of the S segment RNA under conditions of
increased p150 expression during infection (92). Possibly edit-
ing of a virion surface component, such as the LCMV glycopro-
tein, might create changes in a neutralization epitope thereby
facilitating escape from immune surveillance.

Suppression of innate immune interferon responses

dsRNA has a long history in the interferon field (93). dsRNA
is an inducer of IFN production, and dsRNA is an activator of
some IFN-induced proteins responsible for IFN’s actions.
Interferon was the first cytokine discovered, identified by Isaacs
and Lindenmann (94) during studies on virus interference.
They observed that viral infection (with influenza A virus)
induced the production of a secreted cellular factor that pos-
sessed the ability to interfere with virus growth, both of the
homologous inducing virus and also of heterologous (Sendai
and Newcastle disease) viruses. The interferon system now is
recognized as the cornerstone of innate antiviral immunity.
Considerable detail has been learned about the signal transduc-
tion pathways by which viral infection through the production
of dsRNA leads to the induction of IFN (95–98). Likewise, two
cellular responses that play central roles in the antiviral and
proapoptotic actions of IFN are triggered by dsRNA: the acti-
vation of protein kinase PKR, and the activation of 2�-5�-oli-
goadenylate synthetases OAS. PKR (47, 99, 100) and OAS (101,
102) sense dsRNA that leads to their enzymatic activation or, in
some instances, antagonism of activation.

MDA5–MAVS

Among the sensors that detect the presence of viral (nonself)
dsRNA and trigger the production of IFN are the family of cyto-
solic receptor proteins known as RIG-I–like helicase receptors.
These include MDA5 and RIG-I (Fig. 3). Different characteris-
tic features of viral dsRNAs are sensed by MDA5 and RIG-I
(95, 97, 98). However, it is now apparent that in the absence of
ADAR1, endogenous cellular (self) dsRNA also triggers MDA5
signaling via the MAVS adaptor to activate innate immune pro-
inflammatory responses (32, 41, 103–105). The crystal struc-
ture of MDA5 bound to dsRNA provides insight into the struc-
tural basis of dsRNA recognition, filament formation, and
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signal activation via the MAVS adaptor. MDA5 recognizes the
internal duplex structure, whereas RIG-I recognizes the termi-
nus of dsRNA (106). Alu:Alu dsRNAs formed by inverted
repeat Alu-containing transcripts are ligands of MDA5. A-to-I
editing suppresses filament formation of WT MDA5, whereas
unmodified Alu:Alu dsRNAs activate WT MDA5 under condi-
tions of ADAR1 deficiency (107). Gain-of-function mutation of
MDA5 allows mis-recognition of self, cytosolic inverted repeat
Alu dsRNAs (107).

ADAR1 down-regulates the sensing of both cellular (self) and
viral (nonself) dsRNAs. Measles virus is an example of an RNA
virus that activates RIG-I–like receptor signaling via MAVS to
induce IFN� gene transcription (108). Although C mutant virus
is a robust inducer of IFN� in human cell lines expressing
ADAR1, wildtype (WT) measles virus by contrast is a poor
inducer (108). However, WT virus becomes an excellent IFN
inducer, comparable with that of the C mutant, under condi-
tions of ADAR1 deficiency (109). Optimal suppression of IFN�
induction in WT virus-infected cells by ADAR1 p150 requires
deaminase catalytic activity but not Z-DNA– binding activity

(110). PKR kinase enhances both measles virus induction of
IFN� and apoptosis, mediated by cytosolic sensor signaling
through MAVS, with the amplification of IFN� induction
occurring through eIF2�-mediated translational control
(111, 112).

Mouse models of ADAR1 deficiency provided novel insight
into the functional significance of ADAR1-mediated suppres-
sion of dsRNA detection and hence suppression of triggering of
type I interferon and autoinflammatory responses. Genetic dis-
ruption of Adar1 in mice achieved by deleting both p150 and
p110 (30, 31), by knocking out only p150 expression (104) or by
knocking in the expression of the catalytic-deficient Adar1
E861A mutant (41), results in embryonic lethality characterized
by disintegration of the fetal liver. The conditional knockout of
Adar1 (32) and the knockin of the E861A mutant lacking edit-
ing activity (41) both result in an interferon signature of gene
expression and high levels of cell death. ADAR1 is essential for
normal murine erythropoiesis (113). However, the embryonic
lethality and interferon signature phenotypes of Adar1 mutant
mice can be rescued by concurrent deletion of either the MDA5

Figure 3. Model summarizing the role of ADAR1 as a suppressor of dsRNA-triggered innate immune responses. Cytoplasmic RLR and endosomal
membrane-associated TLR3 sense dsRNA to mediate the production of type I IFN through activation of interferon-regulatory (IRF) and NF-�B transcription
factors. The RLR family of proteins includes the MDA5 sensor that detects cytoplasmic dsRNAs, both viral (nonself) and cellular (self), and signals via the
mitochondrial adaptor MAVS (IPS-1 and VISA) to produce IFN. Among the IFN-induced proteins are the PKR protein kinase and OAS synthetases, also
cytoplasmic dsRNA-binding proteins. PKR, when activated by dsRNA-dependent autophosphorylation, phosphorylates translation initiation factor eIF2�
thereby leading to an inhibition of translation. OAS, when activated by dsRNA, produces 2�-5�-oligoadenylates, which then activate the 2–5A– dependent
RNase L thereby leading to RNA degradation. The p150 isoform of ADAR1 is IFN-inducible and both cytoplasmic and nuclear, whereas ADAR1 p110 and ADAR2
are both nuclear proteins and constitutively expressed. Under conditions of ADAR1 p150 deficiency, cellular RNAs (self) with double-stranded structure
accumulate to sufficiently high concentration, above the threshold, and trigger activation of cytoplasmic dsRNA sensors, including MDA5, PKR, and OAS. In the
presence of ADAR1 p150, A-to-I editing leads to inactivation of cellular (self) dsRNAs and impairment of dsRNA-triggered innate immune responses, as the
dsRNA concentration is below the threshold. Infection leads to increased levels of viral dsRNA (nonself) present in infected cells compared with the cellular
dsRNA (self) present in uninfected cells, thereby triggering activation of dsRNA sensors MDA5, PKR, and OAS. (Adapted from Ref. 73.)
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RIG-I–like receptor (41) or the MAVS mitochondrial adaptor
(103, 105) but not the RIG-I receptor (105). An Ifnar interferon
receptor mutation only partially rescues the Adar1 mutant
embryonic lethality, and while the Mavs mutation rescues
embryo survival to live birth, the mutant mice die shortly after
birth (103, 105). By contrast, the concurrent Mda5 mutation
rescues the Adar1 E861A mutation to live birth and well
beyond. Adar1(E861A)-Mda5 double mutant mice appear nor-
mal, including their life span (7, 72). This suggests that the
absence of ADAR1-editing activity is tolerated in the absence of
MDA5. One possibility, given the differences between the
MDA5 and MAVS rescues, is that under conditions of ADAR1
enzyme deficiency, the MDA5 dsRNA sensor may possibly
function by an additional mechanism that is independent of the
well established signaling via mitochondrial MAVS. Another
possibility is that the knockin of the E861A catalytic mutant
protein, while lacking editing activity, still possesses dsRNA-
binding activity, and it is this dsRNA-binding activity that in the
absence of functional MDA5–MAVS signaling contributes to
the rescue phenotype beyond birth. However, the fact that the
concurrent deletion of either Mda5 or Mavs does rescue the
Adar1 embryonic lethality phenotype strongly suggests that
the accumulation of self dsRNA structures recognized by
MDA5 and signaling through MAVS is responsible in large part
for the Adar1 mutant phenotypes.

Independent roles of the ADAR1 p110 and p150 proteins
have been identified, with regulation of the MDA5 sensor activ-
ity by p150, whereas both p150 and p110 affect multiorgan
development in the mouse (41, 104, 105, 113). Evidence also has
been provided that ADAR1 regulates dsRNA sensing in the
setting of ischemic stress in the liver, where ADAR deficiency
leads to increased RIG-I– dependent IFN production, inflam-
mation, and organ damage following ischemic stress (114). By
contrast to the embryonic lethality phenotype of Adar1 abla-
tion (30 –32, 41, 104), the Adar2 and Adar3 mouse knockouts
do not display embryonic lethality. Furthermore, postnatal
death of the Adar2 mutant mouse remarkably is rescued by
knockin of the edited form of the GluR-B Q/R site (62),
although ADAR2 is required for normal physiology more
broadly (115). An extended phenotypic analysis of 320 param-
eters showed the mice were hypermetabolic, had a hearing def-
icit, and displayed increased serum IgE levels (115). RNA edit-
ing by ADAR2 is metabolically regulated, for example in
pancreatic islets and beta cells (116). Adar3 knockout mice are
born following predicted Mendelian ratios and do not display
any atypical developmental characteristics (117). Mice with the
Adar3 gene disrupted by deletion of exon 3 (which includes the
two copies of the dsRNA-binding domain, Fig. 1, lower panel)
do, however, show deficits in learning and memory (117).

A-to-I editing by ADAR1 may lead to I-U mismatches in
place of A:U bp, thereby destabilizing dsRNA structures and
hence suppressing the activity of dsRNA-sensing proteins of
the interferon response, including not only the MDA5 RIG-I–
like receptor considered above, but also the protein kinase PKR
and the 2�-5�-oligoadenylate synthetase OAS–RNase L (41,
109, 110, 118, 119). In addition to destabilizing effects of deami-
nation mediated by ADAR catalytic activity, ADARs are also
potent dsRNA-binding proteins (16, 23). The potential effect of

sequestration of dsRNA or perturbation of intermolecular
interactions involving dsRNA in the absence of editing may also
occur (120, 121).

PKR

The PKR protein is a dsRNA sensor (Fig. 3). Binding of dsRNA
by PKR leads to dimerization and activation by autophos-
phorylation. Activated PKR then catalyzes the phosphorylation
of serine 51 of the �-subunit of protein synthesis initiation fac-
tor eIF2, which leads to an inhibition of translation (47, 93, 100,
122–125). PKR is both antiviral and pro-apoptotic. ADAR1
deficiency leads to increased activation of PKR and reduced
virus growth (90, 119). The formation of stress granules, cyto-
plasmic aggregates of stalled translation initiation complexes, is
a hallmark of viral infection. Stress granule formation is PKR-
dependent for several viruses, including measles virus and hep-
atitis C virus (110, 126). ADAR1 suppresses both the activation
of PKR and the formation of stress granules in cells infected
with either WT or V mutant measles virus but not the C mutant
(90, 109, 110). C mutant measles virus produces large amounts
of viral dsRNA and grows poorly compared with either WT or
V mutant virus. The C mutant is an efficient activator of PKR
even in the presence of ADAR1, leading to an inhibition of viral
protein synthesis and reduced C mutant virus growth (88, 89).
In the absence of infection, activation of PKR by cellular (self)
RNAs is suppressed by ADAR1 (73). In uninfected mouse
Adar1 null MEFs (lacking p110 and p150) and Adar1 p150 null
MEFs, but not Adar2 null or WT MEFs, PKR becomes activated
following IFN treatment as measured by increased phosphory-
lation of eIF2� and formation of stress granules (73). Deep
sequencing of mouse exonic loci containing A-to-I editing sites
using RNA from mutant and WT cells reveals that the majority
of editing in MEFs is by ADAR1, with hyper-edited sites found
in predicted duplex structures of cellular (self) RNAs (33, 73).
Likewise, conceptually similar conclusions are reached with
human 293 cell lines generated using CRISPR-Cas technology
lacking both p110 and p150, or only lacking p150: ADAR1
blocks translational shutdown by preventing hyperactivation of
the PKR kinase triggered by endogenous (self) RNA (127). Both
dsRNA binding and catalytic activity of ADAR1 p150, but not
Z-DNA– binding activity, appear necessary to maximally pre-
vent activation of PKR (110, 127).

OAS–RNase L

In humans there are three IFN-inducible and catalytically
active OAS enzymes, OAS1, -2, and -3. OAS is a dsRNA sensor
(Fig. 3). Upon binding dsRNA, OAS is activated and synthesizes
2–5A from ATP. The 2–5A oligomers then are bound by RNase
L, which mediates dimerization and activation of RNase L (93,
102). Activation of RNase L is mainly dependent upon OAS3
during infection with a range of human viruses (128). Activated
RNase L is an endonuclease and cleaves both viral and cellular
RNAs. Like PKR, RNase L is both antiviral and proapoptotic
(102). The cell lethal phenotype of ADAR1 deletion in the
human A549 cell line is rescued by knockout of either RNase L
or MAVS or by expression of a viral 2�-5�-phosphodiesterase
antagonist that degrades 2–5A and prevents activation of
RNase L (118). RNase L, at least in A549 cells, is a major deter-
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minant of the cell death phenotype triggered by ADAR1 defi-
ciency following accumulation of endogenous (self) dsRNA and
activation of OAS (118). RNase L and PKR share homology in
their pseudokinase (RNase L) and kinase (PKR) domains, and
both are inhibited by sunitinib, an ATP competitive inhibitor
used to suppress angiogenesis and tumor growth (129). Activa-
tion of RNase L by 2–5A also leads to the production of small
cleavage products from endogenous self-RNA that amplify
IFN� production by the RIG-I–like receptor–MAVS pathway
(130). The effect of sunitinib on inflammation triggered by
ADAR1 deficiency is unknown.

Human disease and ADAR

Altered A-to-I editing is linked to a variety of human diseases
and is an area of increased investigation (8, 33, 131–137).
Among the disorders associated with changes in ADAR-editing
activity is Aicardi-Goutieres syndrome, a childhood autoim-
mune disorder characterized by an elevated type I interferon
signature and caused in part by mutations in ADAR1 that
reduce activity (138, 139), similar to the elevated interferon
signature seen in mice lacking functional Adar1 (32, 41). Dys-
regulation of A-to-I editing also is observed in cancers, often
with A-to-I RNA editing levels elevated in tumor tissue com-
pared with normal tissue (131–137). For example, depending
upon the cell type, cancer progression has been linked to an
up-regulation of ADAR1 in liver, lung, and esophageal cancers
and myeloma (137, 140) or down-regulation of ADAR2 in glio-
blastoma (63, 137), although exceptions occur where ADAR1 is
down-regulated, for example in metastatic melanoma (137,
142). Most studies to date have used sequencing strategies to
identify changes attributed to A-to-I editing at the transcrip-
tome level. Recent findings extend RNA-seq studies and dem-
onstrate that editing contributes to proteomic diversity in a
breast cancer model through coding sequence changes, includ-
ing of the COPA transcript where increased editing correlates
with poorer survival time (141).

Summary

A model by which ADAR1 p150 may suppress innate immune
interferon responses triggered by cellular (self) RNA, but yet
permits activation of the responses by viral (nonself) pathogen
RNA, is summarized in Fig. 3. The findings described herein are
consistent with the notion that A-to-I editing activity by
ADAR1 in uninfected IFN-treated cells is capable of reducing
the effective steady-state concentration of endogenous cellular
(self) dsRNA structures to levels below the threshold
concentration ordinarily required to trigger activation of the
cellular dsRNA sensors (MDA5, PKR, and OAS). By contrast, in
the absence of ADAR1 p150, the functional concentration of
endogenous cytoplasmic self dsRNA increases to a level above
the threshold necessary to trigger activation of MDA5, PKR,
and OAS. Likewise, pathogen infection produces substantially
elevated levels of dsRNA, well above the threshold both in the
presence and absence of ADAR1. This then triggers activation
of the MDA5, PKR, and OAS sensors, with the efficiency de-
pendent upon the robustness of pathogen dsRNA production,
as illustrated by the differences observed between WT (low
dsRNA production) and C mutant (high dsRNA production)

measles virus. Thus, ADAR1 regulates sensing of cellular
(self) dsRNA structures, minimizing autotriggering of innate
immune responses under conditions of low concentrations of
dsRNA, yet permitting sensor activation by high concentra-
tions of viral (nonself) dsRNAs produced in infected cells (73,
90, 127).

Challenges and opportunities in the A-to-I editing field

Although considerable progress has been made toward
understanding the regulation of mammalian ADAR genes, the
activities of their encoded ADAR proteins, and the functional
roles that the A-to-I editing events play in biologic processes,
much remains to be learned.

The major and possibly sole essential role of ADAR1 is the
suppression of dsRNA-triggered innate immune IFN responses
through editing of cellular dsRNA structures, with a few million
editing sites identified in human transcripts mostly occurring
in noncoding repetitive sequences (7, 8, 33, 143). For MDA5,
PKR, and OAS, whether combinations of cellular transcripts
are unique or overlapping and to what extent the editing must
occur to cross the threshold necessary to suppress dsRNA sens-
ing by MDA5, PKR, and OAS is largely unknown. Likewise, it is
unclear whether the suppression of individual dsRNA sensors
by ADAR1 results solely from a destabilization of duplex
regions of RNA structure by generating base pair mismatches.
The converse relates to which cellular (self) dsRNA transcripts
in the unedited form have sufficient duplex character and abun-
dance to activate a given dsRNA sensor. This is not yet delin-
eated under conditions of ADAR1 deficiency for MDA5, PKR,
or OAS. In the case of ADAR1, another need is to more fully
define the functional roles of the p110 constitutively expressed
nuclear isoform compared with the IFN-inducible p150 iso-
form that is the only known cytoplasmic ADAR. The molecular
basis of the RNA substrate selectivity of the catalytically active
ADAR1 and ADAR2 proteins and the roles played by the
repeated RNA-binding domain copies compared with the cat-
alytic domain in conferring substrate selectivity are not fully
resolved. The role of the Z-DNA binding domains, Z� and Z�,
is not clear in p150. Comparatively little is known regarding the
functional role of the ADAR3 protein, an ADAR not yet shown
to possess catalytic activity that seems to act as a negative reg-
ulator of the enzymatically active ADARs. ADAR1 deficiency is
linked to human diseases, exemplified by Aicardi-Goutieres
syndrome. Changes in ADAR activity, typically an increased
ADAR1 activity, are seen in some cancers. Assessing the effect of
therapeutic modulation of ADAR activity as an approach to regu-
late innate immunity and inflammatory responses is largely unex-
plored. Finally, opportunity exists to utilize ADAR as a tool. Engi-
neered nucleotide substitution of an “I” (� G) for an “A” by
targeted adenosine deamination catalyzed by an ADAR catalytic
domain using a site-directed guide strategy has potential for cre-
ating RNA mutations (144, 145).
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